To our children:

Sarah Walker Scheld,
Bruce Alexander Craig and Lisa Ellen Craig Castiglia, and
Andrew and Mitchell Hughes
CONTENTS

Contributors ... ix
Foreword .. xi
Preface ... xiii
Acknowledgments .. xv

1. Enterovirus 71, an Emerging Virus • Monto Ho 1
2. West Nile Virus Infection in New York City: the Public Health Perspective • Denis Nash, Neal Cohen, and Marcelle Layton 11
5. Community-Onset Oxacillin-Resistant Staphylococcus aureus Infection • Julie Louise Gerberding and Henry F. Chambers 85
7. Clindamycin-Resistant Clostridium difficile • Dale N. Gerding and Stuart Johnson .. 111
8. Water-Transmissible Diseases and Hemodialysis • Luis Fernando A. Camargo, Miguel Cendoroglo Neto, Maria Eugênia Canziani, and Sérgio Antônio Draibe ... 121
9. Mycobacterium ulcerans Infection and Buruli Ulcer Disease: Emergence of a Public Health Dilemma • C. Harold King, David A. Ashford, Karen M. Dobos, Ellen A. Spotts Whitney, Prattina L. Raghunathan, Jeannette Guarner, and Jordan W. Tappero ... 137
10. Borrelia: a Diverse and Ubiquitous Genus of Tick-Borne Pathogens • Alan G. Barbour ... 153
11. Emerging Perspectives on Human Babesiosis • Anne M. Kjemtrup and Patricia A. Conrad 175
12. Amebiasis, an Emerging Disease • Mehmet Tanyuksel, Hiroshi Tachibana, and William A. Petri, Jr. 197
13. Bioterrorism: a Real Modern Threat • Michael T. Osterholm ... 213
14. Bioterrorist Threats: What the Infectious Disease Community Should Know about Anthrax and Plague • Thomas V. Inglesby 223

Index .. 235
CONTRIBUTORS

David A. Ashford • Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, Georgia 30333
Alan G. Barbour • Departments of Medicine and of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4025
Donna M. Bates • Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, Wisconsin 53706
Richard E. Besser • Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop G03, 1600 Clifton Road NE, Atlanta, Georgia 30333
Luis Fernando A. Camargo • Infectious Diseases Unit, Kidney and Hypertension Hospital, Federal University of São Paulo, São Paulo, Brazil
Maria Eugênia Canziani • Dialysis Unit, Kidney and Hypertension Hospital, Federal University of São Paulo, São Paulo, Brazil
Henry F. Chambers • Division of Infectious Diseases, San Francisco General Hospital, and University of California, San Francisco, California
Patricia A. Conrad • Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616
Karen M. Dobos Emory University School of Medicine, 69 Butler Street SE, Atlanta, Georgia 30303
Sérgio Antônio Draibe • Dialysis Unit, Kidney and Hypertension Hospital, Federal University of São Paulo, São Paulo, Brazil
Julie Louise Gerberding • Division of Healthcare Quality Promotion, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop A07, 1600 Clifton Road NE, Atlanta, Georgia 30333
Dale N. Gerding • Medical Service, VA Chicago Healthcare System—Lakeside Division, and Infectious Disease Section, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
Jeannette Guarner • Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, Georgia 30333
Monto Ho • Division of Clinical Research, National Health Research Institutes, Taipei, Taiwan
Thomas V. Inglesby • Johns Hopkins Center for Civilian Biodefense Studies, 111 Market Place, Suite 850, Baltimore, Maryland 21202-6709
Stuart Johnson • Medical Service, VA Chicago Healthcare System—Lakeside Division, and Infectious Disease Section, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
C. Harold King • Emory University School of Medicine, 69 Butler Street SE, Atlanta, Georgia 30303
Anne M. Kjemtrup • Vector-Borne Disease Section, California Department of Health Services, 601 North 7th Street, MS 486, P.O. Box 942732, Sacramento, California 94234-7320
T. Marrie • Department of Medicine, Walter C. Mackenzie Health Sciences Center, 8440 112th Street, Edmonton, Alberta, Canada
Peter J. McNamara • Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, Wisconsin 53706
J.-L. Mege • Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, CNRS UPRES A 6020, 27, Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
Miguel Cendoroglo Neto • Dialysis Unit, Kidney and Hypertension Hospital, Federal University of Sáo Paulo, Sáo Paulo, Brazil
Michael T. Osterholm • School of Public Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, Minnesota 55455-0381
William A. Petri, Jr. • Departments of Medicine, Pathology, and Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
Richard A. Proctor • Department of Medical Microbiology and Immunology and Department of Medicine, University of Wisconsin Medical School, Madison, Wisconsin 53706
Pratima L. Raghunathan • Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, Georgia 30333
D. Raoult • Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, CNRS UPRES A 6020, 27, Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
Stephanie B. Schwartz • Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop G03, 1600 Clifton Road NE, Atlanta, Georgia 30333
Hiroshi Tachibana • Department of Infectious Diseases, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
Deborah F. Talkington • Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop G03, 1600 Clifton Road NE, Atlanta, Georgia 30333
Mehmet Tanyuksel • Division of Medical Parasitology, Department of Microbiology and Clinical Microbiology, Gulhane Military Medical Academy, Ankara 06018, Turkey
Jordan W. Tappero • Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, Georgia 30333, and The HIV/AIDS Collaboration, DMS 6 Building, Ministry of Public Health, Tivanon Road, Nonthaburi 11000, Thailand
Ken B. Waites • Department of Pathology, University of Alabama at Birmingham, P230 West Pavilion, Birmingham, Alabama 35233
Ellen A. Spotts Whitney • Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, Georgia 30333
FOREWORD

