Contents

Contributors / ix
Preface / xv

DIAGNOSTIC PRINCIPLES

I. MOLECULAR HYBRIDIZATION FOR MICROBIAL IDENTIFICATION

1 Applications of Fluorescence In Situ Hybridization in Diagnostic Microbiology / 3
 STEFAN JURETSCHKO AND THOMAS R. FRITSCHE

2 DNA Probes for Culture Confirmation and Direct Detection of Bacterial and Fungal Infections: a Review of Current Technologies and Assays / 21
 JULIE KINGERY AND KAREN C. CARROLL

II. NUCLEIC ACID AMPLIFICATION METHODS

3 In Vitro Nucleic Acid Amplification Techniques / 33
 VIVEKANAND DATTA AND RANDALL T. HAYDEN

4 Real-Time PCR and Melting Analysis / 63
 CARL T. WITTWER AND NORIKO KUSUKAWA

5 Quantitative Molecular Methods / 83
 DONNA M. WOLK AND RANDALL T. HAYDEN

6 Use of Commercial Amplification Tests in the Clinical Microbiology Laboratory: Test Selection and Quality Assurance / 107
 GERRI S. HALL, MARK KATANIK, MARION TUOHY, AND MARY SHOLTIS

III. LABORATORY OPERATIONS

7 Nucleic Acid Isolation: Overview of Sample Preparation Methods / 119
 CHARLES E. HILL

8 Laboratory Design and Operations / 127
 P. SHAWN MITCHELL, JEFFREY J. GERMER, AND JOSEPH D. C. YAO

IV. MOLECULAR TYING METHODS

9 Molecular Phylogenetic Analysis / 145
 LES DETHLEFSEN, PAUL W. LEPP, AND DAVID A. RELMAN

10 Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data / 167
 RICHARD V. GOERING, EFRAIN M. RIBOT, AND PETER GERNER-Smidt

11 Strain Typing Using Multiple “Variable Number of Tandem Repeat” Analysis and Genetic Element CRISPR / 179
 CHRISTINE POURCEL AND GILLES VERGNAUD

12 Repetitive Sequence-Based PCR Typing of Bacteria and Fungi / 199
 STACIE R. FRYE AND MIMI HEALY

13 Molecular Typing Methods for Analysis of Extraintestinal Pathogenic Escherichia coli / 213
 JAMES R. JOHNSON
CONTENTS

V. DETECTION METHODOLOGY

14 Fluorescence Resonance Energy Transfer / 231
J. R. UHL, Y.-W. TANG, AND F. R. COCKERILL III

15 Detection of Pathogenic Organisms with Multicolor Molecular Beacons / 245
FANN WU, PHYLLIS DELLA-LATTA, SANJAY TYAGI, AND FRED RUSSELL KRAMER

16 Microwell Plate Detection Systems for Amplicon Detection and Characterization / 255
JIANG FAN AND MICHAEL J. LOEFFELHOLZ

17 Detection Methodology: Pyrosequencing / 261
LIYING YAN AND ROBERT SLINGER

18 Solid- and Liquid-Phase Array Technologies / 275
MELISSA B. MILLER

VI. NEW TECHNOLOGIES

19 Next-Generation DNA Sequencing and Microbiology / 301
RUSSELL HIGUCHI, ULF GYLLENSTEN, AND DAVID H. PERSING

20 Raman Spectroscopy for Bacterial Strain Typing / 313
DIANA WILLEMSE-ERIX, ALEX VAN BELKUM, AND Kees MAQUELIN

21 Multiplex PCR Product Detection and Discrimination / 325
STEVEN D. ZINK, NICK M. CIRINO, AND CHRISTINA EGAN

22 Detection of Emerging Antimicrobial Resistance by Use of the Ibis T5000 Universal Biosensor / 343
DAVID J. ECKER, RANGARAJAN SAMPATH, CHRISTIAN MASSIRE, LAWRENCE B. BLYN, MARK W. ESPOO, THOMAS A. HALL, AND STEVEN A. HOFSTADLER

VII. DIAGNOSTIC APPLICATIONS

23 Update on the Detection and Characterization of Bacterial Pathogens by Nucleic Acid Amplification / 355
K. LOENS, H. GOOSSENS, AND M. IEVEN

24 Molecular Detection of Chlamydia trachomatis and Neisseria gonorrhoeae / 383
JENS K. MØLLER, BJØRN HERRMANN, JØRGEN SKOV JENSEN, AND HENRIK WESTH

25 PCR Detection of Haemophilus ducreyi, Treponema pallidum, and Mycoplasma genitalium / 397
PATRICIA A. TOTTEN, LISA E. MANHART, AND ARTURO CENTURION-LARA

26 Molecular Detection and Characterization of Mycobacterium tuberculosis / 415
BETTY A. FORBES

27 Sequence-Based Identification and Characterization of Mycobacteria / 437
NANCY L. WENGENACK AND LESLIE HALL

28 Molecular Detection of Group B Streptococcus / 453
ELIZABETH M. MARLOWE AND PREETI PANCHOLI

29 Molecular Detection and Identification of Methicillin-Resistant Staphylococcus aureus / 463
WILLEM VAN LEEUWEN AND ALEX VAN BELKUM

30 Identification of Bacteria by DNA Target Sequencing in a Clinical Microbiology Laboratory / 479
ROSEMARY C. SHE, KEITH E. SIMMON, AND CATHY A. PETTI

31 Broad-Range PCR for Detection and Identification of Bacteria / 490
MATTHIAS MAIWALD

32 Detection of Antimicrobial Resistance Genes and Mutations Associated with Antimicrobial Resistance in Bacteria / 507
FRED C. TENOVER AND J. KAMILE RASHEED
33 Detection of Agents Associated with Bioterrorism / 525
PAUL KEIM, VICTOR WADDELL, AND DAVID M. ENGELTHALER

VIII. MOLECULAR DETECTION AND CHARACTERIZATION OF VIRUSES

34 Diagnostic Molecular Virology: Current Practice and Future Trends / 537
FREDERICK S. NOLTE

35 Molecular Detection and Characterization of HIV-1 / 541
ANGELA M. CALIENDO AND COLLEEN S. KRAFT

36 Molecular Detection and Characterization of Hepatitis C Virus / 557
MICHAEL S. FORMAN AND ALEXANDRA VALSAMAKIS

37 Molecular Detection and Characterization of Hepatitis B Virus / 579
DAVID R. HILLYARD

38 Molecular Detection of Human Papillomaviruses / 593
DENISE I. QUIGLEY AND ELIZABETH R. UNGER

39 Molecular Detection of Respiratory Viruses / 605
RICHARD S. BULLER AND MAX Q. ARENS

40 Viral Infections in Transplant Recipients / 631
ROBIN PATEL AND FREDERICK S. NOLTE

41 New Virus Discovery in the 21st Century / 641
STACY FINKBEINER AND DAVID WANG

IX. DETECTION AND CHARACTERIZATION OF FUNGAL PATHOGENS

42 Molecular Detection and Characterization of Fungal Pathogens / 655
STÉPHANIE BRETAGNE

43 Sequence-Based Fungal Identification and Classification / 669
JIANYI DONG, MICHAEL J. LOEFFELHOLZ, AND MICHAEL R. McGINNIS

44 Molecular Detection of Antifungal Resistance / 677
THOMAS D. EDLIND

X. DETECTION AND CHARACTERIZATION OF PARASITIC PROTOZOA

45 Overview of the Development, Utility, and Future of Molecular Diagnostics for Parasitic Diseases / 687
BOBBI PRITT AND JON ROSENBLATT

46 Molecular Approaches for Diagnosis of Malaria and Characterization of Genetic Markers of Drug Resistance / 691
LAURA K. ERDMAN, MICHAEL HAWKES, AND KEVIN C. KAIN

47 Molecular Approaches for Diagnosis of Chagas’ Disease and Genotyping of Trypanosoma cruzi / 713
MICHAL SVOBODA, MYRNA VIRREIRA, CARINE TRUYENS, FAUSTINO TORRICO, AND YVES CARLIER

XI. SYSTEMS MICROBIOLOGY

48 Molecular Diagnosis of Gastrointestinal Infections / 729
BENJAMIN A. PINSKY AND NIAZ BANAEI

49 Molecular Approaches to the Diagnosis of Sepsis / 751
PAUL H. M. SAVELKOUL AND REMCO P. H. PETERS

50 Molecular Approaches to the Diagnosis of Meningitis and Encephalitis 767
KAREN C. BLOCH AND YI-WEI TANG

XII. THE PATHOGEN/HOST INTERFACE

51 Genomics and DNA Variation: Determinants of Susceptibility and Outcomes in Microbial Diseases / 787
CHIEA-CHUEN KHOW, STEPHEN J. CHAPMAN, AND ADRIAN V. S. HILL

52 Genetically Polymorphic Cytochrome P450s and Transporters and Personalized Antimicrobial Chemotherapy / 803
HONG-GUANG XIE
CONTENTS

53 Host Genomic Profiling in Human Immunodeficiency Virus Infection / 833 KEVIN V. SHIANNA AND AMALIO TELENTI

54 Innate Immunity and Host Defense against Microbial Infection / 841 MARKUS SCHNARE AND SALMAN QURESHI

XIII. LABORATORY STANDARDIZATION, PROFICIENCY-TESTING PROGRAMS, QUALITY-CONTROL STANDARDS, AND MONITORING

55 Molecular Method Verification / 861 DONNA M. WOLK AND ELIZABETH M. MARLOWE

56 Molecular Test Validation, Monitoring, and Quality Control / 885 MATTHEW J. BANKOWSKI

57 External Quality Assessment and Proficiency Testing in Diagnostic Molecular Microbiology / 891 MICHAEL J. MITCHELL

58 Laboratory Controls and Standards / 899 MAURICE EXNER

Index / 911
Contributors

MAX Q. ARENS
Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110

NIAZ BANAEE
Pathology and Medicine (Infectious Diseases & Geographic Medicine), Stanford University School of Medicine, Stanford, CA 94305, and Clinical Microbiology Laboratory, Stanford Hospital and Clinics, Palo Alto, CA 94304

MATTHEW J. BANKOWSKI
Department of Pathology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, and Diagnostic Laboratory Services, Inc., and The Queen’s Medical Center, Honolulu, HI 96813

KAREN C. BLOCH
Departments of Medicine and Preventive Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232

LAWRENCE B. BLYN
Ibis Biosciences, Carlsbad, CA 92008

STÉPHANE BRETAGNE
AP-HP Hôpital Henri Mondor, Université Paris-Est, Créteil, and Institut Pasteur, Centre National de Référence des Mycoses et des Antifongiques, Paris, France

RICHARD S. BULLER
Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110

ANGELA M. CALIENDO
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322

YVES CARLIER
Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), Route de Lennik 808, B-1070 Brussels, Belgium

KAREN C. CARROLL
The Johns Hopkins University School of Medicine, Baltimore, MD 21287

ARTURO CENTURION-LARA
Department of Medicine, University of Washington, Seattle, WA 98104

STEPHEN J. CHAPMAN
Wellcome Trust Centre for Human Genetics, University of Oxford, Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, United Kingdom

NICK M. CIRINO
Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208

F. R. COCKERILL III
Division of Clinical Microbiology, Mayo Clinic, Rochester, MN 55905

VIVEKANAND DATTA
Department of Pathology and Lab Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048

PHYLIS DELLA-LATTA
Clinical Microbiology Services, Department of Pathology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY 10032

LES DETHLEFSEN
Stanford University and VA Palo Alto Health Care System, 3801 Miranda Ave. 154T, Palo Alto, CA 94304-1207

JIANLI DONG
Molecular Diagnostic Laboratory, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0740

DAVID J. ECKER
Ibis Biosciences, Carlsbad, CA 92008

THOMAS D. EDLIND
Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129

CHRISTINA EGAN
Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208

DAVID M. ENGELTHALER
The Translational Genomics Research Institute (TGen), 3051 W Shamrell Blvd., Suite 106, Flagstaff, AZ 86001

