Stable Isotope Probing and Related Technologies
CONTENTS

Contributors vii
Preface xi

I. METHODOLOGY

1. DNA Stable Isotope Probing
Yin Chen and J. Colin Murrell 3

2. RNA Stable Isotope Probing
Mike Manefield, Maria-Luisa Gutierrez-Zamora, and Andrew S. Whiteley 25

3. Phospholipid Fatty Acid Stable Isotope Probing Techniques in Microbial Ecology
P. J. Maxfield and R. P. Evershed 37

4. Protein Stable Isotope Probing

5. Stable Isotope Probing and Metagenomics
Lee J. Pinnell, Trevor C. Charles, and Josh D. Neufeld 97

6. Stable Isotope Probing Techniques Using H$_2^{18}$O
Egbert Schwartz 115

7. Stable Isotope Probing Techniques Using 15N
Daniel H. Buckley 129
II. APPLICATIONS OF STABLE ISOTOPE PROBING

8. Stable Isotope Probing and Plants
 Yahai Lu and Ralf Conrad
 151

9. Stable Isotope Probing Techniques and Bioremediation
 Eugene L. Madsen
 165

10. Trophic Interactions in Microbial Communities and Food Webs Traced by Stable Isotope Probing of Nucleic Acids
 Michael W. Friedrich
 203

11. Stable Isotope Probing and the Human Gut
 Koen Venema
 233

12. DNA Stable Isotope Probing and Gene Mining
 Hélène Moussard, Thomas J. Smith, and J. Colin Murrell
 259

III. RELATED STABLE ISOTOPE TECHNIQUES

13. Raman-Fluorescence In Situ Hybridization
 Daniel S. Read and Andrew S. Whiteley
 279

 Niculina Musat, Birgit Adam, and Marcel M. M. Kuypers
 295

15. FISH-Microautoradiography and Isotope Arrays for Monitoring the Ecophysiology of Microbes Within Their Natural Environment
 Michael Wagner
 305

16. RNA-Radioisotope Probing for Studying Carbon Metabolism in Soils
 Anthony G. O'Donnell, Sasha N. Jenkins, and Andrew S. Whiteley
 317

17. A Glance Toward the Future: Where Do We Go from Here?
 Kenneth Nealson
 333

Index 337
CONTRIBUTORS

Birgit Adam
Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, 28359 Bremen, Germany

Daniel H. Buckley
Department of Crop and Soil Sciences,
Cornell University, Ithaca, NY 14853

Trevor C. Charles
Department of Biology, University of Waterloo, 200 University
Avenue West, Waterloo, Ontario, N2L 3G1, Canada

Yin Chen
School of Life Sciences, University of Warwick,
Coventry, CV4 7AL, United Kingdom

Ralf Conrad
Max-Planck-Institute for Terrestrial Microbiology,
Karl-von-Frisch-Str., 35043 Marburg, Germany

R. P. Evershed
Organic Geochemistry Unit, Bristol Biogeochemistry
Research Centre, School of Chemistry, University of Bristol,
Cantock's Close, Bristol BS8 1TS, United Kingdom

Michael W. Friedrich
Faculty of Biology/Chemistry, University of
Bremen, D-28359 Bremen, Germany

Maria-Luisa Gutierrez-Zamora
Centre for Marine BioInnovation, University of
New South Wales, Sydney 2035, Australia
CONTRIBUTORS

Nico Jehmlich
Interfaculty Institute for Genetics and Functional
Genomics, University of Greifswald, Friedrich-Ludwig-
Jahn-Strasse 15a, D-17487 Greifswald, Germany

Sasha N. Jenkins
School of Earth and Environment, Faculty of Natural and Agricultural
Sciences, The University of Western Australia, Crawley, WA 6009, Australia

Marcel M. M. Kuypers
Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, 28359 Bremen, Germany

Yahai Lu
College of Resources and Environmental Sciences, China
Agricultural University, Beijing 100193, China

Eugene L. Madsen
Department of Microbiology, Wing Hall, Cornell
University, Ithaca, NY 14853–8101

Mike Manefield
Centre for Marine BioInnovation, University of
New South Wales, Sydney 2035, Australia

P. J. Maxfield
Organic Geochemistry Unit, Bristol Biogeochemistry
Research Centre, School of Chemistry, University of Bristol,
Cantock’s Close, Bristol BS8 1TS, United Kingdom

Hélène Moussard
School of Life Sciences, University of Warwick,
Coventry, CV4 7AL, United Kingdom

J. Colin Murrell
School of Life Sciences, University of Warwick,
Coventry, CV4 7AL, United Kingdom

Niculina Musat
Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, 28359 Bremen, Germany

Kenneth Nealson
University of Southern California, Los Angeles, CA 90089

Josh D. Neufeld
Department of Biology, University of Waterloo, 200 University
Avenue West, Waterloo, Ontario, N2L 3G1, Canada
Anthony G. O’Donnell
Institute of Agriculture, Faculty of Natural and Agricultural Sciences,
The University of Western Australia, Crawley, WA 6009, Australia

Lee J. Pinnell
Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada

Daniel S. Read
Centre for Ecology and Hydrology, Benson Lane, Wallingford, OX10 8BB, United Kingdom

Hans-Hermann Richnow
Helmholtz—Centre for Environmental Research–UFZ, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig, Germany

Frank Schmidt
Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany

Egbert Schwartz
Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640

Jana Seifert
Helmholtz—Centre for Environmental Research–UFZ, Department of Proteomics, Permoserstrasse 15, D-04318 Leipzig, Germany