It is becoming as predictable as New Year’s Day: the annual appearance of yet another new human pathogen of public health significance. Sometimes it sneaks up on us with a case here and a case there, as with hantavirus. Sometimes it hits us suddenly and shakes us to the core, insisting on recognition, as with the 1976 outbreak of Legionnaires’ disease. And sometimes it does both, as with AIDS. After AIDS was first recognized as a few cases in 1981, we soon found that hundreds of thousands of Americans were already producing billions of viruses a day. But it was not limited to this country. It was quickly realized that the virus was present in all parts of the world, first at relatively low levels and then with an explosion that shook the very structure of countries and global organizations, including the United Nations.

As organisms struggle daily to find an advantage that improves their chances of immortality, the world tinkers in an uncoordinated fashion with relatively small adjustments. The results are new variations of our antibiotics giving only a short-term advantage. Antimalarial drugs give us hope for another decade of protection. Vaccines are for longer-term or even ultimate protection but are limited to a small percentage of the pathogens inflicting humans. But always we worry about the worst-case scenarios such as human engineering of agents to be used in warfare or terrorism or agents with the destructive power of human immunodeficiency virus that are spread as easily as influenza virus.

What is a logical response? It is finally dawning on us that it must be a response that includes every tool the world can assemble, from a coordinated global surveillance system that ties all current surveillance networks with new systems to fill gaps, to rapid analytical capabilities and a coherent global response capacity. This is not something that can continue to be done on an ad hoc basis, muddling through each new threat.

Will Durant once voiced doubts that the world would ever provide an example of coordination short of a threat of an alien invasion. In recent decades we have seen examples of threats that have served as surrogates for an alien invasion, surrogates because they leave many feeling vulnerable, providing partial examples of what the world might be capable of organizing. Work on reducing the threat of nuclear weapons, the smallpox eradication effort, current efforts to eradicate polio, and efforts to avert global warming come to mind. It is time to see emerging infections as true surrogates for an alien invasion. The response must involve every lesson and tool of the infectious disease community. But it will also require political leadership and the support of national governments, global agencies, social scientists, corporations, nongovernmental organizations, and indeed every segment of society. The AIDS pandemic has finally resulted in the mobilization of the global
community in the interest of global health. This new interest must now be used to provide a generic response to all emerging infections. Our response must be so complete that leaders in 100 years will judge our actions to be exactly what was needed.

William H. Foege
Department of International Health
Rollins School of Public Health
Emory University
Atlanta, Georgia
PREFACE

As a result of improvements in sanitation and overall living conditions during the early part of the 20th century and the subsequent introduction of many vaccines and antibiotics, tremendous progress has been made in the prevention and control of infectious diseases. Globally, smallpox has been eradicated and target dates have been established for the eradication of poliomyelitis and dracunculiasis. Impressive progress toward eradication of both of these diseases has been made, but major challenges remain. In the United States, the annual incidence of several vaccine-preventable diseases is at an all-time low.

In spite of these successes, infectious diseases remain the leading cause of death worldwide. The World Health Organization (WHO) estimated that approximately 14 million (25%) of the 56 million deaths that occurred worldwide in 1999 were caused by microbial agents. In the United States, infectious diseases are the third leading cause of death.