LAURA K. ERDMAN
McLaughlin-Rotman Centre for Global Health, UHN-Toronto General Hospital, University of Toronto, MaRS Centre, 101 College St., Suite 10-401, Toronto, Ontario, Canada M5G 1L7
CONTRIBUTORS

MARK W. ESHOO
Ibis Biosciences, Carlsbad, CA 92008

MAURICE EXNER
Focus Diagnostics, Inc., 11331 Valley View St., Cypress, CA 90630

JIANG FAN
Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226

STACY FINKBEINER
Department of Molecular Microbiology, Washington University Medical School, St. Louis, MO 63110

BETTY A. FORBES
Department of Pathology, Virginia Commonwealth University Medical Center, Medical College of Virginia Campus, Richmond, VA 23298

MICHAEL S. FORMAN
Division of Medical Microbiology, Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287

THOMAS R. FRITSCHER
Section of Clinical Microbiology, Marshfield Clinic, 1000 North Oak Ave., Marshfield, WI 54449-5795

STACIE R. FRYE
H2F Consulting, Athens, GA 30606

JEFFREY J. GERMER
Division of Clinical Microbiology, Dept. of Laboratory Medicine & Pathology, Mayo Clinic, 200 First St. SW, SU 1-602, Rochester, MN 55905

PETER GERNER-SMIDT
Division of Foodborne, Bacterial, and Mycotic Diseases, National Center for Zoonotic, Vectorborne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

RICHARD V. GOERING
Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178

H. GOOSSENS
Department of Microbiology, Vaccine and Infectious Disease Institute (VIDI), University of Antwerp, Antwerp, Belgium

ULF GYLLENSTEN
Department of Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden

GERRI S. HALL
The Cleveland Clinic, Cleveland, OH 44195

LESLIE HALL
Division of Clinical Microbiology, Mayo Clinic, Rochester, MN 55905

THOMAS A. HALL
Ibis Biosciences, Carlsbad, CA 92008

MICHAEL HAWKES
McLaughlin-Rotman Centre for Global Health, UHN-Toronto General Hospital, University of Toronto, MaRS Centre, 101 College St., Suite 10-401, Toronto, Ontario, Canada M5G 1L7

RANDALL T. HAYDEN
Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678

MIMI HEALY
H2F Consulting, Athens, GA 30606

BJÖRN HERRMANN
Department of Clinical Microbiology, University Hospital, Uppsala, S-751 85, Sweden

RUSSELL HIGUCHI
Cepheid, 904 Caribbean Dr., Sunnyvale, CA 94089

ADRIAN V. S. HILL
Wellcome Trust Centre for Human Genetics, University of Oxford, Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, United Kingdom

CHARLES E. HILL
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322

DAVID R. HILLYARD
Department of Clinical Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132

STEVEN A. HOFSTADLER
Ibis Biosciences, Carlsbad, CA 92008

M. IEven
Department of Microbiology, Vaccine and Infectious Disease Institute (VIDI), University of Antwerp, Antwerp, Belgium

JØRGEN SKOV JENSEN
Department of Bacteriology, Mycology and Parasitology, Statens Serum Institut, Copenhagen, DK-2300, Denmark

JAMES R. JOHNSON
Veterans Affairs Medical Center and University of Minnesota Department of Medicine, Minneapolis, MN 55417

STEFAN JURETSCHKO
Center for Laboratory Medicine, Kaleida Health, 155 Flint Road, Williamsville, NY 14221

KEVIN C. KAIN
McLaughlin-Rotman Centre for Global Health, UHN-Toronto General Hospital, University of Toronto, MaRS Centre, 101 College St., Suite 10-401, Toronto, Ontario, Canada M5G 1L7

MARK KATANIK
The Cleveland Clinic, Cleveland, OH 44195

PAUL KEIM
The Center for Microbial Genetics and Genomics, Northern Arizona University, and The Translational Genomics Research Institute (TGen), NAU Box 4015, Flagstaff, AZ 86011-4015

CHIEA-CHUEN KHOR
Division of Infectious Diseases, Genome Institute of Singapore, Agency for Science, Technology, and Research, 60 Biopolis St., #02-01, Genome, Singapore 138672

JULIE KINGERY
The Johns Hopkins University School of Medicine, Baltimore, MD 21287

COLLEEN S. KRAFT
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
CONTRIBUTORS

FRED RUSSELL KRAMER
Department of Molecular Genetics, Public Health Research Institute, Newark, NJ 07103

NORIKO KUSUKAWA
Associated Regional and University Pathologists, Salt Lake City, UT 84108

PAUL W. LEPP
Department of Biology, Minot State University, 500 University Ave. W, Minot, ND 58707-5044

MICHAEL J. LOEFFELHOLZ
Clinical Microbiology Laboratory, Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0740

K. LOENS
Department of Microbiology, Vaccine and Infectious Disease Institute (VIDI), University of Antwerp, Antwerp, Belgium

MATTHIAS MAIWALD
Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899

LISA E. MANHART
Department of Epidemiology, University of Washington, Seattle, WA 98104

KEES MAQUELIN
Center for Optical Diagnostics & Therapy, Dept. of Dermatology, and Dept. of Medical Microbiology and Infectious Diseases, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, and River Diagnostics BV, Marconistraat 16, 3029 AK, Rotterdam, The Netherlands

ELIZABETH M. MARLOWE
Southern California Permanente Medical Group, Regional Reference Laboratories, North Hollywood, CA 91605

CHRISTIAN MASSIRE
Ibis Biosciences, Carlsbad, CA 92008

MELISSA B. MILLER
Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599

MICHAEL J. MITCHELL
Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605

P. SHAWN MITCHELL
Division of Clinical Microbiology, Dept. of Laboratory Medicine & Pathology, Mayo Clinic, 200 First St. SW, SU L-602, Rochester, MN 55905

JENS K. MØLLER
Department of Clinical Microbiology, Aarhus University Hospital, Skejby, Aarhus N, DK-8200, Denmark

FREDERICK S. NOLTE
Department of Pathology & Laboratory Medicine, Medical University of South Carolina, 165 Ashley Ave., Suite 305, P.O. Box 250908, Charleston, SC 29425

PREETI PANCHOLI
The Ohio State University Medical Center, University Hospital East, 1492 E. Broad St., Columbus, OH 43205

ROBIN PATEL
Department of Laboratory Medicine and Pathology and Department of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905

DAVID H. PERSING
Cepheid, 904 Caribbean Dr., Sunnyvale, CA 94089

REMCO P. H. PETERS
ANOVA Health Institute, Khutsu Kurhula Offices, 21A Peace Street, P.O. Box 2243, 0850 Tzaneen, South Africa

CATHY A. PETTI
Department of Pathology and Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132

BENJAMIN A. PINSKY
Pathology and Medicine (Infectious Diseases & Geographic Medicine), Stanford University School of Medicine, Stanford, CA 94305, and Clinical Microbiology Laboratory, Stanford Hospital and Clinics, Palo Alto, CA 94304

CHRISTINE POURCEL
Université Paris-Sud 11, CNRS, UMR8621, Institut de Génétique et Microbiologie, 91405 Orsay, France

BOBBI PRITT
Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Mayo Clinic, Rochester, MN 55905

DENISE I. QUIGLEY
Cytogenetics and Molecular Genetics Laboratory, Kaiser Permanente NW Regional Laboratory, Portland, OR 97230

SALMAN QURESHI
McGill Centre for the Study of Host Resistance, Room L11-403, 1650 Cedar Ave., Montreal, QC, Canada H3G 1A4

J. KAMILE RASHEED
Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, 1600 Clifton Rd. (G-08), Atlanta, GA 30333

DAVID A. RELMAN
Stanford University and VA Palo Alto Health Care System, 3801 Miranda Ave. 154T, Palo Alto, CA 94304-1207

EFRAIN M. RIBOT
Division of Foodborne, Bacterial, and Mycotic Diseases, National Center for Zoonotic, Vectorborne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

RANGARAJAN SAMPATH
Ibis Biosciences, Carlsbad, CA 92008

PAUL H. M. SAVELKOUL
VU University Medical Center, Dept. of Medical Microbiology & Infection Control, Unit Molecular Diagnostics & Epidemiology, P.O. Box 7057, 1007MB Amsterdam, The Netherlands
MARKUS SCHNARE
Microbiological Institute—Clinical Microbiology, Immunology and Hygiene, University Hospital of Erlangen, Wasserturmstrasse 3/5, 91054 Erlangen, Germany

ROSEMARY C. SHE
Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132

KEVIN V. SHIANNA
Genomic Analysis Facility, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708

MARY SHOLTIS
The Cleveland Clinic, Cleveland, OH 44195

KEITH E. SIMMON
Associated Regional and University Pathologists (ARUP), Salt Lake City, UT 84108

ROBERT SLINGER
Infectious Diseases/Medical Microbiology, University of Ottawa, and Medical Microbiology, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada K1H 8L1

MICHAL SVOBODA
Laboratoire de Chimie Biologique, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), Route de Lennik 808, B-1070 Brussels, Belgium

YI-WEI TANG
Departments of Pathology and Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232

AMILIO TELENTI
Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland

FRED C. TENOVER
Cepheid, 904 Caribbean Dr., Sunnyvale, CA 94089

FAUSTINO TORRICO
Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba, Bolivia

PATRICIA A. TOTTEN
Department of Medicine, University of Washington, Seattle, WA 98104

CARINE TRUYENS
Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), Route de Lennik 808, B-1070 Brussels, Belgium

MARION TUOHY
The Cleveland Clinic, Cleveland, OH 44195

SANJAY TYAGI
Department of Molecular Genetics, Public Health Research Institute, Newark, NJ 07103

J. R. UHL
Division of Clinical Microbiology, Mayo Clinic, Rochester, MN 55905

ELIZABETH R. UNGER
Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

ALEXANDRA VALSAMAKIS
Division of Medical Microbiology, Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287

ALEX VAN BELKUM
Department of Medical Microbiology and Infectious Diseases, Unit Research and Development, Erasmus University Medical Centre, ’s Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands

WILLEM VAN LEEUWEN
Department of Medical Microbiology and Infectious Diseases, Unit Research and Development, Erasmus University Medical Centre, ’s Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands

GILLES VERGAUD
Université Paris-Sud 11, CNRS, UMR8621, Institut de Génétique et Microbiologie, 91405 Orsay, and DGA-Mission pour la Recherche et l’Innovation Scientifique, 92221 Bagneux, France

MYRNA VIRREIRA
Laboratoire de Chimie Biologique, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), Route de Lennik 808, B-1070 Brussels, Belgium

VICTOR WADDELL
State Health Laboratory, Arizona Department of Health Services, 250 N 17th Ave., Phoenix, AZ 85007

DAVID WANG
Department of Molecular Microbiology and Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO 63110

NANCY L. WENGENACK
Division of Clinical Microbiology, Mayo Clinic, Rochester, MN 55905

HENRIK WESTH
Department of Clinical Microbiology 445, Hvidovre Hospital, Hvidovre, DK-2650, Denmark

DIANA WILLEMSE-ERIX
Center for Optical Diagnostics & Therapy, Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Room Ee1689, PO Box 2040, 3000 CA, Rotterdam, and River Diagnostics BV, Marconistraat 16, 3029 AK, Rotterdam, The Netherlands

CARL T. WITTWER
Department of Pathology, University of Utah Medical School, Salt Lake City, UT 84132

DONNA M. WOLK
University of Arizona, College of Medicine, Department of Pathology and BIO5 Institute, Tucson, AZ 85724-5059

FANN WU
Clinical Microbiology Services, Department of Pathology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY 10032

HONG-GUANG XIE
Center for Drug Development Science, Department of Biopharmaceutical Sciences, University of California San Francisco School of Pharmacy, University of California Washington Center, Washington, DC 20036-3206

LIYING YAN
EpigenDx Inc., Worcester, MA 01606
JOSEPH D. C. YAO
Division of Clinical Microbiology, Dept. of Laboratory Medicine & Pathology, Mayo Clinic, 200 First St. SW, SU 1-602, Rochester, MN 55905

STEVEN D. ZINK
Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208
Preface

Some readers of this book may have had the experience, in the few years after the 1985 announcement of PCR, of actually performing the method as it was first described by Kary Mullis. The procedure involved pipetting of new aliquots of Klenow polymerase after each PCR cycle because the temperatures required for denaturation of the target and amplification products also inactivated the enzyme. Most memorably, it required sequential steps of floating small plastic tubes in water baths kept at three different temperatures, with no time for bio-breaks. The advent of a thermostable DNA polymerase was a dramatic improvement, but the novelty of the water baths quickly wore off, even for the most dedicated graduate student. I recall the great excitement at the University of California on the day when a prototype Perkin-Elmer thermal cycler was delivered to Dr. Jane Gitshier’s laboratory; one thermal cycler was placed in service of the entire university. The sign-up list quickly filled up as eager students, at all hours, filed into and out of her laboratory to perform experiments. The inconvenience of a midnight PCR run was a much-preferred alternative to standing, lock-kneed with pipettor in hand, in front of three water baths. Needless to say, with the advent of closed system detection and real-time PCR, times have changed.