Thomas J. Smith
Biomedical Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, United Kingdom

Martin Taubert
Helmholtz—Centre for Environmental Research–UFZ, Department of Proteomics, Permoserstrasse 15, D-04318 Leipzig, Germany

Koen Venema
Department of BioSciences, TNO Quality of Life, Zeist, The Netherlands

Carsten Vogt
Helmholtz—Centre for Environmental Research–UFZ, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig, Germany

Martin von Bergen
Helmholtz—Centre for Environmental Research–UFZ, Department of Proteomics, Permoserstrasse 15, D-04318 Leipzig, Germany
CONTRIBUTORS

Michael Wagner
Department of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria

Andrew S. Whiteley
Centre for Ecology and Hydrology, Benson Lane, Wallingford, OX10 8BB, United Kingdom
Since the discovery of bacteria by Antonie van Leeuwenhoek over 300 years ago, microbiologists have striven to identify the many thousands of bacteria that exist in the environment. Since the morphological features of most bacteria are similar, it has been difficult to differentiate between them by using conventional microscopy techniques. Therefore, until the advent of molecular biology techniques, microbiologists have relied on the enrichment, isolation, and characterization of microbes, using strategies pioneered by Biejerinck and Winogradski in the early part of the 20th century, to be able to determine what role different microbes play in the environment. Environmental microbiology was revolutionized through the pioneering work of Woese (Woese and Fox, 1977), who developed a taxonomic framework with which to relate the identity of microbes to each other. This tree of life is based on small subunit ribosomal (rRNA) sequences of different organisms. The polymerase chain reaction (PCR) facilitated the direct isolation of 16S rRNA gene sequences from environmental samples (Pace et al., 1985), and through the work of Pace and others, a molecular view of microbial diversity in the biosphere generally emerged in the 1990s (Head et al., 1998). As more and more 16S rRNA gene sequences were retrieved from many different environments, and these were then matched against 16S rRNA sequences from extant bacteria, i.e., those that had been previously isolated and cultivated in the laboratory, the understanding emerged that environmental microbiologists had only cultivated a small fraction of the total microbial diversity in the biosphere (Ward et al., 1990). We do not subscribe to the notion that the majority of the microorganisms present in the environment are “unculturable,” but suggest that microbiologists have not yet had the time nor the techniques to be able to isolate into pure culture a significant fraction of the total microbial population. There are good examples in recent years of many more novel microbes being grown under laboratory conditions, both in axenic culture or as coculture, revealing many new biological processes that have been around for many thousands (millions?) of years. Anaerobic methane and ammonia oxidation are good examples of this (Strous et al., 1999; Raghoebarsing et al., 2006).

From molecular biology-based studies, principally by retrieving 16S rRNA gene sequences from the environment, it becomes obvious that microbes inhabit virtually all ecological niches on Earth. A major challenge for microbial ecologists has been to try to determine what is the function of many of the thousands of
different microbes on Earth; i.e., who eats what, where, when, and how? “Linking the identification of uncultivated microbes with their potential to metabolize compounds in the environment represents the Holy Grail of scientific discovery for microbial ecologists” (Neufeld et al., 2007). In this book, we hope to inform readers of the many techniques and approaches that are now available with which to start to answer these fundamental questions.

The American Society for Microbiology (ASM) General Meeting in New Orleans in May, 2004, provided a forum to bring together a number of researchers who were starting to develop stable isotope probing (SIP) techniques for use in microbial ecology. We were approached by Greg Payne, Senior Acquisitions Editor for ASM, with an invitation to consider an edited volume on SIP techniques. At that time there were only a handful of laboratories developing and starting to use these techniques, and only around 30 publications in the ISI Web of Knowledge database were identified with the search tag “stable isotope probing.” Therefore, we put off the idea for a few years until the field developed and the techniques “proved themselves” to the environmental microbiology community. Of course, stable isotopes had been successfully used in microbiology for process-based studies many years prior to this (e.g., Meselson and Stahl, 1958; Kaplan and Rittenberg, 1964). However, the first use of stable isotopes for tracing process through metabolic labeling of biomarkers in a strict environmental microbiology context is attributed to Boschker et al. (1998). In their pioneering work, described in the journal *Nature*, they directly linked identity and function within complex microbial populations by labeling the polar lipid-derived fatty acids (PLFAs) of sulfate-reducing bacteria with 13C. Several other papers from this group followed, again describing the use of 13C to label the PLFAs of microbes in situ (e.g., see Boschker et al., 1999; Nold et al., 1999; Middelburg et al., 2000).

It was in 2000, with the first report of the use of 13C isotopes to label the DNA of methylotrophic bacteria directly in environmental samples, that the term “stable isotope probing” was used (Radajewski et al., 2000). This earliest “flavor” of SIP was described as DNA-SIP. Soon after followed RNA-SIP (Manefield et al., 2002), which provided another novel means of linking the phylogeny of members of a microbial community to their function. Since the ASM meeting in 2004, the technique of protein-SIP (Jehmlich et al., 2008) has been developed, together with examples of the use of 15N (first described by Cadisch et al., 2005) and 18O (first described by Schwartz, 2007) as alternative stable isotopes with which to label biomarkers and thus identify microbes that are active in the environment.

