BACTERIAL STRESS RESPONSES

Second Edition

Edited by

Gisela Storz
Eunice Kennedy Shriver Institute of Child Health
and Human Development
Bethesda, Maryland

and

Regine Hengge
Freie Universität Berlin
Berlin, Germany
To Ella, Toby, Felix, Lisa-Maria, and Manolis
I. General Principles

1. Structure and Evolution of Transcriptional Regulatory Networks • 3
 Guilhem Chalancon and M. Madan Babu

2. Architecture and Dynamics of Transcriptional Networks • 17
 Anat Bren and Uri Alon

3. Regulation by Alternative Sigma Factors • 31
 John D. Helmann

4. The Role of Two-Component Transduction Systems in Bacterial Stress Responses • 45
 Michael T. Laub

5. Roles of mRNA Stability, Translational Regulation, and Small RNAs in Stress Response Regulation • 59
 Susan Gottesman

6. Role of Proteolysis and Chaperones in Stress Response and Regulation • 75
 Kürşad Turgay

II. Specific Stress Responses

7. Cellular Response to Heat Shock and Cold Shock • 93
 Bentley Lim and Carol A. Gross

8. Envelope Stress • 115
 Sarah E. Ades, Jennifer D. Hayden, and Mary E. Laubacher

9. Osmotic Stress • 133
 Janet M. Wood

10. Sensing and Responding to Reactive Oxygen and Nitrogen Species • 157
 Gisela Storz and Stephen Spiro

11. Global Responses of Bacteria to Oxygen Deprivation • 175
 Patricia J. Kiley and Timothy J. Donohue

12. Sensing Metals: the Versatility of Fur • 191
 Sun-Shin Cha, Jung-Ho Shin, and Jung-Hye Roe

13. The DNA Damage Response • 205
 Susan T. Lovett

III. General Stress Responses

14. The Stringent Response • 231
 Emmanuelle Bouveret and Aurélie Battesti

15. The General Stress Response in Gram-Negative Bacteria • 251
 Regine Hengge

16. The General Stress Response in Alphaproteobacteria • 291
 Anne Francez-Charlot, Julia Frunzke, and Julia A. Vorholt
| 17. | The General Stress Response in *Bacillus subtilis* and Related Gram-Positive Bacteria | Chester W. Price | 301 |
| 18. | Resistance of Bacterial Spores | Peter Setlow | 319 |
| 19. | Protection against Foreign DNA | Philippe Horvath and Rodolphe Barrangou | 333 |
| 20. | More than Just a Quorum: Integration of Stress and Other Environmental Cues in Acyl-Homoserine Lactone Signaling | Brett Mellbye and Martin Schuster | 349 |
| 22. | Persister Bacteria | Nathalie Q. Balaban | 375 |

IV. Pathogenic Responses

| 23. | Bacterial Responses to the Host Cell | Alfonso Felipe-López and Michael Hensel | 385 |
| 24. | Phase Variation | Marjan W. van der Woude and Sarah E. Broadbent | 399 |

V. Bacteria Thriving in Stressful Environments

25.	Metamicrobiology: Analyzing Microbial Behavior at the Community Level	Jo Handelsman	419
26.	Life at the Extremes of Temperature	Charles Gerday	425
27.	Comparative Genomics of Stress Response Systems in *Deinococcus* Bacteria	Kira S. Makarova and Michael J. Daly	445

VI. Applications of Stress Response Studies

| 30. | Microbial Bioremediation of Chemical Pollutants: How Bacteria Cope with Multi-Stress Environmental Scenarios | Victor de Lorenzo and Herminia Loza-Tavera | 481 |

Index | 493 |
CONTRIBUTORS

Sarah E. Ades
Department of Biochemistry and Molecular Biology
Pennsylvania State University
University Park, PA 16802

Uri Alon
Department of Molecular Cell Biology
Weizmann Institute of Science
Rehovot 76100, Israel

M. Madan Babu
MRC Laboratory of Molecular Biology
Hills Road
Cambridge CB2 0QH, United Kingdom

Nathalie Q. Balaban
Racah Institute of Physics and The Sudarsky Center for Computational Biology
Hebrew University
Jerusalem 91904, Israel

Rodolphe Barrangou
Danisco USA Inc.
Madison, WI 53716

Aurélie Battesti
NIH/NCI
9000 Rockville Pike
Bethesda, MD 20892

Emmanuelle Bouveret
CNRS
University Aix-Marseille, LISM, UPR9027
31 chemin Joseph Aiguier
13009 Marseille, France

Anat Bren
Department of Molecular Cell Biology
Weizmann Institute of Science
Rehovot 76100, Israel

Sarah E. Broadbent
Department of Biology and the
Hull York Medical School
University of York
York Y010 5YW, United Kingdom

Sun-Shin Cha
Marine Biotechnology Research Center
Korea Ocean Research & Development Institute
Ansan P.O. Box 29
Seoul 425-600, Korea

Guilhem Chalancon
MRC Laboratory of Molecular Biology
Hills Road
Cambridge CB2 0QH, United Kingdom

Michael J. Daly
Department of Pathology
Uniformed Services University of the Health Sciences
Bethesda, MD 20814

Victor de Lorenzo
Systems Biology Program
Centro Nacional de Biotecnología-GSIC
Campus de Cantoblanco
Madrid 28049, Spain

Timothy J. Donohue
Department of Bacteriology and Great Lakes Bioenergy Research Center
University of Wisconsin—Madison
Madison, WI 53706

Alfonso Felipe-López
Abteilung Mikrobiologie
Fachbereich Biologie/Chemie
Universität Osnabrück
49076 Osnabrück, Germany
Anne Francez-Charlot
Institute of Microbiology
ETH Zürich
CH-8093 Zürich, Switzerland

Julia Frunzke
Institute of Microbiology
ETH Zürich
CH-8093 Zürich, Switzerland

Charles Gerday
Laboratory of Biochemistry
Institute of Chemistry, B6
University of Liege
Sart-Tilman
B-4000 Liege, Belgium

Susan Gottesman
Laboratory of Molecular Biology
National Cancer Institute
Bethesda, MD 20892

Carol A. Gross
Department of Microbiology and Immunology
Department of Cell and Tissue Biology
University of California, San Francisco
San Francisco, CA 94158

Jo Handelsman
Department of Molecular, Cellular, and Developmental Biology
Yale University
New Haven, CT 06520

Caroline S. Harwood
Department of Microbiology
University of Washington
Seattle, WA 98195

Jennifer D. Hayden
Department of Biochemistry and Molecular Biology
Pennsylvania State University
University Park, PA 16802

