CRYPTOCOCCUS
FROM HUMAN PATHOGEN TO MODEL YEAST
CRYPTOCOCCUS
FROM HUMAN PATHOGEN TO MODEL YEAST

EDITED BY

Joseph Heitman
Duke University Medical Center
Durham, NC 27710

Thomas R. Kozel
University of Nevada School of Medicine
Reno, NV 89557-0320

Kyung J. Kwon-Chung
National Institute of Allergy and Infectious Diseases
Bethesda, MD 20892

John R. Perfect
Duke University Medical Center
Durham, NC 27710

Arturo Casadevall
Albert Einstein College of Medicine
Bronx, NY 10461

ASM PRESS
WASHINGTON, DC
Cover photo credits:

Top left: Basidium (blue) and chains of infectious basidiospores (purple) produced during sexual reproduction of Cryptococcus neoformans, visualized by scanning electron microscopy (pseudocolored). Photo by Chaoyang Xue, Kasey Carroll, and Joseph Heitman.

Top right: C. neoformans yeast cells stained with an anticapsular antibody (blue) and fluorescein as a cell wall marker (green), visualized by indirect immunofluorescence microscopy. Photo by Lynda Pierini and Tamara Doering.

Lower left: Cryptococcus gattii NIH444 (gold) undergoing phagocytosis by a neutrophil (pink); pseudocolored scanning electron micrograph. Photo by Deborah Springer and Vishnu Chaturvedi.

Lower right: C. neoformans budding yeast cell stained with anticapsular monoclonal antibody 339 (red) and antibody to the human C3 component of complement (green), visualized by immunofluorescence microscopy. Photo by Marcellene Gates-Hollingsworth and Thomas Kozel.
Contents

Contributors / ix
Foreword / xv
 WILLIAM E. Dismukes
Preface / xvii

SECTION I. GENERAL PRINCIPLES / 1

1 Systematics of the Genus Cryptococcus and Its Type Species C. neoformans / 3
KYUNG J. KWON-CHUNG, TEUN BOEKHOUT, BRIAN L. WICKES, AND JACk W. FELL

2 The History of Cryptococcus and Cryptococcosis / 17
JOHN R. PERFECT AND ARTURO CASADEVALL

3 Biosynthesis and Genetics of the Cryptococcus Capsule / 27
GUILHEM JANBON AND TAMARA L. DOERING

4 The Architecture and Antigenic Composition of the Polysaccharide Capsule / 43
MARCIO L. RODRIGUES, ARTURO CASADEVALL, AND OSCAR ZARAGOZA

5 Melanin: Structure, Function, and Biosynthesis in Cryptococcus / 55
DAVID TROFA, ARTURO CASADEVALL, AND JOSHUA D. NOSANCHUK

6 The Cell Wall of Cryptococcus / 67
NICOLE M. GILBERT, JENNIFER K. LODGE, AND CHARLES A. SPECHT

7 Sexual Reproduction of Cryptococcus / 81
YEN-PING HSUEH, XIAORONG LIN, KYUNG J. KWON-CHUNG, AND JOSEPH HEITMAN

8 Population Structure and Ecology of Cryptococcus neoformans and Cryptococcus gattii / 97
ANASTASIA P. LITVINTSEVA, JIANPING XU, AND THOMAS G. MITCHELL

SECTION II. GENETICS AND GENOMICS / 113

9 The Cryptococcus Genomes: Tools for Comparative Genomics and Expression Analysis / 115
JAMES W. KRONSTAD, BRENDAN J. LOFTUS, AND JENNIFER K. LODGE

10 Genetic and Genomic Approaches to Cryptococcus Environmental and Host Responses / 127
ALEXANDER IDNURM AND PETER R. WILLIAMSON

11 The Mating-Type Locus of Cryptococcus: Evolution of Gene Clusters Governing Sex Determination and Sexual Reproduction from the Phylogenomic Perspective / 139
YEN-PING HSUEH, BANU METIN, KEISHA FINDLEY, MARIANELA RODRIGUEZ-CARRES, AND JOSEPH HEITMAN

SECTION III. SIGNALING AND VIRULENCE / 151

12 G-Protein Signaling Pathways: Regulating Morphogenesis and Virulence of Cryptococcus / 153
J. ANDREW ALSPAUGH, CONNIE B. NICHOLS, CHAOYANG XUE, WEI-CHIANG SHEN, AND PING WANG
CONTENTS

13 A Role for Mating in Cryptococcal Virulence / 167
KIRSTEN NIELSEN AND KYUNG J. KWON-CHUNG

14 Sensing Extracellular Signals in Cryptococcus neoformans / 175
ALÉXANDER IDNURM, YONG-SUN BAHN, WEI-CHIANG SHEN, JULIAN C. RUTHERFORD, AND FRITZ A. MÜHLSCHLEGEL

15 Virulence Mechanisms of Cryptococcus gattii: Convergence and Divergence / 189
SUDHA CHATURVEDI AND VISHNU CHATURVEDI

16 Drug Resistance in Cryptococcus: Epidemiology and Molecular Mechanisms / 203
M. A. PFALLER, J. K. LODGE, AND M A. GHANNOUM

17 Signaling Cascades and Enzymes as Cryptococcus Virulence Factors / 217
DEBORAH S. FOX, JULIANNE T. DJORDJEVIC, AND TANIA C. SORRELL

SECTION IV.

ENVIRONMENTAL INTERACTIONS AND POPULATION GENETICS / 235

18 Environmental Niches for Cryptococcus neoformans and Cryptococcus gattii / 237
THOMAS G. MITCHELL, ELIZABETH CASTAÑEDA, KIRSTEN NIELSEN, BODO WANKE, AND MARCIA S. LAZÉRA

19 Cryptococcus neoformans: Nonvertebrate Hosts and the Emergence of Virulence / 261
JEFFRÉY J. COLEMAN, CARA J. CHRISMAN, ARTURO CASADEVALL, AND ELEFTHERIOS MYLONAKIS

20 Cryptococcosis in Africa / 269
NELESH P. GOVENDER, THOMAS G. MITCHELL, ANASTASIA P. LITVINTSEVA, AND KATHLEEN J. MIGLIA

21 Cryptococcosis in Asia / 287
JIANGPING XU, WEERAWAT MANOSUTHI, UMA BANERJEE, LI-PING ZHU, JANGHAN CHEN, SHIGERU KOHNO, KOICHI IZUMIKAWA, YUCHONG CHEN, SOMNUEK SUNGKANUPARPH, THOMAS S. HARRISON, AND MATTHEW FISHER

22 Sexual Reproduction of Cryptococcus gattii: a Population Genetics Perspective / 299
DEE CARTER, LEONA CAMPBELL, NATHAN SAUL, AND MARK KROCKENBERGER

23 The Emergence of Cryptococcus gattii Infections on Vancouver Island and Expansion in the Pacific Northwest / 313
KAREN BARTLETT, EDMOND BYRNES, COLLEEN DUNCAN, MURRAY FYFE, ELENI GALANIS, JOSEPH HEITMAN, LINDA HOANG, SARAH KIDD, LAURA MACDOUGALL, SUNNY MAK, KIEREN MARR, MUHAMMAD MORSHED, SARAH WEST, AND JAMES KRONSTAD

24 Molecular Typing of the Cryptococcus neoformans/Cryptococcus gattii Species Complex / 327
WIELAND MEYER, FELIX GILGADO, POPCHAI NGAMSKULRUNGROJ, LUCIANA TRILLES, FERRY HAGEN, ELIZABETH CASTAÑEDA, AND TEUN BOEKHOUT

25 Hybridization and Its Importance in the Cryptococcus Species Complex / 359
MASSIMO COGLIATI, XIAORONG LIN, AND MARIA ANNA VIVIANI

SECTION V.