In 2009, we felt that SIP techniques had been sufficiently tried and tested and well established as part of the microbial ecologist’s “toolbox” to consider the production of this book. Indeed, a survey of the ISI Web of Knowledge database from 2000 to the time of writing (March 2010) indicates that using the search term stable isotope probing there are over 212 publications recorded which have been cited around 3,300 times (nearly 800 citations in 2009). Google Scholar lists about 110,000 hits with the same search term. Since the early days of SIP, when simple 13C-labeled compounds such as methane, methanol, and acetate were used to label specific biomarkers of bacteria in the environment, a number
of more complex carbon sources have been used in a variety of different contexts. For example, SIP has been used to identify microbes involved in bioremediation processes; to begin to understand the interactions between microbes and plants; to follow the flow of carbon through microbial food webs and trophic interactions; and to examine the function of gut microflora. SIP has also been used in gene mining and has been coupled with metagenomics not just to rescue gene fragments but to label and access the genomes of specific microbes carrying out key metabolic functions in the environment. We have been very fortunate in persuading many of the key practitioners in their fields to contribute chapters covering all of these topics, giving significant insights into the methodology and applications of these various SIP techniques.

Of course, SIP techniques are not the only tools available for microbial ecologists, and the past decade has seen significant developments in a number of other exciting techniques in environmental microbiology. Such techniques include methods for labeling and identifying microbes in situ using radioisotopes, and therefore we have also included elegant technologies such as 14C-RNA-SIP, FISH-MAR (fluorescence in situ hybridization coupled to microautoradiography), and isotope arrays in this book. Single-cell microbiology techniques exploiting stable isotopes, including Raman-FISH (Raman spectroscopy coupled to fluorescence in situ hybridization) and nanoSIMS (mass spectrometry of secondary ions) coupled to in situ hybridization, are also covered by contributions from world leaders in these technologies.

We are very grateful to all authors for their scholarly and insightful contributions to this book on stable isotope probing and related techniques. In hindsight, we set them a particularly interesting submission deadline spanning the Christmas of 2009, and all authors pretty much delivered as they said they would. We thank you all for the speedy submissions and hope we didn’t ruin the holiday celebrations too much! We would also like to specifically thank Greg Payne at ASM and the ASM production team who made the commissioning and editing process extremely smooth and simple. Overall, the quality of the authors and the ASM team had us asking each other several times the question, “Shouldn’t this be harder?” Finally, we would like to thank Ken Nealson for accepting the invitation to write a “crystal ball” forward-looking view—these are always extremely difficult to do. But, as ever, Ken’s opinions are highly relevant, very thought provoking, and tinged with a good dose of humor!

Finally, we hope this volume will serve as an overview for current practitioners and stimulate new investigators and questions within microbial ecology. It is clear from the chapters that the field is developing rapidly, from newer technologies through ever-widening portfolios of applications and ultimately the generation of new and fundamental microbial-based questions. It is still astounding to think that all this has happened in less than a decade. We look forward to the possibilities of the next 10 years and hope we have done the current progress justice. As ever, any errors or omissions are entirely down to us.