John D. Helmann
Department of Microbiology
Wing Hall
Cornell University
Ithaca, NY 14853-8101

Regine Hengge
Institut für Biologie—Mikrobiologie
Freie Universität Berlin
14195 Berlin, Germany

Michael Hensel
Abteilung Mikrobiologie
Fachbereich Biologie/Chemie
Universität Osnabrück
49076 Osnabrück, Germany

Philippe Horvath
Danisco France SAS
F-86220 Dangé-Saint-Romain, France

Patricia J. Kiley
Department of Biomolecular Chemistry and Great Lakes Bioenergy Research Center
University of Wisconsin—Madison
Madison, WI 53706

Roberto Kolter
Department of Microbiology and Molecular Genetics
Harvard Medical School
Boston, MA 02115

Michael T. Laub
Department of Biology
Massachusetts Institute of Technology
31 Ames St.
Cambridge, MA 02139

Mary E. Laubacher
Department of Biochemistry and Molecular Biology
Pennsylvania State University
University Park, PA 16802

Bentley Lim
Department of Microbiology and Immunology
Department of Cell and Tissue Biology
University of California, San Francisco
San Francisco, CA 94158

Susan T. Lovett
Department of Biology and Rosenstiel Basic Medical Sciences Research Center
Brandeis University
Waltham, MA 02454-9110

Herminia Loza-Tavera
Facultad de Química
Departamento de Bioquímica
Universidad Nacional Autónoma de México
04510 México, México

Kira S. Makarova
National Center for Biotechnology Information
National Library of Medicine
National Institutes of Health
8600 Rockville Pike
Bethesda, MD 20894
James B. McKinlay
Department of Microbiology
University of Washington
Seattle, WA 98195

Brett Mellbye
Department of Microbiology
Oregon State University
Corvallis, OR 97331

Chester W. Price
Department of Microbiology
University of California at Davis
Davis, CA 95616

Inas J. Radhi
Michael G. DeGroote Institute for Infectious Disease Research
Department of Biochemistry and Biomedical Sciences
1200 Main St. W
McMaster University
Hamilton, ON L8N 3Z5, Canada

Jung-Hye Roe
School of Biological Sciences
Seoul National University
Seoul 151-742, Korea

Martin Schuster
Department of Microbiology
Oregon State University
Corvallis, OR 97331

Peter Setlow
Department of Molecular, Microbial and Structural Biology
University of Connecticut Health Center
Farmington, CT 06030-3305

Jung-Ho Shin
School of Biological Sciences
Seoul National University
Seoul 151-742, Korea

Stephen Spiro
Department of Molecular and Cell Biology
University of Texas at Dallas
Richardson, TX 75080

Gisela Storz
Cell Biology and Metabolism Program
Eunice Kennedy Shriver National Institute of Child Health and Human Development
National Institutes of Health
18 Library Drive
Bethesda, MD 20892-5430

Kürsad Turgay
Institut für Biologie—Mikrobiologie
Freie Universität Berlin
Königin-Luise-Str. 12-16
14195 Berlin, Germany

Marjan W. van der Woude
Department of Biology and the Hull York Medical School
University of York
York Y010 5YW
United Kingdom

Hera Vlamakis
Department of Microbiology and Molecular Genetics
Harvard Medical School
Boston, MA 02115

Julia A. Vorholt
Institute of Microbiology
ETH Zürich
CH-8093 Zürich, Switzerland

Janet M. Wood
Department of Molecular and Cellular Biology
University of Guelph
Guelph, Ontario N1G 2W1, Canada

Gerard D. Wright
Michael G. DeGroote Institute for Infectious Disease Research
Department of Biochemistry and Biomedical Sciences
1200 Main St. W
McMaster University
Hamilton, ON L8N 3Z5, Canada
A decade has passed since the first edition of the *Bacterial Stress Responses* book was published, and the time has come for a new edition.

Reflecting back, an astonishing amount has been learned about bacterial stress responses in the past ten years. Major developments include new ways of thinking about regulation. It has become clear that there is far more posttranscriptional regulation than initially imagined, by regulatory small RNAs and riboswitches as well as by proteolysis. The genome-wide identification of transcription regulators and their target genes in a broad range of organisms has also allowed scientists to think about regulatory networks on a much larger scale. General regulatory principles, which have come to be better understood and underlie all stress responses, are the focus of the first section of the new edition.

The second and third sections of this edition illustrate how much more we now know about both the specific and general stress responses. Many more regulators and target genes and connections between different responses have been identified. In addition, the physiological roles of many of the target genes are better understood. The research on extremely complex general stress responses, which encompass hundreds, if not thousands of genes, has revealed how general stress responses are comprised of highly integrated regulatory networks, modulated at the levels of transcription, transcript stability, translation, protein activity, protein degradation and by the production or decay of small signaling molecules. Significant insights into how bacteria survive stress conditions by undergoing changes of their state or morphology or cell surface have also been obtained. These topics discussed in the first three sections provide background for the last three sections, including the fourth part of the book focused on how stress responses affect the interactions between bacteria and host cells.

The accumulating knowledge of the molecular mechanisms of stress responses illustrates the power of studying model organisms. The many years of research on *Escherichia coli* and *Bacillus subtilis* have been critical in setting the stage for the analyses of other species. However, in this edition as in the first edition, there is an emphasis on what has been learned across species. In the past ten years we have come to have an even greater appreciation of the diversity of bacteria and the diversity of responses to different environments, in part due to significant advances in sequencing. The fifth section of the book describes the study of bacterial stress responses in different niches and communities, particularly in extreme environments.

It has also become increasingly clear that in order to combat bacterial infection with antibiotics or to exploit bacteria for biofuel production or bioremediation, topics of significant medical and commercial importance, there is a need to understand the stress responses. The connections between stress and antibiotic action, as well as the stresses encountered during biofuel production and bioremediation, are discussed in the last chapters.

The review of what we have learned, as covered in the chapters of this edition, has also pointed out what is still less well understood:

- Many aspects of regulation by RNAs as well as the role of proteolysis in shutting off responses or in molecular switches have not yet been fully explored. There also are hints that largely-ignored small proteins modulate the activities of sigma factors and two-component systems and may comprise yet another unexplored level of regulation.
- Current studies have led to a revival of research on second messengers, both long-known and newly-identified, which seem to operate in
far more complex ways than imagined only a few years ago; however, much remains to be learned about the production and sensing of these molecules.

