BACTERIAL STRESS RESPONSES
Second Edition

Edited by

Gisela Storz
Eunice Kennedy Shriver Institute of Child Health
and Human Development
Bethesda, Maryland

and

Regine Hengge
Freie Universität Berlin
Berlin, Germany
Cover image: The two panels show the same area of false-color fluorescence images of a single microarray spotted with 50-nucleotide oligomers specific for all open reading frames in the *E. coli* K-12 genome that was hybridized with a mixture of Cy3-/Cy5-labeled cDNA obtained with RNA extracted from strain W3110. The cells were grown in defined rich medium and harvested for RNA preparation during growth (at an OD$_{578}$ of 1.0) at 37°C or 5 min after a shift from 37°C to 42°C (preparations labeled with Cy3 or Cy5, respectively). These cells were treated exactly as the cells used by Roth van Bogelen and Fred Neidhardt for the “historic” proteomic analysis of heat-shocked *E. coli* cells shown on the cover of the first edition of *Bacterial Stress Responses* in 2000. The upper panel shows fluorescent signals derived from non-heat-shocked cells. The lower panel shows fluorescent signals derived from heat-shocked cells. Spots representing heat-shock-inducible genes are circled, and gene designations are given. Microarray analysis was performed by Nicole Sommerfeldt and R. Hengge.
To Ella, Toby, Felix, Lisa-Maria, and Manolis
CONTENTS

<table>
<thead>
<tr>
<th>Contributors</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xv</td>
</tr>
</tbody>
</table>

I. General Principles

1. Structure and Evolution of Transcriptional Regulatory Networks • 3
 Guilhem Chalancon and M. Madan Babu

2. Architecture and Dynamics of Transcriptional Networks • 17
 Anat Bren and Uri Alon

3. Regulation by Alternative Sigma Factors • 31
 John D. Helmann

4. The Role of Two-Component Transduction Systems in Bacterial Stress Responses • 45
 Michael T. Laub

5. Roles of mRNA Stability, Translational Regulation, and Small RNAs in Stress Response Regulation • 59
 Susan Gottesman

6. Role of Proteolysis and Chaperones in Stress Response and Regulation • 75
 Kürşad Turgay

II. Specific Stress Responses

7. Cellular Response to Heat Shock and Cold Shock • 93
 Bentley Lim and Carol A. Gross

8. Envelope Stress • 115
 Sarah E. Ades, Jennifer D. Hayden, and Mary E. Laubacher

9. Osmotic Stress • 133
 Janet M. Wood

10. Sensing and Responding to Reactive Oxygen and Nitrogen Species • 157
 Gisela Storz and Stephen Spiro

11. Global Responses of Bacteria to Oxygen Deprivation • 175
 Patricia J. Kiley and Timothy J. Donohue

12. Sensing Metals: the Versatility of Fur • 191
 Sun-Shin Cha, Jung-Ho Shin, and Jung-Hye Roe

13. The DNA Damage Response • 205
 Susan T. Lovett

III. General Stress Responses

14. The Stringent Response • 231
 Emmanuelle Bouweret and Aurélie Battesti

15. The General Stress Response in Gram-Negative Bacteria • 251
 Regine Hengge

16. The General Stress Response in Alphaproteobacteria • 291
 Anne Francez-Charlot, Julia Frunzke, and Julia A. Vorholt
17. The General Stress Response in *Bacillus subtilis* and Related Gram-Positive Bacteria • 301
Chester W. Price

18. Resistance of Bacterial Spores • 319
Peter Setlow

19. Protection against Foreign DNA • 333
Philippe Horvath and Rodolphe Barrangou

20. More than Just a Quorum: Integration of Stress and Other Environmental Cues in Acyl-Homoserine Lactone Signaling • 349
Brett Mellbye and Martin Schuster

21. Biofilms • 365
Hera Vlamakis and Roberto Kolter

22. Persister Bacteria • 375
Nathalie Q. Balaban

IV. Pathogenic Responses

23. Bacterial Responses to the Host Cell • 385
Alfonso Felipe-López and Michael Hensel

24. Phase Variation • 399
Marjan W. van der Woude and Sarah E. Broadbent

V. Bacteria Thriving in Stressful Environments

25. Metamicrobiology: Analyzing Microbial Behavior at the Community Level • 419
Jo Handelsman

26. Life at the Extremes of Temperature • 425
Charles Gerday

27. Comparative Genomics of Stress Response Systems in *Deinococcus* Bacteria • 445
Kira S. Makarova and Michael J. Daly

VI. Applications of Stress Response Studies

28. Redox Mechanisms and Reactive Oxygen Species in Antibiotic Action and Resistance • 461
Inas J. Radhi and Gerard D. Wright

29. Applications of Stress Response Studies: Biofuel Production • 473
James B. McKinlay and Caroline S. Harwood

30. Microbial Bioremediation of Chemical Pollutants: How Bacteria Cope with Multi-Stress Environmental Scenarios • 481
Victor de Lorenzo and Herminia Loza-Tavera

Index • 493
CONTRIBUTORS

Sarah E. Ades
Department of Biochemistry and Molecular Biology
Pennsylvania State University
University Park, PA 16802

Uri Alon
Department of Molecular Cell Biology
Weizmann Institute of Science
Rehovot 76100, Israel

M. Madan Babu
MRC Laboratory of Molecular Biology
Hills Road
Cambridge CB2 0QH, United Kingdom

Nathalie Q. Balaban
Racah Institute of Physics and The Sudarsky Center for Computational Biology
Hebrew University
Jerusalem 91904, Israel

Rodolphe Barrangou
Danisco USA Inc.
Madison, WI 53716

Aurélie Battezi
NIH/NCI
9000 Rockville Pike
Bethesda, MD 20892

Emmanuelle Bouveret
CNRS
University Aix-Marseille, LISM, UPR9027
31 chemin Joseph Aiguier
13009 Marseille, France

Anat Bren
Department of Molecular Cell Biology
Weizmann Institute of Science
Rehovot 76100, Israel

Sarah E. Broadbent
Department of Biology and the
Hull York Medical School
University of York
York Y010 5YW, United Kingdom

Sun-Shin Cha
Marine Biotechnology Research Center
Korea Ocean Research & Development Institute
Ansan P.O. Box 29
Seoul 425-600, Korea

Guilhem Chalancon
MRC Laboratory of Molecular Biology
Hills Road
Cambridge CB2 0QH, United Kingdom

Michael J. Daly
Department of Pathology
Uniformed Services University of the Health Sciences
Bethesda, MD 20814

Victor de Lorenzo
Systems Biology Program
Centro Nacional de Biotecnología-GSIC
Campus de Cantoblanco
Madrid 28049, Spain

Timothy J. Donohue
Department of Bacteriology and Great Lakes Bioenergy Research Center
University of Wisconsin—Madison
Madison, WI 53706

Alfonso Felipe-López
Abteilung Mikrobiologie
Fachbereich Biologie/Chemie
Universität Osnabrück
49076 Osnabrück, Germany
Anne Francez-Charlot
Institute of Microbiology
ETH Zürich
CH-8093 Zürich, Switzerland

Julia Frunzke
Institute of Microbiology
ETH Zürich
CH-8093 Zürich, Switzerland

Charles Gerday
Laboratory of Biochemistry
Institute of Chemistry, B6
University of Liege
Sart-Tilman
B-4000 Liege, Belgium

Susan Gottesman
Laboratory of Molecular Biology
National Cancer Institute
Bethesda, MD 20892

Carol A. Gross
Department of Microbiology and Immunology
Department of Cell and Tissue Biology
University of California, San Francisco
San Francisco, CA 94158

Jo Handelsman
Department of Molecular, Cellular, and Developmental Biology
Yale University
New Haven, CT 06520

Caroline S. Harwood
Department of Microbiology
University of Washington
Seattle, WA 98195

Jennifer D. Hayden
Department of Biochemistry and Molecular Biology
Pennsylvania State University
University Park, PA 16802

John D. Helmann
Department of Microbiology
Wing Hall
Cornell University
Ithaca, NY 14853-8101

Regine Hengge
Institut für Biologie—Mikrobiologie
Freie Universität Berlin
14195 Berlin, Germany

Michael Hensel
Abteilung Mikrobiologie
Fachbereich Biologie/Chemie
Universität Osnabrück
49076 Osnabrück, Germany

Philippe Horvath
Danisco France SAS
F-86220 Dangé-Saint-Romain, France

Patricia J. Kiley
Department of Biomolecular Chemistry and Great Lakes Bioenergy Research Center
University of Wisconsin—Madison
Madison, WI 53706

Roberto Kolter
Department of Microbiology and Molecular Genetics
Harvard Medical School
Boston, MA 02115

Michael T. Laub
Department of Biology
Massachusetts Institute of Technology
31 Ames St.
Cambridge, MA 02139

Mary E. Laubacher
Department of Biochemistry and Molecular Biology
Pennsylvania State University
University Park, PA 16802