INTERACTIONS WITH THE IMMUNE SYSTEM / 371

26 The Interaction of Cryptococcus neoformans with Host Macrophages and Neutrophils / 373
TRAVIS MCQUISTON AND MAURIZIO DEL POETA

27 T Cell and Dendritic Cell Immune Responses to Cryptococcus / 387
KAREN L. WOZNIAK AND STUART M. LEVITZ

28 Acquired Humoral Immunity to Cryptococcus neoformans / 397
LIISÉ-ANNE PIROFSKI AND ARTURO CASADEVALL

29 Interactions of Capsule with Antibody and Complement / 409
THOMAS R. KOZEL

30 Cryptococcus Interactions with Innate Cytotoxic Lymphocytes / 417
SHAUNNA M. HUSTON AND CHRISTOPHER H. MODY

31 Cryptococcus neoformans: Latency and Disease / 431
FRANÇOISE DROMER, ARTURO CASADEVALL, JOHN PERFECT, AND TANIA SORRELL
CONTENTS

32 Intracellular Replication and Exit Strategies / 441
KERSTIN VOELZ, SIMON A. JOHNSTON, AND ROBIN C. MAY

33 Pulmonary Innate and Adaptive Defenses against Cryptococcus / 451
KRISTI L. WILLIAMS, FLOYD L. WORMLEY, JR., SCARLETT GEUNES-BOYER, JO RAE WRIGHT, AND GARY B. HUFFNAGLE

34 Invasion of Cryptococcus into the Central Nervous System / 465
FRANÇOISE DROMER AND STUART M. LEVITZ

35 Cryptococcosis in Experimental Animals: Lessons Learned / 473
KARL V. CLEMONS AND DAVID A. STEVENS

36 Veterinary Insights into Cryptococcosis Caused by Cryptococcus neoformans and Cryptococcus gattii / 489
RICHARD MALIK, MARK B. KROCKENBERGER, CAROLYN R. O’BRIEN, DEE A. CARTER, WIELAND MEYER, AND PAUL J. CANFIELD

SECTION VII.

DIAGNOSIS, TREATMENT, PREVENTION, AND CLINICAL PERSPECTIVES / 505

37 Cryptococcosis in Transplant Recipients / 507
NINA SINGH AND BARBARA D. ALEXANDER

38 Cryptococcosis in AIDS / 515
BETTINA C. FRIES AND GARY M. COX

39 Antifungal Trials: Progress, Approaches, New Targets, and Perspectives in Cryptococcosis / 527
PETER G. PAPPAS

40 Vaccines and Antibody Therapies from Cryptococcus neoformans to Melanoma / 537
ARTURO CASADEVALL, EKATERINA DADACHOVA, AND LIISE-ANNE PIROFSKI

41 Diagnostic Approach Based on Capsular Antigen, Capsule Detection, β-Glucan, and DNA Analysis / 547
MARA R. DÍAZ AND M. HONG NGUYEN

42 Management of Cryptococcal Meningoencephalitis in Both Developed and Developing Countries / 565
JOSEPH N. JARVIS, TIHANA BICANIC, AND THOMAS S. HARRISON

43 Public Health Importance of Cryptococcal Disease: Epidemiology, Burden, and Control / 585
BENJAMIN J. PARK, SHAWN R. LOCKHART, MARY E. BRANDT, AND TOM M. CHILLER

44 Clinical Perspectives on Cryptococcus neoformans and Cryptococcus gattii: Implications for Diagnosis and Management / 595
TANIA C. SORRELL, SHARON C.-A. CHEN, PETER PHILLIPS, AND KIEREN A. MARR

Index / 607
Contributors

BARBARA D. ALEXANDER
Departments of Medicine and Pathology, Duke University Medical Center, Durham, NC 27710

J. ANDREW ALSPAUGH
Department of Medicine and Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710

YONG-SUN BAHN
Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea

UMA BANERJEE
Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India

KAREN BARTLETT
School of Environmental Health, University of British Columbia, 372-2206 East Mall, Vancouver, BC, Canada V6T 1Z3

TIHANA BICANIC
Centre for Infection, St. George’s University of London, Cranmer Terrace, London SW17 ORE, United Kingdom

TEUN BOEKHOUT
CBS Fungal Diversity Center, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands

MARY E. BRANDT
Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333

EDMOND BYRNES
Duke University Medical Center, 312 CARL Building, Box 3546, Research Drive, Durham, NC 27710

LEONA CAMPBELL
School of Molecular Bioscience, Building G08, University of Sydney, NSW 2006, Australia

PAUL J. CANFIELD
Faculty of Veterinary Science, The University of Sydney, Sydney, NSW Australia 2006

DEE A. CARTER
School of Molecular Bioscience, Building G08, University of Sydney, NSW 2006, Australia

ARTURO CASADEVVALL
Department of Microbiology and Immunology and Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461

ELIZABETH CASTAÑEDA
Emerita Investigator, Instituto Nacional de Salud, Bogotá, Colombia

SUDHA CHATURVEDI
Mycology Laboratory, Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12208

VISHNU CHATURVEDI
Mycology Laboratory, Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12208

JANGHAN CHEN
Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, PR China

SHARON C.-A. CHEN
Centre for Infectious Diseases and Microbiology, Westmead Hospital and the University of Sydney, Westmead, NSW 2145 Australia

YUCHONG CHEN
Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, PR China

TOM M. CHILLER
Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333

CARA J. CHRISMAN
Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY 10461
CONTRIBUTORS

KARL V. CLEMONS
California Institute for Medical Research, San Jose, CA 95128; Div. of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA 95128; and Div. of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305

MASSIMO COGLIATI
Laboratory of Medical Mycology, Department of Public Health – Microbiology – Virology, Università degli Studi di Milano, Via Pascal 36, 20133 Milan, Italy

JEFFREY J. COLEMAN
Division of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114

GARY M. COX
Department of Medicine Mycology Research Unit, Duke University, Durham, NC 27710

EKATERINA DADACHOVA
Departments of Nuclear Medicine and Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461

MAURIZIO DEL POETA
Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, and Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29425

MARA R. DIAZ
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149

JULIANNE T. DJORDJEVIC
Centre for Infectious Diseases and Microbiology, ICPMR and Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, 2145 NSW, Australia

ERNESTO DROMER
Institut Pasteur, Molecular Mycology Unit, CNRS URA3012, 25, rue du Dr. Roux, 75724 Paris cedex 15, France

COLLEEN DUNCAN
Colorado State University Veterinary Diagnostic Laboratory, 300 West Drake Ave., Fort Collins, CO 80523

JACK W. FELL
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, FL 33149

KEISHA FINDLEY
Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710

MATTHEW FISHER
Imperial College, London, United Kingdom

DEBORAH S. FOX
Department of Pediatrics and Department of Microbiology, Immunology and Parasitology, The Research Institute for Children and LSU Health Sciences Center, Children’s Hospital, New Orleans, LA 70118

BETTINA C. FRIES
Departments of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10804

MURRAY FYFE
Office of the Medical Health Officer, Vancouver Island Health Authority, 430 - 1900 Richmond Ave., Victoria, BC, Canada V8R 4R2

ELENI GALANIS
British Columbia Centre for Disease Control and School of Population and Public Health, University of British Columbia, 655 W. 12th Ave., Vancouver, BC, Canada V5Z 4R4

SCARLETT GEUNES-BOYER
Department of Cell Biology, 438 Nanaline Duke Bldg., Box 3709, Duke University Medical Center, Durham, NC 27710

MAHMOUD A. GHANNOUM
Center for Medical Mycology, Case Western Reserve University, Cleveland, OH 44106

NICOLE M. GILBERT
Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO 63104

FELIX GILGADO
Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, The University of Sydney, Sydney Medical School - Westmead Hospital, Westmead Millennium Institute, Westmead, NSW, 2145, Australia

NELESH P. GOVENDER
Mycology Reference Unit, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

FERRY HAGEN
CBS-KNAW Fungal Diversity Centre, Uppsalalaan 8, NL-3584CT Utrecht, The Netherlands

THOMAS S. HARRISON
Centre for Infection, St. George’s University of London, Cranmer Terrace, London SW17 ORE, United Kingdom

JOSEPH HEITMAN
Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710

LINDA HOANG
British Columbia Centre for Disease Control, Dept. of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada V5Z 4R4

YEN-PING HSUEH
Division of Biology, California Institute of Technology, Pasadena, CA 91125

GARY B. HUFFNAGLE
Internal Medicine - Pulmonary Division, 6301 MSRB III, Box 5642, 1150 W. Medical Center Drive, University of Michigan Medical Center, Ann Arbor, MI 48109-5642
CONTRIBUTORS

MUHAMMAD MORSHED
British Columbia Centre for Disease Control, Dept. of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada V5Z 4R4

FRITZ A. MÜHLSCHLEGEL
School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, and East Kent Hospitals University NHS Foundation Trust, Clinical Microbiology Service, William Harvey Hospital, Ashford, Kent TN24 0LZ, United Kingdom