Much of the subject matter of this book is focused on the implementation of these techniques for routine use in both clinical and research laboratories. In this volume lies a substantial repository of collective wisdom regarding the implementation, evaluation, and quality control of molecular diagnostic tests as they are currently available. From the standpoint of diagnostic test development, the major hurdles to be overcome are now related less to the nucleic acid detection technology itself than to sample processing. For years, clinical microbiologists, more than any other diagnosticians, have been tasked with gleaning diagnostic value from an incredible array of sample types, including stool, blood, pus, sputum, urine, tissues, and swabs from virtually every body site. Indeed, a significant impediment to implementation of molecular methods in this area has been to determine the appropriate quantity of specimen, how to concentrate the targets, how to release efficiently the target from its nearly impermeable shell, and how best to eliminate inhibitors. To paraphrase a once-famous opening line, “Sputum, the Final Frontier”; for the molecular diagnosticians focused on the challenge of rapidly detecting drug-resistant tuberculosis or ventilator-associated pneumonia, it truly is.

Other sections of this book provide a glimpse of the incredibly exciting future; since this future is inextricably linked to steps taken in the present day, we can expect to see incremental growth in several areas. Quantitative molecular methods have become the mainstay of the medical management of chronic viral infections, and will be used increasingly for monitoring treatment responses of a wide variety of infections. Molecular typing methods will be used in real time to track outbreaks of infections due to health care-associated pathogens. Deep sequencing has facilitated metagenomic analysis of multiple prokaryotic pathogens, thus defining better those diseases associated with shifts in bacterial populations such as inflammatory bowel disease and bacterial vaginosis. Testing in this area may have bacterial ecology as its focus. As diagnosticians, it seems likely that as the field evolves, so will our job descriptions. Fortunately for us, the days ahead seem exceedingly bright.

Still, much progress remains to be made. To press the Star Trek analogy further, what the universe needs now is the diagnostic equivalent of the Tricorder: a device or approach that can ascertain a patient’s condition comprehensively so that well-informed treatment and management decisions can be made in real time. Several sections of this book (in particular section VIII, Molecular Detection and Characterization of Viruses, and section XI, Systems Microbiology) illustrate how molecular diagnostics—as the first truly universal detection platform for bacteria, viruses, fungi, and protozoa—can be used to ask open-ended diagnostic questions about disease etiology. Until fairly recently, the decision to order a molecular diagnostic test has been prejudicial, in which the test is ordered on the basis of clinical likelihood of a “hit,” or positive result. In this setting, negative results often reflect nothing more than a clinician’s poor fortune in choosing among possible culprits. Multiplexed molecular techniques change that for-patient’s poor fortune in choosing among possible culprits. Multiplexed molecular techniques change that for-
in guiding everyday medical management decisions. It seems that once we start multiplexing and stop our batch-
ning, real-time PCR will finally be able to live up to its name.

As of the date of publication of this book, only about half of the high-complexity laboratories in the United States and European Union do molecular diagnostic testing of any kind, and most of these laboratories are limited to performing kit-based testing for chlamydia and/or gonorrhea. Relatively few laboratories still do their own test development and validation, which means that many tests with potentially high clinical impact are relatively inaccessible due to high cost or to prolonged turnaround times that make the results irrelevant. Outside the United States, the situation is even more bleak. Developing countries generally do not have access to molecular diagnostic technologies, despite the fact that these technologies could have an enormous impact on the health challenges of the developing world. In essence, molecular diagnostic testing is gaining ground rapidly, except in places where it is needed the most. It is hoped that the continued democratization of molecular diagnostics technology and the dissemination of privileged information, some of which is contained in the pages of this book, will help to correct this disparity.

DAVID H. PERSING, MD, PhD
Chief Medical and Technology Officer
Cepheid
Sunnyvale, CA
Index