J. Colin Murrell
Andrew S. Whiteley
April, 2010
REFERENCES

INDEX

A
Acetate, 190
Acetobacter, 186
Acinetobacter, 4, 10, 186, 191, 192, 263, 291
Acinetobacter baylyi, 290
Acinetobacter lwoffii, 107
Acidophiles, 186
Acidobacteria, 158, 188
Acidobacterium, 4, 16, 188, 215
Acidovorax, 32, 33, 185, 186, 187, 190, 192, 263, 291
Acinetobacter, 4, 10, 186, 191, 192, 263, 291
Adenosine triphosphate (ATP), 116
Alphaproteobacteria, 14, 158, 159, 184, 187, 188, 192, 208
Aminomonas, 189
Ammonia oxidizers, in soil, 125
Anabaena, 216
Arthrobacter, 185, 191, 329
Arthrobacter parafabri, 219
Aromatic hydrocarbons, microbial metabolism of, 184–87
benzene, 184
benzoate, 185
biphenyl, 186
2,4-D, 186
dichlorobiphenyl, 186
naphthalene, 186
pentachlorophenol, 185
phenanthrene, 186–87
phenol, 185
pyrene, 187
salicylate, 185–86
toluene, 184–85
Aromatic ring hydroxylating dioxygenase (ARDH), 266
Aromatoleum aromaticum, 90, 184
Azotobacter, 185, 191, 329
Aspergillus, 10, 189
Assimilation, N uptake and, 144–45
ATP. See Adenosine triphosphate (ATP)
Azotobacter, 32, 184, 185, 192
Azospirillum, 159
B
Basidium, 327, 329
Beijerinckia, 188
Bdellovibrio, 10, 215, 216, 219, 220
Bdellovibrio bacteriovorus, 216
Bacteroidetes, 191
Bacteriovorax, 4, 10, 186, 191, 192, 263, 291
Bacteriovorax sp., 219
Bacteria, 234, 259, 272, 306, 334
dendrophyt, 158
Bacterial artificial chromosome (BAC), 12, 98, 102, 106, 181, 267
Bacteriovorax, 219
Bacteroidetes, 191
Bdellovibrio, 10, 215, 216, 219, 220
Bdellovibrio bacteriovorus, 216
Beijerinckia, 188
Beijerinckia indica, 15
Belemnitella americana, 54
Benzene, 184
Benzoate, 185
Betaproteobacteria, 4, 14, 32, 33, 158, 159, 184, 185, 187, 188, 190, 191, 192, 208, 209, 263, 272, 298, 327
Bifidobacterium adolescentis, 250
Bifidobacterium bifidum, 248
Bifidobacterium catenulatum, 248
Bifidobacterium longum, 248
Biocatalysts
application in biotechnology, 260
diversity of microbial, 260
in extreme environments, 260–61
novel, 261–62, 271–72
Biodegradation
biomarker selection in, 180–81
of organic pollutants, 163–67
of pollutants, 216–17
QC and meaning of sequence data, 181–83
results of SIP investigations, 183–93
tabulating research and, 167–80
Biodegradation of N-containing compounds, 145
Biomarker selection, in biodegradation, 180–81
Biomass
decomposition of, 145–46
fungal, 153
Gram-negative bacterial, 153, 155
trophic interactions traced by, 217–20
Bioremediation
biodegradation of organic pollutants and SIP, 163–67
stable isotope probing and, 163–201
Biotechnology, microbial biocatalysts in, 260
Biphenyl, 186
Bligh Dyer solvent system, preparation of, 46
Bolidomonas, 219
Bradyrhizobium, 329
Brevundimonas alba, 279
Burkholderia, 185, 186, 189, 192, 263, 327
Burkholderiaceae, 159
Burkholderiales, 191
Burkholderia xenovorans, 270
Butyrate, 191
C
Caffeine, 191–92
Candidate, 13
Carbon flow, through microbial communities,
217–21
Carbon metabolism, in soils, 317–32
Carbon to nitrogen ratio (C/N), 155
Catalyzed reporter deposition FISH (CARD-FISH), 298, 307, 308
Caulobacteraceae, 158
Cellulose, 192
Centrifugation, 121–22
fractions for secondary gradient, 140–41
rotor geometry and, 142
Cercozoa, 189, 215
Cesium chloride (CsCl), 122
purifying DNA from, 122–23
removal from DNA, 136
Cesium trifluoracetate (CsTFA), 267, 319
Cetyl trimethylammonium bromide (CTAB), 27
C flow food web studies, 63, 65
Charge coupled device (CCD), 281, 282
Chemical Memory Chip (CMC), 251
Chimeragenesis, 271
Chlorobium clathratiforme, 221, 300
Chloroflexi, 33, 185
Chloroform (CHCl3), 323
Chromatium okenii, 221, 301
13C-labeled aromatic substrates, 77
13C-labeled cells, trophic interactions traced by, 217–20
13C-labeled compounds, 10, 13
13C-labeled DNA, 110
enzymes encoded by, 104
yield of, 102
13C-labeled substrates, 205
13C-labeling, gaseous, 41–45
14C label, detection of, within gradient fractions, 320–22
Clostridia, 14, 184, 191
Clostridium, 33, 190, 191, 208, 209, 210, 243
Clostridium perfringens, 240
Collision-induced dissociation (CID), 83
Colpodea, 215
Comamonadaceae, 32, 33, 188, 190
Comamonas, 184, 185, 186, 190, 192
Comamonas testosteroni, 267
Community-level natural abundance tracer experiments, 57
Congo Red overlay method, 104
Controls, need for appropriate, 139–40
Coprothermobacter proteolyticus, 209
Correlation coefficient, 83
Cross-feeding, 204
in biodegradation of pollutants, 216–17
methanol-based, 215–16
in SIP experiments, 215–17
Cryptococcus, 192, 218
Csl. See Cesium chloride (CsCl)
Cupriavidus, 185
Cyanobacterium, 189
Cycloclasticus, 189
D
Dechloromonas, 190, 192
Decomposition, of biomass, 145–46
Degradation experiment, setup of, 79–81
Dehalococcoides, 33
INDEX 339