Bentley Lim
Department of Microbiology and Immunology
Department of Cell and Tissue Biology
University of California, San Francisco
San Francisco, CA 94158

Susan T. Lovett
Department of Biology and Rosenstiel Basic Medical Sciences Research Center
Brandeis University
Waltham, MA 02454-9110

Herminia Loza-Tavera
Facultad de Química
Departamento de Bioquímica
Universidad Nacional Autónoma de México
04510 México, México

Kira S. Makarova
National Center for Biotechnology Information
National Library of Medicine
National Institutes of Health
8600 Rockville Pike
Bethesda, MD 20894
CONTRIBUTORS

James B. McKinlay
Department of Microbiology
University of Washington
Seattle, WA 98195

Brett Mellbye
Department of Microbiology
Oregon State University
Corvallis, OR 97331

Chester W. Price
Department of Microbiology
University of California at Davis
Davis, CA 95616

Inas J. Radhi
Michael G. DeGroote Institute for Infectious Disease Research
Department of Biochemistry and Biomedical Sciences
1200 Main St. W
McMaster University
Hamilton, ON L8N 3Z5, Canada

Jung-Hye Roe
School of Biological Sciences
Seoul National University
Seoul 151-742, Korea

Martin Schuster
Department of Microbiology
Oregon State University
Corvallis, OR 97331

Peter Setlow
Department of Molecular, Microbial and Structural Biology
University of Connecticut Health Center
Farmington, CT 06030-3305

Jung-Ho Shin
School of Biological Sciences
Seoul National University
Seoul 151-742, Korea

Stephen Spiro
Department of Molecular and Cell Biology
University of Texas at Dallas
Richardson, TX 75080

Gisela Storz
Cell Biology and Metabolism Program
Eunice Kennedy Shriver National Institute of Child Health and Human Development
National Institutes of Health
18 Library Drive
Bethesda, MD 20892-5430

Kürsad Turgay
Institut für Biologie—Mikrobiologie
Freie Universität Berlin
Königin-Luise-Str. 12-16
14195 Berlin, Germany

Marjan W. van der Woude
Department of Biology and the Hull York Medical School
University of York
York Y010 5YW
United Kingdom

Hera Vlamakis
Department of Microbiology and Molecular Genetics
Harvard Medical School
Boston, MA 02115

Julia A. Vorholt
Institute of Microbiology
ETH Zürich
CH-8093 Zürich, Switzerland

Janet M. Wood
Department of Molecular and Cellular Biology
University of Guelph
Guelph, Ontario N1G 2W1, Canada

Gerard D. Wright
Michael G. DeGroote Institute for Infectious Disease Research
Department of Biochemistry and Biomedical Sciences
1200 Main St. W
McMaster University
Hamilton, ON L8N 3Z5, Canada
A decade has passed since the first edition of the *Bacterial Stress Responses* book was published, and the time has come for a new edition.

Reflecting back, an astonishing amount has been learned about bacterial stress responses in the past ten years. Major developments include new ways of thinking about regulation. It has become clear that there is far more posttranscriptional regulation than initially imagined, by regulatory small RNAs and riboswitches as well as by proteolysis. The genome-wide identification of transcription regulators and their target genes in a broad range of organisms has also allowed scientists to think about regulatory networks on a much larger scale. General regulatory principles, which have come to be better understood and underlie all stress responses, are the focus of the first section of the new edition.

The second and third sections of this edition illustrate how much more we now know about both the specific and general stress responses. Many more regulators and target genes and connections between different responses have been identified. In addition, the physiological roles of many of the target genes are better understood. The research on extremely complex general stress responses, which encompass hundreds, if not thousands of genes, has revealed how general stress responses are comprised of highly integrated regulatory networks, modulated at the levels of transcription, transcript stability, translation, protein activity, protein degradation and by the production or decay of small signaling molecules. Significant insights into how bacteria survive stress conditions by undergoing changes of their state or morphology or cell surface have also been obtained. These topics discussed in the first three sections provide background for the last three sections, including the fourth part of the book focused on how stress responses affect the interactions between bacteria and host cells.

The accumulating knowledge of the molecular mechanisms of stress responses illustrates the power of studying model organisms. The many years of research on *Escherichia coli* and *Bacillus subtilis* have been critical in setting the stage for the analyses of other species. However, in this edition as in the first edition, there is an emphasis on what has been learned across species. In the past ten years we have come to have an even greater appreciation of the diversity of bacteria and the diversity of responses to different environments, in part due to significant advances in sequencing. The fifth section of the book describes the study of bacterial stress responses in different niches and communities, particularly in extreme environments.

It has also become increasingly clear that in order to combat bacterial infection with antibiotics or to exploit bacteria for biofuel production or bioremediation, topics of significant medical and commercial importance, there is a need to understand the stress responses. The connections between stress and antibiotic action, as well as the stresses encountered during biofuel production and bioremediation, are discussed in the last chapters.

The review of what we have learned, as covered in the chapters of this edition, has also pointed out what is still less well understood:

- Many aspects of regulation by RNAs as well as the role of proteolysis in shutting off responses or in molecular switches have not yet been fully explored. There also are hints that largely-ignored small proteins modulate the activities of sigma factors and two-component systems and may comprise yet another unexplored level of regulation.
- Current studies have led to a revival of research on second messengers, both long-known and newly-identified, which seem to operate in
far more complex ways than imagined only a few years ago; however, much remains to be learned about the production and sensing of these molecules.

- Environmental signal perception and transduction are still the most poorly characterized steps of stress response pathways.
- A remaining challenge is how to integrate and synthesize the increasing amounts of data from different lines of experimentation. As interesting as any one approach to a problem may be, whether it be mechanistic details or a whole genome survey, full understanding of an entire response requires that we be able to integrate information obtained at all levels and from multiple perspectives, including quantitative analyses of the response dynamics.
- Finally, despite significant advances in recent years, our knowledge regarding bacterial communities such as biofilms (including aspects such as bistability of genetically identical cells and mixed species communities) as well as entire ecosystems is still limited.

We look forward to seeing what is learned in the next ten years.

Gisela Storz
Regine Hengge
ACKNOWLEDGMENTS

We thank all of the authors for their contributions and Greg Payne of ASM Press for his help in putting together the book.
INDEX

Entries followed by an f indicate a figure; those followed by a t indicate a table.

AAA + proteases, 76–77, 77f, 79
ABC transporter, 38
acpP gene, 368
Actinobacteria, 468
Actinomyces, 423
Actinomycetales, 309–310
acyl-homoserine lactone (acyl-HSL) QS, 349
basic circuitry, 350f
environmental cues, 356
future directions, 358
orphan LuxR-type regulators, 355–356
P. aeruginosa QS, signal integration and, 350–355, 351f
QS evolution, conflict potential and, 356–358
signal integration, other bacteria, 355
adhesins, 389
aerobic respiration
anaerobic regulators, gram-positive bacteria, 181
E. coli, 176–177
ArcA and ArcB, 179f, 179–180
FNR, 177f, 177–179, 178f
S. oneidensis, 180–181
agr43 gene, 402, 406, 407f
Agrobacterium tumefaciens, 195, 293f, 349, 351f, 355
ahpC gene, 403
Alcanivorax borkumensis, 486
alphaproteobacteria, general stress response, 291–293, 292f
basic protein properties, 292–294
future directions, 298
PhyR/NepR/σ^Ec2f^ signal transduction cascade, 292–296, 293f, 293–294f, 295f
PhyR/NepR/σ^Ec2f^ signal transduction cascade, role of, 296–298, 297f
alternative σ factors
B. subtilis, regulation, 38–41
E. coli, regulation, 35–38
families, 32f, 32–33, 33f
regulation, general, 31–32, 34f, 34–35, 35f
σ^Ec2f^ family, 33–34
amino acid starvation, 235–236, 236f
aminoglycosides, 463–464
Anabaena, 338
anaerobic respiration
ArcAB modulon, 179f
E. coli K-12, 176–177
FNR, 177f, 177–179, 178f
gram-positive bacteria, regulators, 181
Shewanella, 180–181
anoxygenic photosynthesis, 181
electron transport chain in control of, 183–184
FNR homologs as global regulators, 182
repression under aerobic conditions, 181–182
ANTAR proteins, 64
anti-anti-sigma factor, 309–310
antibiotic action, redox chemistry, 461, 468–469
bleomycin, 462, 462f
indirect role, 463f, 463–464
nitroimidazole, 462f, 462–463
antibiotic resistance, 375–376, 376f
genes, 376–378, 377f
mathematical modeling, 378–379, 379f
persistence, other stresses, 380
persistence, survival strategy, 380
persister types, 376
redox and ROS, 464–469
stochasticity, 379
systems biology, study approaches, 378f, 378–379, 379f
antibiotics
ROS-activated, 467–468
SOS response, 211
antimicrobial peptides
bacterial resistance, 389–392, 390f, 391f
host organisms, stress conditions, 387–388
anti-sigma factor, 309–310
AppA protein, 182
aprA gene, 368
aquaporins, 139–140
Aquifex aeolicus, 433
araBAD promoter
C1-FFL, 22, 23f
NAR, 21
ArcA protein, 83, 179f, 179–180
ArcB protein, 83, 179f, 179–180
Arrhenius equation, 92–93
autoregulation
NAR, 21
PAR, 22
TRN network motifs, 19
auxiliary proteins
regulators, of histidine kinases, 53–54
regulators, of response regulators, 52–53