A
aac genes, in antimicrobial resistance, 509
aad genes, in antimicrobial resistance, 509
Abacavir, cytochrome polymorphism and, 805
Abbott m200
for Chlamydia trachomatis, 388
for Neisseria gonorrhoeae, 385
Abbott m2000
for Chlamydia trachomatis, 384–387
for Neisseria gonorrhoeae, 384–386
ABC transporter genes, in antifungal resistance, 678
ABCB1 gene, drug disposition and, 821
ABCC1 gene, drug disposition and, 822
ABI 7500 instrument, for multiplex PCR, 327
ABI 7700 instrument, for respiratory viruses, 620
ABI Prism 6100 Nucleic Acid PrepStation, for HCV, 565
ABI Prism instruments, laboratory design for, 139
ABI SOLID system, 301–302, 305–309
Abiotrophia, 484–485
ABO blood groups, disease susceptibility and, 797
Absolute power, 873
Acanthamoeba, 688
Accessory traits, extraintestinal pathogenic Escherichia coli, 215–218
AccuProbe Blastomyces dermatitidis culture identification test, 23
AccuProbe Campylobacter identification test, 24–25
AccuProbe Coccidioides immitis culture identification test, 23
AccuProbe group B Streptococcus assay, 458
AccuProbe group B Streptococcus culture identification test, 24, 25, 454–455
AccuProbe Histoplasma capsulatum culture identification test, 23
AccuProbe Listeria monocytogenes culture identification test, 24
AccuProbe Mycobacterium kansasii culture identification test, 26
AccuProbe Mycobacterium tuberculosis test, 110
AccuProbe Staphylococcus aureus culture identification test, 463
AccuProbe Streptococcus pneumoniae culture identification test, 25
Accuracy
qualitative, 864–865
quantitative, 881
of real-time PCR, 73–74
AccuTest, 893
Acinetobacter DNA target sequencing for, 485
Raman spectroscopy of, 319
rep-PCR for, 202, 204
Acinetobacter baumannii, resistance in
Ibis T5000 biosensor for, 345, 347
pyrosequencing for, 268
Acrometrix, 893
Acinetobacter baumannii, resistance in
Ibis T5000 biosensor for, 345, 347
pyrosequencing for, 268
Acrometrix, 893
Adefovir cytochrome polymorphism and, 806
for hepatitis B, 583
Adenoclonelype 40/41, 737
Adenoplex microwell plate system, 256
Adenovirus(es)
description of, 607–608
in transplant recipients, 636–637
microarrays for, 288
molecular detection of, 614
multiplex assays for, 620–621
novel, 643
Affirm VP30 test, 26
Affymetrix GeneChips, 276, 278–280
Agammaglobulinemia, 849
AIDS, see also Human immunodeficiency virus (HIV)
epidemiology of, 541
susceptibility to, 794
viral load and, 542
Air monitoring, in BioWatch Program, 530–532
Ajellomyces capsulatus, 672
Akaike's information criterion, for phylogenetic analysis, 159
Akoni microarrays, 333
Aldolase, of Plasmodium, 693–694
Algorithms
for phylogenetic analysis, 157–161
for real-time PCR, 68–69
Alignment, sequence, in phylogenetic analysis, 152, 153–157, 161
Alkaline phosphatase for bDNA amplification, 46
for FISH probe, 6
for labeling probes, 22
Alleles, in MLVA, 184–185
Allele-specific amplification (ASA) for CYP3A5, 810, 813
for CYP2C19, 818
Allele-specific fluorogenic 5’-nuclease chain reaction assay, for CYP2B6, 807
Allele-specific PCR, for CYP2B6, 807
Allele-specific primer extension, in microarrays, 283
Allowable systematic error, 881
Alpha error (type I), 873
Alternative hypothesis, 877
Alternative pathway, for complement activation, 844
Alternative proficiency testing program, 892, 894–896
Amanadine, resistance to, 270
Amebiasis, 738–739
American Society for Colposcopy and Cervical Pathology, cervical screening test guidelines of, 596
American trypanosomiasis, see Chagas' disease
Aminoglycosides, resistance to, 509
Amoxicillin, cytochrome polymorphism and, 806
amp genes, in antimicrobial resistance, 511
Amphotericin B, resistance to, 681
Ampicillin, cytochrome polymorphism and, 486
Amplification, see also
Anaplasma phagocytophilum, 107–108
Anamorphs, of fungi, 672
Analytical study designs, 871
Analytical sensitivity, in method
Analysis of variance (ANOVA), 878
Analysis of residuals, 878
Anaerobes, DNA target sequencing for,
AmpliTaq LD, for contamination control,
AmpliPrep instruments, 136
Amplification, see also
Amplicor MTB assay, 110
Amplicor
Amplicor assays
Amplicor CYP450 assay, 818
Amplicon(s), accumulation of, 85
Amplicon melting, for PCR, 78–80
Amplicor assays
Amplicor CMV test, 633
Amplicor HCV Monitor test, 566–567
Amplicor HIV-1 DNA assay, 543, 547
Amplicor HIV-1 Monitor, 545–546
Amplicor HPV test, 597–598
Amplicor M. tuberculosis Test, 331, 416
Amplicor MTB assay, 110
Amplicor Respiratory Preparation Kit, 356–357
Amplification, see also Nucleic acid
amplification techniques
bDNA, 47–48, 140
cleavage-based, 48
contamination control in, see
Contamination, control of
dNA target sequencing, 482–483
monitoring of, multicolor molecular
beacons in, 245–246
multiplex, 285–287
for PCR
multiplex, 326–328
repetitive sequence-based, 199–200
in pyrosequencing, 262
rolling-circle, 48
sequence-independent, for novel
viruses, 642–649
signal, 43, 47–48
single-molecule, 302–303
strand displacement, see Strand
displacement amplification
target, see PCR; Target amplification
methods
tests for, in commercial assays, 107–116
Amplified Mycobacterium tuberculosis
Direct Test, 110
AmpliPrep instruments, 136
Amplicon melting, for contamination control,
494
Amprenavir, cytochrome polymorphism and,
805
Anaerobes, DNA target sequencing for,
485
Analysis of residuals, 878
Analysis of variance (ANOVA), 878
Analyte-specific reagents, verification of,
861–862, 871
Analytical measurement range, 886–887,
906
Analytical sensitivity, in method
verification, 863–864, 880
Analytical specificity, 864, 880
Analytical study designs, 871
Anamorphs, of fungi, 672
Anaplasma, meningocencephalitis due to,
769, 776
Anaplasma phagocytophilum, NAATs for,
359
Ancestors, evolution from, see
Phylogenetic analysis
Ancylostoma duodenale, 688
Anidulafungin, resistance to, 681
Annelid viruses, 643
ANOVA (analysis of variance), 878
Anthrax, see Bacillus anthracis
Antibiotic typing, 313
Antibiotics, see Antimicrobial(s)
Antibodies, for labeling probes, 22
Antigen tests
for Aspergillus, 660
for astrovirus, 737
for meningocencephalitis
microorganisms, 770
Antimalarial drugs
cytchrome polymorphism and, 805–806
resistance to, 697–702
Antimicrobial(s), see also specific
antimicrobials
gut flora community and, 310
metabolism of, cytochrome P450s in,
see Cytochrome P450s
Antimicrobial peptides and proteins, 847
Antimicrobial resistance, 507–524; see also
different drugs and microorganisms
in fungi, 677–684
genes associated with, 508–515
genotypic methods for, 508
history of, 507
Ibis T5000 Universal biosensor for,
343–351
innate immunity mechanisms in,
849
mechanisms of, 507–508
methicillin, Staphylococcus aureus, see
MRSA (methicillin-resistant
Staphylococcus aureus)
microarrays for, 289
multicolor molecular beacons detection
of, 247–249
NAATs for, 51, 355–356
pyrosequencing for, 268–270
Antiretroviral drugs, cytochrome
cytochrome polymorphism and,
805
Antiviral agents, cytochrome
cytochrome polymorphism and,
806
Antiviral test, for HIV, 548
AP (atovaqone-proguanil), resistance to,
698
aph genes, in antimicrobial resistance, 509
APOBEC genes, in HIV susceptibility,
834–835
Aptima HCV test, 566
Aptima HIV-1 RNA assay, 543, 547
Aptima HPV assay, 598
Aptima TMACombo 2 assay, 108
Arbo software, for phylogenetic analysis,
152, 162, 493
Arconabacterium, 486
Arbovirus, 202
Arenaviruses, 648
Argene Biosoft kit, for caliciviruses, 736
Argene Enterovirus Consensus assay, 258
Argene Biosoft kit, for caliciviruses, 736
Argenx Enterovirus Consensus assay, 258
Arithmetic adjustment, in PCR, 73
arm genes, in antimicrobial resistance, 509
Armored RNA, as control, 903
ArrayTube microarray, 290
Artemisinin derivatives
cytochrome polymorphism and,
804, 805
resistance to, 698, 702
Artus instruments
for Chlamydia trachomatis, 388
for Mycobacterium tuberculosis, 428
for Neisseria gonorrhoeae, 388
Artus LC reverse transcription-PCR, for
influenza virus, 615–616
Artus RealArt HBV assay, 587
ASCUS-LSIL Triage Study, of HPV
testing, 596
Aspergillus
innate immunity to, 846
invasive infection due to, 659–660
melting assay for, 76
molecular detection of, 656–657
multiple PCR for, 758
rapid antigen test for, 270
rep-PCR for, 202, 205
species identification of, 661
Aspergillus fumigatus
gut flora community of, 677–684
Atovaqone-proguanil (AP), resistance to,
698
AttoSense HPV assay, 601
Australia Group, bioterror list of, 525
Autoblot instrument
for HBV, 587
laboratory design for, 140
Autofluorescence, in FISH, 9
AutoGenomics panel, 388
Autoimmunity, avoidance of, 848
Auto-LiPA 48
for HBV, 587
laboratory design for, 140
Automation
in BioWatch Program, 531–532
of flow cytometry, 696
of intra-erythrocytic nucleic acid
detection, 696
laboratory design for, 128–129
of nucleic acid extraction, 123–124,
356
of rep-PCR, 200–202
Autonomous Pathogen Detection System,
531–532
Avian bornavirus, 645, 648
Avian coronavirus, 645, 648
Avian influenza virus, pyrosequencing for,
268
Avidin probes, for microwell plate
systems, 255–256
Azithromycin, cytochrome polymorphism
and, 805
Babesia, 689
Bacillary angiomatosis, NAATs for, 359
Bacillus, 486
Bacillus anthracis
detection of, 525
in post offices, 532
protocols for, 528–530
DNA target sequencing for, 486
letter attacks using, 530
melting assay for, 76
microarrays for, 286
Diffloxacin
cytochrome polymorphism and, 805
transport of, 822
Dirgene HC2 microarray, 287
Digene HR HPV Hybrid Capture test, 596–597
Digene Hybrid Capture II test, 388
Digene instruments
for Chlamydia trachomatis, 388
for Neisseria gonorrhoeae, 388
Digene microwell plates, 256
Digital polymerase chain reaction, 70–71
Digoxigenin probe, for FISH, 6
4-(Dimethylaminoazo)benzene-4-carboxylic acid, as universal quencher, 247
Direct antigen detection test, for Treponema palladium, 399
Direct fluorescent-antibody assay
of Salmonella, 822
DNA target sequencing for, 482–483
controls for, 483
criteria for identification in, 484–487
databases for, 483–484
definitions in, 483
DNA preparation for, 481–482
gene targets for, 480–481
reporting results of, 487
sequencing for, 482–483
software for, 483
DNA-based controls, 903
DNase I, for contamination control, 495
DTS System, laboratory design for, 138
for microorganisms, 84–85
DNase-SISPA, for novel virus discovery, 483
INDEX
Galactomannan test, for Aspergillus gene, HIV, 541
G-like blocks software, for phylogenetic analysis, 157, 161
Gel electrophoresis microchip, for sepsis microorganisms, 754
pulsed-field, see Pulsed-field gel electrophoresis
GenBank database for DNA target sequencing, 483–484 for fungi, 670
for phylogenetic analysis, 150, 156
Gene expression, relative quantitation of, 89
GeneAmp PCR System, laboratory design for, 137
GeneChips, 276, 278–281
GeneOhm MRSAs assay, 114
GeneOhm StaphSR assay, 754
GeneXpert assays for group B Streptococcus, 456–458
laboratory design for, 140
for MRSA, 471–472
for Mycobacterium tuberculosis, 113, 428 for quality control, 109
Genital tract, microorganisms in, FISH for, 4
Genital tract specimens, microorganism detection in, 107–111
Genome, host, in HIV infection, 833–840
Genome Sequencer System, 270–271
Genome-wide association studies, for HIV, 833–838
Genomenova, in pyrosequencing, 265
GenO-PHAR study, for HIV drug response, 544
GenoType assay, for sepsis microorganisms, 755
Genotype failure index, in antimarial resistance, 699
Genotype M. tuberculosis DR assay, 418–419
GenoType MRSAs direct assay, 471
GenoType MTBDR, 422
GenoType MTBDRplus, 418–419, 422
GenoType Mycobacterium CM/AS test, 113
GenoType Mycobacterium Direct assay, 385–389
GenoType Mycobacterium CM/AS test, 389
GenoType Mycobacterium Direct assay, 418–422
GenoType Mycobacterium CM/AS test, 422
GenoType Mycobacterium Direct assay, 417
GenoType Mycobacterium Direct assay, 417
Genotype M. tuberculosis DR assay, 418–419
GenoType MRSAs direct assay, 471
GenoType MTBDR, 422
GenoType MTBDRplus, 418–419, 422
GenoType Mycobacterium CM/AS test, 113
GenoType Mycobacterium Direct assay, 417
Genotyping biothreat agents, 533
Chlamydia trachomatis, 392
cytochrome P450s, 803–821
description of, 313
for disease susceptibility identification, 788–789
fungi, 662
HBV, 583–584, 587–589
HCV, 568–569
HIV, 543–544, 547–551
HPV, 598–599
microarrays for, 289–290
MLST for, see Multiple sequence typing (MLST)
MLVA, see Multiple-locus VNTR analysis (MLVA)
Mycobacterium tuberculosis, 429–431
Neisseria gonorrhoeae, 392–393
reasons for, 179
GenPoint HPV test, 599
Gen-Probe Amplified Mycobacterium tuberculosis Direct Test, 417, 421, 427
Gen-Probe Amplified Neisseria gonorrhoeae and Chlamydia trachomatis assay, 107–108
Gen-Probe Aptima assay for Chlamydia trachomatis, 389
for Neisseria gonorrhoeae, 385–389
Gen-Probe Aptima Combo 2 assay, for Chlamydia trachomatis, 384
Gen-Probe Inc., assays of, see also AccuProbe for culture confirmation, 23–26 for direct pathogen detection, 26–28 for fungal species identification, 661 technology of, 22–23
Gen-Probe Tecan EVO system, 455
German Competence Network for Community Acquired Pneumonia (CAPNETZ) project, 361, 363
Giardia intestinalis, 739
Giardia lamblia, 286, 739
Glass slides, for microarrays, 275–276, 278
Glipizide, cytochrome polymorphism and, 814
Glucose-6-phosphate dehydrogenase, in disease susceptibility, 790, 797
Glycophosphates, immune function, see
Glycine genotypes, 788–789
Gloadamate dehydrogenase, in Clostridium difficile infections, 733
Glucosidases, cytochrome polymorphism and, 788–789
Gorilla gorilla, see Neisseria gonorrhoeae
Gordaona, 486
GoTaq system, for Trypanosoma cruzi, 718–719
G6PD gene, in disease susceptibility, 790, 797
Gram stain for Bacillus anthracis, 528–529
for meningitis microorganisms, 770
for Neisseria meningitidis, 776
Gram-negative bacteria DNA target sequencing for, 485 PFGE of, 176
resistance to, 511–512, 516
Gold nanoparticles, for Mycobacterium tuberculosis, 427
Gold standard definition of, 861 improved, 863
Gonorrhea, see Neisseria gonorrhoeae
Gordonia, 486
GoTaq system, for Trypanosoma cruzi, 718–719
G6PD gene, in disease susceptibility, 790, 797
Gram stain for Bacillus anthracis, 528–529
for meningitis microorganisms, 770
for Neisseria meningitidis, 776
Gram-negative bacteria DNA target sequencing for, 485 PFGE of, 176
resistance to, 511–512, 516
Granulicatella, 484–485
GraphPad Software, for statistical analysis, 873
GreeneChipPm microarrays, 286, 332–333
GreeneChipResp microarrays, 287
Greengenes database for broad-range PCR, 496 for phylogenetic analysis, 152, 161
Grepafloxacin cytochrome polymorphism and, 805 transport of, 822
Group A Streptococcus Direct Test, 28
Group B Streptococcus (Streptococcus agalactiae)
molecular detection of, 453–462
commercial assays for, 113–114
vs. culture, 454
DNA probes for, 24, 25, 28
history of, 453–454
molecular beacons for, 249
NAATs for, 371
PCR for, 455–459
probes for, 454–455
prophylaxis for, 453
Guamniscilla hyalinospora, 23
gyr genes
in antimicrobial resistance, 513
as targets for sequencing, 481

H
H gene, of paramyxoviruses, 610–611
Haemophilus ducreyi, 397–399
Haemophilus influenzae
DNA probes for, 24, 25
meningitis due to, 776
NAATs for, 370–371
resistance in, 515
susceptibility to, 789
Hajnia, 485
Hain Lifescience Gmb instruments, for
Haemophilus influenzae
PFGE of, 173
for sequencing, 481
for mycobacteria sequencing, 443, 445–447
for fungi sequencing, 670–671
molecular detection of, 453–462
susceptibility to, 789
resistance in, 789
for sequencing, 481
Heim assay, for adenoviruses, 614
Heim probe assays, for respiratory viruses, 620
Hain Lifescience Gmb instruments, for
Helicobacter pylori
PFGE of, 173
resistance in, 268, 849
Hemagglutinin gene, of influenza virus, 609–610
Hemoglobin, polymorphisms of, in disease susceptibility, 790, 796–797
Hemoglobin A, in disease susceptibility, 790, 797
Hemoglobin AS, in disease susceptibility, 790, 797
Hemoglobin C, in disease susceptibility, 790, 797
Hemoglobin E, in disease susceptibility, 796–797
Hemoglobin S, in disease susceptibility, 790, 796–797
Hemorrhagic cystitis, in transplant recipients, 634–635
Hemocob, for Plasmodium detection, 693, 696
Heparin, in blood specimens, interference
with nucleic acid isolation, 119–120
Hepatitis B virus (HBV), 579–592
antigens of, 580, 582
bDNA amplification for, 47–48
description of, 579–581
direct hybridization assay for, 48
discovery of, 579
gene of, 579–580
genotyping of, 583–584, 587–589
infection due to natural history of, 581–582
treatment of, 583–584
microarrays for, 286
NAATs for
for blood screening, 588
controls for, 584–585
for genotyping, 583–584, 587–589
quantitative, 582–583, 588–589
utility of, 581–582
viral load assays, 582–583, 585–587
PCR for, 41
proteins of, 580
quantitative molecular methods for, 89–91
replication of, 580–581
resistance in, 270, 289, 583
structure of, 579
susceptibility to, 794–795
transmission of, 581–582
vaccination for, 584
Hepatitis C virus (HCV), 557–577
bDNA amplification for, 47–48
cleavage-based amplification of, 48
commercial assays for, 51
description of, 557
epidemiology of, 557
genome of, 557
genotyping of, 557, 568–569
infection due to acute, 563
chronic, 558–565
diagnosis of, 563–565
HIV infection with, 562–563
occult, 558
pathology of, 558
risk factors for, 558
transmission of, 558
treatment of, 558–563
microarrays for, 286
NAATs for, 557
in acute infection, 563
blood screening, 569
in chronic infection, 558–565
genotyping, 568–569
international unit for, 565
quantitative, 566–568
results of, 569–570
RNA extraction, 565
selection of, 570–571
PCR for, 41, 565–570
pyrosequencing for, 267
quantitative molecular methods for, 89–91
resistance in, 289
structure of, 557
subtypes of, 570
treatment of, 557