ELEFHERIOS MYLONAKIS
Division of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114

POPCHAI NGAMSKULRUNGROJ
Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, The University of Sydney, Sydney Medical School - Westmead at Westmead Hospital, Westmead Millennium Institute, Westmead, NSW, 2145, Australia

M. HONG NGUYEN
University of Pittsburgh, Pittsburgh, PA 15261

CONNIE B. NICHOLS
Department of Medicine and Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710

KIRSTEN NIELSEN
Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455

JOSHUA D. NOSANCHUK
Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Ave., Ullmann Building, Room 107, Bronx, NY 10461

CAROLYN R. O'BRIEN
Faculty of Veterinary Science, University of Melbourne, Werribee, Victoria, Australia 3030

PETER G. PAPPAS
Division of Infectious Diseases, University of Alabama at Birmingham, 1900 University Blvd., TH 229, Birmingham, AL 35294-0006

BENJAMIN J. PARK
Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333

JOHN R. PERFECT
Department of Medicine, Division of Infectious Diseases, Duke University Mycology Research Unit (DUMRU), 0557 Hospital South, Box 3353, Duke University Medical Center, Durham, NC 27710

MICHAEL A. PFALLER
Departments of Pathology and Epidemiology, University of Iowa College of Medicine and College of Public Health, 200 Hawkins Dr., Iowa City, IA 52242-1009

PETER PHILLIPS
Infectious Diseases Unit, St. Paul’s Hospital, Vancouver, BC, Canada V6Z 1YC

LIISE-ANNE PIROFSKI
Division of Infectious Diseases, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461

MARCIO L. RODRIGUES
Laboratório de Estudos Integrados em Bioquímica Microbiana, Universidade Federal do Rio de Janeiro, Instituto de Microbiologia, Avenida Carlos Chagas Filho, 373, Cidade Universitária CCS, Bloco I, Rio de Janeiro - RJ, 21941-902, Brazil

MARIANELA RODRIGUEZ-CARRES
Department of Biology, Duke University, Durham, NC 27710

JULIAN C. RUTHERFORD
Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom

NATHAN SAUL
Faculty of Veterinary Science, Building B14, University of Sydney, Sydney, NSW 2006, Australia

WEI-CHIANG SHEN
Department of Plant Pathology and Microbiology, National Taiwan University, No. 1 Roosevelt Road, Sec 4, 10617 Taipei, Taiwan

NINA SINGH
VA Pittsburgh Healthcare System and University of Pittsburgh, Pittsburgh, PA 15240

TANIA C. SORRELL
Centre for Infectious Diseases and Microbiology, Sydney Medical School-Western & Westmead Millennium Institute Level 3 ICPMR, University of Sydney at Westmead Hospital, Westmead 2145 NSW, Australia

CHARLES A. SPECHT
Department of Medicine, University of Massachusetts, Worcester, MA 01605

DAVID A. STEVENS
California Institute for Medical Research, San Jose, CA 95128; Div. of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA 95128; and Div. of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305

SOMNUEK SUNGKANUPARPH
Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

LUCIANA TRILLES
Mycology Laboratory, Instituto de Pesquisa Clinica Evandro Chagas (IFEC), Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, 21040-900 Rio de Janeiro, Brazil

DAVID TROFA
Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Ave., Ullmann Building, Room 107, Bronx, NY 10461
CONTRIBUTORS

MARIA ANNA VIVIANI
Laboratory of Medical Mycology, Department of Public Health – Microbiology – Virology, Università degli Studi di Milano, Via Pascal 36, 20133 Milan, Italy

KERSTIN VOELZ
School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom

PING WANG
The Research Institute for Children, New Orleans, LA 70118

BODO WANKE
Mycology Laboratory, Instituto de Pesquisa Clinica Evandro Chagas-Fiocruz, Rio de Janeiro, RJ, Brazil

SARAH WEST
Divisions of General Internal Medicine and Infectious Diseases, Oregon Health and Science University, Portland, OR 97239

BRIAN L. WICKES
Department of Microbiology, University of Texas Health Center, University of Texas, San Antonio, TX 78284-7758

KRIStI L. WILLIAMS
Department of Cell Biology, 438 Nanaline Duke Bldg., Box 3709, Duke University Medical Center, Durham, NC 27710

PETER R. WILLIAMSON
Laboratory of Clinical Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892

FLOYD L. WORMLEY, JR.
The University of Texas at San Antonio, Department of Biology, One UTSA Circle, San Antonio, TX 78249

KAREN L. WOZNIAK
Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249

JO RAE WRIGHT
Department of Cell Biology, 438 Nanaline Duke Bldg., Box 3709, Duke University Medical Center, Durham, NC 27710

JIANPING XU
Department of Biology and Institute of Infectious Disease Research, Michael G. DeGroote School of Medicine, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada

CHAOYANG XUE
Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103

OSCAR ZARAGOZA
Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, Majadahonda 28220, Madrid, Spain

LI-PING ZHU
Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
Foreword

Cryptococcus neoformans is an important opportunistic fungal pathogen in T-cell-immunosuppressed patients, especially those with AIDS or solid organ transplants and others receiving prolonged immunosuppressive therapy. For example, the global burden of HIV-associated cryptococcosis approaches 1 million cases annually. This unique yeast also causes disease in immunocompetent hosts, but much less frequently. Although cryptococcosis is recognized most often in selected geographic areas, e.g., the United States, Western Europe, Australia, and sub-Saharan Africa, this disease is seen throughout the world.

In this multiauthored book, the five editors planned a comprehensive approach into the understanding of Cryptococcus at many different levels. Over a decade ago, the original book on Cryptococcus neoformans written by two of the present editors (Casadevall and Perfect) set the stage for how an entire book could be devoted to this fungal pathogen. In this new volume, the plan was to allow the entire expert field of cryptococcal investigators to examine in detail the life cycle, pathophysiology (from immunology to virulence factors), molecular biology, diagnosis, clinical futures, and management of this encapsulated yeast. Cryptococcosis in this book covers both the major pathogenic species, Cryptococcus neoformans and Cryptococcus gattii. The attention to detail and the comprehensive nature of the discussion within each chapter make this book a new standard for written work on a single pathogenic fungal species. There are several outstanding comprehensive medical mycology books in print, but for a single fungal pathogen there are few books that approach the completeness and reference standard of this treatise.

Cryptococcosis remains a deadly disease, with many victims and an enlarging pool of risk patients. Clearly, we need more insights into the pathobiology of this encapsulated yeast to help us treat and prevent its impact on the human condition. This book provides a landmark to acknowledge that this yeast and its study have become a model system for the study and understanding of fungal pathogenesis.

Any molecular biologist, microbiologist, infectious disease epidemiologist, or infectious disease clinician with an interest in mycology, especially cryptococcosis, will find this clearly written, highly organized, well-referenced, and all-inclusive book to be a valuable and up-to-date resource. This latest book devoted entirely to Cryptococcus, edited by Heitman, Kozel, Kwon-Chung, Perfect, and Casadevall, is the premier reference on the biology and pathogenesis of this fascinating and deadly yeast in our increasing population of immunocompromised hosts.

WILLIAM E. DISMUKES, MD
Professor Emeritus of Medicine
University of Alabama at Birmingham
School of Medicine
Cryptococcosis is a dynamic fungal infection that continues to evolve in the second century after its initial recognition as a human pathogen in the 1890s. From its first modest clinical appearance in a case report in 1894–1895, Cryptococcus has advanced as a human pathogen to the point where it causes infection in approximately 1 million individuals per year, with over 600,000 attributable annual mortalities caused by this pathogenic yeast, resulting in approximately one-third of all AIDS-associated deaths. From isolated cases in the clinical practice of immunocompromised hosts to major disease outbreaks in animals, from humans with HIV infection in sub-Saharan Africa to a recent geographically based outbreak in Vancouver, Canada, and the northwestern United States, this fungus has grown prominent in the clinical landscape of 21st-century medicine.

For over 50 years, the ecological path and the biological and clinical features of this encapsulated yeast have been intensely characterized. With the advent over the past two decades of a molecular biology infrastructure, allowing the study of Cryptococcus to expand into genome-wide investigations, the detailed understanding of cryptococcal disease mechanisms has been amplified. Control of the yeast through molecular manipulations, coupled with the years of understanding its immunological properties, has resulted in the development of a pathogenic yeast model for study. Clearly, the mysteries of the sugar-encapsulated yeasts are being stripped away.