- Environmental signal perception and transduction are still the most poorly characterized steps of stress response pathways.
- A remaining challenge is how to integrate and synthesize the increasing amounts of data from different lines of experimentation. As interesting as any one approach to a problem may be, whether it be mechanistic details or a whole genome survey, full understanding of an entire response requires that we be able to integrate information obtained at all levels and from multiple perspectives, including quantitative analyses of the response dynamics.
- Finally, despite significant advances in recent years, our knowledge regarding bacterial communities such as biofilms (including aspects such as bistability of genetically identical cells and mixed species communities) as well as entire ecosystems is still limited.

We look forward to seeing what is learned in the next ten years.

Gisela Storz
Regine Hengge
ACKNOWLEDGMENTS

We thank all of the authors for their contributions and Greg Payne of ASM Press for his help in putting together the book.
INDEX

AAA + proteases, 76–77, 77f, 79
ABC transporter, 38
acpP gene, 368
Actinobacteria, 468
Actinomyces, 423
Actinomycetales, 309–310
acyl-homoserine lactone (acyl-HSL) QS, 349
 basic circuitry, 350f
 environmental cues, 356
 future directions, 358
 orphan LuxR-type regulators, 355–356
 P. aeruginosa QS, signal integration and, 350–355, 351f, 352f
 QS evolution, conflict potential and, 356–358
 signal integration, other bacteria, 355
adhesins, 389
aerobic respiration
 anaerobic regulators, gram-positive bacteria, 181
 E. coli, 176–177
 ArcA and ArcB, 179f, 179–180
 FNR, 177f, 177–179, 178f
 S. oneidensis, 180–181
agr43 gene, 402, 406, 407f
Agrobacterium tumefaciens, 195, 293f, 349, 351f, 355
ahpC gene, 403
Alcanivorax borkumensis, 486
alphaproteobacteria, general stress response, 291–293, 292f
 basic protein properties, 292–294
 future directions, 298
 PhoR/PhoB/σE suggesting signal transduction cascade, 292–296, 293f, 293–294f, 295f
 PhoR/PhoB/σE signaling transduction cascade, role of, 296–298, 297f
alternative σ factors
 B. subtilis, regulation, 38–41
 E. coli, regulation, 35–38
 families, 32f, 32–33, 33f
 regulation, general, 31–32, 34f, 34–35, 35f
 σ38 family, 33–34
amino acid starvation, 235–236, 236f
aminoglycosides, 463–464
Anabaena, 338
anaerobic respiration
 ArcAB modulon, 179f
 E. coli K-12, 176–177
 FNR, 177f, 177–179, 178f
 gram-positive bacteria, regulators, 181
 Shewanella, 180–181
anoxygenic photosynthesis, 181
 electron transport chain in control of, 183–184
 FNR homologs as global regulators, 182
 repression under aerobic conditions, 181–182
ANTAR proteins, 64
anti-anti-sigma factor, 309–310
antibiotic action, redox chemistry, 461, 468–469
 bleomycin, 462, 462f
 indirect role, 463f, 463–464
 nitroimidazole, 462f, 462–463
antibiotic resistance, 375–376, 376f
 genes, 376–378, 377f
 mathematical modeling, 378–379, 379t
 persistence, other stresses, 380
 persistence, survival strategy, 380
 persister types, 376
 redox and ROS, 464–469
 stochasticity, 379
 systems biology, study approaches, 378f, 378–379, 379t
antibiotics
 ROS-activated, 467–468
 SOS response, 211
antimicrobial peptides
 bacterial resistance, 389–392, 390f, 391f
 host organisms, stress conditions, 387–388
anti-sigma factor, 309–310
AppA protein, 182
aprA gene, 368
aquaporins, 139–140
Aquifex aeolicus, 433
araBAD promoter
 C1-FFL, 22, 23f
NAR, 21
ArcA protein, 83, 179f, 179–180
ArcB protein, 83, 179f, 179–180
Arrhenius equation, 92–93
autoregulation
 NAR, 21
PAR, 22
TRN network motifs, 19

Entries followed by an f indicate a figure; those followed by a t indicate a table.
auxiliary proteins
 regulators, of histidine kinases, 53–54
 regulators, of response regulators, 52–53