The Institute of Medicine (IOM) published a report entitled "Emerging Infections: Microbial Threats to Health in the United States" in the fall of 1992. This report, developed under the leadership of Joshua Lederberg and Robert Shope, identified the important factors that contribute to disease emergence and reemergence. These factors include changes in human demographics and behaviors, advances in technology and industry, economic development and changes in land use, increases in travel and commerce, microbial adaptation and change, and deterioration in the public health system at the local, state, national, and global levels.

Recognizing the intense interest and scientific and public health importance of new and emerging infectious diseases, the program committee of the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) and the officers of the Infectious Diseases Society of America (IDSA) organized joint sessions during ICAAC and the IDSA annual meeting beginning in 1995. These joint sessions on new and emerging pathogens were immensely popular, attracting audiences in excess of 4,000, and were planned carefully to span the gamut among new and emerging bacteria, viruses, fungi, and parasites with appropriate discussions on national and international strategies for control.

The chapters in Emerging Infections 5 were derived primarily from presentations given at the sessions on new and emerging infections at the 2000 ICAAC and are updated and fully referenced for this volume. These chapters focus on a variety of diseases that pose major clinical and public health challenges today; some have been recognized for a century or more, while others have been identified during the past 25 years. Some are important problems in the United States, while others cause disease primarily in other parts of the world. The epidemiology of each has been influenced by one or more of the factors identified in the IOM report. Because
of the nature of the “global village” in which we live, we cannot afford to be ignorant or complacent about any of them.

Experiences with these diseases should alert physicians, microbiologists, researchers, public health officials, policy makers, and the public to the critical importance of ensuring the availability of the capacity to detect, respond to, and control these infections. The ability to address these emerging and reemerging microbial threats requires adequate surveillance and response capacity, ongoing research and training programs, strengthened prevention and control programs, and rebuilding of the public health system at the local, state, national, and international levels. The challenges that these diseases will continue to pose demand a multidisciplinary approach and a supply of trained clinicians, microbiologists, pathologists, biomedical researchers, rodent and vector biologists, ecologists, behavioral scientists, and public health officials. The challenges also require funds to support the people and facilities needed to meet them. This is especially true in the developing world because poverty and malnutrition make populations especially susceptible to emerging and reemerging infections.

Future challenges are difficult to predict but certainly include more problems with antimicrobial-resistant infections, the threat of another influenza pandemic, and the increasingly complex challenges of food-borne disease resulting from the globalization of the food supply. The global human immunodeficiency virus epidemic will continue to put large numbers of people at risk for currently recognized and new opportunistic infections. The roles of hepatitis B and C viruses in chronic liver disease and hepatocellular carcinoma, human papillomavirus in cervical cancer, and Helicobacter pylori infection in peptic ulcer disease and gastric cancer are now well established. Additional chronic diseases will certainly be found to have an infectious etiology, providing important new opportunities for disease prevention in the future. Food safety and blood safety will continue to be priorities and to pose challenges. Recent events provide a grim reminder of the threat of bioterrorism, further emphasizing the need to strengthen infectious disease surveillance and response capacity. Two chapters in this volume provide a public health perspective on this issue.

Based on the continued importance of new and emerging infectious diseases as defined by the 1992 IOM report, symposia on these topics are planned for future ICAACs. We plan production of an annual volume on new and emerging infections based on the presentations at each year’s ICAAC. This volume, the fifth in the series, should serve as a valuable source of current information for persons responsible for coping with infectious diseases in the new millennium.

W. Michael Scheld
William A. Craig
James M. Hughes
ACKNOWLEDGMENTS

We thank everyone who has helped us in the preparation of this volume. Most importantly, we thank all of the authors for their outstanding contributions. As editors, we are particularly grateful to those members of the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) Program Committee and to Barbara Murray, who assisted us in coordinating topic and speaker selection for and/or moderating the joint symposia on emerging infections during the 2000 ICAAC. Numerous other colleagues provided helpful discussion, advice, and criticism. We are also grateful to our secretaries, Natalie Regensburg, Susan Waisner, and Bridget Kelly. We thank Ken April of ASM Press for coordinating production of the book. And, finally, we thank our families for their understanding and support during this undertaking.
INDEX