Deltaproteobacteria, 14, 143, 184, 187, 188, 190, 206, 207, 208, 209, 212, 218
Denaturing gradient gel electrophoresis (DGGE), 12, 16, 17, 29, 105, 106, 123, 131, 137, 140, 156, 318, 324
Density gradients
fractions, calibration of, 322
primary, 135–36
secondary, 138
Deoxynucleotide triphosphates (dNTP), 102
Desulfobacter, 190
Desulfobacteraceae, 191
Desulfobacterium, 184, 192
Desulfobulbachaeae, 184, 212, 214
Desulfococcus, 33, 191
Desulfosarcina, 184, 192
Desulfotomaculum, 190
Desulfuromonas, 190
Dichlorobiphenyl, 186
Dictyophyceae, 219
Digital Refractometer, 136
Dimethylamine, 189–90
Dinoflagellata, 219
Direct method, in metagenomics, 100
Dissimilatory nitrate reduction to ammonia (DNRA), 133
DNA
buoyant density of, 119, 133
13C-labeled, 102, 104, 110
components of, 10
effect of size on resolution, 141–42
extracting from soil, 121
extraction, 135
fingerprints, 123
harvesting, 122
“heavy,” 269
human gut and, 236
molecular weight of, 141
15N-labeled, 129, 130, 132
photographing in centrifuge tubes, 122
purifying from CsCl solution, 122–23
in recovered fractions, 123–24
removal of CsCl from, 136
DNA stable isotope probing (DNA-SIP), 3–24
achievable yield of “heavy” DNA in, 15
advantages and disadvantages of, 13–16
future prospects of, 17–19
genomic mining and, 259–76
genomic fragment retrieval and, 99
genomic rearrangement of operons, 270–71
high-throughput technological platforms for, 19
interpretation of DNA sequence data in, 15–16
meaning of sequence data in, 181–83
metagenomics and, 17–19
methods, 11–13, 16–17
mining novel biocatalysts with, 263–66
protein-stable isotope probing versus, 87
in rice soils, 158–60
sensitivity of, 14–15
single-cell analysis and, 19
synthetic metagenomics with, 271–72
targeting microorganisms with, 262–63
tropic interactions, 10
in upland soils, 156–58
in vitro DNA shuffling and, 270
Dorea formicigenens, 243
Dual N+C labeling experiments, 141
E
Ecological guilds, 183
Ecological research, nanoSIMS for, 295–303
Electron ionization (EI), 47
Electrophoresis
gel, 80–81
1D and 2D, 82
synchronous coefficient of drag alteration, 100
EL-FISH, 292
Endophytic bacteria, 158
Enterobacter, 192
Enterobacter cloacae, 13
Enterococcus, 33, 221
Enterococcus faecalis, 193, 240
Enterococcus faecium, 240
Environmental genomics. See Metagenomics
Environments, biocatalysts in, 260–61
Epsilonproteobacteria, 33
Eubacterium rectale, 245, 247
Eukarya, 234
Euplotes, 33
Ewingella, 34
Experimental design, 119–20
Experimentally derived peptides, calculation of 13C-incorporation levels of, 83–84
Extraction, DNA, 135
F
Fatty acid (FA), 37
Fatty acid methyl ester (FAME) chromatogram, 49
Fatty acid oxidization, syntrophic interactions during, 206–12
Fermentation
of insulin, 242–45
of lactose, 248–50
of prebiotic GOS, 248
of starch, 245–48
Firmicutes, 33, 191, 192, 206
FISH-MAR, 306–11
isotope arrays and, 306
Flavobacteriaceae, 189
Flavobacterium, 191, 329
Fluorescent in situ hybridization (FISH), 30, 183, 185, 192, 193, 213, 221, 280, 285, 295, 296
catalyzed reporter deposition, 298, 307, 308
EL-FISH, 300
isotope array approach and, 311–13
microautoradiography (FISH-MAR), 305–16,
306–13
Raman, 282, 287, 289, 290
Fluorescent signals, 137
Food chain, anaerobic microbial, 205–14
Food webs, methane, 215–16
Formaldehyde, 190
Formate, 190
Fourier transform ion cyclotron resonance (FT-ICR), 86
Fractionation, 136–37
Fractions, for secondary gradient centrifugation,
140–41
Free-air carbon dioxide enrichment experiments
(FACE), 45
Full-cycle ecological approaches, 183
“Functional” genes, 15
Function-based screening, 268–69
Fungal biomass, 153
Fusarium, 10, 189

G
Galacto-oligosaccharides (GOS), 248
fermentation of prebiotic, 248
Gammaproteobacteria, 14, 33, 103, 158, 185, 187, 188,
192, 208, 218, 298, 329
Gas chromatography (GC), 40
GC-MS and, 47–48
Gas chromatography/mass spectrometry (GC/MS), 180
Gaseous 13C-labeling, 41–45
Gastrointestinal (GI) tract, 233
microbiota in, 233–36
GDH. See Glutamate dehydrogenase (GDH)
Gel electrophoresis, 80–81
Gemmatimonadaceae, 190
Gene mining
biocatalysts, need for, 260–61
case study, 266
chimeragenesis and, 271
diversity of microbial biocatalysts, 260
DNA stable isotope probing and, 259–76
future perspectives for, 269–73
metagenomics and DNA-SIP for, 267–68
microbial biocatalysts in biotechnology, 260
of novel biocatalysts, 261–62
novel enzymes in, 269–70
pros and cons of, 268–69
reservoir of genes and, 259–60
Genes
reservoir of, 259–60
target, 263–66
Genome mol% G+C content, 131–33
Genomic rearrangement of operons, DNA-SIP and,
270–71
Geobacter, 190, 208
Geobacter sulfurreducens, 208
Geothrix, 190
Glucose, 191
setup of technology using, 238–42
trigger molecule levels of, 323–29
Glutamate dehydrogenase (GDH), 134
Glutamine synthetase-glutamine: 2-oxoglutarate
amidotransferase (GS-GOGAT), 134
Gradient fractionation, 28
importance of, 130–31
Gradient fractions
analysis of, 137–38
calibration of, 322
detection of 14C label and RNA within, 320–22
downstream molecular analyses of, 28–30
Gradient separation, of “heavy” and “light” RNAs,
319
Gram-negative bacterial biomass, 153, 155
Green energy, 260
H
Half-decimal-place rule (HDPR), 76
calculation, theoretical background for, 84, 86–87
Halogen in situ hybridization-SIMS (HіSH-SIMS),
297
Halophaga, 190
Haptophyta, 33
“Heavy” DNA, 3, 4, 10, 18, 269
achievable yield of, 15
13C-labeled, 181
fractions, 157
identification and characterization of, 12–13
“light” versus, 16
“Heavy” RNA, 325
gradient separation of, 319
Herbaspirillum, 185
Heterolobosea, 215, 216
High-throughput technological platforms, for DNA-
SIP, 19
H218O, stable isotope probing using, 115–28
advantages and disadvantages of, 125
future prospects, 126
methods, 119–26
organisms assimilating oxygen from water, 115–16
O-water and, 116–19
Human gut. See also Gastrointestinal (GI) tract
fermentation of insulin by colonic microbiota,
242–45
fermentation of prebiotic GOS, 248
fermentation of starch, 245–48
future perspectives regarding, 250–54
glucose as model substrate, 238–42
lactose intolerance, 248–50
microbiota in, 233–36
stable isotope probing and, 233–57
 trophic interactions of microbes with, 220–21
Human Intestinal Tract Chip (HIT-C), 235
Hydrogenophaga, 186, 192
Hylemonella, 184
Hyphomicrobiaceae, 216
Hyphomicrobiun, 189, 216