This book’s format of multiple authors and chapters provides a comprehensive understanding of what it signifies for Cryptococcus neoformans and Cryptococcus gattii to exist and to produce disease. This is the first multi-authored book on C. neoformans, and that in itself reflects the progress that has been made in recent years, as a vast amount of information has been accumulated by many experts. The goal is to provide the research investigator, clinician, biologist, and mycologist a single source of information and a description of the principles that define this fungal pathogen at the onset of the second decade in the 21st century.

In proximity to publication of this book, the Infectious Diseases Society of America published Clinical Practice Guidelines for the Management of Cryptococcal Disease in 2010. In these guidelines, management of cryptococcal meningoencephalitis is divided into three risk groups: (i) HIV-infected individuals, (ii) organ transplant recipients, and (iii) non-HIV-infected and non-transplant hosts. There are specific recommendations for unique risk populations such as children; pregnant women; individuals in resource-limited environments; patients with infection in sites other than brain, such as the lungs; and patients with C. gattii infections. These guidelines emphasize recommendations for the specific management of complications including increased intracranial pressure, immune reconstitution inflammatory syndrome, drug resistance, and cryptococcomas. We recommend that for these clinical management issues, the Guidelines site (idsaglobalhealth.org/WorkArea/linkit.aspx?LinkIdentifier=id&ItemID=15977) should be visited.

It is our sincere hope that this book frames our knowledge base of what Cryptococcus is, what it has done and can do, what we need to know, and where to look for it. Cryptococcosis is a model infectious disease with a story that will continue to unfold now and in the future.

In closing, it is our pleasure to have served as authors and coeditors for this project. Our goal in this endeavor was not only to highlight advances and progress in the field, but also to serve to bring together the diverse members of our community to give voice to the myriad perspectives on this unique pathogenic yeast. We thank all of our colleagues who are represented here as coauthors for their contributions to the success of these aspirations. We wish to thank our families for their forbearance and patience during the gestation of this project. We also want to graciously and explicitly acknowledge our editors at ASM Press, Gregory Payne and Ellie Tupper, without whose support, encouragement, and tireless efforts this project would not have been realized. We hope that the ultimate success of our efforts will lie in stimulating the field to advance the understanding, diagnosis, treatment, and prevention of this pathogen to such a degree that a future edition of this volume becomes unnecessary.

JOSEPH HEITMAN, Duke University
THOMAS R. KOZEL, University of Nevada, Reno
KYUNG J. KWON-CHUNG, National Institute of Allergy and Infectious Diseases
JOHN R. PERFECT, Duke University
ARTURO CASADEVALL, Albert Einstein College of Medicine
Acal (adenylyl cyclase-associated protein), in Gpa1-cAMP signaling pathway, 156
Acanthamoeba castellanii, C. neoformans in, 261–262, 265, 481
Acapsular Cryptococcus, 413
Acetylation, of capsule polysaccharides, 35–36, 46–47
N-Acetylglucosamine in cell wall, 68
polymers of (chitin), 61, 70–71
Actin in natural killer cell binding, 419
in transcellular penetration, 468
Actin-based protrusion, from host cell, 444–446
Activation receptors, of natural killer cells, 417–418
AD hybrids, 10, 349, 362–365
AFLP for, 335–337
in Africa, 116
discovery of, 359–360
in environment, 249, 341, 346
evolution and, 366–367
genomes of, 118
genotyping of, 362
geographical distribution of, 365
identification of, 360–362
ITS sequence analysis of, 338
mating type of, 362–365
MLMT for, 338–340
MLST for, 552–554
population structure of, 99, 103–104
RFLP analysis for, 337
serologic typing of, 360–362
standard strains for, 344
virulence of, 171, 365–366
Aldahimab, cryptococcosis due to, 596
Adaptive immunity antigens-presenting cells in, 454
cellular, 455–456
effector mechanisms of, 457–458
humoral, 456
innate signals for, 454–455
polarization of, 456–457
Adenosylhomocysteinase, in virulence, 185
Adenylyl cyclase in carbon dioxide sensing, 181
in environmental sensing, 183–184
in Gpa1-cAMP signaling pathway, 154
Adenylyl cyclase-associated protein, in Gpa1-cAMP signaling pathway, 156
AFLP analysis, see Amplified fragment length polymorphism (AFLP) analysis
AFR1 gene, in drug resistance, 211
Africa C. gattii in, 307
C. neoformans in, 100–102, 104–105, 244, 269–285
cryptococcosis in, 100–102, 104–105, 244, 269–285
challenges in, 274
clinical manifestations of, 272
diversity of species in, 277–280
ecology of species in, 275–277
epidemiology of, 269–271
history of, 269–272
HIV-associated, 271–274, 585–586
meningitis in, 565–568, 571–578
mortality in, 271, 273–274
in pediatric patients, 272, 278–280
prevention of, 274
screening for, 274
species involved in, 274–280
treatment of, 272–273
Agaricomycotina, mating systems of, 144–146
Aggregation, of polysaccharides, 51
Agrobacterium, in forward genetics, 130–133
Agrobacterium tumefaciens-mediated transformation, in genetic analysis, 190
Air, C. gattii in, 105
Airway colonization, 432
Ajello, Libero, historical work of, 238
African Type Culture Collection, 116
Ammonia, sensing of, 179–180
Amoebae, C. neoformans in, 261–263, 265, 481
Amphotericin B, 19, 527, 531–532
for African patients, 272–273
animal models for, 481
for Asian patients, 294–295
melanin and, 60–61
for meningitis, 521, 566–568, 570–574, 589
resistance to, mechanisms of, 209, 211
susceptibility to, 204, 601
for transplant recipients, 511
Amplification, rolling circle, 558
Amplified fragment length polymorphism (AFLP) analysis, for genotyping, 97, 100, 102, 240, 334–337, 551
of AD hybrid strains, 362
of C. gattii, 303
Amt2 protein, in nitrogen sensing, 180
Amylase, in cell wall, 74
Aneuploid strains, 171
Animal(s), cryptococcosis in
birds, 493–494, 501
C. gattii, 314–315
cats, 491–493, 495, 497, 501
dogs, 491–493, 495, 497, 501
ferrets, 493, 495, 501
goats, 497, 500
horses, 494–496, 501
koalas, 494, 497–500
“one medicine” concept of, 490–491
porpoises, 490, 501
recent studies on, 491
resistance to, 490
sheep, 500
wildlife, 494–495, 501
Animal models, 20, 473–488
of C. gattii infection, 190–191
end-point parameters for, 474
euthanasia criteria for, 474
heterologous invertebrate hosts for, 261–267, 481
koala connection, 497–500
Animal models (continued)
murine, 474–479
nonmammalian, 481
rabbit, 479–480
reasons for, 473–474
regulations concerning, 474
for therapy studies, 480–481
for vaccines, 538–539, 541–542
Annular pattern, of antigen binding,
45–46
Antibody(ies), 397–408
activity of, 400–402
anticryptococcal, 456–458
capsule interactions with, 409–411
cellular immunity dependence of,
400–401
history of, 397
monoclonal, see Monoclonal antibodies
natural, 397–398
in phagocytosis, 375
structure-function relationships of,
399–400
therapeutic, 529
vaccine design and, 537–538
Antibody-dependent cellular cytotoxicity,
in natural killer cell binding, 419–420
Anticryptococcal antibodies, 456–458
Antifungal agents, 527–536; see also specific
drugs
activity of, 205–207
animal models for, 480–481
clinical trial design for, 531
history of, 527–528
for HIV/AIDS, 531–532
in immunotherapy, 529–530
melanin and, 60–61
for meningitis, 566, 568, 570–572
new targets for, 530–531
newer, 528–529
for nontransplant, non-HIV-infected pa-
tients, 532, 572–573
phospholipase targets in, 226
resistance to, see Antifungal resistance
sensing of, 176–177
susceptibility to, 601
C. gattii, 195–196
testing for, 204–205
for transplant recipients, 532
Antifungal resistance, 203–216, 204–205;
see also Susceptibility
calcineurin in, 227–229
epidemiology of, 203–204, 206–208, 210
in vitro testing of, 204–205
mechanisms of, 209–211
multiple, 209
Antigen(s), 44–47; see also Cryptococcal
antigen test
T-cell response to, 392–393
for vaccines, 539–541
Antigenemia, in asymptomatic disease,
251, 433, 590
Antigen-presenting cells, 423
in C. neoformans killing, 377
dendritic cells as, 387–390
recruitment of, 454
Antioxidants
melanin as, 60
in virulence, 192–193
Antiphagocytic study, protein 1, 452, 453, 479
Antiretroviral therapy, see also HAART
(highly active antiretroviral therapy)
immune reconstitution syndrome in, see
Immune reconstitution syndrome
meningitis and, 563, 571, 576–578
APEX technology, 558
Apical growth, of capsule, 50
App1 protein in animal studies, 479
in immune response, 452, 453
Arabidopsis thaliana, as plant model, for
C. gattii infection, 191
Asg protein in cell walls, 68–69
in sexual reproduction, 88
Asia, see also India
C. neoformans in, 243
cryptococcosis in, 287–297, 586
clinical manifestations of, 292–294
ecology of, 287–291
epidemiology of, 287–292
meningitis in, 567, 571, 575, 577
prevention of, 294–295
treatment of, 294–295
Aspartate aminotransferase, in virulence,
185
Asparagine protease in cell wall, 74
Asthma, cryptococcosis and, 390–391
Asymptomatic cryptococcal antigenemia,
251, 433, 590
ATP binding cassette superfamily, in drug
resistance, 211
ATX1 gene, in melanin synthesis, 57–58
Australia
C. gattii in, 305–307
cryptococcosis in, 305–307, 491–496, 586
Autophagy, 442–443
Avarian feaces, see also Pigeon feaces
C. neoformans in, 99–100, 238–239, 241,
288–290, 431–432
Azurophilic granules, neutrophil, in C. neo-
formans killing, 377