Achromobacter, 123
Acid-fast bacilli, M. ulcerans, 141
Acinetobacter, 122–123
Adhesins, M. pneumoniae, 65–67
Aerosol transmission
bacteriotaemia agents, 216–218
Q fever, 31
Age distribution
babesiosis, 186
Buruli ulcer disease, 139
enterovirus 71 infections, 1–10
M. pneumoniae infection, 73
Q fever, 45
AIDS patients
amebiasis, 208
babesiosis, 178, 186, 188
M. pneumoniae infection, 62, 70
Alcaligenes, 122–123
Alpha-toxin, S. aureus small-colony variants, 99–101
Alphavirus, 217
Aluminum, hemodialysis water, 127–128
Amebiasis, 197–212
developing countries, 197, 204–206
diagnosis
antibody in serum, 199, 202–203
antigen in saliva, 199
antigen in serum, 199, 201
antigen in stool, 199–201
cytologic, 198–199
microscopy, 198–199
PCR techniques, 199, 201
riboprinting, 203
stool culture, 199–200
zymodeme analysis for E. histolytica, 199–200
E. histolytica-specific tests, 203–209
epidemiology, 203–209
fecal-oral transmission, 197
industrialized countries, 197, 206–209
laboratory differentiation of E. histolytica from E. dispar, 198–202
strain-specific identification, 203
Amebic liver abscess, 197–212
Aminoglycoside uptake, S. aureus small-colony variants, 103
Animal inoculation, identification of Babesia, 187–188
Animal models
babesiosis, 181
Buruli ulcer disease, 142
Q fever, 33
Anthrax
bacteriotaemia agent, 213, 216–217, 224–228
clinical presentation, 225–226
decontamination following bacteriotaemia attack, 228
diagnosis, 225–226
epidemiology, 224–225
pathogenesis, 225–226
treatment, 225, 227
vaccine, 224–225, 227–228
Antibiotic-resistant Mycoplasma pneumoniae, 63–64
Antigenic variation, M. pneumoniae, 68
Aplastic anemia, M. pneumoniae, 72
Arsenic, hemodialysis water, 127
Arthritis, Borrelia, 154–155
Arthrophy, M. pneumoniae, 70–71
Asthma, M. pneumoniae infection and, 63
Atherosclerosis, M. pneumoniae and, 72
Atovaquone, for babesiosis, 188
Autoimmune reaction, to M. pneumoniae, 61–62, 67–68
Azithromycin, for babesiosis, 188
Babesia
asymptomatic infections, 182–184
life cycle, 176
WA1-type, 176, 179–184, 186
Babesia bigemina, 183–184
Babesia bovis, 176, 183
Babesia caballi, 179
Babesia canis, 176, 179, 183–184
Babesia divergens, 175–176, 178, 182–183, 187
Index