Bacillales
 signaling variations, 308–309, 309f
 spore structure, 320f, 320–323, 322f, 323f
 spores, formation, 319–320
Bacillus anthracis, 320
Bacillus cereus, 308–309, 309f, 312
Bacillus subtilis, 6. See also *Bacillus subtilis*, general stress response
 alternative σ regulation, 38–41
 biofilms, 368f, 368–369, 392
 chaperones, transcriptional repressor activation, 81f
 competence development, 82
 CSR, 109
 DNA damage response, 219
 envelope stress, 123–125
 HSR, 100–101, 101f
 LiaRS two-component system, 122–123
 phosphorelays, 46
 phosphotransfer, 51
 (p)ppGpp, effects of, 240, 242–243
 proteolysis localization, 83
 response regulators, 52
 RIP, 84
 spores, 320
 two-component signaling proteins, 46–47
Bacillus subtilis, general stress response, 301–302
 cold stress branch, 307–308
 Obg protein, 308
 RsbQ-PAS input module, 304, 304f
 RsbRST input module, 304–305
 RsbV and RsbW, 302–303
 RST module, 305–307, 307f
 σE, 301–312
 signaling pathway, 302–308, 303f
 bacitracin, 122
bacterial spore resistance, 319, 323t, 323–324
 Bacillales, 319–323, 320f, 322f, 323f
 Clostridiales, 319–323, 320f, 322f, 323f
 core protein resistance, 327–328
 cortex, germ cell wall peptidoglycan resistance, 328–329
 DNA protection, 324t, 324–327, 325t, 326t
 DNA repair, 327
 future directions, 329
 germination protein resistance, 328
 spore inner membrane resistance, 329
 bacteriophage λ system, 17
 bacteriophage lambda, 62–63, 63f
 Bacteroides fragilis, 400, 404
 Bae response, 116–117, 117f
 BarA protein, 65, 391
 β-lactams
 redox chemistry, indirect role, 463–464
 SOS response, 211
 beta proteobacteria, 274t, 274–275
 BetP protein, 143
 bioaugmentation, 482
 biofilms, 365–366
c-di-GMP, 369–370
 formation, 270–271, 366t, 366–367
 future directions, 371
 heterogeneity, 367–368, 368f
 host cell, bacterial responses, 388
 secondary metabolites, multicellularity and, 370–371
 stress, formation and, 368–369
 biofuel production, 473
 future directions, 479
 intentional stresses and, 476–477
 metabolic imbalance, 477–479, 478f
 microbial biofuels, 473–474, 474f
 unintentional stresses and, 474–476
 bioremediation, microbial, 481–482
 bacteria, multiple chemicals and, 485–487, 487f
 biodegradation, 483–484, 484f
 chaotropic and solvent stress, 482–483
 future directions, 490
 heat shock and ROS stresses, 484–485, 485f
 multiple environmental challenge response, 488f, 488–490
 physicochemical conditions, inherent stress, 487–488
 biostimulation, 482
 bleomycin, 462, 462f
 Bordetella bronchiseptica, 310–311
 Bordetella pertussis, 11, 403
 Borrelia burgdorferi, 274–275, 387
 Borrelia hermsii, 400
 Bradyrhizobium japonicum, 55, 185, 196–197, 295–297, 488
 Brucella abortus, 291
 Burkholderia cenocepacia, 355, 481–484
 Burkholderia cepacia, 349, 355, 485
 Burkholderia mallei, 402
 Burkholderia pseudomallei, 402
 Burkholderia xenovorans, 485
C1 FFL. See Coherent type-1 FFL
 cAMP-CRP
 anaerobic respiration, *S. oneidensis*, 180–181
 general stress response, 259
 Campylobacter, 467
 Campylobacter jejuni,
 antibiotic resistance, 467
 NO, nitrosative stress, 164
 PV, 401
 carbon storage regulator, 65
 Cas genes, 335–342, 336f
 Cas proteins, 342
 cathelicidins, 388
 Caulobacter, 50
 Caulobacter crescentus,
 alphaproteobacteria general stress response, 291, 296
 CtrA degradation, 83
 (p)ppGpp, 242
 two-component signal transduction systems, 46, 49
 c-di-GMP. See Cyclic di-guanosine monophosphate
 cell envelope, 115, 116f
 Cpx stress response, 119–120
 gram-negative bacterial stress response, 116–117, 117f
 gram-positive bacterial stress response, 122–125
 Psp stress response, 117f, 117–118
 σF stress response, 118–119
stress responses, 115–116
structure, genes affecting, 270
compatible solutes, 133, 136–138, 137f
competence, B. subtilis, 82
ComQ protein, 82
ComS gene, 82
ComX protein, 82
CopN protein, 395
Corynebacterium, 6
Corynebacterium diphtheriae, 338
Cpx envelope stress response, 117f, 119–120
cpx genes, 119–120
Cpx proteins, 51–52, 54, 119–120
CRISPR structure
cas genes and, 339
genomic contribution, 338–339
initial discoveries, 338
loci life cycle, 344
metagenomics, community analyses and, 341
phage resistance role, 339–341, 340f
plasmid immunity, 341
spoligotyping, 338
CRISPR/Cas immunity system
associated genes, 335–338
Cas protein studies, 342
CRISPR loci life cycle, 344
CRISPR motif, 342–344
daDNA versus RNA target, 342, 343f
immunity circumvention, 344
leader, 338
repeats and spacers, 335, 336f, 341–342
CseCB two-component system, 124–125
Csp family
CSR, 103–104
CSR, CspA induction and, 106–108, 107f
CSR. See Cold shock response
csrA gene, 367
csrA protein, 65–66, 367
csrB protein, 65
csrC protein, 65
csrD gene, 66
CSSR, 404
CtRA protein, 83
cupA gene, 367
cya genes, 180
CyaR protein, 69
cyclic di-guanosine monophosphate (c-di-GMP), 369–370
cyclic-di-GMP signaling, 49, 49f
Dam. See DNA adenine methyltransferase
DBD. See DNA binding domain
DEAD box helicase, 105
defensins, 388
degP gene, 116, 120
DegP protein, 116, 386
degradosome, 105–106
degrons, 78–79
degS protein, 85, 118–119
Deinococccaeae, 445
bacterial radioresistance, 450–453, 452f
comparative genomics, 445–446
DNA repair, 450, 452–453f
DnaJ protein, 76, 80
DnaK protein, 76, 80, 95
drrN gene, 167
DOR. See Dense overlapping regulon
DosS histidine kinase, 165
DosT histidine kinase, 165
do-double-strand breaks (DSBs), 449
DPA. See Dipicolinic acid
dps gene, 311
DrrA protein, 394
drug resistance. See Antibiotic resistance
DSBs. See Double-strand breaks
DsrA protein, 68
DOR. See Dense overlapping regulon
DosS histidine kinase, 165
DosT histidine kinase, 165
double-strand breaks (DSBs), 449
DPA. See Dipicolinic acid
dps gene, 311
DrrA protein, 394
drug resistance. See Antibiotic resistance
DSBs. See Double-strand breaks
DsrA protein, 68
ECF sigma factors. See Extracytoplasmic function
sigma factors
endonucleases
mRNA stability, 60–61
regulators, 61f, 61–62
Enterobacteriaceae, 468
Enterococcus faecalis, 484
Enterococcus hirae, 492
Enterococcus faecium, 51
envelope, 115, 270
envelope stress
B. subtilis ECF sigma factors, 123–124
capsule, Rsc phosphorelay and, 120–122
cell envelope, 115–116, 116f
Cpx stress response, 119–120
future directions, 125–126
gram-negative bacteria stress response, 116–117, 117f
gram-positive bacteria stress response, 122–125
LiaRS two-component system, 122f, 122–123
Psp stress response, 117f, 117–118
S. coelicolor sigma factor E, 124–125
σF stress response, 118–119
themes, variations, 125
envZ gene, 54
Erwinia carotovora, 355
Escherichia coli
alternative σ factor regulation, 35–38
anaerobic respiration, 176–180, 177f, 178f, 179f
autoregulation, 19
biofuels, 365, 366f, 367, 369–370
biofuels, 474
chaperones, heat shock regulation, 80
CRISPR discovery, 338
CSR, 109
DNA damage responses, 219–220
DOR, 19f, 20, 26f, 27
envelope stress, 125
FFL, 19f, 19–20, 22, 25
gene duplication, 8–9
general stress response, 251–274
global regulators, 7
horizontal gene transfer, 10
HSR, 100–101, 101f
NAR, 21
NorR, NO stress response, 163
persister bacteria, 375–377
INDEX 497