Bacillales
signaling variations, 308–309, 309f
spore structure, 320f, 320–323, 322f, 323f
spores, formation, 319–320
Bacillus anthracis, 320
Bacillus cereus, 308–309, 309f, 312
Bacillus subtilis. See also _Bacillus subtilis_, general stress response
alternative σ regulation, 38–41
biofilms, 368f, 368–369, 392
chaperones, transcriptional repressor activation, 81f
competence development, 82
CSR, 109
DNA damage response, 219
envelope stress, 123–125
HSR, 100–101, 101f
LiaRS two-component system, 122–123
phosphorelays, 46
phosphotransfer, 51
(p)ppGpp, effects of, 240, 242–243
proteolysis localization, 83
response regulators, 52
RIP, 84
spores, 320
two-component signaling proteins, 46–47

Bacillus subtilis, general stress response, 301–302
cold stress branch, 307–308
Obg protein, 308
RsbQ-PAS input module, 304, 304f
RsbRST input module, 304–305
RsbV and RsbW, 302–303
RST module, 305–307, 307f
σE, 301–312
signaling pathway, 302–308, 303f
bacitracin, 122
bacterial spore resistance, 319, 323t, 323–324
Bacillales, 319–323, 320f, 322f, 323f
Clostridiales, 319–323, 320f, 322f, 323f
core protein resistance, 327–328
cortex, germ cell wall peptidoglycan resistance, 328–329
DNA protection, 324t, 324–327, 325t, 326t
DNA repair, 327
directions, future, 329
germination protein resistance, 328
spore inner membrane resistance, 329
bacteriophage λ system, 17
bacteriophage lambda, 62–63, 63f
Bacteroides fragilis, 400, 404
Bae response, 116–117, 117f
BarA protein, 65, 391
β-lactams
redox chemistry, indirect role, 463–464
SOS response, 211
betaproteobacteria, 274t, 274–275
BetP protein, 143
bioaugmentation, 482
biofilms, 365–366
c-di-GMP, 369–370
formation, 270–271, 366t, 366–367
future directions, 371
heterogeneity, 367–368, 368f
host cell, bacterial responses, 388
secondary metabolites, multicellularity and, 370–371
stress, formation and, 368–369
biofuel production, 473
future directions, 479
intentional stresses and, 476–477
metabolic imbalance, 477–479, 478f
microbial biofuels, 473–474, 474f
unintentional stresses and, 474–476
bioremediation, microbial, 481–482
bacteria, multiple chemicals and, 485–487, 487f
biodegradation, 483–484, 484f
chaotropic and solvent stress, 482–483
future directions, 490
heat shock and ROS stresses, 484–485, 485f
multiple environmental challenge response, 488f, 488–490
physicochemical conditions, inherent stress, 487–488
biostimulation, 482
bleomycin, 462, 462f
Bordetella bronchiseptica, 310–311
Bordetella pertussis, 11, 403
Borrelia burgdorferi, 274–275, 387
Borrelia hermsii, 400
Bradyrhizobium japonicum, 55, 185, 196–197, 295–297, 488
Brucella abortus, 291
Burkholderia cenocepacia, 355, 481–484
Burkholderia cepacia, 349, 355
Burkholderia mallei, 402
Burkholderia pseudomallei, 402
Burkholderia xenovorans, 485
C1 FFL. See Coherent type-1 FFL
cAMP-CRP
anaerobic respiration, _S. oneidensis_, 180–181
general stress response, 259
Campylobacter, 467
Campylobacter jejuni
anti-MC resistance, 467
NO, nitrosative stress, 164
PV, 401
carbon storage regulator, 65
cas genes, 335–342, 336f
Cas proteins, 342
cathelicolins, 388
Caulobacter, 50
Caulobacter crescentus
alphaproteobacteria general stress response, 291, 296
CtrA degradation, 83
(p)ppGpp, 242
two-component signal transduction systems, 46, 49
c-di-GMP. See Cyclic di-guanosine monophosphate
cell envelope, 115, 116f
c-di-GMP, 369–370
formation, 270–271, 366t, 366–367
future directions, 371
heterogeneity, 367–368, 368f
host cell, bacterial responses, 388
secondary metabolites, multicellularity and, 370–371
stress, formation and, 368–369
biofuel production, 473
future directions, 479
intentional stresses and, 476–477
metabolic imbalance, 477–479, 478f
microbial biofuels, 473–474, 474f
unintentional stresses and, 474–476
bioremediation, microbial, 481–482
bacteria, multiple chemicals and, 485–487, 487f
biodegradation, 483–484, 484f
chaotropic and solvent stress, 482–483
future directions, 490
heat shock and ROS stresses, 484–485, 485f
multiple environmental challenge response, 488f, 488–490
physicochemical conditions, inherent stress, 487–488
biostimulation, 482
bleomycin, 462, 462f
Bordetella bronchiseptica, 310–311
Bordetella pertussis, 11, 403
Borrelia burgdorferi, 274–275, 387
Borrelia hermsii, 400
Bradyrhizobium japonicum, 55, 185, 196–197, 295–297, 488
Brucella abortus, 291
Burkholderia cenocepacia, 355, 481–484
Burkholderia cepacia, 349, 355, 485
Burkholderia mallei, 402
Burkholderia pseudomallei, 402
Burkholderia xenovorans, 485
C1 FFL. See Coherent type-1 FFL
cAMP-CRP
anaerobic respiration, _S. oneidensis_, 180–181
general stress response, 259
Campylobacter, 467
Campylobacter jejuni
anti-MC resistance, 467
NO, nitrosative stress, 164
PV, 401
carbon storage regulator, 65
cas genes, 335–342, 336f
Cas proteins, 342
cathelicolins, 388
Caulobacter, 50
Caulobacter crescentus
alphaproteobacteria general stress response, 291, 296
CtrA degradation, 83
(p)ppGpp, 242
two-component signal transduction systems, 46, 49
c-di-GMP. See Cyclic di-guanosine monophosphate
stress responses, 115–116
structure, genes affecting, 270
cgtA genes, 242
channel MscL, 144
channel MscS, 144–146, 145f
chaotropic stress, 482–483
chaperones, molecular
AAA+ proteases, 76–77, 77f, 79
function, 76
Hsp100/Clp, 76–79, 77f, 78f
protein quality control, 76
stress sensors, heat shock, 79–80, 81f
CheY protein, 49
ChiX protein, 67–68
Chlamydia, 395
Chlamydia pneumoniae, 393
Chlamydia trachomatis, 310–311
Chlamydomonas reinhardtii, 476
Chlorogloeopsis, 426
cholera toxin, 389
ciprofloxacin, 467, 467f
Clostridiales
biofuel production, 473–475, 478f
spore resistance, 325
spore structure, 320f, 320–323, 322f, 323f
spores, formation, 319–320
Clostridium botulinum, 34
Clostridium difficile, 404
Clostridium perfringens, 323
Clostridium phytofermentans, 477
Clostridium tetani, 34
ClpA protein, 79
clpC gene, 312
ClpCP protein, 79–80, 83, 100
ClpEP protein, 80
clpP gene, 312
ClpS protein, 79
ClpXP protein, 83, 117f, 118, 261–262
clusters of orthologous genes (COGs), 447f
coherent type-1 FFL (C1 FFL)
AND gate input function, 22, 23f
OR (or SUM) gate input function, 22–24
cold shock response (CSR), 102
circuitry, 106
Csp family, 103–104
E. coli versus B. subtilis, 109
inputs, 102–103
integration, other cellular responses, 108–109
outputs, 103, 104f
RNA degradation, 105–106
translation, 105
translation initiation inhibition, 108
Colwellia psychrerythraea, 434, 437
ComK protein, 82–83
community ecology, 421–422
ComP protein, 82
comparative genomics, Deinococccae, 445–446