B
B3501 strain (serotype A)
DNA sequencing of, 552
gene of, 117, 194
MAT locus of, 134
virulence of, 168
B3501 strain A (serotype A)
gene of, 115–116
hypoxia effects on, 120
temperature effects on, 118–119
B3502 strain (serotype A)
gene of, 117
Mendelian genetic analysis of, 134
multiple, 209
B cells, function of, 398
Bacillus anthracis, carbon dioxide sensing
by, 181
Bahlolomyca A, 530
Baker, Roger, historical work of, 20
Bar guano, C. neoformans in, 242
Bckl protein, in stress sensing, 177
Benham, R. W., historical work of, 3, 27
Bennett, study of, antifungal agents, 528
Bicarbonate as mating cue, 85–86
sensing of, 180–183
Biofilms, C. neoformans, 402
Bipolar mating systems, 144–146
Bird(s)
C. gattii in, 242
cryptococcosis in, 493–494, 501
Bird feces, see also Pigeon feces
C. neoformans in, 99–100, 238–239, 241,
288–290, 431–432
Bismuth radioisotopes, in radioimmuno-
therapy, 542
Blood culture, in transplant recipients, 511
Blood-brain barrier, invasion of, 465–466
Brain cryptococcomas of, 602
cryptococcosis of, see Meningitis and
meningoencephalitis
Brain microvascular endothelial cells, pen-
etration of, 467–468
Brazil, C. neoformans in, 242–245
British Columbia, C. gattii outbreak in,
see Vancouver Island, Canada,
C. gattii outbreak
Broad Institute, serotype work of, 116
Brood size study, using C. elegans, 263–264
Broth microdilution methods, for suscepti-
bility testing, 204–205
BSP genes, in MAT locus, 140
Budding capsule rearrangement in, 48
cell wall rearrangement for, 72
Bullera, 6–8
Busche, A., historical work of, 3–4, 17
Busse, Otto, historical work of, 3–4, 17, 27
BWC genes in light sensing, 177–179
in mating, 85
C
CAC1 protein, in carbon dioxide
sensing, 181
Caenorhabditis elegans, C. neoformans in,
263–265, 481
Calcineurin
in cell wall formation, 226–227
in drug resistance, 227–229
inhibitors of, 530
in mating, 85
in stress sensing, 175–177
structure of, 226
in virulence, 226–229
Calcium, in natural killer cell binding,
420
Calcium-calcineurin-signaling pathway, in
stress sensing, 175–177
Calcofluor white stain, 547–548
cAMP signaling
in carbon dioxide sensing, 181
transcriptional analysis of, 122–123
cAMP-G-protein signaling, 153–157
cAMP-PKA signaling pathway, in sexual
reproduction, 88
CAN genes, in carbon dioxide sensing,
181–182
Canada, Vancouver Island outbreak in, see
Vancouver Island, Canada, C. gattii
outbreak
Cancer, cryptococcosis in, 596
Candida, susceptibility testing of, 204
Candida albicans, environmental sensing in,
183–184
CAP genes and proteins
in cAMP signaling, 122
in capsular synthesis, 33–34
in MLST studies, 340–342
in virulence, 191
Capillaries, obstruction of, invasion due to,
468–469

INDEX

see also Antiretroviral therapy,
Antiphagocytic protein 1, 452, 453, 479
Antioxidants
see also
Antigen(s), 44–47;
see also specific
Cryptococcosis
in Africa, see Africa, cryptococcosis
in Asia, see Asia, cryptococcosis
in asymptomatic, 231, 379, 433
in Australia, 305–307, 491–496, 586
clinical manifestations of, 272, 292–294, 508–509
diagnosis of, see Diagnosis of
Cryptococcus
ecology of, see Ecology
epidemiology of, see Epidemiology
in hematopoietic stem cell transplant recipients, 510
history of, 17–26, 269–272
in HIV infection, see HIV/AIDS
in India, see Asia
in animals, 490
outcome of, in transplant recipients,
509–510
pathogenesis of, see Pathogenesis
prevention of, 274
relapse of, 432
screening for, in Africa, 274
in transplant recipients, 507–514, 532
in Asia, 289
treatment of, see Treatment
Vancouver Island outbreak of, see
Vancouver Island, Canada, C. gattii outbreak
Cryptococcus antigens. test for, 18–19; see also Cryptococcal antigen test
clinical disease of, see Cryptococcosis
culture of, see Culture
G-protein signaling pathways for,
153–165
intracellular, see Intracellular Cryptococcosis
unsolved problems with, 23
Cryptococcus adeliensis
infections due to, 237
pathogenicity of, 10–11
in transplant recipients, 510
Cryptococcus aerius, 10
Cryptococcus albidosimilis
in Asia, 289
pathogenicity of, 10–11
Cryptococcus albidus, 6, 8
in Asia, 289
capsule of, 191
infections due to, 237
morphology of, 10
pathogenicity of, 10–11
Cryptococcus amylolentus, 6–8, 142–143
Cryptococcus ananardi, 8
Cryptococcus bacillisporus, 4, 8
Cryptococcus bestiae, 8
Cryptococcus curtatus, 8
infections due to, 237
morphology of, 10
pathogenicity of, 10–11
Cryptococcus dejectica, 8
Cryptococcus diffusus, 10–11
Cryptococcus flavescens, 10–11
Cryptococcus friedmannii, 289
Cryptococcus gattii,
10–11
Cryptococcus gattii acute vs. reactivated disease from,
432–433
AFLP for, 551
in Africa, 272, 274–277
animal models for, 479
in animals, 490–501
in Asia, 289–291
in Australia and Papua New Guinea,
305–307
vs. C. neoformans, 190–196, 595–606
cryptic speciation in, 299–300
discovery of, 4, 17
DNA fingerprinting for, 550
environmental niches for, 237–242, 244,
247, 249–251, 303–305
epidemiology of, 20; see also Vancouver Island,
Canada, C. gattii outbreak
establishment of, 5–6
genetics of, 9
genomes of, 115–126
global distribution of, 20
geographical distribution of, 242
history of, 17–26
hybrids of, 10
karyotyping for, 551
mating of, 167–174, 301–303
MLST for, 552–554
molecular typing methods for, 327–357;
see also specific methods
morphology of, 46
molecular markers of, 300–301
nomenclature of, 240
original ancestor of, 190
pathogenicity of, 190
phylogeny of, 190
population structure of, 190
population structure of, 97–99, 105–106
proliferation of, 444
public health challenges of, 590–591
RAPD analysis for, 550–551
risk factors for, 595–597
serotypes of, see Serotype B; Serotype C
sexual reproduction of, 81, 83, 90, 134,
299–311
in clinical population, 305–307
cryptic speciation in, 299–300
in environmental population,
303–305
on global scale, 307
mating-type bias in, 301–303
molecular markers of, 300–301
strain differences in, 307
sources of, 289
standard strains for, 344–345
susceptibility of, 317
in transplant recipients, 507
Vancouver Island outbreak, see Vancou-
ver Island, Canada, C. gattii
outbreak
virulence of, 167–174, 189–201
Cryptococcus hortaeensis, 8, 144
Cryptococcus hongkieni, 9
Cryptococcus haemica, 8, 10–11, 237
Cryptococcus iron regulator, 122
Cryptococcus laurentii, 6, 8
in Asia, 289
capsule of, 191
infections due to, 237
morphology of, 10
pathogenicity of, 10–11
Cryptococcus laevis, 10–11
Cryptococcus luteolus, 6
Cryptococcus magnus, 10–11
Cryptococcus marinus, 6
Cryptococcus mollis, 4
Cryptococcus neoformans
in Africa, 100–102, 104–105, 244,
269–285
in alveolar macrophages, 373–385
animal models for, 478–479
antibodies to, see Antibody(ies)
vC. gattii, 190–196, 595–606
capsule of, see Capsule
dendritic cells response to, 387–390
discussion of, 3–4, 17
environmental niches for, 237–259
escape from phagolysosome, 379
genetics of, 9, 19–20
 genome of, 115–126, 239