Hepatitis E virus, 208
assays for, verification of, 862
FRET detection of, 236–238
infections due to, in transplant recipients, 631
meningoencephalitis, due to, 768–769, 771, 773–774
pyrosequencing for, 266–267
susceptibility to, 849
Herpesviruses, 250
Heteroduplex mobility analysis, for HCV, 569
Heterolog, definition of, 84
Heterozygote protection, 793
Heuristic searches, in phylogenetic analysis, 160
Hexaplex assay, for respiratory viruses, 620
Hexaplex microwell plate system, 256–258, 367
HHV-6 (human herpesvirus-6) infections, in transplant recipients, 632
Hidden Markov model, in phylogenetic analysis, 152
High Pure PCR Template Preparation kit, 357
High-resolution melting, 76–77
Hill-climbing routines, in phylogenetic analysis, 160
Histidine-rich protein, of Plasmodium, 693–694
Histograms, 874
Histoplasma capsulatum
DNA probes for, 23, 24
identification of, 672–674
rapid antigen test for, 770
species identification of, 661
taxonomy of, 672–674
HIV, see Human immunodeficiency virus (HIV)
HLA genes, in disease susceptibility, 789–790, 795
HMPLV, see Human metapneumovirus (HMPLV)
HMPV ASR test, 617
HN gene, of paramyxoviruses, 610–611
Hologic Invader system, for HCV, 569
Home brews, see Laboratory-developed tests
Homolog, definition of, 84
Homologous controls, for NAAT validation, 358
Homologous genes, in phylogenetic analysis, 146–148, 156
Hook effect, in nucleic acid extraction, 122
Horseradish peroxidase, for FISH probe, 6
Host factors
cytchrome P450, 803–832
disease susceptibility, 788–799
in HIV infection, 833–840
immune response, 787–788
innate immunity, 841–857
Hot-start PCR, 38, 40
HPVs, see Human papillomavirus(es) (HPVs)
HRVs, see Rhinoviruses
HP65 gene, as target, for mycobacteria sequencing, 443, 445–447
HSV, see Herpes simplex virus
HIV, see Human immunodeficiency virus (HIV)
HTCV, see Human Thiel's-like coronavirus, 645
Human bocavirus
in coinfections, 622
description of, 608, 611–612
identification of, 646

Human herpesvirus-6 infections
culture of, 551–552
description of, 541–542
genotyping of, 543–544, 547–551
in disease susceptibility, 790–791
in transplant recipients, 622–623
Human metapneumovirus (HMPV)
development of, 642–643
description of, 607, 609–610
infection due to, 607, 609–610
multiplex assays for, 619–621
microarrays for, 281, 282, 287
miRNA for, 286–287
molecular beacon detection of, 249–250
molecular detection of, 541, 543–544, 547–551
NAATs for, 596–597
Hybrid Capture II HBV assay for, 586
Hybrid Capture Test for, 48 for CMV, 633
for HPV, 596–597
Hybridization
direct, 48
for ExPEC, 218
laboratory design and workflow for, 135
microarray technology for, see Microarray technology
in microcell plate systems, 255–258
in molecular beacon, see Multicolor molecular beacon
multiplex, 333–334
probes for
for FRET, 233–238
for PCR, 66–67
for respiratory syncytial virus, 616
reverse probe, laboratory design and operation for, 140
sandwich, 22
for sepsis microorganisms, 752–754
in situ, 22
solid-phase, 22
Southern, 22
technologies for, 21–23
Hydrolysis probes
for FRET, 231–233
for PCR, 66
Hydroxyapatite, for nucleic acid extraction, 122
Hyplex Bloodscreen, 755
Hyplex StaphyloResist assay, 471
Hyphen, formulation of, 871, 877
Hypothesis
formulation of, 871, 877
Hyplex StaphyloResist assays, 471
Hyplex Bloodscreen, 755
Ibis T5000 biosensor for
A. baumannii, 349–350
HIV, 348–349
Iceronavirus activating factor, 845
IgA, 847
Influenza virus(es)
for genotyping, 344
for HCV, 348–349
inhibition in method verification, 874
in phylogenetic analysis, 155–156, 162
Independent Student t test, 878
independent variables, definition of, 871
Indinavir
cytochrome polymorphism and, 805
transport of, 822
Indocarbocyanine, for FISH, 5
Inference
in method verification, 874
in phylogenetic analysis, 157–160, 162
infrastatal statistics, 877–878
Infini Respiratory Viral Panel, 287, 621
Inflammasomes, 845
Influenza virus(es)
description of, 607, 609–610
microarrays for, 282, 287, 288
molecular detection of, 614–616
multiplex assays for, 619–621
mutations in, Ibis T5000 biosensor for, 349–350
natural cytotoxic receptor interaction with, 846
pyrosequencing for, 268
resistance in, 270, 616
subtypes of, 616
Inform HPV III assay, 599
inhibitory gene, in antimicrobial resistance, 515–516
Inheritance, studies of, see Phylogenetic analysis
Inhibition, in method verification, 865
In situ synthesized microarrays, 276, 278–281
In-house tests, see Laboratory-developed tests
Innate immunity, 841–857
vs. adaptive immunity, 841–842
antimicrobial effector responses and, 847
autophagy in, 848
cells participating in, 841
components of, 787
control of, 848
cytoplasmic pattern recognition systems in, 843
definition of, 787, 841–842
discovery of, 842
in disease susceptibility, 790–791
failure of, 848–849
fungal, 845–846
host-pathogen discrimination by, 842
PAMPs in, 844
PRRs in, 844
pathogen subversion of, 849
phagolysosome fusion and, 847
therapeutic manipulation of, 849–850
Innate immunity (continued)

Toll-like receptors in, 842–844, see also Toll-like receptors viral, 846–847

Innogenetics NV instruments, for Mycobacterium tuberculosis, 417–418

INNO-LiPA HPV system, 598–599

INNO-LiPA Mycobacteria v2 assay, 113, 417–418

INNO-LiPA Rif.TB, 417–418, 422

Insertion-deletion (indel) event in genotyping, 179

in phylogenetic analysis, 155–156, 162

Instrumentation, see also specific instruments

calibration of, 887

cleaning of, 135–136

dedummation of, 135–136

dedicated, 133–134

laboratory design for, 128–129

validation of, 890

int genes, in antimicrobial resistance, 511

Interassay variability, 865

Interferon(s)

in disease susceptibility, 792

for hepatitis B, 583

immune function of, 846

Interferon alpha, for hepatitis C, 558–563

Interferon gamma, in disease susceptibility, 795–796

Intergenic spaces

between CRISPRs, 189–192

as sequencing targets, 443, 448

Interlekunis

function of, 848

regulation of, 845

Internal amplification controls, for NAATs, 390

Internal standards and controls, 84, 86

for Chlamydia trachomatis tests, 108

for HPV testing, 600

for NAAT validation, 357

for Neisseria gonorrhoeae tests, 108

in PCR, 88–89

positive, 899–900

Internal transcribed spacer region, of phylogenetic markers, 148, 161

International AIDS Society–USA website, 550

International HapMap Consortium, for HIV studies, 835

International Organization for Standardization (ISO), 892

Interval data, 872

Interventional study designs, 871

Intra-assay variability, 864

Intracellular immunoreceptor tyrosine-based activation-like motif, 846

Intragenic spaces

between CRISPRs, 189–192

as sequencing targets, 443, 448

Interleukins

function of, 848

regulation of, 845

Internal amplification controls, for NAATs, 390

International standards and controls, 84, 86

for Chlamydia trachomatis tests, 108

for fungal detection, 659

for HPV testing, 600

for NAAT validation, 357

for Neisseria gonorrhoeae tests, 108

in PCR, 88–89

positive, 899–900

Internal transcribed spacer region, of phylogenetic markers, 148, 161

International AIDS Society–USA website, 550

International HapMap Consortium, for HIV studies, 835

International Organization for Standardization (ISO), 892

Interval data, 872

Interventional study designs, 871

Intra-assay variability, 864

Intracellular immunoreceptor tyrosine-based activation-like motif, 846

Intra-erythrocytic nucleic acid detection, for Plasmodium, 696

Invader system, 48

for HCV, 569

for HPV, 597–598

Invitrogen, for nucleic acid extraction, 123

iPLEX technology, for disease susceptibility identification, 788

IRAK protein family defects of, 849

defects in TLR regulation, 844

IRF1 gene, in disease susceptibility, 791, 794

Iron oxide, for RNA extraction, 123

IS6110 restriction fragment length polymorphism analysis, Mycobacterium tuberculosis, 429–430