evolution of, 446–447, 447f
future directions, 454
radiation response, 447–449, 448f
resistance hypotheses, 449–453, 451f, 452–453f
compatible solutes, 133, 136–138, 137f
competence, B. subtilis, 82
ComQ protein, 82
comS gene, 82
ComX protein, 82
CopN protein, 395
Corynebacterium, 6
Corynebacterium diphtheriae, 338
Cpx envelope stress response, 117f, 119–120
cpx genes, 119–120
Cpx proteins, 51–52, 54, 119–120
CRISPR structure
cas genes and, 339
genomic contribution, 338–339
initial discoveries, 338
loci life cycle, 344
metagenomics, community analyses and, 341
phage resistance role, 339–341, 340f
plasmid immunity, 341
spoligotyping, 338
CRISPR/Cas immunity system
associated genes, 335–338
Cas protein studies, 342
CRISPR loci life cycle, 344
CRISPR motif, 342–343
DNA versus RNA target, 342, 343f
immunity circumvention, 344
leader, 338
repeats and spacers, 333, 336f, 337f, 341–342
CseCB two-component system, 124–125
Csp family
CSR, 103–104
CSR, CspA induction and, 106–108, 107f
CSR. See Cold shock response
csrA gene, 367
CsrA protein, 65–66, 367
CsrB protein, 65
CsrC protein, 65
csrD gene, 66
CSSR, 404
CtrA protein, 83
CtsR protein, 80
cupA gene, 367
cya genes, 180
CyaR protein, 69
cyclic di-guanosine monophosphate (c-di-GMP), 369–370
cyclic-di-GMP signaling, 49, 49f
Dam. See DNA adenine methyltransferase
DBD. See DNA binding domain
DEAD box helicase, 105
defensins, 388
degP gene, 116, 120
DegP protein, 116, 386
degradosome, 105–106
degrons, 78–79
DegS protein, 85, 118–119
Deinococcaceae, 445
bacterial radioresistance, 450–453, 452f
comparative genomics, 445–446
DNA repair, 450, 452–453f
DnaJ protein, 76, 80
DnaK protein, 76, 80, 95
dnrN gene, 167
DOR. See Dense overlapping regulon
DosS histidine kinase, 165
DosT histidine kinase, 165
double-strand breaks (DSBs), 449
DPA. See Dipicolinic acid
dps gene, 311
DrrA protein, 394
drug resistance. See Antibiotic resistance
DSBs. See Double-strand breaks
DsrA protein, 68
endonucleases
mRNA stability, 60–61
regulators, 61–62
f
Enterobacteriaceae, 468
Enterococcus faecalis, 484
Enterococcus hirae, 192
Enterococcus faecium, 51
envelope, 115, 270
envelope stress
B. subtilis ECF sigma factors, 123–124
capsule, Rsc phosphorelay and, 120–122
cell envelope, 115–116, 116f
Cpx stress response, 119–120
future directions, 125–126
gram-negative bacteria stress response, 116–117, 117f
gram-positive bacteria stress response, 122–125
LiaRS two-component system, 122–123
Psp stress response, 117f, 117–118
S. coelicolor sigma factor E, 124–125
σf stress response, 118–119
themes, variations, 125
envZ gene, 54
Erwinia carotovora, 355
Escherichia coli
alternative σ factor regulation, 35–38
anaerobic respiration, 176–180, 177f, 178f, 179f
autoregulation, 19
biofilms, 365, 366f, 367, 369–370
biofuels, 474
chaperones, heat shock regulation, 80
CRISPR discovery, 338
CSR, 109
DNA damage responses, 219–220
DOR, 19f, 20, 26f, 27
envelope stress, 125
FFL, 19f, 19–20, 22, 25
gene duplication, 8–9
general stress response, 251–274
global regulators, 7
horizontal gene transfer, 10
HSR, 100–101, 101f
NAR, 21
NorR, NO stress response, 163
persister bacteria, 375–377
Deinococcus-Thermus group, 445
deltaproteobacteria, 274f, 274–275
dense overlapping regulon (DOR)
biological functions, 27
TRN motif structure, 19f, 20
des gene, 436
desaturases, 436–437
desiccation resistance, Deinococcus, 445
DesK protein, 436
Desulfitobacterium hafniense, 11
Desulfovibrio vulgaris, 487
DHp domain, 55
dihydroxylylavone, 392
din genes, 212, 212f, 215
DinB protein, 215–216
DinG protein, 214
DinI protein, 209, 209f
dipicolinic acid (DPA), 322–323, 323f
DivJ protein, 50
DivK protein, 49–50
DivL protein, 50
Dj1A protein, 121
DksA protein, 238–239
DNA
regulon functions, 96
repair, D. radiodurans, 450
single-strand, SOS response signal, 210
DNA adenine methyltransferase (Dam), 406–407, 407f
DNA binding domain (DBD), 3–4
DNA damage response, 205, 218–219. See also SOS response
B. subtilis, 219
D. radiodurans, 219–220
E. coli, 219–220
future directions, 220–221
mycobacteria, 219
DNA, foreign, protection systems, 333–334
CRISPR/Cas, 335–344, 336f, 337f, 340f, 343f
future directions, 344–345
H-NS, 334–335
R-M systems, 334
SNSN, 334
DNA methylation, 406–408, 407f
DNA polymerase II, 214–215
DNA polymerase IV, 215–216
DNA polymerase V, 216–217
DNA polymerase, Y family, 215
DnaJ protein, 76, 80
DNA repair, D. radiodurans, 450
DnaK protein, 76, 80, 95
dnrN gene, 167
DOR. See Dense overlapping regulon
DosS histidine kinase, 165
DosT histidine kinase, 165
double-strand breaks (DSBs), 449
DPA. See Dipicolinic acid
dps gene, 311
DrrA protein, 394
drug resistance. See Antibiotic resistance
DSBs. See Double-strand breaks
DsrA protein, 68
ECF sigma factors. See Extracytoplasmic function sigma factors
endonucleases
mRNA stability, 60–61
regulators, 61f, 61–62
Enterobacteriaceae, 468
Enterococcus faecalis, 484
Enterococcus hirae, 192
Enterococcus faecium, 51
envelope, 115, 270
envelope stress
B. subtilis ECF sigma factors, 123–124
capsule, Rsc phosphorelay and, 120–122
cell envelope, 115–116, 116f
Cpx stress response, 119–120
future directions, 125–126
gram-negative bacteria stress response, 116–117, 117f
gram-positive bacteria stress response, 122–125
LiaRS two-component system, 122f, 122–123
Psp stress response, 117f, 117–118
S. coelicolor sigma factor E, 124–125
σf stress response, 118–119
themes, variations, 125
evZ gene, 54
Erwinia carotovora, 355
Escherichia coli
alternative σ factor regulation, 35–38
anaerobic respiration, 176–180, 177f, 178f, 179f
autoregulation, 19
biofilms, 365, 366f, 367, 369–370
biofuels, 474
chaperones, heat shock regulation, 80
CRISPR discovery, 338
CSR, 109
DNA damage responses, 219–220
DOR, 19f, 20, 26f, 27
envelope stress, 125
FFL, 19f, 19–20, 22, 25
gene duplication, 8–9
general stress response, 251–274
global regulators, 7
horizontal gene transfer, 10
HSR, 100–101, 101f
NAR, 21
NorR, NO stress response, 163
persister bacteria, 375–377
phosphotransfer, 51
protein adaptation, high temperatures, 433
Psp system, 118
PV, 401
RIP, 84–85
Rsc phosphorelay, 121
scale-free network, 18
SIM, 19f, 20, 25–27
SOS response, 205–218
SoxR, oxidative stress response, 158, 159t
stringent response, 231–232, 232f, 234–244
temperature, growth rate and, 93–94, 94f
TFs, 3–4
TRN evolution, 11
TRN structure, 6
two-component signaling proteins, 46–47
ethanol, 473
exonucleases, 62
extracytoplasmic function (ECF) sigma factors, 34
Alphaproteobacteria, 293–294
B. subtilis, 40, 123–124
cell envelope stress response, 116, 118