I
Incubation, in DNA stable isotope probing, 12
Indirect method, in metagenomics, 100
Insulin, fermentation of, 242–45
Intact protein profiling (IPP), 80, 84, 89
 identification of proteins by MALDI-MS, 81
In vitro DNA shuffling, 270
ISODAT, 55
Isopycnic centrifugation, in DNA stable isotope probing, 12
Isotope array approach, 311–13
Isotope arrays, FISH-MAR and, 306
Isotope labeling methods, 41–46
 gaseous 13C-labeling, 41–45
 nongaseous 13C-labeled substrates, 45–46
 technical considerations, 41
Isotopically labeled substrates, 134–35

J
Janthinobacterium, 188

K
Kocuria, 185, 192
Kribella, 186, 263

L
“Lab-on-a-chip,” 251
Lactobacillus gasseri, 248
Lactobacillus salivarius, 248
Lactose intolerance, 248–50
Laemmli buffer, 81
Lamprocystis purpurea, 221, 301
Least-squares fitting process, 86
Light chromatography-mass spectrometry (LC-MS), 243
“Light” DNA
 fractions, 157
 “heavy” versus, 16
“Light” RNA, 325
 gradient separation of, 319
Lipid fractionation, 47
Lobosca, 215
Long-chain fatty acids (LCFA), 209, 210, 211
Lyrodus pedicellatus, 221
Lysobacter, 185, 218

M
Magnetobacterium bavaricum, 209
Magnetospirillum, 191, 211
MALDI-MS, 89, 91, 92
 identification of proteins by, 81–82
 toulene and, 184
Manduca sexta, 33, 221
Massilia, 191
Mass spectrometry of secondary ions, 296
Mean square error (MSE), 83
Medicago truncatula, 220
Meganema perideroedes, 311
Metabolites, secondary, 157–58
Metagenomic cloning, 186
Metagenomics
 case studies and examples, 107–11
 cost of, 105
 DNA-SIP and, 17–19
 focused, 17
 future directions, 111
 for gene mining, 267–68
 methods, 99–104
 novel biocatalysts and, 261–62
 problems and pitfalls of, 104–5
 stable isotope probing and, 97–114
 synthetic, 271–72
Metaproteomics, 73
Metarhizium, 192, 218
Methane, 187–88
 cross-feeding, 215–16
 oxidation, 159–60
 syntrophy and, 212–14
Methanobacterium, 191, 207
Methanocellales, 159, 207
Methanogenesis, 158–59
Methanol, 188–89
Methanobacterium, 191, 207
Methanocellales, 159, 207
Methanosis, 158–59
Methanotrophs, 4
Methanosarcina, 191
Methylobalcillus, 189
Methylobacter, 14, 187, 188, 189, 190, 192
Methylobacteriaceae, 215
Methylobacterium, 14, 188, 191
Methylobacterium extorquens, 30
Methylocadum, 187
Methylocapsa, 110, 188
Methylocella, 17, 110, 188
Methylocella silvestris, 15
N

\(^{15} \text{N} \), stable isotope probing using, 129–47
advantages and disadvantages of, 138–42
future prospects, 146
gradient fractionation, 130–31
methods, 134–38, 142–46
pathways of N assimilation, 133–34
variation in genome mol% G+C content, 131–33

NANO-LC-LTQ, identification of proteins by, 82–83
Nano-secondary ions mass spectrometry (nanoSIMS), 295–303
advantages and disadvantages of, 298–300
future prospects, 301
methods, 297–98, 300–301

Naphthalene, 186

N assimilation, pathways of, 133–34
N-containing compounds, biodegradation of, 145
N-DNA stable isotope probing, 142, 143
application of, 144
N-RNA stable isotope probing versus, 138–39
Neutral lipid fatty acids (NLFA), 46
Nitrogen fixation, 142–44
Nitrosomonas, 190
Nitrospira, 190
\(^{15} \text{N} \)-labeled DNA, 129, 130, 132, 143, 146
\(^{15} \text{N} \)-labeling, 129
trophic interactions traced by, 221–22

NLTFA. See Neutral lipid fatty acids (NLFA)

NMR. See Nuclear magnetic resonance (NMR)

Nocardioides, 186, 190, 263
Nocardioides, 186, 190

Nocardioides, 186, 190, 263

Nongaseous C-labeled substrates, 45–46

Novel biocatalysts
creating, 271–72
mining of, 261–62

Novel enzymes
incubation with biosynthetically produced stable isotopes, 272–73

Novel genes, case study, 266

Novosphingobium, 189

N-RNA stable isotope probing, N-DNA stable isotope probing versus, 138–39

NTP. See Nucleotide triphosphates (NTP)

Nucleic acid stable isotope probing (N-SIP), 129
general limitations of, 139

Nucleotide triphosphates (NTP), 118

O
O atoms, 117

Ochromonas, 216

O-DNA, 116

Orbitrap, 82–83

Organic pollutants, biodegradation of, 163–67
O-water, 119
 incubating soil with, 121
SIP with, 116–19
Oxygen, organisms assimilating from water, 115–16