Isomyl alcohol, for nucleic acid extraction, 121–122

Isospora belli

739–740

ITAM (intracellular immunoreceptor tyrosine-based activation-like motif), 846

Itraconazole, cytochrome polymorphism and, 805

IVR1, for the detection of, 810

Itraconazole, cytochrome polymorphism and, 806

resistance to, 417–418

genes associated with, 514–515

pyrosequencing for, 269

sequencing for, 448

Isopropanol, for nucleic acid extraction, 121–122

Kamerbeek method, for spacer detection, 417–418

Kinetic paradigm, in PCR, 65

Klebsiella

for, 137

Kimura two-parameter model, for phylogenetic analysis, 159

J

Jalview software, 161

Japanese encephalitis virus, 769

JC virus infections, in transplant recipients, 634–635

Jensen assay, for Mycoplasma genitalium, 400–403

jModelTest, for phylogenetic analysis, 161

JMP Statistical Discovery software, 873

Joint Biological Identification and Detection System project, 532

Joint infections, broad-range PCR for, 498

Jules-Cantor correction, in phylogenetic analysis, 158, 159

K

Kamerbeek method, for spacer detection, 191

Kat genes, in antimicrobial resistance, 514, 516

Ketoconazole, cytochrome polymorphism and, 805

Key word searches, of sequence databases, 150

KI polymavirus, 608, 612–613, 622

identification of, 646–648

molecular detection of, 619

Kimura two-parameter model, for phylogenetic analysis, 159

Kinetic paradigm, in PCR, 65

Klebsiella

DNA target sequencing for, 485

probe hybridization assays for, 752–753

rep-PCR for, 204

resistance in, 515

Kodamaee ohmeri

673

Laboratory design, 127–130

for automation, 128

for contamination control, 127–128

dedicated work areas in, 133–134

ergonomic issues in, 130

flexibility of, 128, 130

door plan for, 130

instrumentation in, 128–129

method-specific considerations in, 135–140

for mycobacteria sequencing, 439–440

Laboratory operations, 130–135

cleaning, 134–135

continuous process improvement strategies for, 131–132

decontamination, 134–135

dedicated work areas for, 133–134

levels of services in, 371

method-specific considerations in, 135–140

optimization of, 371

personnel for, 130–131

unidirectional workflow in, 132–133

Laboratory Response Network, 528–530

Laboratory-developed tests

controls for, 869–870

from research laboratory to clinical laboratory, 862

sensitivity of, 864

verification of, 861, 871

Lactate dehydrogenase, parasite of, Plasmodium, 693–694

Lactobacillus

202, 206

Lamivudine

cytochrome polymorphism and, 805

desination to, 583

HBV, 270

HIV, 543

microarrays for, 289

transport of, 822

LAMP, see Loop-mediated isothermal amplification

Laser(s), for Raman spectroscopy, 314–316

Laser desorption mass spectrometry, for Plasmodium, 696–697

Latent class standard, 356

Lateral flow (immunochromatographic) test, 692–694

Latex agglutination assay for MRSA, 467–468

for Staphylococcus aureus, 463

LC Probe Design primers, for FRET, 239

LC Probe Design primers, for FRET, 239

LC-Red dyes, 233, 241

LCx Probe System, for Mycobacterium tuberculosis, 421

Leader luminometers, laboratory design for, 137

Lean principle, for continuous process improvement, 131–132

Lectins

in complement activation, 844

in disease susceptibility, 789, 791

Legionella pneumophila

CRISPRs of, 190

MLVA for, 188

NAATs for, 357–359, 363–365, 367, 370

rep-PCR for, 205

Leishmania

detection of, 689

species identification of, 688

Leishmania donovani, 76

Leprosy, susceptibility to, 795
Meningitis, 767–784
asptic, 768
bacterial, 768, 776
broad-range PCR for, 498
classification of, 768
culture for, 770, 772
culture-negative, 768
ExPEC, 220
FISH for, 4
microarrays for, 286
microbiology of, 768–769, 771
microscopy for, 770
molecular diagnosis of, 772–777
NAATs for, 372–371
pathophysiology of, 767
rapid antigen test for, 770
serologic testing for, 772
tick-borne rickettsial, 776
Tropheryma whipplei, 776–777
tuberculous, 777
viral, 773–776
Meningococci, see Neisseria meningitidis
Meningoencephalitis, see also Encephalitis;
Meningitis
definition of, 767
Merkel cell polyomavirus, 647–648
Methicillin-resistant Staphylococcus aureus, see MRSA (methicillin-resistant Staphylococcus aureus)
Method validation, see Methodology
Microbial flora, normal
Microfluidic devices, 371, 661
Microspheres, in liquid bead suspension
MicroSeq system
MicroSeq kit and library, 438–439, 443
MicroSeq D2 LSU rDNA fungal library, 437
Microsensors, FISH with, 11
Microscopy
for bacterial, 768
for diagnosis of, 465–472
for encephalitis microorganisms, 770
for malaria, 691–693
for meningitis microorganisms, 770
for microsporidia, 740–741
for Trypanosoma cruzi, 715
for Mycobacterium tuberculosis, 777
for fungal identification, 670
FISH for, 4
Immunoassays for, 758
immunological, 467–468
culture-based, 465, 467

Methicillin-resistant Staphylococcus aureus, 647–648
Miconazole, cytochrome polymorphism
Micafungin, resistance to, 681
Mycoplasma genitalium
MgPa gene, in
Metronidazole, cytochrome polymorphism
Method validation, see Methodology
Microarray technology, 275–297, 305
for antimarial resistance, 701
applications of, 283, 285–290
for broad-range PCR, 496
drug resistance detection, 289
electronic, 277, 280, 282
in situ synthesized, 276, 278–281
liquid bead suspension, 277, 280, 283–284, 334
vs. microarray technology, 275
for microbial detection and identification, 285–287
for microbial typing, 289–290
for microsporidia, 740–741
for multiplex assays, 329–333
for novel virus discovery, 643–645
oligonucleotide, 278
panmicrobiolal, 285–287
for Plasmodium, 695–696
printed, 275–276, 278
for respiratory viruses, 287–289
for sepsis microorganisms, 755
validation of, 887
Microbial flora, normal
broad-range PCR for, 498–499
culture for, 768
immunological discrimination of, 842
Microfluidic devices, 371, 661
Microimmuno-fluorescence, for Chlamydia pneumoniae, 361, 363
Microorganism Tandem Repeat database, 182–183
Microradiography, FISH with, 11
Microsatellite, technology, for fungal typing, 662
Microscan assay, for Staphylococcus aureus, 463
Microscopy
for coccidia, 740
for encephalitis microorganisms, 770
for Encephalitis, 739
for malaria, 691–693
for meningitis microorganisms, 770
for microsporidia, 740–741
for Trypanosoma cruzi, 715
Microsensors, FISH with, 11
MicroSeq D2 LSU rDNA fungal sequencing kit, 670
MicroSeq kit and library, 438–439, 443
design of, 772–774
detection of, 465–472
colonization by, 321–322
detection of, 465–472
commercial methods for, 114, 463, 471–472
conventional methods for, 463
culture-based, 465, 467
immunological, 467–468
microarrays for, 286
molecular beacon, 248
PCR for, 468–471, 734–755
Raman spectroscopy for, 319–322
rep-PCR for, 204–205
in sepsis, 760
genetic flexibility of, 465
impact of, 464
Raman classification of, 318
resistance in
history of, 463–464
mechanism of, 463–466
screening for, 464–465
small-colony variant of, 468
transmission of, 463
MRSA Screen Test, 467–468, 471
MRS-Set, 471
m2000sp instrument, laboratory design for, 463
m2000rt PCR instrument, 138
MRU-PCR System, 202
Microsporidia, 740–741
Microwell plate detection systems, 255–260
detection of, 255–256
advantages of, 258
clinical applications of, 257–258
commercial variations of, 255–256
development of, 256–257
disadvantages of, 258
history of, 255
multiplex, 258
quantitative, 258
verification of, 256–257
Millipore microwell plate system, 255
Minimum spanning tree method, for
phylogenetic analysis, 145–165
Minioption, for multiplex PCR, 327
Minicycline, cytochrome polymorphism
and, 806
Minor groove binders, for FRET, 232
MIRUs (mycobacterial interspersed repetitive units), 187
MIRU-VNTR (mycobacterial interspersed repetitive units–variable-number tandem repeats), 430–431
Mixed-mechanism probes, for PCR, 67
MLST, see Multiple locus sequence typing
(MLST)
MLVA, see Multiple-locus VNTR analysis
(MLVA)
MoBio UltraClean Microbial Isolation Kit, 202
Mode, definition of, 874
Model misspecification, in phylogenetic analysis, 160
ModelTest software, for phylogenetic analysis, 159–160
Molecular beacons for antimarial resistance, 700–701
for Klebsiella pneumoniae, 247–248
for multicolor, see Multicolor molecular beacons
Molecular colonies (polonies), 302, 305
Molecular typing methods for Escherichia coli, 213–227
microarrays, 289–290
phylogenetic analysis, 145–165
pulsed-field gel electrophoresis, 167–177
repeat sequence-based PCR, 199–212
strain typing, 179–196
Molluscum contagiosum virus, pyrosequencing for, 267–268
Monitoring
of amplification, 245–246
in BioWatch Program, 530–532
of molecular tests, 885–887
of post offices, for bioterror agents, 532
of real-time PCR, 67
Monoclonal antibodies, for malaria
diagnosis, 692–694
Monophosphoryl lipid A, 849
Morganella, 485
Morbitory test, for bioterror agents, 527
Mice, bioassay, for bioterror agents, 533
Moxifloxacin, cytochrome polymorphism
and, 805
mph genes, in antimicrobial resistance, 512
MrAIC software, for phylogenetic analysis, 159, 161
MrBayes software, for phylogenetic analysis, 162
MrC1 gene, in disease susceptibility, 792
MrModelTest, for phylogenetic analysis, 161
mRNA
precipitation of, 121
as target in FISH, 5
 MRSA (methicillin-resistant Staphylococcus aureus), 463–477
colonization by, 321–322
detection of, 465–472
commercial methods for, 114, 463, 471–472
conventional methods for, 463
culture-based, 465, 467
immunological, 467–468
microarrays for, 286
molecular beacon, 248
PCR for, 468–471, 734–755
Raman spectroscopy for, 319–322
rep-PCR for, 204–205
in sepsis, 760
genetic flexibility of, 465
impact of, 464
Raman classification of, 318
resistance in
history of, 463–464
mechanism of, 463–466
screening for, 464–465
small-colony variant of, 468
transmission of, 463
MRS-Set, 471
MRS-Set, 471
m2000sp instrument, laboratory design for, 463
m2000rt PCR instrument, 138
m2000sp instrument, laboratory design for, 136
msr genes, in antimicrobial resistance, 512
MultiCode technology, 283
MultiCode-PLx Respiratory Virus Panel, 287
Multicolour molecular beacons, 245–254
advantages of, 245–247
for antibiotic resistance, 247–249
for bacteria identification, 247–249
for yeast detection, 250–251
M. tuberculosis, for biothreat agents, 463
M. tuberculosis, for biothreat agents, 463
as target in FISH, 5

INDEX
924
Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Tue, 21 May 2019 15:04:37
Multiple microorganisms, nucleic acid amplification techniques for, 50–51

Multiple-locus VNTR analysis (MLVA), 179–189

allele naming in, 184–185

for Bacillus anthracis, 186–187

for Brucella, 185–187

clustering analysis in, 185–186

databases for, 186–189

definition of, 180

for Escherichia coli, 188

for Legionella pneumophila, 188

for Leptospira interrogans, 188

vs. MLST, 189

for Mycobacterium tuberculosis, 187

panel design for, 187–188

for Pseudomonas aeruginosa, 187–188

for Shigella, 188

for Staphylococcus aureus, 182–183, 188–189

for Streptococcus pneumoniae, 188

tandem repeat nature and localization for, 188–189

tools for, 182–184

for Yersinia pestis, 187

Multiplex amplification, 285–287

Multiplex assays, see also Multiplex PCR for blood transfusion testing, 569

for CYP2B6, 807

for Escherichia coli, 729–730

FRET with, 236

for HIV, 835

microwell plate systems for, 258

multicolor molecular beacons for, 246–247

for parasitic gastroenteritis, 740

for respiratory viruses, 606, 620–623

validation of, 887

for Vibrio, 732

for viral gastroenteritis, 738

Multiplex PCR, 40, 305, 325–341, 367–370

advantages of, 327

assay design in, 327–328

bead-based suspension array assays for, 334

for central nervous system infections, 370–371

for Clostridium difficile, 360

commercial kits for, 329, 331

denaturing high-performance liquid chromatography for, 334–336

description of, 325–326

for disease susceptibility identification, 788

electrospray ionization-mass spectrometry with, Ibis T5000 instrument for, 343–351

for Haemophilus ducreyi, 398–399

history of, 326

hybridization assays for, 333–334

instrument for, 327

mass spectrometry for, 336–337

melting curve analysis with, 326

microarray technology in, 329–333

for MRSA, 469–470

for Neisseria meningitidis, 776

proficiency tests for, 329

quality control of, 328–329

reagents for, 328

for respiratory pathogens, 367–370

for sepsis microorganisms, 754, 758

specificity of, 326

for Streptococcus pneumoniae, 366, 776

syndrome-based, 326–327

for Treponema pallidum, 399–400

uses of, 325–326

Multiplex target detection, laboratory design and operation for, 140

Multivariable analysis, of ExPEC typing, 247

Mumps virus, meningoencephalitis due to, 771

murine genes, in antimicrobial resistance, 512–513

Mupirocin, resistance to, 512–513

Muramyl dipeptide, 845

MUSCLE algorithm, for phylogenetic analysis, 156, 161

Mutanolysin, for sample fixation, in FISH, 10

Mx4000 instrument, 240

Myeloma Sterilia, 673

MxAlign assay, 439

Mycobacteria

DNA probes for, 24, 26

for drug resistance, 448

sequencing of, 437–452

for drug resistance, 448

equipment for, 440

genomes studied, 438

history of, 437–438

libraries for, 438–439

personnel for, 440

platforms for, 438

in reference laboratory, 440, 442–443

space considerations for, 439–440

targets for, 443–447

workflow for, 440–441

Mycobacterial interspersed repetitive units (MIRUs), 187

Mycobacterial interspersed repetitive units–variable-number tandem repeats (MIR-VNTR), 430–431