Fec proteins, 38
feed-forward motifs (FFMs), 6f, 6–7
feed-forward loop (FFL)
C1-FFL, AND gate input function, 22
C1-FFL, OR gate input function, 22–24
I1-FFL, 22, 24f, 24–25
TRN motif structure, 19f, 19–20
Fe-Fur, 193–194
ferredoxin, 463
FFL. See Feed-forward loop
FFMs. See Feed-forward motifs
fim genes, 404, 409
Fischerella, 426
FixL protein, 55
flavodoxin, 463
flavohemoglobin, 166f, 166–167
flavorubredoxin, 166f, 166–167
FlgM protein, 36–37
FliZ protein, 265
fluoroquinolones, 463, 467
FNR homologs, 178–179
FNR modulon, 165, 177f, 177–179, 178f
FNR/CRP family members, 164, 178
FnL protein, 182
foreign DNA, protection systems, 333–334
CRISPR/Cas, 335–344, 336f, 337f, 340f, 343f
future directions, 344–345
H-NS, 334–335
R-M systems, 334
SNSN, 334
FtsH protein, 80
FtsZ protein, 213
fumarate reductase, 11
Fur box, 199–200
Fur family, metal sensors, 191–193, 192f, 193f
D domain metal binding sites, 198f, 198–199
DNA binding and dimerization domains, 197–198, 198f
domain interface metal binding sites, 199
future directions, 200–201
eheme-sensing Irr, 196–197
iron-sensing Fur, 193f, 193–194
manganese-sensing Mur, 195
metal-dependent domain arrangement, 199
n-1-n type motif deviation, 200
nickel-sensing Nur, 195–196
peroxide-sensing PerR, 196
recognition motifs, 199–200
structural features, 197f, 197–199
zinc-sensing Zur, 194–195
Fur, iron-sensing, 193–194
Fur proteins, 166
Fur-regulated sRNAs, 67
Fusobacterium nucleatum, 423
futB gene, 400
GacS/GacA two-component system, 65
gad genes, 267
gammaproteobacteria, 274t, 274–275
gene duplication, 8–9
gene networks
engineering gene circuits, 13
natural variation, network evolution, 12–13
noise, 13
quantitative modeling, 12
regulatory, 8, 9f
general stress proteins (GSP), 31
general stress response
alphaproteobacteria, 291–298
B. subtilis, 301–302
PhyR/NepR/ECFG signal transduction cascade, 294–295
stringent response, 231–244
general stress response, gram-negative bacteria, 251–252
control circuitry, 258–265, 259f, 263f
E. coli, physiological context, 252f, 252–255, 254f
future directions, 275
growth phases, 252f, 252–254, 254f
induction, by diverse stress conditions, 254f, 254–255
σ5, genetic variability, 273–274
σ5, in Gamma-, Beta-, Deltaproteobacteria, 274t, 274–275
σ5, master regulator of, 255–258
σ5-controlled downstream network, 265–267, 266f
σ5-controlled genes, physiological functions, 267–273
Geobacter sulfurreducens, 488
GFP. See Green fluorescent protein
GGDEF domains, 49
glbA gene, 46
glpD gene, 377
Gluconacetobacter diazotrophicus, 291
glutamine synthetase, 46
gram-negative bacteria. See also General stress response, gram-negative bacteria
cell envelope stress responses, 116–117, 117f
protein secretion systems, 389
gram-positive bacteria
B. subtilis ECF sigma factors, 123–124
cell envelope stress responses, 122
LiaRS two-component system, 122f, 122–123
S. coelicolor σA, 124–125
signaling network variations, 308–310, 309f
green fluorescent protein (GFP), 377
GroEL protein, 76, 80, 100
GroES protein, 76, 100
GrpE protein, 76
GSP. See General stress proteins
GTP, 394
guanylate cyclase, 164
gyr genes, 107, 467