phosphotransfer, 51
protein adaptation, high temperatures, 433
Psp system, 118
PV, 401
RIP, 84–85
Rsc phosphorelay, 121
scale-free network, 18
SIM, 19f, 20, 25–27
SOS response, 205–218
SoxR, oxidative stress response, 158, 159f
stringent response, 231–232, 232f, 234–244
temperature, growth rate and, 93–94, 94f
TFs, 3–4
TRN evolution, 11
TRN structure, 6
two-component signaling proteins, 46–47
ethanol, 473
exonuclease, 62
extracytoplasmic function (ECF) sigma factors, 34
Alphaproteobacteria, 293–294
B. subtilis, 40, 123–124
cell envelope stress response, 116, 118
Fe-Fur, 193–194
ferredoxin, 463
FFL. See Feed-forward loop
FFMs. See Feed-forward motifs
fin genes, 404, 409
Fischerella, 426
FixL protein, 55
flavodoxin, 463
flavohemoglobin, 166f, 166–167
flavorubredoxin, 166f, 166–167
FlgM protein, 36–37
FliZ protein, 265
fluoroquinolones, 463, 467
FNR homologs, 178–179
FNR modulon, 165, 177f, 177–179, 178f
FNR/CRP family members, 164, 178
FnrL protein, 182
foreign DNA, protection systems, 333–334
CRISPR/Cas, 335–344, 336f, 337f, 340f, 343f
future directions, 344–345
H-NS, 334–335
R-M systems, 334
SNSN, 334
FtsH protein, 80
FtsZ protein, 213
fumarate reductase, 11
Fur box, 199–200
Fur family, metal sensors, 191–193, 192t, 193f
D domain metal binding sites, 198f, 198–199
DNA binding and dimerization domains, 197–198, 198f
domain interface metal binding sites, 199
future directions, 200–201
heme-sensing Irr, 196–197
iron-sensing Fur, 193f, 193–194
manganese-sensing Mur, 195
metal-dependent domain arrangement, 199
n-1-n type motif deviation, 200
nickel-sensing Nur, 195–196
peroxide-sensing PerR, 196
recognition motifs, 199–200
structural features, 197f, 197–199
zinc-sensing Zur, 194–195
Fur, iron-sensing, 193–194
Fur proteins, 166
Fur-regulated sRNAs, 67
Fusobacterium nucleatum, 423
futB gene, 400
GacS/GacA two-component system, 65
gad genes, 267
gammaproteobacteria, 274
G-C content, 430
gene duplication, 8–9
gene networks
engineering gene circuits, 13
natural variation, network evolution, 12–13
noise, 13
quantitative modeling, 12
regulatory, 8, 9f
general stress proteins (GSP), 31
general stress response
alphaproteobacteria, 291–298
B. subtilis, 40, 123–124
cell envelope stress response, 116, 118
control circuitry, 258–265, 259f
E. coli, physiological context, 252f, 252–255, 254f
future directions, 275
growth phases, 252f, 252–254, 254f
induction, by diverse stress conditions, 254f, 254–255
σ52 genetic variability, 273–274
σs, in Gamma-, Beta-, Deltaproteobacteria, 274t, 274–275
σs3, master regulator of, 255–258
σs5 controlled downstream network, 265–267, 266f
σs3 controlled genes, physiological functions, 267–273
Geobacter sulfurreducens, 488
GFP. See Green fluorescent protein
GGDEF domains, 49
glnA gene, 46
glpD gene, 377
Gluconacetobacter diazotrophicus, 291
glutamine synthetase, 46
gram-negative bacteria. See also General stress response, gram-negative bacteria
cell envelope stress responses, 116–117, 117f
protein secretion systems, 389
gram-positive bacteria
B. subtilis ECF sigma factors, 123–124
cell envelope stress responses, 122
host cell, bacterial responses, 385–386
adhesins, 389
antimicrobial peptides, 387–392, 390f, 391f
bacterial surface, 388–389
biofilm formation, 388
Chlamydia, 395
extracellular responses, 389–392, 390f, 391f
intracellular responses, 392–395
iron limitation, toxicity, 387
L. pneumophila, 393–394
M. tuberculosis, 394–395
pH, extreme, 386
protein secretion systems, 389
resident microflora, 386–387
rhizobacteria, extracellular responses, 392
RNS, 387
ROS, 387
S. enterica, 393
starvation, 387
temperature, 386
toxins, 389
HrcA protein, 100
HSP. See Heat shock proteins
Hsp33, 161–162
Hsp60 family, 76, 80, 95
Hsp70 family, 76, 80, 95
Hsp100/Clp proteins
mechanism, function and, 76–78, 77f
substrate recognition, 78–79
HSR. See Heat shock response
HtrA protein, 116, 386
hydrogen gas, 474
hydrogen peroxide, 157
hydrogenase I, 272
hydroxyl radical, 157, 162, 463–464
hypochlorite, 157
I1-FFL. See Incoherent type-1 FFL
iap gene, 338
ica gene, 366–367
ICE. See Iron control element
Idiomarina lohiensis, 437
IgaA protein, 121
incoherent type-1 FFL (I1-FFL), 22, 24f, 24–25
inducible nitric oxide synthase (iNOS), 387
Ira proteins, 83
iron control element (ICE), 196–197
iron limitation, 353–354, 387
iron toxicity, 387
iron transport
D. radiodurans, 453
host cell, 387
iron-sensing Fur, 193–194
iron-sulfur cluster, 463–464
Irr, heme-sensing, 196–197
IrrE/PprI protein, 449
IscR protein, 166
K+ glutamate, 138–139
kanamycin, SOS response and, 211
kat genes, 311–313
kdp genes, 147
Kdp protein, 140
Klebsiella pneumoniae, 121, 179, 338
Kup protein, 140
lac system, 17
Lactococcus lactis, 123, 141, 146
lactoferrin, 387
lacZ gene, 22, 31, 67, 106, 180, 210, 368
LAM. See Lipoarabinomannan
large clusters of tandem repeats (LCTR), 339
Legionella, 66
Legionella pneumophila
host cell, bacterial responses, 393–394
pathogenicity, 243
SpoT regulation, 236–237
σ5 origin, physiological role, 274, 275
Leguminosae family, 392
Leptospirillum, 341
LetA/LetS, 65
Lets proteins, 394
lexA gene, 212–213, 217, 220, 449
LexA protein, 21, 205–206, 206f, 220, 449, 467
LiaRS two-component system, 122f, 122–123
ligand binding, 430
lipid(s)
biogenesis, 242
membrane, chemical modifications, 437
lipoarabinomannan (LAM), 394–395
lipopolysaccharides (LPS), 388
Listeria, 313
Listeria monocytogenes
host cell, bacterial responses, 386–387
σ5, pathogenicity and, 313
signaling variations, 308
stringent response, 233
temperatures, low, 437
long tandemly repeated repetitive (LTRR) sequence, 338
LPS. See Lipopolysaccharides
Lqs proteins, 394
LTRR sequence. See Long tandemly repeated repetitive sequence
luciferase operon, 350
Lux proteins, 350, 355–356
manganese-sensing Mur, 195
mar genes, 378, 466
Mar proteins, 160–161, 466
MCRA flavoenzyme, 464–465
McsB protein, 79–80, 82–83
mec genes, 82
MecA protein, 79–80, 82–83
mechanosensitive (MS) channels, 140–141, 144–146, 145f
menaquinone, 180
messenger RNA (mRNA), 59–60
endonucleases, regulators and, 61f, 61–62
exonucleases, degradation initiation, 62
regulation, points of, 60
retroregulation, 62–64, 63f
ribonucleases, 63–64
riboswitches, 64–65
stability, 60–61
transcription termination, 64
translation, 60
metagenetics, 422–423
metagenomics, 422
metal sensors, 191–193, 192f, 193f
Fur family regulators, target DNA sites and, 199–200
Fur family structural features, 197–199, 198f
heme-sensing Irr, 196–197
iron-sensing Fur, 193–194
manganese-sensing Mur, 194–195
nickel-sensing Nur, 195–196
peroxide-sensing PerR, 196
zinc-sensing Zur, 194–195
metamicrobiology, 419–420, 420f
community ecology, 421–422
future directions, 423
metagenetics, 422–423
metagenomics, 422
population biology, 421
systems biology, 420–421
Methanococcus janaschii, 141, 335
Methanopyrus, 426
Methylobacterium, 292
Methylobacterium extorquens, 292, 294, 296–298
Methylocystis, 487
Mex genes, 466–467
MexA protein, 467
MexR protein, 466–467
mfd gene, 467
MgrA protein, 161, 466–467
MgsR protein, 312
micF gene, 147
MicM protein, 67–68
microbial biofuels, 473–474, 474f
microbial bioremediation, 481–482
bacteria, multiple chemicals and, 485–487, 487f
biodegradation, 483–484, 484f
chaotropic and solvent stress, 482–483
future directions, 490
heat shock and ROS stresses, 484–485, 485f
multiple environmental challenge response, 488f, 488–490
physicochemical conditions, inherent stress, 487–488
Micrococcus roseus, 437
Microflora, resident, 386–387
MIMs. See Multiple input models
mitomycin C, 464f, 464–465
mod genes, 408
modified nucleotides, 430
Moraxella catarrhalis, 404
mRNA. See Messenger RNA
Nitrosomonas europaea, 163–164
nitrous oxide, 157–158
detoxifying activities, 166–167
pathogenesis and, 168
stress response regulators, 163, 163f
FNR/CRP family members, 164
NorR, 163
NsrR, 163–164
other regulators, 164–165
transcription regulators, collateral effects, 165–166