Mycobacterium abscessus, 443

Mycobacterium aubagnense

Mycobacterium avium complex

Mycobacterium baumannii

Mycobacterium bovis

Mycobacterium kansasi

Mycobacterium fortuitum

Mycobacterium genavense

Mycobacterium fortuitum

Mycobacterium gordonae

Mycobacterium hominis

Mycobacterium intracellulare

Mycobacterium kansasii

Mycobacterium kansasii

Mycobacterium marinum

Mycobacterium mungi

Mycobacterium mungi

Mycobacterium phocaicum

Mycobacterium peregrinum

Mycobacterium genavense

Mycobacterium schleiferi

Mycobacterium smegmatis

Mycobacterium smegmatis

Mycobacterium terrae

Mycobacterium tuberculosis

Mycobacterium tuberculosis

chromosome-based, 326–327

commercial kits for, 329, 331

FRET detection of, 236–237

genome of, 438

meningitis due to, 777

meningococcal disease due to, 769

microarrays for, 332

MLVA for, 187

NAATs for, 415–416

available assays for, 416–419

cost issues in, 426–427

direct detection, 416, 427–429

in-house developed, 419

line probe, 422

new, 427–429

PCR, 754

performance of, 419–422

systematic reviews of, 422–425

treatment response, 422, 426

resistance in, 417–418, 448

genes associated with, 516–517

microarrays for, 289

molecular detection of, 249

PCR for, 508

pyrosequencing for, 269

sequencing of, 439–440

susceptibility to, 795–796

typing of, 429–431

Mycobacterium tuberculosis complex

commercial kits for, 51

DNA probes for, 24, 26

microarrays for, 290

MLVA for, 187

pyrosequencing for, 266

Mycoplasma genitalium

Mycoplasma genitalium

Mycoplasma hominis

Mycoplasma pneumoniae

Mycoplasma penetrans

Mycoplasma penetrans

Mycoplasma genitalium

Mycoplasma genitalium
Neisseria meningitidis, Neisseria gonorrhoeae

Negative predictive values, in method

Necator americanus, NCRs (natural cytotoxic receptors), /H11032

5
Natural T regulatory cells, 848
Natural killer cells, function of, 846
Natural cytotoxic receptors, 846
National Institute of Allergy and
National Center for Biological
NASBAs, 305
Nanowell plates, 305
Nanotechnology, 371
NanoChip microarray, 277, 280, 282, 287
NALP proteins, 845
Nalidixate, cytochrome polymorphism
926
DNA target sequencing for, 485
pyrosequencing for, 266
microarrays for, 286
DNA probes for, 28
commercial assays for, 51, 107–111, 38–39
in respiratory virus assays, 622
for DNA target sequencing, 483
molecular detection of, 688
meningoencephalitis due to, 771
INDEX
in FISH, 7
in phylogenetic analysis, 160–161, 163
Oral cavity
bacterial population composition of, 310
microorganisms in, FISH for, 4
Ordinal data, 872
Organic anion transporters, in drug transport, 821–822, 824
Organic cation transporters, in drug transport, 821, 824
Organism-based controls, 903
Orthologous genes, in phylogenetic analysis, 147–148
Oseltamivir, resistance to, 616
Osmitech technology, 338
OTU/phylotype, definition of, 163
Outcome (dependent) variables, 871
OTUCoDe, 34
Oxacillin, resistance to, 508, 515
Oxalyl-CoA decarboxylase, 821
Oxidative phosphorylation, 260
Oxidative stress, 754
P