Haemophilus influenzae, 11, 401, 403, 408
Halofex mexisterraneae, 338
Halomonas, 133–134
HAMP domain, 55
hcp gene, 167
Hcp protein, 167
hdeAB genes, 258, 267, 269
heat shock proteins (HSP), 31, 433
heat shock response (HSR), 94–95, 95f, 102
chaperones, transcriptional activator inhibition, 80
chaperones, transcriptional repressor activation, 80, 81f
circuitry, 97f, 97–99
E. coli versus B. subtilis, 100–101, 101f
inputs, 95
outputs, 95–97, 96t
σ32, 99–100

Helicobacter pylori
extreme pH, 386
host cell, bacterial responses, 386
iron-sensing Fur, 194
pathogenicity, 243
PV, 400–402
R-M systems, 334
heme-sensing Irr, 196–197
Hfq protein, 59, 61
Hfq-dependent sRNAs
gene organization, 66–68, 67f
pairing mechanism, gene regulation and, 68–69
physiological roles, 69
HGT. See Horizontal gene transfer
hif genes, 403
high persistence mutants (hip), 375–379, 377f
hilA gene, 391
hip. See High persistence mutants
histidine kinase, 45–46, 46f
historical background, 47
inputs, 54–55
phosphotransfer, 50–51
regulators, 53–54
V. harveyi, 50
histone-like nucleoid structuring (H-NS), 333–335
Hmp protein, 168
H-NOX domain, 164–165
H-NS. See Histone-like nucleoid structuring
Hofmeister series, 138
horizontal gene transfer (HGT), 9–10
host cell, bacterial responses, 385–386
adhesins, 389
antimicrobial peptides, 387–392, 390f, 391f
bacterial surface, 388–389
biofilm formation, 388
Chlamydia, 395
extracellular responses, 389–392, 390f, 391f
intracellular responses, 392–395
iron limitation, toxicity, 387
L. pneumophila, 393–394
M. tuberculosis, 394–395
pH, extreme, 386
protein secretion systems, 389
resident microflora, 386–387
rhizobacteria, extracellular responses, 392
RNS, 387
ROS, 387
S. enterica, 393
starvation, 387
temperature, 386
toxins, 389
HrcA protein, 100
HSP. See Heat shock proteins
Hsp33, 161–162
Hsp60 family, 76, 80, 95
Hsp70 family, 76, 80, 95
Hsp100/Clp proteins
mechanism, function and, 76–78, 77f
substrate recognition, 78–79
HSR. See Heat shock response
HtrA protein, 116, 386
hydrogen gas, 474
hydrogen peroxide, 157
hydrogenase I, 272
hydroxyl radical, 157, 162, 463–464
hypochlorite, 157
I1-FFL. See Incoherent type-1 FFL
iap gene, 338
ica gene, 366–367
ICE. See Iron control element
Idiomarina lohiensis, 437
IgaA protein, 121
incoherent type-1 FFL (I1-FFL), 22, 24f, 24–25
inducible nitric oxide synthase (iNOS), 387
Ira proteins, 83
iron control element (ICE), 196–197
iron limitation, 353–354, 387
iron toxicity, 387
iron transport
D. radiodurans, 453
host cell, 387
iron-sensing Fur, 193–194
iron-sulfur cluster, 463–464
Irr, heme-sensing, 196–197
IrrE/PprI protein, 449
IscR protein, 166
K+ glutamate, 138–139
kanamycin, SOS response and, 211
kat genes, 311–313
kdp genes, 147
Kdp protein, 140
Klebsiella pneumoniae, 121, 179, 338
Kup protein, 140
lac system, 17
Lactococcus lactis, 123, 141, 146
lactoferrin, 387
lacZ gene, 22, 31, 67, 106, 180, 210, 368
LAM. See Lipoarabinomannan
large clusters of tandem repeats (LCTR), 339
Legionella, 66
Legionella pneumophila
host cell, bacterial responses, 393–394
pathogenicity, 243
SpoT regulation, 236–237
σ5 origin, physiological role, 274t, 275
Leguminoseae family, 392
Leptospirillum, 341
LetA/LetS, 65
Lets proteins, 394
lexA gene, 212–213, 217, 220, 449
LexA protein, 21, 205–206, 206f, 220, 449, 467
LiaRS two-component system, 122f, 122–123
ligand binding, 430
lipid(s)
biogenesis, 242
membrane, chemical modifications, 437
lipoarabinomannan (LAM), 394–395
lipopolysaccharides (LPS), 388
Listeria, 313
Listeria monocytogenes
host cell, bacterial responses, 386–387
σ5, pathogenicity and, 313
signaling variations, 308
stringent response, 233
temperatures, low, 437
long tandemly repeated repetitive (LTRR) sequence, 338
LPS. See Lipopolysaccharides
Lqs proteins, 394
LTRR sequence. See Long tandemly repeated repetitive sequence
luciferase operon, 350
Lux proteins, 350, 355–356
manganese-sensing Mur, 195
mar genes, 378, 466
Mar proteins, 160–161, 466
MCRA flavoenzyme, 464–465
McsB protein, 79–80, 82–83
mec genes, 82
MecA protein, 79–80, 82–83
mechanosensitive (MS) channels, 140–141, 144–146, 145f
menaquinone, 180
messenger RNA (mRNA), 59–60
endonucleases, regulators and, 61f, 61–62
exonucleases, degradation initiation, 62
regulation, points of, 60
retroregulation, 62–64, 63f
ribonucleases, 63–64
riboswitches, 64–65
stability, 60–61
transcription termination, 64
translation, 60
metagenetics, 422–423
metagenomics, 422
metal sensors, 191–193, 192f, 193f
Fur family regulators, target DNA sites and, 199–200
Fur family structural features, 197–199, 198f
heme-sensing Irr, 196–197
iron-sensing Fur, 193–194
manganese-sensing Mur, 194–195
nickel-sensing Nur, 195–196
peroxide-sensing PerR, 196
zinc-sensing Zur, 194–195
metamicrobiology, 419–420, 420f
community ecology, 421–422
future directions, 423
metagenetics, 422–423
population biology, 421
systems biology, 420–421
Methanococcus janaschii, 141, 335
Methanopyrus, 426
Methylobacterium, 292
Methylobacterium extorquens, 292, 294, 296–298
Methylocystis, 487
mex genes, 466–467
MexA protein, 467
MexR protein, 466–467
mfd gene, 467
MgrA protein, 161, 466–467
MgsR protein, 312
micF gene, 147
MigM protein, 67–68
microbial biofuels, 473–474, 474f
microbial bioremediation, 481–482
bacteria, multiple chemicals and, 485–487, 487f
biodegradation, 483–484, 484f
chaotropic and solvent stress, 482–483
future directions, 490
heat shock and ROS stresses, 484–485, 485f
multiple environmental challenge response, 488f, 488–490
physicochemical conditions, inherent stress, 487–488
Micrococcus roseus, 437
microflora, resident, 386–387
MIMs. See Multiple input models
mitomycin C, 464f, 464–465
mod genes, 408
modified nucleotides, 430
Moraxella catarrhalis, 404
M. catarrhalis, 404
mRNA. See Messenger RNA
MS channels. See Mechanosensitive channels
Msc proteins, 140–141, 144–146, 145f
multiple input models (MIMs), 6f, 7
Mut, manganese-sensing, 195
mutation, antibiotic resistance, 464
mutHHL gene, 467
Mycobacterium
 DNA damage response, 219
 (p)ppGpp, 238
 Rsh proteins, 234–235
 SOS response, 209
Mycobacterium leprae, 12
Mycobacterium smegmatis, 209, 235
Mycobacterium tuberculosis
 amino acid starvation, 235
 CRISPR structure, 338
 host cell, bacterial responses, 394–395
 MS channels, 141
 NO, nitrosative stress regulators, 165
 signaling network variations, 309–310
 SOS response, 218
Mycoplasma pulmonis, 401
Myxococcus xanthus, 243, 356
NADH dehydrogenases, 486
NADPH oxidase, 486
NAR. See Negative autoregulation
NarL protein, 11, 47, 49f
natural attenuation, 482
negative autoregulation (NAR), 21
Neisseria, 274
Neisseria gonorrhoeae, 401, 406, 408–409
Neisseria meningitidis
 iron-sensing Fur, 194
 NO, nitrosative stress, 164
 oxidative stress, 160
 phase variation, 400–401
nepR gene, 292–293f, 293–294, 296
NepR protein, 291, 293–296, 294–295, 295f
network motifs, TRNs
 autoregulation, 19, 19f
 biological functions, 20–21
 DOR, 19f, 20, 27
 FFL, 19f, 19–20, 22–25, 23f, 24f
 FFM, 6f, 6–7
 NAR, 21
 PAR, 22
 SIM, 19f, 20, 25–27
nickel-sensing Nur, 195–196
nif genes, 194
nitrate reductase, 167
nitric oxide, 157
nitroimidazole antibiotics, 462f, 462–463
nitrosative stress, 157–158
 response regulators, 163, 163t
 FNR/CRP family members, 164
 NorR, 163
 NsrR, 163–164
 other regulators, 164–165
 transcription regulators, collateral effects, 165–166
Nitrosomonas europaea, 163–164
 nitrous oxide, 157–158
 detoxifying activities, 166–167
 pathogenesis and, 168
 stress response regulators, 163, 163t
 FNR/CRP family members, 164
 NorR, 163
 NsrR, 163–164
 other regulators, 164–165
 transcription regulators, collateral effects, 165–166
nlpD gene, 259
NmlR protein, 165
nnrS gene, 167
nod genes, 392
nodulation factors (Nod), 392
norA gene, 163, 167
norR gene, 163
norVW gene, 163
Nostoc isolates, 338
NreB protein, 181
NreC protein, 181
nsrR gene, 164
NsrR protein, 163–164
NssR protein, 164
NtrC protein, 47, 49
 f, 147
nucleic acids, high temperature adaptation, 429–430
nucleoid morphology, 449–450
nucleotides, modified, 430
Nur, nickel-sensing, 195–196
obg gene, 308
obrB gene, 311
OhrR protein, 160–161, 311
OmpC protein, 147
OmpF protein, 147
OmpR protein, 47, 49f
opr genes, 466–467
OpuA transporter, 143–144
opuE genes, 146
organic peroxides, 157
OryR protein, 356
Osac protein, 310
osmoregulation, gene expression, 146
posttranscriptional regulation, 147
S, 146–147
two-component systems, 147
osmoprotectant transporters, 140–142
osmosensing, 141
channel MscL, 144
channel MscS, 144–146, 145f
osmoprotectant transporters, 141–142
transporter BetP, 143
transporter OpuA, 143–144
transporter ProP, 142–143
OxyR protein, 356
OsaC protein, 310
osmophobic effect, 138
MS channels. See Mechanosensitive channels
Msc proteins, 140–141, 144–146, 145f
multiple input models (MIMs), 6f, 7
Mut, manganese-sensing, 195
mutation, antibiotic resistance, 464
mutHHL gene, 467
My...
osmotic stress, 133–136, 134t, 135t, 136f, 147–148
osmotic stress response
 compatible solutes, 133, 136–138, 137f
downshocks, 139
upshocks, 138–139
oxidative stress response, 158, 158t
 Hsp33, 161–162
 OhrR protein, 160–161
 OxyR protein, 160
 PerR protein, 160
 SoxR protein, 158–159, 159t
 thiol-stress regulators, 161
oxygen deprivation
 anaerobic respiration, fermentation and, 176t, 176–181, 177f, 178f, 179f
 anoxygenic photosynthesis regulation, 181–184
 PrrB/PrrA response, nonphotosynthetic bacteria, 184–185
 OxyR protein, 160, 166