nlpD gene, 259
NmlR protein, 165
nnrS gene, 167
nod genes, 392
nodulation factors (Nod), 392
norA gene, 163, 167
norR gene, 163
norVW gene, 163
Nostoc isolates, 338
NreB protein, 181
NreC protein, 181
nsrR gene, 164
NsrR protein, 163–164
NssR protein, 164
NtrC protein, 47, 49
f
nucleic acids, high temperature adaptation, 429–430
nucleoid morphology, 449–450
nucleotides, modified, 430
Nur, nickel-sensing, 195–196

obg gene, 308
obrB gene, 311
OhrR protein, 160–161, 311
OmpC protein, 147
OmpF protein, 147
OmpR protein, 47, 49f, 147
opr genes, 466–467
OpuA transporter, 143–144
opuE genes, 146
organic peroxides, 157
OryR protein, 356
OsaC protein, 310
osmophobic effect, 138
osmoprotectant transporters, 140t, 140–142
osmoregulation, gene expression, 146
posttranscriptional regulation, 147
αs, 146–147
two-component systems, 147
osmoregulatory proteins, 139
aquaporins, 139–140
MS channels, 140–141
osmoprotectant transporters, 140, 140t
potassium transporters, 140
osmosensing, 141
channel MscL, 144
channel MscS, 144–146, 145f
osmoprotectant transporters, 141–142
transporter BetP, 143
transporter OpuA, 143–144
transporter ProP, 142–143
proQ gene, 147
ProQ protein, 147
proteasome, 75
protein quality control, 75
 AAA+ proteins, 76–77, 77f, 79
 adaptor proteins, 79
 Hsp100/Clp, 76–77, 77f, 78f
 molecular chaperones, 76
 protein quality control, 79–80
 stress sensors, 79–80
 substrate proteins, 78–79
protein secretion systems, 389
proteins
 high-temperature adaptation
 molecular chaperones, 433
 stability, structural parameters, 432–433
 thermodynamic aspects, 431f, 431–432
 low-temperature adaptation, 437
 cold-adapted enzymes, 437–438, 438f
 strategy, 439
 thermodynamic aspects, 439
Proteobacteria, 434, 468
proteolysis, 75
 AAA+ proteases, 76–77, 77f, 79
 adaptor proteins, 79, 82–83
 competence development, 82
 developmental, adaptation processes, 80–82
 heat shock, 80, 81f
 Hsp100/Clp, 76–79, 77f, 78f
 impact, 79
 localization, 83
 molecular chaperones, 76
 RIP, 84f, 84–85
 σE, regulation of, 79–80
 stress sensors, 79–80
 substrate proteins, 79–80
 trans-membrane signaling, 83–85
Proteus mirabilis, 121, 410
proton motive force (PMF), 117
proto-spacer, 342
PrrB/PrrA protein, 183–185
Pseudoalteromonas atlantica, 406
Pseudomonas, 184, 392, 482–485
Pseudomonas aeruginosa
 acyl-HSL QS, 349
 biofilms, 366t, 366–371
 Fur, iron-sensing, 193
 host cell, response, 389–390
 oxidative stress responses, 159
 oxidative deprivation, 184–185
 persister bacteria, 376
 QS, signal integration and, 351–353, 352f
 iron limitation, 353–354
 microaerobic and anaerobic conditions, 353
 other regulatory pathways, 354–355
 phosphate limitation, 353
 stationary-phase sigma factor RpoS, 354
 stringent response, 354
 reactive nitrogen species responses, 168
 redox-active pigmented antibiotics, 467–468, 468f
 σE, 119
 two-component signal transduction systems, 49, 54
Pseudomonas aureofaciens, 467–468
Pseudomonas fluorescens, 66
Pseudomonas putida
 chaotropic stress, 481
 microbial bioremediation, 481–484, 486, 488–489
 oxidative stress responses, 158–159
 oxygen deprivation response, 184
Pseudomonas quinolone signal (PQS), 351, 371
PsiB protein, 210
Psp response. See Phage-shock protein response
pspA gene, 117, 117–118
PspA protein, 117–118
pspB gene, 117
PspB protein, 118
pspC gene, 117
PspC protein, 117–118
pspF gene, 117–118
PspF protein, 117, 117–118
pspG gene, 118
Psychromonas ingrahamii, 437
PV. See Phase variation
Py protein, 105, 108
Pyrococcus furiosus, 342
Pyrodictium occultum, 426
Pyrolobus fumarii, 426, 432
quinolone, SOS response and, 211
quorum sensing (QS), 349
radiation/desiccation response motif (RDRM), 447–449, 448f
radioresistance, D. radiodurans, 450–453, 451f, 452–453f
Ralstonia eutropha, 163
Rap proteins, 52
rbfA gene, 108
Rcs phosphorelay, 117, 120–122
Rcs proteins, 121
RDR regulon, 447–449
RDRM. See Radiation/desiccation response motif
reactive nitrogen species (RNS), 157–158
 host cell, bacterial responses, 387
 nitrosative stress response regulators, 163–165
 pathogenesis and, 168
 responses, physiological roles, 166–168
 transcription regulators, collateral effects, 165–166
reactive oxygen species (ROS), 157–158
 antibiotic resistance, 464–468
 cell stasis, death and, 162
 defense responses, 162
 host cell, bacterial responses, 387
 Hsp33, 161–162
 OhrR protein, 160–161
 OxyR protein, 160
 redox-sensitive regulators, 158r, 158–162
 SoxR protein, 158–159, 159r
 thiol-stress regulators, 161
recA gene, 205, 209, 212, 212r, 219
RecA protein
DNA damage response, 207