P
Paeenibacillus, 186, 192
PAH. See Polycyclic aromatic hydrocarbon (PAH)
Palmitate, 191
Pandoraea pnomenusa, 267
Panaxos, 190
Particulate methane monooxygenase (pMMO), 267
Pedobacter, 191
Pelagiobacter, 185
Pelobacter, 190, 206, 208
Pelomonas, 184, 192
Pelospora, 191
Pelotomaculum, 191, 206, 207, 208
Pentachlorophenol, 185
Peptide mass fingerprints (PMF), 81
Peptococcaceae, 214
Perchlorococcus, 33
PFLA. See Phospholipid fatty acids (PLFA)
Phaeobacter, 189
Phenanthrene, 186–87
Phenol, 185
Phosphate-buffered saline (PBS), 287
Phosphoenolpyruvate (PEP), 243
Phospholipid fatty acids (PLFA), 39, 40, 180, 279
 analysis, 46–56
 13C-labeled distributions, 56
 extraction, separation, and derivation of, 46–47
 human gut and, 236
 monounsaturated, 48–50
 preparation of FAMES, 56
 saponification of phospholipids and methylation of, 47
Phospholipid fatty acid stable isotope probing (PLFA-SIP), 152, 203, 309
 applications of, 57–65, 153–56
 C flow food web studies, 63, 65
 community-level natural abundance tracer experiments, 57
 new directions in, 65–67
 quantification of microbial biomass, 63
 unknown microorganisms, 63
Phospholipid fatty acid stable isotope probing techniques, in microbial ecology, 37–70
 methods, 41–46
 PLFA analysis, 46–56
Phospholipids (PL), 37
Phosphotransferase system (PTS), 327
PhyloPythia, 110
Picolinyl esters, preparation of, 51
Plamctomyctes, 190
Plantago lanceolata, 42

Plants
DNA/RNA-SIP in rice soils, 158–60
DNA/RNA-SIP in upland soils, 156–58
endophytic bacteria, 158
microbial metabolism of C1 compounds, 187–90
phospholipid fatty acid stable isotope probing and, 153–56
secondary metabolites, 157–58
species effects, 157
stable isotope probing and, 151–63
trophic interactions of microbes with, 220–21
Polaromonas, 4, 186, 192, 263
Pollutants, cross-feeding in biodegradation of, 216–17
Polycyclic aromatic hydrocarbon (PAH), 187
Porphyromonadaceae, 210
Prevotella, 247
Primary density gradients, 135–36
Priming effect, 318
Prochlorococcus, 219
Propionate, 191
Propionibacterium, 185, 190, 192, 208
Propionispira, 191
Proteins
 identification of, 81–83
 metabolic labeling of, 88
 theoretical background for HDPR calculation, 84, 86–87
Proteobacteria, 186
Prymnesiophyceae, 219
Pseudomonas, 4, 19, 32, 111, 184, 185, 186, 187, 191, 192, 263, 267, 270, 291, 296, 328, 329
Pseudomonas aeruginosa, 10, 132
Pseudomonas fluorescens, 13, 193, 290, 291
Pseudomonas pseudoalcaligenes, 267, 270
Pseudomonas putida, 75, 78, 80, 86, 89, 103, 184
Pseudonocardia, 186, 263
Pyrene, 187