par genes
 DNA methylation, 406–407
 PV, regulatory networks and, 409–410
PAR. See Positive autoregulation
partner switching mechanism, 310–311
PAS domain, 55, 179
peptidoglycan, 319, 328–329
peroxide stress, 466–467
peroxide-sensing PerR, 196
PerR protein, 160, 196, 311
persister bacteria, 375f, 375–376
 future directions, 380–381
genes, 376–378, 377t
 mathematical modeling, 378–379, 379f
 persistence, survival strategy, 380
 stochasticity, 379
 stress persistence, 380
 systems biology, study approaches, 378f, 378–380, 379t
 types of, 376
pertussis toxin, 389
PGA protein, 367
pgaA-D genes, 367
pH, host cell bacterial responses, 386
phage resistance, 339–341
phage-shock protein (Psp) response, 117t, 117–118
phagocyte oxidase, 387
phase variation (PV), 399
 biological significance, 399–402
 complex cross-regulatory networks, 410–411
CSSR, 404, 405f
 Dam, 406–407, 407f
DNA methylation, 406–408, 407f
environmental regulation, 408
epistatic regulation, of genes, 410
future directions, 411
gene conversion, 406
heterogeneity degrees, 402
immune evasion, modulation strategy, 400
mobile genetic elements, 406
phasevarions, 408
R/M systems, 401–402
SSM, 402–404, 403f
 switch frequency regulation, 408–409
 variable population composition, 401
phasevarions, 408
PhoP protein, 390, 391f, 392
phosphatidylinositol mannoside (PIM), 394–395
PhoQ protein, 390, 391f, 392
phosphorelay, 45–46, 46f
phosphotransfer, 50–52
photosynthesis, anoxygenic, 181
 electron transport chain in control of, 183–184
FNR homologs as global regulators, 182
repression under aerobic conditions, 181–182
phrA gene, 52
phyR gene, 292, 293t, 294–298
PhyR protein, 291–298, 295f
PhyR/NepR/sEcFG signal transduction cascade
 basic protein properties, 292–293
 general stress response regulator, 294–295, 295f
 genes, regulation of, 297t, 297–298
 organism variations, 295–296
 phenotypic observations, 296
 signal perception, transduction and, 296
phzA1 gene, 368
pil genes, 406, 486
PIM. See Phosphatidylinositol mannoside
plasmid(s)
 immunity, 341
 P. putida, 481
 S. enterica, 393
plB gene, 377
PMF. See Proton motive force
pmr genes, 390
PmrA protein, 390, 391f
PmrB protein, 390, 391f
PmrD protein, 53
pnp gene, 107f, 107–108
PNPase, 62
polyA polymerase, 61f, 62
population biology, 421
porins, 118–119
positive autoregulation (PAR), 22
potential, 140
(p)ppGpp, stringent response, 231–232, 232f
 bacterial physiology, global control of, 240–243, 241f
 biochemistry of, 232, 233f
 concentration, control of, 232–234, 233f
 enzyme inhibition, 239–240
 pathogenicity, 243
 regulation of, 234–238
 RNAP activity and, 238–239
 RNAP redistribution, sigma factor competition and, 239
PpsR protein, 181–182
PQS. See *Pseudomonas* quinolone signal
pqs genes, 352
prfA gene, 313, 386
PrfA protein, 313, 386
proP gene, 146, 147
ProP protein, 142–143, 147
proQ gene, 147
ProQ protein, 147
proteasome, 75
protein quality control, 75
AAA+ proteins, 76–77, 77f, 79
adaptor proteins, 79
Hsp100/Clp, 76–78, 77f, 78f
molecular chaperones, 76
protein quality control, 79–80
stress sensors, 79–80
substrate proteins, 78–79
protein secretion systems, 389
proteins
high-temperature adaptation
molecular chaperones, 433
stability, structural parameters, 432–433
thermodynamic aspects, 431f, 431–432
low-temperature adaptation, 437
cold-adapted enzymes, 437–438, 438f
strategy, 439
thermodynamic aspects, 439
Proteobacteria, 434, 468
proteolysis, 75
AAA+ proteases, 76–77, 77f, 79
adaptor proteins, 79, 82–83
competence development, 82
developmental, adaptation processes, 80–82
heat shock, 80, 81f
Hsp100/Clp, 76–79, 77f, 78f
impact, 79
localization, 83
molecular chaperones, 76
RIP, 84f, 84–85
σE, regulation of, 79–80
stress sensors, 79–80
substrate proteins, 79–80
trans-membrane signaling, 83–85
Proteus mirabilis, 121, 410
proton motive force (PMF), 117
proto-spacer, 342
PrrB/PrrA protein, 183–185
Pseudoalteromonas atlantica, 406
Pseudomonas, 184, 392, 482–485
Pseudomonas aeruginosa
acyl-HSL QS, 349
biofilms, 366t, 366–371
Fur, iron-sensing, 193
host cell, response, 389–390
oxidative stress responses, 159
oxygen deprivation, 184–185
persister bacteria, 376
QS, signal integration and, 351–353, 352f
iron limitation, 353–354
microaerobic and anaerobic conditions, 353
other regulatory pathways, 354–355
phosphate limitation, 353
stationary-phase sigma factor RpoS, 354
stringent response, 354
reactive nitrogen species responses, 168
redox-active pigmented antibiotics, 467–468, 468f
σE, 119
two-component signal transduction systems, 49, 54
Pseudomonas aureofaciens, 467–468
Pseudomonas fluorescens, 66
Pseudomonas putida
chaotropic stress, 481
microbial bioremediation, 481–484, 486, 488–489
oxidative stress responses, 158–159
oxygen deprivation response, 184
Pseudomonas quinolone signal (PQS), 351, 371
PsiB protein, 210
Psp response. See Phage-shock protein response
pspA gene, 117, 117–118
PspA protein, 117–118
pspB gene, 117
PspB protein, 118
pspC gene, 117
PspC protein, 117–118
pspF gene, 117–118
PspF protein, 117–118
pspG gene, 118
Psychromonas ingrahamii, 437
PV. See Phase variation
Py protein, 105, 108
Pyrococcus furiosus, 342
Pyrodictium occultum, 426
Pyrolobus fumarii, 426, 432
quinolone, SOS response and, 211
quorum sensing (QS), 349
radiation/desiccation response motif (RDRM), 447–449, 448f
radioresistance, D. radiodurans, 450–453, 451f, 452–453f
Ralstonia eutropha, 163
Rap proteins, 52
rbfA gene, 108
Rcs phosphorelay, 117–122
Rcs proteins, 121
RDR regulon, 447–449
RDRM. See Radiation/desiccation response motif
reactive nitrogen species (RNS), 157–158
reactive nitrogen species (RNS), 157–158
host cell, bacterial responses, 387
nitrosative stress response regulators, 163t, 163–165
pathogenesis and, 168
responses, physiological roles, 166–168
transcription regulators, collateral effects, 165–166
reactive oxygen species (ROS), 157–158
antibiotic resistance, 464–468
cell stasis, death and, 162
defense responses, 162
host cell, bacterial responses, 387
Hsp33, 161–162
OhrR protein, 160–161
OxyR protein, 160
redox-sensitive regulators, 158t, 158–162
SoxR protein, 158–159, 159t
thiol-stress regulators, 161
recA gene, 205, 209, 212, 212f, 219
RecA protein
DNA damage response, 207
loading factors, 207–208, 208f
modulators, 208–210, 209f
RecBCD protein, 208
RecF protein, 207
recN gene, 212
RecN protein, 214
RecO protein, 207–208
RecR protein, 207
RecX protein, 209f, 209–210
redox chemistry
 antibiotic action, 461–464, 462f, 463f
 antibiotic resistance, 464–469, 465f, 466f, 467f, 468f
 regulated intramembrane proteolysis (RIP), 84f, 84–85
rel genes, 232–234, 233f, 237–238
RelA protein, 354
ResD protein, 181
ResE protein, 181
restriction/modification (R/M) systems, 334, 401
reverse-gyrase, 430
rhizobacteria, 392
Rhizobium etli, 296
Rhizobium leguminosarum, 291
rhl genes, 351–355, 352f
Rhodobacter capsulatus, 164
Rhodobacter sphaeroides, 182–183, 291
Rhodococcus jostii, 488
Rhodopseudomonas palustris, 356
Rhodospirillaceae, 181
ribonucleases, 63–64
ribosomal RNA (rRNA)
 HSR outputs, 96
 (p)ppGpp, effects of, 241
ribosome biogenesis, 241
riboswitches, 64–65
Ricketsiae, 233
RIP. See Regulated intramembrane proteolysis
R/M systems. See Restriction/modification systems
RNA
 antisense, 66
 regulatory, recent research, 59–60
 trans-encoded class, 66
RNA degradation, 105–106
RNA polymerase (RNAP), 31–32
bioremediation, 481
(p)ppGpp and, 238–239
RNase E, 61f, 61–62, 105
RNase G, 62
RNase III, 62, 108
RNase R, 62
RNS. See Reactive nitrogen species
ROS. See Reactive oxygen species
rpoE gene, 37, 118, 292
rpoE2 gene, 293–294, 296
RpoE2 protein, 293–294
rpoH gene, 118
rpoN gene, 392
rpoS gene, 259–260
rpoS mRNA, 260–261
RpoS protein, 4
 degradation initiation, 62
 P. aeruginosa, QS, 354
 pairing mechanism, gene regulation and, 68–69
RppH enzyme, 61–62
RraA protein, 61–62
rRNA. See Ribosomal RNA
Rsb proteins, 390
rseA gene, 118
RseA protein, 37–38, 117f, 118–119
rseB gene, 118–119
RseB protein, 117f, 118–119
RseP protein, 117f, 118–119
rsh genes, 232–234, 233f
Rsh proteins
 amino acid starvation, 235–236, 236f
 enzymatic activity, (p)ppGpp and, 232, 232f
 enzymatic regulation of, 234–235
 structure/function, 233f, 234
RsiW protein, 84
Rsm proteins, 394
RsrA protein, 161
RssB protein, 36, 53, 83, 263f, 263–264
Ruv proteins, 214
Saccharomyces cerevisiae
 biofuel production, stresses, 475
 gene duplication, 8
 NAR, 21
 TRN, 6, 8
Salmonella
 genomic sequence variation, 12
 horizontal gene transfer, 10
 PmrD protein, 53
 Psp system, 118
 PV, 400–401
 Rsc phosphorelay, 120–121
 SdiA protein, 356
Salmonella enterica
 antimicrobial peptides, 389–392, 391f
 host cell, response, 387, 393
 SarZ protein, 161
SASP. See Small acid-soluble protein
scale-free network, 17–18
SdiA protein, 356
Salmonella enterica
 secondary metabolites, 370–371