loading factors, 207–208, 208f
modulators, 208–210, 209f
RecBCD protein, 208
RecF protein, 207
recN gene, 212
RecN protein, 214
RecO protein, 207–208
RecR protein, 207
RecX protein, 209f, 209–210
redox chemistry
antibiotic action, 461–464, 462f, 463f
antibiotic resistance, 464–469, 465f, 466f, 467f, 468f
regulated intramembrane proteolysis (RIP), 84f, 84–85
rel genes, 232–234, 233f, 237–238
RelA protein, 354
ResD protein, 181
ResE protein, 181
restriction/modification (R/M) systems, 334, 401
reverse-γrase, 430
rhizobacteria, 392
Rhizobium etli, 296
Rhizobium leguminosarum, 291
rhl genes, 351–355, 352f
Rhodobacter capsulatus, 164
Rhodobacter sphaeroides, 182–183, 291
Rhodococcus jostii, 488
Rhodopseudomonas palustris, 356
Rhodospirillaceae, 181
ribonucleases, 63–64
ribosomal RNA (rRNA)
HSR outputs, 96
(p)ppGpp, effects of, 241
ribosome biogenesis, 241
riboswitches, 64–65
Rickettsiae, 233
RIP. See Regulated intramembrane proteolysis
R/M systems. See Restriction/modification systems
RNA
antisense, 66
regulatory, recent research, 59–60
trans-encoded class, 66
RNA degradation, 105–106
RNA polymerase (RNAP), 31–32
bioremediation, 481
(p)ppGpp and, 238–239
RNase E, 61f, 61–62, 105
RNase G, 62
RNase III, 62, 108
RNase R, 62
RNS. See Reactive nitrogen species
ROS. See Reactive oxygen species
rpoE gene, 37, 118, 292
rpoE2 gene, 293–294, 296
RpoE2 protein, 293–294
rpoH gene, 118
rpoN gene, 392
rpoS gene, 259–260
rpoS mRNA, 260–261
RpoS protein, 4
degradation initiation, 62
P. aeruginosa, QS, 354
pairing mechanism, gene regulation and, 68–69
RppH enzyme, 61–62
RraA protein, 61–62
rRNA. See Ribosomal RNA
Rsb proteins, 390
rseA gene, 118
RseA protein, 37–38, 117f, 118–119
rseB gene, 118–119
RseB protein, 117f, 118–119
RseP protein, 117f, 118–119
rsh genes, 232–234, 233f
Rsh proteins
amino acid starvation, 235–236, 236f
enzymatic activity, (p)ppGpp and, 232, 232f
enzymatic regulation of, 234–235
structure/function, 233f, 234
RsiW protein, 84
Rsm proteins, 394
RsrA protein, 161
RssB protein, 36, 53, 83, 263f, 263–264
Ruv proteins, 214
Saccharomyces cerevisiae
biofuel production, stresses, 475
gene duplication, 8
NAR, 21
TRN, 6, 8
Salmonella
genomic sequence variation, 12
horizontal gene transfer, 10
PmrD protein, 53
Psp system, 118
PV, 400–401
Rsc phosphorelay, 120–121
SdiA protein, 356
Salmonella enterica
antimicrobial peptides, 389–392, 391f
host cell, response, 387, 393
SarZ protein, 161
SASP. See Small acid-soluble protein
scale-free network, 17–18
SdiA protein, 356
secondary metabolites, 370–371
secretion system, 389
SPI2, 393
type III, 389, 393
type IV, 393–394
SgrS protein, 69
Shewanella oneidensis, 165, 180–181
Shiga toxin, 389
Shigella, 387
short regularly spaced repeats (SRSR), 338–339
short sequence repeats (SSRs), 402
SidM protein, 394
sigB regulon, 302–314
sigF gene, 314
ROS. See Reactive oxygen species
sigma factor
families of, 32t, 32–33, 33f
regulation, 31–32, 34f, 34–35, 35f
sigma factor 24. See Sigma factor E
sigma factor 28, 36–37
sigma factor 32
chaperones, stress sensors, 80
HSR circuitry, 97f, 97–100
HSR outputs, 95–97
regulation of heat shock response, 37
sigma factor 54, 32, 35
sigma factor 70
diversity, 33–34
general stress response, 252–253, 264, 274
sigma factor B
general stress response, B. subtilis, 301–312
general stress response, other bacteria, 312–314
HSR, 100
regulation
energy signaling branch, 304, 304f
environmental signaling branch, 304–305
Ogb protein, 308
RsbV and RsbW, 302–303
RST module, 305–307, 307f
S. coelicolor, 310
stress response regulation, 38–39
sigma factor B–controlled genes, 311
coregulated subsets, 311–312
function, 311
pathogenesis, 313–314
soil bacteria, 312–313
sigma factor D, 40
sigma factor E
evelope stress response, 118–119, 124–125
regulation, alternative σ factors, 34, 37–38
sigma factor EcG, 291, 294–295, 295f
sigma factor F, 309–310
sigma factor Fcg, 38
sigma factor H, 40
sigma factor L, 40
sigma factor M, 40, 123–124
sigma factor R, 161
sigma factor S
activity regulation, 264–265
complex regulation, synthesis and stability, 36, 83
Gamma-, Beta-, and Deltaproteobacteria, 274t,
274–275
history of, 255
osmoregulation of gene expression, 146–147
proteolysis regulation, 261–264, 263f
RssB-mediated degradation, 83
σ70 family diversity, 33
sigma factor S–containing RNA polymerase
history of, 255
interaction with Er3 and Er70, 256–257
specific promoter recognition, 255–257
transcription factor cooperation, 257–258
sigma factor S–controlled downstream network,
265–267, 266f
sigma factor S–controlled genes