 genotyping of, 239–241
 history of, 17–26
 hybrids of, see AD hybrids; Hybrid
 strains
 hypae of, 18
 immune system interactions with, see
 Immune system interactions
 intracellular, 376–379
 mating of, 167–174
 molecular typing methods for, 327–357;
 see also specific methods
 morphology of, 18, 46
 nomenclature of, 8, 17–18, 240
 nonvertebrate hosts of, 261–267, 481
 original ancestor of, 190
 pathogenic effects of, 19–20
 phenotyping of, 444
 phylogeny of, 6–8, 190
 population structure of, 97–105
 risk factors for, 595–597
 serotypes of, see Serotype(s)
 sexual reproduction of, 81–96
 spores of, 18
 telomorph of, 5–6
 vaccines for, see Vaccines and
 vaccination
 Cryptococcus neoformans var. grubii (sero-
type A), see Serotype A (Cryptococ-
cus neoformans var. grubii)
 Cryptococcus neoformans var. neoformans, see Serotype D (Cryptococ-
cus neoformans var. neoformans)
 Cryptococcus neoformans var. shanghaiensis, 9
 Cryptococcus non-neoformans, pathogenic-
 ity of, 10–11
 Cryptococcus podzolicus, 8
 Cryptococcus satoi, 10–11, 289
 Cryptococcus Species Genotyping Working
 Group, 98
 Cryptococcus terrestis, in transplant recipi-
 ents, 510
 Cryptococcus uniguttulatus, 6, 237
 Cryptococcus usbekistanensis, 10–11
 Cryptococcus vishniaci, 10–11
 CTR4 gene, in copper transport, 133
 CTS1 gene, in virulence, 133–134
 Cuf-1 protein, in forward genetics, 133
 CTR4 gene, in copper transport, 133
 CTS1 gene, in virulence, 133–134
 Cuf-1 protein, in forward genetics, 133
 Culture, Cryptococcus
 in Africa, 272
 in HIV/AIDS, 519–520
 Stahl’s medium for, 239
 in transplant recipients, 511
 Curtis, Brian P., historical work of,
4, 27
 Curtis, Ferdinand, historical work of,
4, 27
 CWCl gene, in light sensing, 177–179
 CXT1 protein, in capsule synthesis, 35

 Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Mon, 03 Jun 2019 14:09:40
<table>
<thead>
<tr>
<th>Page Dimensions: 549.0x772.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection, routes of, animal models for,</td>
</tr>
<tr>
<td>Indole acetic acid, for mating, 84–85</td>
</tr>
<tr>
<td>Indinavir, for HIV/AIDS, 516–517</td>
</tr>
<tr>
<td>India ink test, 511, 520, 547</td>
</tr>
<tr>
<td>International Conference on</td>
</tr>
<tr>
<td>Interleukins</td>
</tr>
<tr>
<td>Interferons</td>
</tr>
<tr>
<td>Institute for Genomic Research, serotype D</td>
</tr>
<tr>
<td>Insertional mutagenesis, 129–133</td>
</tr>
<tr>
<td>Innate immunity</td>
</tr>
<tr>
<td>Inhibitory receptors, of natural killer cells, 417–418</td>
</tr>
<tr>
<td>Innate immunity complement, 452</td>
</tr>
<tr>
<td>humoral mechanisms of, 451</td>
</tr>
<tr>
<td>promoting adaptive immunity, 454–458</td>
</tr>
<tr>
<td>receptors, 452–453</td>
</tr>
<tr>
<td>surfactant proteins, 452</td>
</tr>
<tr>
<td>vaccine design and, 454–458</td>
</tr>
<tr>
<td>Innate immunity defects, 442</td>
</tr>
<tr>
<td>Lateral transfer, of</td>
</tr>
<tr>
<td>Cryptococcus</td>
</tr>
<tr>
<td>Laminarin, antibodies to, 403</td>
</tr>
<tr>
<td>Lapatin, M., historical work of, 441–450</td>
</tr>
<tr>
<td>Light</td>
</tr>
<tr>
<td>as mating cue, 85</td>
</tr>
<tr>
<td>sensing of, 177–179</td>
</tr>
<tr>
<td>Lipid modification, in signaling, 161–162</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
</tr>
<tr>
<td>Littman, Maxwell L., historical work of, 238</td>
</tr>
<tr>
<td>Liver disease, 597</td>
</tr>
<tr>
<td>Liver puncture, for increased intracranial pressure, 575</td>
</tr>
<tr>
<td>Luminex bead suspension array, 558–559</td>
</tr>
<tr>
<td>Lung defenses of, 451–464</td>
</tr>
<tr>
<td>antigenic immunity, 454–455, 457–458</td>
</tr>
<tr>
<td>antigen-presenting cells, 454–456</td>
</tr>
<tr>
<td>cell-mediated immunity, 454–456</td>
</tr>
<tr>
<td>complement, 454–456</td>
</tr>
<tr>
<td>innate humoral mechanisms, 451</td>
</tr>
<tr>
<td>innate receptors, 452–453</td>
</tr>
<tr>
<td>leukocytes, 452–453</td>
</tr>
<tr>
<td>in MLMT studies, 351–353</td>
</tr>
<tr>
<td>vacuum cleaning and, 454–458</td>
</tr>
<tr>
<td>stepwise process of, 451</td>
</tr>
<tr>
<td>susceptibility testing for, 205</td>
</tr>
<tr>
<td>ITS (internal transcribed spacer) region, 337–338, 551–552, 557</td>
</tr>
<tr>
<td>International Conference on Cryptococcus and Cryptococcosis, 20, 22, 115</td>
</tr>
<tr>
<td>International Society for Human and Animal Mycology, 98, 341</td>
</tr>
<tr>
<td>Intracellular Cryptococcus, 376–379, 440–450</td>
</tr>
<tr>
<td>dormancy of, 379</td>
</tr>
<tr>
<td>escape of, 379, 444–446</td>
</tr>
<tr>
<td>evolution of, 443–444</td>
</tr>
<tr>
<td>growth of, 379</td>
</tr>
<tr>
<td>internalization process for, 376–377</td>
</tr>
<tr>
<td>killing of, 377–379</td>
</tr>
<tr>
<td>lateral transfer of, 446</td>
</tr>
<tr>
<td>origin of, 443–444</td>
</tr>
<tr>
<td>proliferation of, 441–444</td>
</tr>
<tr>
<td>intracranial pressure, increased, 295, 519, 521, 599</td>
</tr>
<tr>
<td>pathophysiology of, 575</td>
</tr>
<tr>
<td>treatment of, 531–532, 574–576</td>
</tr>
<tr>
<td>Introns, genomes of, 117</td>
</tr>
<tr>
<td>Invasins, phospholipase B1 as, 219</td>
</tr>
<tr>
<td>Introns, genomes of, 117</td>
</tr>
<tr>
<td>Invasins, phospholipase B1 as, 219</td>
</tr>
<tr>
<td>IP: 54.70.40.11</td>
</tr>
<tr>
<td>On: Mon, 03 Jun 2019 14:09:40</td>
</tr>
</tbody>
</table>
Phoemelanin, 55
Pheromones, 83, 86–89
C. hvenensis, 144
genes for, 141
receptors for,
in Gpa1-cAMP signaling pathway, 156–157
in Gpa2/Gpa3 signaling pathway, 157–160
T. winglefieldi, 142
in virulence, 168–170
Phosphatidylcholine, 217
Phosphatidylinositol, phospholipase C in
interactions with, 222
Phosphodiesterase, in Gpa1-cAMP signaling
pathway, 156
Phosphoinositide-3-kinase, in natural killer
cell binding, 420
Phospholipase(s)
class of, 217
proliferation and, 443
in virulence, 193–195, 217–226
Phospholipase A2, 217
Phospholipase B1 (Plb1)
in virulence, 193–194
for MLST studies, 340–342
Phospholipase B (Plb), 217–218, 226
Phospholipase C (Plc1), 217
Phospholipase(s)
in virulence, 193–195, 217–226
Phosphodiesterase, in Gpa1-cAMP signaling
pathway, 156
Phosphoinositide-3-kinase, in natural killer
cell binding, 420
Pigeon guano medium, for mating studies,
C. neoformans
Pigeon feces, 432
Phylogeny, 6–8, 190
Phylogenetic analysis, 99
Phylogenetic analysis, 99
PHY1
Photoresponse, 177–179
Phosphorelay system, in stress sensing,
involution, 219
in macrophages, 219
molecular modeling of, 220
in nutrition, 219
protective function of, 378–379
secretion of, 220–221, 224
structure of, 218–219
Phospholipase C (Plc1), 217
in cell wall integrity, 224
delta isoforms of, 222–223
function of, 223–224
in high-temperature growth, 219
in melanin production, 224–226
phosphatidylinositol interactions with, 222
secretion of, 224
Phosphomannose isomerase, in capsule
synthesis, 34
Phosphorylation system, in stress sensing,
175–177
Photoreponse, 177–179
PFY1 gene, in light sensing, 177–179
Phylogenetic analysis, 99
of C. gattii, 303–305
of serotypes, 350, 352
Phylogeography, 6–8, 190
Pigeon feces, C. neoformans
in, 99–100, 102, 238–239, 241, 250, 431–432, 597
in Africa, 276
in Asia, 288–290
avoidance of, 434
in Colombia, 246
in India, 248–249
Pigeon guano medium, for mating studies,
86
PKA genes, in virulence, 194
PKR1 gene, in Gpa1-cAMP signaling path-
way, 154
Plasmacytoid dendritic cells, 387
PLB1 gene, 18; see also Phospholipase B1
(Plb1)
for MLST studies, 340–342
in virulence, 193–194
Ploidy, virulence and, 171
Pneumonia, 598–599
in Africa, 272
in animals, 314
in Asia, 292–293
from bird droppings, 432
in birds, 494
C. gattii, 433
in ferrets, 493
in HIV/AIDS, 518
in horses, 494
macrophages and, see Alveolar
macrophages
in Pacific Northwest, 322–323
T-cell activity in, 390–392
in transplant recipients, 507, 509–511
treatment of, 511–512
in Vancouver Island outbreak, 317
Polymannobenzene compounds, in melanin
production, 224–226
Polysaccharide(s)
genes for, 141
capsular, 31; see also Galactoxyloman-
nan (GalXM); Glucuronoxymanan
(GXM)
acetylation of, 35–36
alpha glucan, 31
antigenic properties of, 44–47
capsule enlargement and, 47–49
cell surface connections of, 50–51
historical work on, 27
hyaluronic acid, 31
interactions between, 51
intermediates of, 36
mannoproteins, 31
polymerization of, 35
precursors of, 34–35
secretion of, 36
size and, 31–32
structure and, 32–33
synthesis of, 33–36
transport across cell wall, 49–50
types of, 43–44
in cell wall, 68–72
Polysaccharide antigens, for vaccines,
539–540
Polysaccharide deacetylase, in virulence,
185
Population genetics of C. gattii, 299–311
methods for, 98–99
Population structure
C. gattii, 97–99
C. neoformans
AD hybrids, 99, 103–104
ecolology, 99–100
sertype A, 100, 102–105
sertype D, 103
study methods for, 97–99
definition of, 97
ecolological sampling methods for, 99
genotyping methods for, 97–98
population genetics methods for, 98–99
Population-based surveillance, 587, 589
Pores, in melanin, 59
Porpoises, cryptococcosis in, 490, 501
Posaconazole, 528–529
activity of, 206–207
for meningitis, 573–574
resistance to, 210
susceptibility to, 601
Pregnancy, 596
Prospective surveillance, 589
Protein antigens, in vaccines, 540–541
Protein kinase(s), in Gpa2/Gpa3 phero-
mone response pathway, 160
Protein kinase A
in cAMP signaling, 122–123
in Gpa1-cAMP signaling pathway, 154,
157
in virulence, 194
Protein kinase C/Mpk1 mitogen-activated
protein kinase pathway, in stress
sensing, 175–177
Proteinases
identification of, 124
in virulence, 194–195
Proteomics, 123–124
PRT1 gene, in MAT locus, 140, 143
Pseudopods, in phagocytosis, 376
Public health issues
C. gattii, 590–591
HIV-related cryptococcosis
epidemiology, 585–589
reducing morbidity and mortality,
589–590
non-HIV associated cryptococcosis,
590–591
related to Vancouver Island outbreak,
319–320
Puccinimycotina, mating systems of,
144–146
Puffy pattern, in anticapsular antibody
binding, 410
Pulmonary cryptococcosis, see also Lung,
infections of; Pneumonia
allergy in, 435
Pulsed-field gel electrophoresis, karyotyping
with, 328–329
Punctate pattern, of antigen binding,
45–46
Pyrosequencing, 554
Q
Quality of life, in Vancouver Island out-
break, 319
Quantitative trait locus analysis, 134
Quorum sensing, 183–184
R
R265 strain (C. gattii), genome of, 116, 194
Rabbit models, 479–480
Radiation, melanin protection from,
59–60
Radiography, 600
for meningitis, 520
for pneumonia, 511
Radioimmunotherapy, 541–542
Random amplification of polymorphic
DNA (RAPD), 320, 330, 550–551
Ras proteins
in G protein signaling, 160–162
in mating, 85
Rcn1 protein, in calcineurin binding, 226
INDEX

Reactivation, of latent infections, 432–434
Reactive oxygen species in C. neoformans killing, 378 defenses against, 441–444
Real-time PCR, probes for, 557
Receptor inhibition, in sexual reproduction, 88
Regulator of G-protein signaling, in sexual reproduction, 87
Replication, of intracellular Cryptococcus, 441–444
Reproduction, see Sexual reproduction
Resistance, antifungal, see Antifungal resistance
Respiratory infections, see also Pneumonia in birds, 493–494 in horses, 494 in koalas, 494, 497–500 in transplant recipients, 507, 509–511
Restriction fragment length polymorphism (RFLP) analysis, 97, 100, 337, 550, 556–557
Reverse genetics, 128–129
RFLP (restriction fragment length polymorphism) analysis, 97, 100, 337, 550, 556–557
RGS proteins, in Gpa1-cAMP signaling pathway, 156
Rhenium radioisotopes, in radiomimetic therapy, 542
Rho proteins in cell wall, 69 in stress sensing, 177
Rim pattern, in anticapsular antibody binding, 410
Rolling circle amplification, 558
ROM2 gene, in virulence, 130
RPL genes, in MAT locus, 140
RPO41 gene, in MAT locus, 140
rRNA genes, as phylogenetic marker, 556
RSA strains, of C. neoformans, in Africa, 280
RUM1 gene, in MAT locus, 140
Ryp proteins, in mating, 85
S
Saccharomyces hominis, as early name, 3
SAGE (serial analysis of gene expression), 38–40
Saccharomyces umbilicalis, 32–41
Sanfelice, Francesco, historical work of, 3, 17, 27
Sarcoidosis, 596
Sarcoplasmic/endoplasmic reticulum calcium-ATPase-type calcium pump, as virulence factor, 265
Sav1 protein, in polysaccharide transport, 49–50
SCARF1 (β-glucan scavenger receptor family 1), for macrophage binding, 374
Scpl protein, in oxygen sensing, 184–185
Self-tetrad strains, 359
Sensing environmental signals, see Extra-cellular environment, sensing signals
Serial analysis of gene expression (SAGE), 118–123
Serine peptidase, in cell wall, 74
Serotype(s), 8, 18–20; see also Strains; specific strain names
antigen differences in, 44–47 capsule size and, 32
Cryptococcus neoformans, 18–20
discovery of, 240–241
global distribution of, 346–349, 351 identification of, methods for, 239–240, 327–357; see also specific methods
Serotype D hybrids, see AD hybrids
Serotype B (Cryptococcus gattii) RFLP for, 335 binding in, 410
Serum therapy, 397, 529
Sialic acids, in cell wall, 71
Sialylglycoproteins, in cell wall, 71
Siderophore transporter, in melamin synthesis, 58