P gene, of paramyxoviruses, 610–611
P value, in ExPbEC typing, 221
PACE 2 Neisseria gonorrhoeae assay, 28
Packet of information, for method verification, 862–863
PACRG gene, in disease susceptibility, 792, 794
Paired-end sequencing, 303–305
Palmitoyl-CoA thioesterase, 70–71
Palm-Cycler, laboratory design for, 137
Palm-Cycler, design for, 139
Palm-Cycler, for multiplex PCR, 377
Panfungal assays, for sepsis microorganisms, 754, 757
Panfungal strategy, for fungal detection, 657
Panmicrobial arrays, 285–287
PantoBac, 485
Panton Valentine leukocidin,
Staphylococcus aureus, 471
Pan-viral microarrays, for novel virus discovery, 643–645
Pap operon, of ExPEC, 217
par genes, in antimicrobial resistance, 513, 516
Paracoccidioides brasiliensis DNA probes for, 23 identification of, 673
Paraffin blocks, nucleic acid isolation from, 120
Paraformaldehyde, for sample fixation, in FISH, 9–10
Paramyxoviruses
description of, 607, 610–611
molecular detection of, 616–618
Parasites, see also specific parasites
FRET detection of, 242
molecular diagnosis of, for detection of blood or tissue, 689
Gastrointestinal, 738–741
history of, 687
limitations of, 689
molecular beacons for, 250
pyrosequencing, 268
quantitative, 687–688
sensitivity and specificity of, 688
species identification in, 688
speed of, 688
resistance in, 270
PARK2 gene, in disease susceptibility, 794
PanCochrane Chip, 286
Parvovirus(es), 286
infections due to, in transplant recipients, 635–636
molecular detection of, 617–619
novel, 643
Pathogen-associated molecular patterns (PAMPs), 841–942, 844, 846–847
Pattern recognition receptors (PRRs), 842, 844–846
PAUP software, for phylogenetic analysis, 162
PCR (polymerase chain reaction), 38, 40–41, 140, 355–381; see also specific microorganisms
amplification inhibitors in, 357
for antimicrobial resistance, 355–356, 507–524
for bacteremia, 355
for bioterror agents, 526, 528, 530, 531
bridge, 301–304
broad-range, 40–41, 491–505
for central nervous system infections, 370–371, 772–777
clonal (single-molecule amplification), 302–303
commercial kits for, 38
contamination control in, 357
detection methods for, 375
fluorescence resonance energy transfer, 231–244
multicolor molecular beacons, 245–254
digital, 70–71
DNA polymerases for, 38
efficiency of, 865, 881
emulsion, 70–71, 301–304
for ExPEC, 214–218
field assays for, 532
for fungi, 635–667, 670–674
history of, 38
hot-start, 38, 40
LI consensus, for HPV, 598–599
laboratory design and operation for, 137–138
recent trends in, 371–372
levels of service for, 371
MassTag, 336–337
for meningococcal
microorganisms, 772–777
multiplex, see Multiplex PCR
nested, 40
for novel virus discovery, 641–652
nucleic acid preparation for, 356–357
optimization of strategies for, 371
for parasites, 687–690
Quantitative molecular methods (continued)
description of, 85–89
design of, 92
design of, for HBV, 89–91, 566–568, 582–583, 585–589
for HCV, 89–91
history of, 83
microwell plate detection, 258
numbers of, 83–84
for parasites, 657–668
PCR, see Quantitative PCR
proficiency testing in, 92
statistical quality control for, 92–93
terminology of, 84–85
types of, 83
utility of, 86–88
validation of, 886–887
for viral load measurement, 89–92
Quantitative null hypothesis, 877
Quantitative PCR, 41, 63–64, 71–74
for antifungal resistance detection, 678
for broad-range PCR, 496
comparative controls for, 88–89
description of, 85–89
for Epstein-Barr virus, 774–775
for fungal detection, 658–659
interpretation issues in, 89–91
for viral load measurement, 89–92
Quencher(s)
Quantitative molecular methods
930■
Trypanosoma cruzi
multicolor molecular beacons as, 245, 246
for viral load measurement, 89–92
Quencher(s)
multicolor molecular beacons as, 245, 247
for real-time PCR, 66
Quencher dye, in FRET, 232
Quinidine, cytochrome polymorphism and, 806
Quinine, cytochrome polymorphism and, 806
Quinolones, see also Fluoroquinolones
R
Rabbit infectivity test, for Treponema pallidum, 399
Rabies virus, meningoencephalitis due to, 769, 770, 776
Raman spectroscopy, 313–324
applications of, 319–322
culture for, 318–319
data analysis in, 316–318
description of, 313
history of, 314
instrumentation for, 315–316
for known isolates, 320–321
for MRSA colonization, 321–322, 472
for MRSA outbreak, 319
for nosocomial infections, 319–320
principles of, 314–315
for sepsis microorganisms, 755–756
technical validation of, 319
typing methods and, 313–314
Random amplified polymorphic DNA
(RAPD) analysis
for ExPEC, 214–215
for Trypanosoma cruzi, 716
Random error
confidence interval for, 69
cyclic speed in, 65
for antimalarial resistance, 701
for astrocytoma, 737
baseline for, 69, 72–73
for bioterror agents, 528
for calciviruses, 735–736
for Campylobacter, 730–731
for Clostridium difficile, 733
collaborators, 66
concept of, 63
confidence interval for, 69
cyclical speed in, 65
for CYP3A5, 809–811
for CYP2B6, 807
detection methods for, 63, 68–71, 231–246
dyes for, 66, 76
for Enterobacteriaceae, 731
for enteroviruses, 775–776
for flagellates, 739
fractional cycle number calculations in, 73
for HBV, 89–91
for HCV, 89–91
history of, 83
microwell plate detection, 258
numbers of, 83–84
for parasites, 657–668
PCR, see Quantitative PCR
proficiency testing in, 92
statistical quality control for, 92–93
terminology of, 84–85
types of, 83
utility of, 86–88
validation of, 886–887
for viral load measurement, 89–92
Quencher(s)
multicolor molecular beacons as, 245, 247
for real-time PCR, 66
Quencher dye, in FRET, 232
Quinidine, cytochrome polymorphism and, 806
Quinine, cytochrome polymorphism and, 806
Quinolones, see also Fluoroquinolones
resistance to, 515–516
R
typing methods and, 313–314
Random amplified polymorphic DNA
(RAPD) analysis
for ExPEC, 214–215
for Trypanosoma cruzi, 716
Random error
confidence interval for, 69
cyclic speed in, 65
for antimalarial resistance, 701
for astrocytoma, 737
baseline for, 69, 72–73
for bioterror agents, 528
for calciviruses, 735–736
for Campylobacter, 730–731
for Clostridium difficile, 733
collaborators, 66
concept of, 63
confidence interval for, 69
cyclical speed in, 65
for CYP3A5, 809–811
for CYP2B6, 807
detection methods for, 63, 68–71, 231–246
dyes for, 66, 76
for Enterobacteriaceae, 731
for enteroviruses, 775–776
for flagellates, 739
fractional cycle number calculations in, 73
for HBV, 89–91
for HCV, 89–91
history of, 83
microwell plate detection, 258
numbers of, 83–84
for parasites, 657–668
PCR, see Quantitative PCR
proficiency testing in, 92
statistical quality control for, 92–93
terminology of, 84–85
types of, 83
utility of, 86–88
validation of, 886–887
for viral load measurement, 89–92
Quencher(s)
multicolor molecular beacons as, 245, 247
for real-time PCR, 66
Quencher dye, in FRET, 232
Quinidine, cytochrome polymorphism and, 806
Quinine, cytochrome polymorphism and, 806
Quinolones, see also Fluoroquinolones
resistance to, 515–516
R
Rabbit infectivity test, for Treponema pallidum, 399
Rabies virus, meningoencephalitis due to, 769, 770, 776
Raman spectroscopy, 313–324
applications of, 319–322
culture for, 318–319
data analysis in, 316–318
description of, 313
history of, 314
instrumentation for, 315–316
for known isolates, 320–321
for MRSA colonization, 321–322, 472
for MRSA outbreak, 319
for nosocomial infections, 319–320
principles of, 314–315
for sepsis microorganisms, 755–756
technical validation of, 319
for HBV, 89–91
for HCV, 89–91
history of, 83
microwell plate detection, 258
numbers of, 83–84
for parasites, 657–668
PCR, see Quantitative PCR
proficiency testing in, 92
statistical quality control for, 92–93
quantification in, 63–64, 71–74, 89
recovery experiments, 881
Rectal swabs
for Chlamydia trachomatis testing, 389
for Neisseria gonorrhoeae testing, 389
Reference interval, 882
Reference laboratories
in Laboratory Response Network, 528, 530
for mycobacteria sequencing, 440, 442–443
verification of, 862
Reference standard, definition of, 861
Reference standard method, new method comparison with, 880–881
Reference values, 85
Regions of difference, in Mycobacterium tuberculosis, 431
Regression analysis, 878–879
Regressors (independent variables), 871
Relative frequency, 874
Repetitive extragenic palindrome (REP), 520
Repetitive sequence-based PCR, 199–212
amplification in, 199–200
analysis in, 201–202
automated, 200–202
for community-associated microorganisms, 204–205
costs of, 202
culture in, 199
data analysis in, 202–203
discrimination in, 202
DNA extraction in, 199
for environmental exposures, 205–206
fragment separation and detection in, 200–201
manual, 202
for nosocomial infections, 203–204
vs. other typing technologies, 202–203
primers for, 199–200
principles of, 199–202
reproducibility of, 202
for surveillance, 205
turnaround time of, 202
Repetitive sequence-based PCR, see Repetitive sequence-based PCR
Reproducibility, 865, 882
“Research-only” tests, verification of, 862
Residuals, analysis of, 878
Resistance, antimicrobial, see
Antimicrobial resistance
Respiratory pathogen, see also Respiratory viruses, specific viruses
direct metagenomic studies of, 310
FISH for, 4
microarrays for, 287–289
NAAs for, 360–370
nucleic acid extraction for, 356–357
Respiratory syncytial virus
description of, 607, 610–611
molecular detection of, 616–617
multiplex assays for, 620–621
Respiratory viruses, 605–630
description of, 606–613
infections with, in transplant patients, 622–623
molecular detection of...
assays available for, 613–622
billing for, 624
clinical applications of, 613–614
in coinfections, 622
controls for, 623–624
laboratory issues in, 623–625
multiplex, 606, 620–623
nucleic acid extraction for, 623
in persistent infections, 622–623
results interpretation for, 621–622
taxonomy of, 606–608
ResPlex assays, 287–288, 332, 370, 621
Response (dependent) variables, 871
Restriction fragment length polymorphism analysis
for CYP3A5, 813
for CYP2B6, 804
for CYP2C19, 818
for HCV, 569
for Mycobacterium tuberculosis, 429–430
for Plasmodium, 694–695
for sepsis microorganisms, 755
for Trypanosoma cruzi, 716
Restriction fragment length polymorphism subtyping, see Pulsed-field gel electrophoresis (PFGE)
Retroviruses, molecular beacon detection of, 249–250
REVEAL-HBV study, 582
Reverse line-blot hybridization assay, 333–334
Reverse probe hybridization, laboratory design and operation for, 140
Reverse transcriptase PCR, 40, 543
Reversed-phase liquid chromatography, for CYP2B6, 804, 807
Rhinoviruses in coinfections, 622
description of, 608, 612
molecular detection of, 619–620
multiplex assays for, 620–622
in transplant recipients, 621–622
Rubella virus, meningoencephalitis due to, 731
RiboPrinter, 202
Ribosomal Database Project, 438, 493
for broad-range PCR, 496
for DNA target sequencing, 484
for fungi, 670
for phylogenetic analysis, 152–153, 161
Ribosomal Differentiation of Microorganisms database, 438–439, 483–484
Ricin, 533
Rickettsia, 772
Rickettsia rickettsii, meningoencephalitis due to, 770
Ribom Spa server, for Staphylococcus aureus typing, 188
Rifabutin, cytochrome polymorphism and, 806
Rifampin cytochrome polymorphism and, 806
resistance to, 289
genes associated with, 514
Mycobacterium tuberculosis, 249
pyrosequencing for, 269
sequencing for, 448
RIG (retinoic acid-inducible gene)-like receptors, 845, 847
Ripamycin
S
Saccharomyces cerevisiae, innate immunity to, 846
Saffold virus, 643
St. Louis encephalitis virus, 250, 769
Salmomella, 731
microarrays for, 289, 290
resistance in microarrays for, 289
molecular beacon detection of, 249
pyrosequencing for, 269
susceptibility to, 793
Salmomella enterica serovar Enteritidis, 173
Salmomella enterica serovar Typhimurium bacterial DNA load of, 759
reP-PCR for, 200
Samples challenge, 892, 894
pooling of, for NAATs, 390
for proficiency testing, 893–896
size of, for method verification, 872–873
for validation, 356–357
Sampling, of specimens, for method verification, 871–872
Sarcoma vaccination, 486
Sanger sequencing, 263–264, 645–646
Sapovirus, 735–737
Saquinavir cytochrome polymorphism and, 805
transport of, 822
SARS (severe acute respiratory syndrome) virus description of, 608–609
discovery of, 643
identification of, 644
molecular detection of, 614
multiplex assays for, 621–622
sat genes, in antimicrobial resistance, 512
Savitzky-Golay polynomial estimation, 73
SCAR (sequence-characterized amplified region markers), for Trypanosoma cruzi, 716
Scattergrams, 887
Scattering, Raman, 314
Scatterplots, 878
Secondary standards, 901
Scorpion primers, 247
Screening assays for bacteria, 248–249
for Chlamydia trachomatis, 391–392
for MRSA, 464–465
for Neisseria gonorrhoeae, 391–392
SD (standard deviation), 875
SDA, see Strand displacement amplification
SDF1 gene, in disease susceptibility, 791, 794
Seal picornavirus, 648
Sec genes, as targets for sequencing, 481
Secondary probes, for microwell plate systems, 235
Secondary standards, 901
Secreted PRRs, 844–845
Seegene panel, 388
Sensitivity in method verification, 863–864, 880
of NAATs, 36–37, 387
of parasite detection, 688
Sensitivity threshold quantification, for fungal detection, 659
Sensitro T2 assay, for HIV, 549
Sentinel Labs, in Laboratory Response Network, 528–530
Septis, 751–756
microorganisms in
broad-range PCR for, 757–758
Validation of data, for verification, 873
definition of, 861, 885
of instruments, 890
of microarray technology, 887
of multiplex assays, 887
of NAATs, 356–360
of physical testing area, 890
of qualitative tests, 886
of quantitative tests, 886–887
of reagents, 887
Value stream mapping, for workflow improvement, 131–132
van genes, in antimicrobial resistance, 511–512, 515–516
Vancomycin, resistance to, 319–320, 515–516
Variability
interassay, 865
intra-assay, 864
Variable number of tandem repeat (VNTR) analysis, 179–180; see also Multiple-locus VNTR analysis (MLVA)
Mycobacterium tuberculosis, 430–431
VNTR selection in, 184
Variables, for method verification, 871
Variance
data types, 872
data analysis for, 861
controls for, 869–870; comparative statistics, 878–880
clinical test performance, 865–866
interassay variability, 865
planning for, 870
qualitative, 863–866, 880–881
quantitative, 864–865
quantitative accuracy, 864–865
quantitative, 886–889, 881–882
reference method comparison, 880–881
regulations for, 861–862
from research laboratory to clinical laboratory, 861–862
software for, 874
specimen sampling strategy, 871–872
strategy for, 862–863
Versant 400 System, laboratory design for, 140
Versant branched DNA test, for HIV, 543, 549–550
Versant HBV DNA test, 586
Versant HCV genotype 2.0 assay, 568–569
Versant HCV RNA test, 566–567
Versant HIV-1 RNA test, 545–546
Versant 4kPCR Molecular system, 388
van genes, in antimicrobial resistance, 512
Vibrio, 289, 731–732
Vibrio cholerae, 732
Vibrio parahaemolyticus, 732
Vibrio vulnificus, 732
Vidiera NSP, laboratory design for, 136
VIDISCA (virus discovery based on cDNA-amplified fragment length polymorphism), 643
VIRA3021 study, of HIV therapy, 544
Viral Genotyping Tool, for HBV, 588
Viral load assays
adenoviruses, 637
cytomegalovirus, 633
Epstein-Barr virus, 633–634
HBV, 582–583, 585–587
HCV, 566–568
HIV, 542–543, 545–547, 549–550
quantitative molecular methods for, 89–92
ViralXpress kit, 357
virco TYPE HIV-1 test, 548–549
VideoChip, 287, 643–645
ViroSeq HIV-1 genotyping system, 547–548
Virulence factors
ExPEC, 213, 215–218
Staphylococcus aureus, 463
Virus(es), see also subjects starting with
Viral, specific viruses
central nervous system, 768–771, 773–776
FRET detection of, 241–242
gastrointestinal, 733–738
microarrays for, 286, 287–289
microwell plate systems for, 258
molecular detection of
current practice in, 537–539
molecular beacons in, 249–250
new discoveries in, 641–652
in transplant recipients, 631–640
in plasma, nucleic acid isolation from, 120
pyrosequencing for, 266–268
quantitative molecular methods for
interpretation issues in, 89–91
specimen integrity in, 91–92
statistical quality control for, 92–93
types of, 83
verification of, 92
quasispecies of, 310–311
resistance in, 310–311, 849
respiratory, see Respiratory viruses, specific viruses
tropism of, 310–311
Virus discovery based on cDNA-amplified fragment length polymorphism (VIDISCA), 643
Vitex system
for MRSA, 467
for Staphylococcus aureus, 463
VNTR, see Variable number of tandem repeat (VNTR) analysis
Volunteer samples, 872
Voriconazole, cytochrome polymorphism and, 805
VP proteins, of rhinoviruses, 612
VZV R-gene kit, 632
W
Warfarin, cytochrome polymorphism and, 814
Water, microorganisms in, rep-PCR for, 205–207
WAVE system, 336
West Nile virus, meningocencephalitis due to, 769, 775
molecular beacon detection of, 250
serologic tests for, 772
West Nile virus, meningocencephalitis due to, 769, 775
molecular beacon detection of, 250
serologic tests for, 772
Western equine encephalitis virus, 771
Westgard rules, for controls, 870
WGAViewer program, for HIV genome data management, 838
Whipple's disease, 776–777; see also Tropheryma whippelii
Whole-genome sequence genotyping, 179–180
Whooping cough, 356–359, 365
Workflow improvement of, 131–133
for mycobacterial sequencing, 440–441
unidirectional, 132–133
World Health Organization, test standards of
HBV, 588
HCV, 565
WU polyomavirus, 608, 612–613
in coinfections, 622
identification of, 646–648
molecular detection of, 619
X
Xenologous genes, as phylogenetic marker, 148, 163
Xenophagy, 848
Xenorhabdus, 485
Xenotropic murine-like retrovirus (XMRV), 644–645
Xerodiagnosis, Trypanosoma cruzi, 715
X-linked agammaglobulinemia, 849
XMRV (xenotropic murine-like retrovirus), 644–645
Xpert C. difficile assay, 114, 331, 359–360
Xpert MRSA assay, 114, 331
Xpert van A/B assay, 331
xTAG Respiratory Viral Panel, 287–289, 332, 621
xTAG sequences, in microarrays, 283
X-tractor Gene System, 136
Y
Yeasts, see also individual yeasts
molecular beacon detection of, 250
Yersinia enterocolitica, 731
Yersinia pestis
 bioassays for, 533
 CRISPR analysis for, 190, 192
 DNA target sequencing for, 486
 melting assay for, 76
 microarrays for, 286
 MLVA for, 187
 Yersinia pseudotuberculosis, 486

Yoshida assay, for Mycoplasma genitalium, 400–403

Z
 Zalcitabine, cytochrome polymorphism and, 805
 Zidovudine
 cytochrome polymorphism and, 805
 transport of, 822
 ZipCode and cZipCode capture sequences, 283, 286
 Zoster, in transplant recipients, 631–632
 Zuckerkandl and Pauling work, on phylogenetic analysis, 145
 Zygomycetes, 202, 204
 Zymolase, contaminants in, 495