biofilm formation, composition, 270–271
cell envelope structure, overall cellular shape, 270
metabolic redirectors, 269–270
multiple stress resistance, cross-protection, 268–269
physiological functions, 267–273
regulatory genes, 272–273
stationary phase, stress-induced mutagenesis, 272
virulence genes, 271–272
sigma factor W, 40, 84, 123–124
sigma factor X, 40, 123–124
sigma factor Y, 40
sigT gene, 292
sigW gene, 40
sigX gene, 40
single-input modules (SIMs)
biological functions, 25–27
transcriptional network structure, 6f, 7
TRN architecture, 19f, 20
singlet oxygen, 157
Sinorhizobium meliloti
alphaproteobacterial general stress response, 291, 296
histidine kinase inhibitors, 53
Sin QS system, 355
SIP. See Stable isotope probing
SirA protein, 391
SixA protein, 53, 180
small acid-soluble protein (SASP)
a/b-type, 321–322, 322f, 325–327
g-type, 322
small RNA (sRNA), 59–60
antisense, 66
CsrA, regulation mechanisms, 65–66
Fur-regulated, 67
Hfq-dependent, 66–69, 67f
trans-encoded pairing regulators, 66
“small-world” effect, 18–19
SNSN enzymes, 334
solvent stress, 482–483
Sorangium cellulosum, 243
SOS response, 205, 206f
antibiotics, 211
autoregulation, 217
B. subtilis, 217
cell division inhibition, 213
DNA polymerases, 214–215, 215f
excision repair, 213
gene network, 211–213, 212f
LexA protein, 205–206
medical aspects, 217–218
RecA filament, 207–210, 209f
recombinational repair, 213–214
repair reactions, 214
single-strand DNA, 210
spontaneous induction, 210–211
UmuD'C (DNA polymerase V), 216–217
unconventional induction, 211
Y family polymerases, 215
soxR gene, 158
SoxR protein, 158–159, 159t, 467–468
protein adaptation, 437
cold-adapted enzyme properties, 437–438, 438f
strategy, 439
thermodynamic aspects, 439
tetracycline monooxygenase, 465–466
tetX gene, 465–466, 466f
TFs. See Transcription factors
TGs. See Target genes
Thermoanaerobacter ethanolicus, 475
Thermotoga maritima, 51, 426
Thermus aquaticus, 426
Thermus thermophilus, 233, 238, 431
thiol-stress regulators, 161
TOL. See Toluene degradation
toluene degradation (TOL), 481
topoisoerase IV, 467
TorI protein, 53
transcription factors (TFs), 3–4, 5t
fine-tuners, 7
global regulators, 7
transcriptional regulatory networks (TRNs), 3–4
architecture of, 17–18, 18f
autoregulation, 19, 19f
concept of, 4
databases, computer programs and, 5t
DOR, 19f, 20, 27
dynamic nature, 7–8
evolution, across organisms, 10–11, 12f
evolution, gene duplication and, 8–9
evolution, mechanisms for, 8, 9
FFL, 19f, 19–20, 22–25, 23f, 24f
FFMs, 6f, 6–7
gene circuit engineering, 13
gene network, quantitative modeling, 12
gen network, noise and, 13
HGT, 9–10
MIMs, 7–8
NAR, 21
network evolution, natural variation and, 12–13
PAR, 22
scale-free network, 17–18
SIMs, 7, 19f, 20, 25–27
single input loop, 20
“small-world” effect, 18–19
structure, global, 7
structure, local, 6f, 6–7
trans-encoded pairing regulators, 66
transfer RNA (tRNA), 64, 241
translational regulatory proteins
CsrA, sRNA regulators and, 65–66
TRAP protein, 66
transporter BetP, 143
transporter OpuA, 143–144
transporter ProP, 142–143
transposons, 466
TRAP protein, 66
TraR-TraI QS system, 355
trehalose dimycolate (TDM), 394
Treponema pallidum, 404
TREPs. See Tandem REPeats
triacylglycerides, 474
triacylglycerols (TAGs), 476
trimethoprim, SOS response and, 211
Trk protein, 140
tRNA. See Transfer RNA
TRNs. See Transcriptional regulatory networks
Truepera radiovictrix, 445
tru genes, 165
turgor pressure, 135
two-component signal transduction systems, 45–46, 46f
auxiliary proteins, 52–54
historical background, 46–47
inputs, 54–55
outputs, 47–50, 48f, 49f
phosphotransfer, 50–52
type I, II persisters, 376
umuCD gene, 467
UmuD’C, 216–217
umuDC gene, 212, 212t, 214, 216–217
Uvr proteins, 208–209, 209f, 213
uvrAB gene, 212, 212t
uvrD gene, 208–209
UvrY protein, 65
Vibrio cholerae, 233, 275, 335, 369, 389
Vibrio fischeri, 349–350, 351f, 355
Vibrio harveyi, 46, 50
Vibrio vulnificus, 334
virF gene, 120
wild-type bacteria, 375–377, 376f
Xanthomonas, 209, 274, 356
Xanthomonas campestris, 161, 195
Xanthomonas oryzae, 209
XccR protein, 356
Xenorhabdus nematophilus, 275
yafQ genes, 378
ycil gene, 355
ycir gene, 355
ydlM gene, 212, 212f
yebG gene, 212, 212f
Yersinia, 67, 125, 339, 386
Yersinia enterocolitica, 117–118
Yersinia pestis, 339, 387
Yersinia pseudotuberculosis, 121, 339, 386
YmdB protein, 62
YpbH protein, 79
ytfE gene, 167
yvrHa gene, 34, 41
YvrHa protein, 34
yvrI gene, 34, 41
YvrI protein, 34
Yw1E phosphatase, 80
zinc uptake, 194–195
Zur, zinc-sensing, 194–195