Signaling enzymes in, 217–234
extracellular, 175–188
G-protein, 153–165
mating and, 167–174; see also Mating for sexual reproduction
environmental factors in, 84–86
regulatory, 86–89
Signature tags, in reverse genetics, 128
STJ1 gene, in melamin synthesis, 58
Sites of disease, 598–601
T cells at, 390–391
Skin lesions, 432
in HIV/AIDS, 520
in transplant recipients, cryptococcosis in, 507–514, 532, 572–573, 596

Treatment of cryptococcosis, 20–22
in Africa, 272–273
animal models for, 480–481
antifungals for, see Antifungal agents; specific drug in 233–295
based on humoral immunity, 397
in HIV/AIDS, 589
monoclonal antibodies in, 402–404
passive immunotherapy for, 529, 541–542
in transplant recipients, 511–512, 532, 572–573
vaccines for, 538, 541–542
of meningitis, see Meningitis and meningoen cephalitis, treatment of
Tree(s), see also Wood, decayed
C. gattii in, 189, 239, 242, 244, 246–247, 250–251
in Asia, 287–288
recombination in, 303–305
C. neoformans in, 241–242, 244–246, 248
in Africa, 277–279
in Asia, 287–289
in India, 249
Tree length test, C. gattii, 301–303
Trehablise, in virulence, 193
Tremellales, 6–7
Trichosporonales, 6–7
Trojan horse mechanism, for brain invasion, 466–467
Tsa1 protein, 123
Trichaya wallsfieldii, 8, 142
Tumor necrosis factor-α action of, 391
in C. neoformans killing, 377
in cell recruitment, 454–455
in HIV/AIDS, 518
in immune response, 456–457
Two-hybrid screens, for virulence factors, 133–134
Tyrosinase, in melamin synthesis, 55

U
UDP-galactose, in capsular synthesis, 34
UDP-galactose transporters, in capsule synthesis, 35
UDP-glucose, in capsular synthesis, 34
UDP-glucose dehydrogenase, in capsule synthesis, 34
UDP-glucose epimerase, in capsule synthesis, 34
UDP-glucuronic acid, in capsule synthesis, 34
UDP-xyllose, in capsule synthesis, 34
UDP-xyllose synthase, in capsule synthesis, 34
Unisexal mating (α-α), 81, 89–90, 301
United States
C. gattii in, 249–250
C. neoformans in, 243, 249–250
URA5 gene, for MLST studies, 340–341, 343
Uracil phosphoribosyl transferase, in antifungal resistance, 210
Urea, sensing of, 180
Urease, in central nervous system invasion, 469
Uridine diphosphate, see UDP
Uracil phosphoribosyl transferase, in antifungal resistance, 210
gene, for MLST studies, 340–341, URA5

Veterinary aspects, of cryptococcosis, 489–504
C. gattii, 314–315
case clusters of, 500–501
in companion animals, 491–495
in eastern Australia, 491–495
in Europe, 496–497
in Japan, 496–497
“koala connection” model, 497–500
minor epizootics of, 500–501
in North America, 496–497
“one medicine” concept of, 490–491
recent reports of, 491
susceptible species, 489
Vancouver Island C. gattii outbreak, 314–315, 501
in western Australia, 495–496
in wildlife species, 494–495
VGI through VGIII subpopulation, C. gattii, 97, 105–106
in Africa, 307
in Australia, 305–307
characterization of, 240
environmental sources of, 242
geographical distribution of, 241
global population of, 307
in Pacific Northwest, 321–322
PCR fingerprinting for, 331–334
sexual reproduction of, 299–300
standard strains for, 344–345
in Vancouver Island, 315
Virchow-Robin space, dilation of, 465
Virulence
accessory determinants of, 194–196
animal models for, 190–191, 478–479
antifungal susceptibility and, 195–196
C. gattii, 167–174, 189–201
calcineurin in, 226–229
capsule in, 191
central nervous system invasion and, 469
capsule, 43
comparative genomics in, 194
drug resistance as, 203–216
evolution of, 264–266
extracellular secretory products in, 194–195
evolutionary analysis of, 175–188
forward genetic studies of, 129–133
G-protein signaling pathways in, 153–165
of hybrid strains, 365–366
intracellular proliferation and, 441–444
matting and, 167–174, 194; see also MAT locus
melanin as factor, 55–56, 191–192; see also Melanin
Mendelian genetic analysis of, 134
new factors for, 379
phagocytosis in, 193
phenotypes in, 168–170; see also Phenosomes
phospholipases in, 193–194, 217–226
ploidy and, 171
reverse genetic studies of, 128–129
sexual reproduction and, 170
signaling cascades and enzymes in, 217–234
spores and, 170–171
study tools for, 190–191
superoxide dismutase in, 192–193
thermal tolerance and, 192
trehalose in, 193
two-hybrid screens for, 133–134
Visual disturbance, in meningitis, 518
VNB through VNIV subpopulation, C. neoformans, 97, 100–105
in Asia, 290
characterization of, 240
global population of, 307
geographical distribution of, 241
PCR fingerprinting for, 331–334
standard strains for, 344
Voriconazole, 528
Wc proteins, in light sensing, 179
Wsc1 protein, in cell wall, 226–227

INDEX

V
V8 juice agar, for mating, 84–85
Vaccines and vaccination, 537–546
animal models for, 481
antigens for, 392–393, 539–541
experimental, 538–539
host defense and, 537–538
from killed cells, 539
live attenuated, 539
passive antibodies for, 529, 541–542
prophylactic, 538
Vulturine ATPase, in phagocytosis, 376
VAD1 gene, in virulence, 133
Vancouver Island, Canada, C. gattii outbreak, 189, 313–325, 432–433
AFLP for, 335
background of, 313
capitalization of, 315
costs of, 319
diagnosis of, 316–317
ecological niche for, 318–319
emergence of, 316
environmental studies of, 315
epidemiology of, 316–320
expansion to United States, 320–323
characterization of, 346
geno typing in, 346
geographic aspects of, 314
incubation period for, 319
place of exposure for, 318
Public health response to, 319–320, 590
quality-of-life issues in, 319
risk factors for, 319
spread from, 319–323
surveillance for, 316–318
veterinary aspects of, 314–315, 501
Vegetation, see also Trees; Wood
C. gattii in, 105
C. neoformans in, 99–100, 239, 246
Ventricular shunt, for increased intracranial pressure, 575–576
Vesicles
in cell wall, 71, 124
polysaccharide secretion from, 50

Ventricular shunt, for increased intracranial pressure, 575–576
Volar pressure, 575–576

W
W276 strain (C. gattii), genome of, 194
Washington state, C. gattii outbreak in, 320–323
Water
C. gattii in, 105
in capsule, 43
Cryptococcus in, 239
as mating cue, 85–86
Wax moth, C. neoformans in, 264, 265, 481
Wc proteins, in light sensing, 179
White collar genes
in light sensing, 179–177
in mating, 85
Wildlife, cryptococcosis in, 494–495, 501
WM276 strain
MAT locus of, 141
serotype B, 116
Wood, decayed
C. gattii in, 105
in capsule, 43
Cryptococcus in, 239
as mating cue, 85–86
Wood moth, C. neoformans in, 264, 265, 481
Wc proteins, in light sensing, 179
White collar genes
in light sensing, 177–179
in mating, 85
Wildlife, cryptococcosis in, 494–495, 501
WM276 strain
MAT locus of, 141
serotype B, 116
Wood, decayed
C. gattii in, 105
in capsule, 43
Cryptococcus in, 239
as mating cue, 85–86

X
Xylosyltransferase, in capsule synthesis, 35

Y
Yeasts, Cryptococcus as, 18

Z
Zenker, F. A., Cryptococcus discovery by, 3
Zidovudine, drug interactions with, 522
Zinc deficiency, proliferation and, 443