 secretion system, 389
 SPI2, 393
 type III, 389, 393
 type IV, 393–394
SgrS protein, 69
Shewanella oneidensis, 165, 180–181
Shiga toxin, 389
Shigella, 387
short regularly spaced repeats (sRSR), 338–339
short sequence repeats (SSRs), 402
SidM protein, 394
sigB regulon, 302–314
sigF gene, 314
sigma factor
families of, 32t, 32–33, 33f
regulation, 31–32, 34f, 34–35, 35f
sigma factor 24. See Sigma factor E
sigma factor 28, 36–37
sigma factor 32
chaperones, stress sensors, 80
HSR circuitry, 97f, 97–100
HSR outputs, 95–97
regulation of heat shock response, 37
sigma factor 54, 32, 35
sigma factor 70
diversity, 33–34
general stress response, 252–253, 264, 274
sigma factor B
general stress response, B. subtilis, 301–312
general stress response, other bacteria, 312–314
HSR, 100
regulation
energy signaling branch, 304, 304f
environmental signaling branch, 304–305
Ogb protein, 308
RsbV and RsbW, 302–303
RST module, 305–307, 307f
S. coelicolor, 310
stress response regulation, 38–39
sigma factor B–controlled genes, 311
co-regulated subsets, 311–312
function, 311
pathogenesis, 313–314
soil bacteria, 312–313
sigma factor D, 40
sigma factor E
evelope stress response, 118–119, 124–125
regulation, alternative σ factors, 34, 37–38
sigma factor EcG, 291, 294–295, 295f
sigma factor F, 309–310
sigma factor Fecl, 38
sigma factor H, 40
sigma factor L, 40
sigma factor M, 40, 123–124
sigma factor R, 161
sigma factor S
activity regulation, 264–265
complex regulation, synthesis and stability, 36, 83
Gamma-, Beta-, and Deltaproteobacteria, 274f,
274–275
history of, 255
osmoregulation of gene expression, 146–147
proteolysis regulation, 261–264, 263f
RssB-mediated degradation, 83
σ70 family diversity, 33
sigma factor S–containing RNA polymerase
history of, 255
interaction with Erσ and Erσ70, 256–257
specific promoter recognition, 255–257
transcription factor cooperation, 257–258
sigma factor S–controlled downstream network,
265–267, 266f
sigma factor S–controlled genes
biofilm formation, composition, 270–271
cell envelope structure, overall cellular shape, 270
metabolic redirectors, 269–270
multiple stress resistance, cross-protection, 268–269
physiological functions, 267–273
regulatory genes, 272–273
stationary phase, stress-induced mutagenesis, 272
virulence genes, 271–272
sigma factor W, 40, 84, 123–124
sigma factor X, 40, 123–124
sigma factor Y, 40
sigT gene, 292
sigW gene, 40
sigX gene, 40
single-input modules (SIMs)
biological functions, 25–27
transcriptional network structure, 6f, 7
TRN architecture, 19f, 20
singlet oxygen, 157
Sinorhizobium meliloti
alphaproteobacterial general stress response, 291, 296
histidine kinase inhibitors, 53
Sin QS system, 355
SIP. See Stable isotope probing
SirA protein, 391
SixA protein, 53, 180
small acid-soluble protein (SASP)
a/b-type, 321–322, 322f, 325–327
g-type, 322
small RNA (sRNA), 59–60
antisense, 66
CsrA, regulation mechanisms, 65–66
Fur-regulated, 67
Hfq-dependent, 66–69, 67f
trans-encoded pairing regulators, 66
“small-world” effect, 18–19
SNSN enzymes, 334
solvent stress, 482–483
Sorangium cellulosum, 243
SOS response, 205, 206f
antibiotics, 211
autoregulation, 217
B. subtilis, 217
cell division inhibition, 213
DNA polymerases, 214–215, 215f
excision repair, 213
gene network, 211–213, 212f
LexA protein, 205–206
medical aspects, 217–218
RecA filament, 207–210, 209f
recombinational repair, 213–214
repair reactions, 214
single-strand DNA, 210
spontaneous induction, 210–211
UmuD’C (DNA polymerase V), 216–217
unconventional induction, 211
Y family polymerases, 215
soxR gene, 158
SoxR protein, 158–159, 159t, 467–468
Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Tue, 12 Feb 2019 21:27:48
Streptomyces lavendulae, 464
Streptomyces turgidiscabies, 168
stress-induced mutagenesis, 272
stringent response, 231–232, 232f
amino acid starvation detection, 235–236, 236f
enzyme expression regulation, 237–238
future directions, 243–244
growth arrest-growth control, 240–242
P. aeruginosa, 354
pathogenicity, 243
(p)ppGpp, bacterial physiology and, 240–243, 241f
(p)ppGpp biochemistry, 232, 233f
(p)ppGpp, other enzymes and, 239–240
(p)ppGpp, RNAP and, 238–239
rel/spo genes, phylogenic distribution, 233f
Rsh proteins, enzymatic regulation, 234–235, 236f
Rsh proteins, structure and function, 234
SpoT regulation, 236–237
stress response genes, 242–243
suhB gene, 355
sulA gene, 212, 341
sulA, 212–213
Sulfolobus islandicus, 341
Sulfolobus shibatae, 433
Sulfolobus solfataricus, 339
superoxide anion, 157, 461, 463–464, 468
switch frequency, 402, 408–410
symporter BetP, 141–142
symporter ProP, 141–142
Synechococcus, 341, 426
Synechococcus elongatus, 478–479
Synechocystis, 311, 477
systems biology, 420–421
TAGs. See Triacylglycerols
Tandem REPeats (TREPs), 338–339
target genes (TGs), 3
TDM. See Trehalose dimycolate
temperature. See also Temperature, high; Temperature, low
E. coli, growth rate and, 93–94, 94f
extremes, 425–426, 439–440
host cell, bacterial responses, 386
host cell, bacterial response, 390
Staphylococcus, 406
Staphylococcus aureus
biofilms, 366t, 366–367, 369
LiaRS homologues, 123
RNAIII, 69
σB^ regulation, 313–314
signaling network, 308–309, 309f
Staphylococcus carnosus, 181
Staphylococcus epidermidis, 341
biofilms, 366t, 366–367
host cell, bacterial response, 390
Staphylococcus species, 369
stationary phase
 genetic variability, 272
 sigma factor RpoS, 354
Streptococcus equisimilis, 234–235
Streptococcus mutans, 123, 340
Streptococcus oralis, 423
Streptococcus pyogenes, 338
Streptococcus sanguinis, 339
Streptococcus thermophilus, 339–340, 342
Streptomyces clavuligerus, 233
Streptomyces coelicolor, 34
redox-active pigmented antibiotics, 467–468
rel/spo genes, phylogenic distribution, 233
σB^ regulatory network, 310
σB^–controlled genes, 312
σE, cell envelope integrity, 124–125
Streptomyces lavendulae, 464
protein adaptation, 437
 cold-adapted enzyme properties, 437–438, 438f
 strategy, 439
 thermodynamic aspects, 439
tetracycline monooxygenase, 465–466
tetX gene, 465–466, 466f
 TFs. See Transcription factors
TGs. See Target genes
Thermoanaerobacter ethanolicus, 475
Thermotoga maritima, 51, 426
Thermus aquaticus, 426
Thermus thermophilus, 233, 238, 431
thiol-stress regulators, 161
TOL. See Toluene degradation
toluene degradation (TOL), 481
topoisomerase IV, 467
TorI protein, 53
transcription factors (TFs), 3–4, 5f
 fine-tuners, 7
 global regulators, 7
transcriptional regulatory networks (TRNs), 3–4
 architecture of, 17–18, 18f
 autoregulation, 19, 19f
 concept of, 4
 databases, computer programs and, 5f
 DOR, 19f, 20, 27
 dynamic nature, 7–8
evolution, across organisms, 10–11, 12f
evolution, gene duplication and, 8–9
evolution, mechanisms for, 8, 9
 FFL, 19f, 19–20, 22–25, 23f, 24f
 FFMs, 6f, 6–7
gene circuit engineering, 13
gene network, quantitative modeling, 12
gene networks, noise and, 13
HGT, 9–10
MIMs, 7–8
NAR, 21
network evolution, natural variation and, 12–13
PAR, 22
scale-free network, 17–18
SIMs, 7, 19f, 20, 25–27
 single input loop, 20
 “small-world” effect, 18–19
 structure, global, 7
 structure, local, 6f, 6–7
trans-encoded pairing regulators, 66
transfer RNA (tRNA), 64, 241
translational regulatory proteins
 CsrA, sRNA regulators and, 65–66
 TRAP protein, 66
transporter BetP, 143
transporter OpuA, 143–144
transporter ProP, 142–143
transposons, 466
TRAP protein, 66
TraR-TraI QS system, 355
trehalose dimycolate (TDM), 394
Trepomonas pallidum, 404
TREPs. See Tandem REPeats
triacylglycerides, 474
 triacylglycerols (TAGs), 476
trimethoprim, SOS response and, 211
Trk protein, 140
tRNA. See Transfer RNA
TRNs. See Transcriptional regulatory networks
Truepera radiovictrix, 445
trx genes, 165
turgor pressure, 135
two-component signal transduction systems, 45–46, 46f
 auxiliary proteins, 52–54
 historical background, 46–47
 inputs, 54–55
 outputs, 47–50, 48f, 49f
 phosphotransfer, 50–52
 type I, II persisters, 376
umuCD gene, 467
UmuD’C, 216–217
umuDC gene, 212, 212f, 214, 216–217
Uvr proteins, 208–209, 209f, 213
 uvrAB gene, 212, 212f
 uvrD gene, 208–209
UvrY protein, 65
Vibrio cholerae, 233, 275, 335, 369, 389
 Vibrio fischeri, 349–350, 351f, 355
 Vibrio harveyi, 46, 50
 Vibrio vulnificus, 334
virF gene, 120
wild-type bacteria, 375–377, 376f
Xanthomonas, 209, 274, 356
 Xanthomonas campestris, 161, 195
 Xanthomonas oryzae, 209
 XccR protein, 356
 Xenorhabdus nematophilus, 275
yafQ genes, 378
yciL gene, 355
yciR gene, 355
ydiM gene, 212, 212f
yebG gene, 212, 212f
Yersinia, 67, 125, 339, 386
 Yersinia enterocolitica, 117–118
 Yersinia pestis, 339, 387
 Yersinia pseudotuberculosis, 121, 339, 386
YmdB protein, 62
YpbH protein, 79
ytfE gene, 167
yvrHa gene, 34, 41
YvrHa protein, 34
yvrI gene, 34, 41
YvrI protein, 34
Yw1E phosphatase, 80
zinc uptake, 194–195
Zur, zinc-sensing, 194–195