Q
Quality control (QC), biodegradation and, 182
Quantitative PCR (qPCR), 181

R
Rahnella, 34
Ralstonia, 186, 192
Raman fingerprint, 282
Raman-fluorescence in situ hybridization, 279–94
advantages and disadvantages of, 289–90
cells and Raman spectra acquisition, 288–89
FISH, 287
future prospects, 291–93
labeling of microbial communities, 284–87
methods, 284–89, 290–91
microscopy preparation, 287–88
Raman spectroscopy, 280–84
single-cell microbiology, 280
Raman “red-shift,” 282
Raman spectroscopy, 280–84
Recovered fractions, DNA analysis in, 123–24
Research, biodegradation, 167–80
Resolution, effect of DNA size on, 141–42
Reverse transcription PCR (RT-PCR), 28
Rhizobiales, 152
Rhizobiales, 158
Rhizodeposition, 151
Rhizosphere, 151
Rhizobacter, 189, 190
Rhodobacter, 189, 158
Rhodococcus, 13, 145, 185, 186, 192, 263, 266
Rhodocyclaceae, 32, 190
Rhodocyclales, 191
Rhodospseudomonas, 32, 188
Rhodotorula glutinis, 156
Rice soils, DNA/RNA-SIP in, 158–60
RNA
detection of, within gradient fractions, 320–22
extraction, 27–28
horizons, locating, 28
human gut and, 236
RNA-radioisotope probing, 317–32
advantages and disadvantages of, 322
future considerations, 329
methods, 319–22, 323–29
trigger molecule for glucose, 321–29
RNA stable isotope probing (RNA-SIP), 25–36
advantages and disadvantages of, 30–32
concentrations, 26–27
downstream molecular analyses of gradient
fractions, 28–30
duration, 26–27
future prospects, 34
gradient fractionation, 28
methods, 26–30, 32–34
pulsing considerations, 26–27
RNA extraction, handling, and gradient separation,
27–28
RNA horizons, 28
sampling regime, 26–27
RNA-stable isotope probing (RNA-SIP) meaning of sequence data in, 181–83
in rice soils, 158–60
in upland soils, 156–58
Rotor geometry, 142
Royal Dutch explosive (RDX), 167, 192, 262
rRNA, 99, 110, 180, 207, 261, 312, 317
fractions, 328
Ruminococcus bromii, 33, 245, 247
S
Salicylate, 185–86
Sampling, in DNA stable isotope probing, 12
SCFA. See Short-chain fatty acids (SCFA)
Secondary density gradients, 138
Secondary gradient centrifugation, fractions for, 140–41
Secondary ion mass spectrometry (SIMS), 193, 213
Secondary metabolites, effect of, 157–58
Serratia, 272
Shigella, 191
Short-chain fatty acids (SCFA), 235, 236, 238
Shotgun mass mapping (SMM), 80, 84, 89
identification of proteins by MALDI-MS, 81–82
SIMS. See Secondary ion mass spectrometry (SIMS)
SIMS-in situ hybridization (SIMSISH), 297
Single-cell analysis techniques, DNA-SIP and, 19
Single-cell microbiology, 280
Single-stranded conformational polymorphism (SSCP), 29
Sphingomonadales, 160
Sphingomonas, 156, 185, 187, 189, 191, 192, 263
Sistotrema eximum, 156
Smithella, 191, 206, 207, 208
Smithella propionica, 209
Soil
ammonia oxidizers in, 125
carbon metabolism in, 317–32
dNA extraction from, 121
DNA/RNA-SIP in upland, 156–58
freezing subsample of, 120–21
incubating with O-water, 121
obtaining for SIP experiments, 120
rice, 158–60
sampling, 319
Solanum tuberosum, 10
Soluble di-iron monooxygenase (SDIMO), 271
Soluble methane monoxygenase (sMMO), 260
Spectroscopy, Raman, 280–84
Sphingomonadales, 160
Sphingomonas, 156, 185, 187, 189, 191, 192, 263
Spirochetes, 191
Spirulina, 218
Stable isotope-labeled compounds, 13–14
Stable isotope probing (SIP), 39
bioremediation and, 163–201
centrifugation, 121–22
cross-feeding in, 215–17
DNA, 3–24
DNA harvesting, 122
food webs traced by, 203–31
freezing soil subsample in, 120–21
future direction, 333–35
human gut and, 233–57
metagenomics and, 97–114
microscopy and, 193–94
N-RNA versus N-DNA, 138–39
nucleic acid, 129
obtaining soil for, 120
with O-water, 116–19
phospholipid fatty acid (PLFA), 57–67
photographing DNA in centrifuge tubes, 122
plants and, 151–63
protein–stable, 73–95
purifying DNA from CsCl solution, 122–23
results of investigations, 183–93
RNA, 25–36
techniques using \({\text{H}}_{2}{^{18}}\text{O} \), 115–28
techniques using \({\text{N}}^{15} \), 129–47
trends revealed by, 192–93
Standard error sum of the squares (SSE), 86
Staphylococcus, 185
Starch, fermentation of, 245–48
Stenotrophomonas, 186, 192, 219
Stokes Raman scattering, 280–81
Stramenopiles, 33
Streptococcus, 190, 191
Streptococcus bovis, 240
Streptomyces, 272
Streptomyces lividans, 261
Substrates
\({^{13}}\text{C} \)-labeled, 205
\({^{13}}\text{C} \)-labeled aromatic, 77
glucose as model, 238–42
isotopically labeled, 134–35
nongaseous \({^{13}}\text{C} \)-labeled, 45–46
Succinate, 191
Sulfurspirillum, 190
Surface-enhancing Raman scattering (SERS), 291–92
Syncephalis depressa, 158
Synchronous coefficient of drag alteration (SCODA) electrophoresis, 100
Synechococcus, 33, 144, 219
Synthetic metagenomics, 271–72
Syntrophaceae, 33, 191, 209
Syntrophic interactions
anaerobic microbial food chain and, 205–14
during fatty acid oxidation, 206–12
Syntrophobacter, 191, 206, 207, 208
Syntrophobotulus, 206
Syntrophomonas, 191, 206, 207, 208
Syntrophospira, 206
Syntrophus, 190, 206, 208
Syntrophus acidotrophicus, 209
Syntrophy, anaerobic hydrocarbon degradation in, 212–14
T
Target genes, 263–66
Tepidanaerobacter, 33, 191
Tepidanaerobacter syntrophicus, 209
Teredinibacter turcicus, 193
Terminal restriction fragments (TRF), 137–38, 241
Thalassiosira rotula, 33
Thauera, 32, 185, 190, 192
Therminicola ferriacetica, 214
Thermoanaerobacter, 190
Thermodesulfovibrio yellowstonii, 209
Thermotoga, 209
Thermus, 190, 208
Thiobacillus, 190
Thiomonas, 191
TiM-2, 238
Time-of-flight SIMS (TOF-SIMS), 193
Toluene, 184–85
TRF. See Terminal restriction fragments (TRF)
Trichosporon, 185
Trifolium subterraneum, 42
Triticum aestivum, 221
Trophic interactions, 203–31
cross-feeding in SIP experiments, 215–17
of microbes with plants and human gut, 220–21
traced by \({^{13}}\text{C} \)-labeled cells and biomass, 217–20
traced by \({^{15}}\text{N} \)-labeling, 221–22
Tryptic peptides, 84
U
Unknown microorganisms, 63
Upflow anaerobic sludge blanket (UASB), 209
Upland soils, 156–58
V
Varionovax, 4, 186, 263
Vermoumibium, 188, 189
Vibrio, 272
W
Water, organisms assimilating oxygen from, 115–16
Whole-genome amplification (WGA), 102
Whole genome shotgun (WGS), 268
Wolinella succinogenes, 208
X
Xanthobacter, 184, 192
Xanthomonadaceae, 190
Xanthomonas, 186
Xylose, 191
Z
Zooglea, 184