Babesia divergens-like parasites, 184
Babesia equi, 179
Babesia felis, 183
Babesia gibsoni, 179
Babesia microti, 175–183, 185–188
Babesia rodhaini, 183
Babesiosis, 175–195
animal models, 181
clinical presentation, 178
diagnosis, 186–188
in Europe, 176–177
factors responsible for emerging status, 185–186
throughout the world, 184–185
transmission, 178–179
treatment, 188
in United States, 177–179
Bacillus anthracis, see Anthrax
Bairnsdale ulcer, see Buruli ulcer disease
Bioterrorism, 213–234
agent classification, 216–217
agent dissemination, 216–218
anthrax, 223–234
characteristics of ideal agent, 216
definition, 213
elements necessary for bioterrorism event, 214–218
historical perspective, 214
plague, 223–234
potential agents, 215–216
potential perpetrators, 215
preparedness and response planning activities, 219–221
Birds
C. burnetii, 44
West Nile virus, 11–28
avian surveillance, 23
geographic spread, 24–25
Borrelia, 153–173
complement susceptibility, 165–166
erythema migrans in southern United States, 158–165, 167
new species, 155–158
vertebrate host range, 165–166
Borrelia afzelii, 156–158, 166
Borrelia andersonii, 155–156
Borrelia anserina, 153, 156, 164
Borrelia bissettii, 155–159
Borrelia burgdorferi, 154–156, 158–167, 178
Borrelia crocidurae, 156, 164, 165
Borrelia duttonii, 153
Borrelia garinii, 156–158, 161, 166
Borrelia hermsii, 153–156
Borrelia hispanica, 165
Borrelia japonica, 155–158
Borrelia lonestari, 155–156, 162–165, 167–168
Borrelia lusitaniae, 155–157
Borrelia miyamotoi, 155–156, 163–164, 167–168
Borrelia persica, 156, 165
Borrelia recurrentis, 153, 156
Borrelia turicatae, 153, 156, 165
Borrelia valaisiana, 155–157, 166
Botulism, 216–217
Bronchiolitis, M. pneumoniae, 62–64
Brucella, 217
Brucella abortus, 96
BUD, see Buruli ulcer disease
Burkholderia cepacia, 122–123, 131–132
Burkholderia mallei, 217
Buruli ulcer disease (BUD), 137–152, see also Mycobacterium ulcerans
animal models, 142
clinical presentation, 141–142
diagnostic methods, 142–146, 149
culture of M. ulcerans, 143–144
histopathology, 144–145
humoral immune response, 145–146
PCR-based, 145
proteomics in development, 146–148
skin testing, 145–146
Ziehl-Neelsen staining of acid-fast bacilli, 142
epidemiology, 138–140
pathogenesis, 141
prevention, 148
surveillance, 140–141, 149
treatment, 138, 148–149
vaccine, 148
Burulin skin test, 145–146
Cadmium, hemodialysis water, 127
Calcium, hemodialysis water, 126–127
Carditis, Borrelia, 154–155
Carotenoids, S. aureus small-colony variants, 103
Case definition, West Nile virus infection, 19
Case-fatality ratio
tehraviruses 71 infection, 5–6
West Nile virus infection, 11
CDAD, see Clostridium difficile-associated diarrhea
Central nervous system disease
tehraviruses 71, 1–9
M. pneumoniae, 69–70
Cephalosporins, *C. difficile*-associated diarrhea and, 115
Cheese, *C. burnetii*, 44–45
Chloramphenicol, for plague, 232
Chloroquine, for Q fever, 48
Clindamycin, for babesiosis, 188
Clindamycin-resistant *Clostridium difficile*, see *Clostridium difficile*, clindamycin-resistant
Clostridium difficile
clindamycin-resistant, 111–120
clinical importance of clindamycin use and, 115–116
fecal clindamycin concentration and, 114–115
historical aspects, 111–113
nosocomial infections, 116–118
in 1990s, 113
transferability and linkage of resistance, 113–114
erythromycin-resistant, 113–114, 118
streptogramin-resistant, 114, 118
Clostridium difficile-associated diarrhea (CDAD), 111–118
role of antibiotics, 115
Clostridium perfringens, 217
Community-onset *Staphylococcus aureus* infection, 85–93
Complement fixation test, *M. pneumoniae*, 60
Complement susceptibility, *Borrelia*, 165–166
Co-trimoxazole, for Q fever, 49
Coxiella burnetii, see also *Q* fever
bioterrorism agent, 217
culture, 43
phase variation, 32, 34
Coxsackievirus
A16, 6, 9
B5, 8
serotypes and major diseases, 2
Cryptococidium cohnii, 183
Cryptosporidium parvum, 217
Cyanobacteria, hemodialysis water, 129, 132
Cytadherence, *M. pneumoniae*, 65–66
Cytauxzoon felis, 183
Cytotoxic effects
M. pneumoniae, 66–67
M. ulcerans, 141
Dapsone, for Buruli ulcer disease, 148
Day care center, reservoir for oxacillin-resistant *S. aureus*, 89
Decontamination procedures, after anthrax release, 228
Degenerative evolution, 59
Diarrhea, *C. difficile*-associated, 111–118
Doxycycline
for babesiosis, 188
for plague, 232
for *Q* fever, 48–49
Ear complications, *M. pneumoniae*, 72
Eaton agent, 59
Ebola virus, 217
Echovirus, 2
Electron transport defects, *S. aureus* small-colony variants, 95–110
ELISA
amebiasis, 199–202
anthrax, 226
Babesia, 187
IgM-capture, *West Nile virus*, 25–26
plague, 231
Encephalitis
enterovirus 71, 1–9
M. pneumoniae, 69–70
viral
surveillance in New York City, 14, 19–21
unusual cluster of cases, 14–16
Endocarditis, *Q* fever, 29, 32–33, 35–36, 39–42, 48–49
Endotoxin, hemodialysis water, 124, 130, 132
Entamoeba dispar, 198–203
Entamoeba histolytica, 197–212, see also Amebiasis
laboratory differentiation from *E. dispar*, 198–202
zymodeme analysis, 199–200
Enterotoxin B, *Staphylococcus*, 217
Enterovirus, serotypes and major diseases, 2
Enterovirus 71 (*EV* 71) infection, 1–10
case-fatality ratio, 5–6
clinical complications, 1–9
molecular epidemiology, 7–8
other enteroviruses cocirculating with, 6–8
outbreaks, 3
Taiwanese epidemic, 1998, 3–7
Taiwanese outbreak, 2000, 8–9
Epidemiology
amebiasis, 203–209
anthrax, 224–225
Buruli ulcer disease, 138–140
enterovirus 71 infection, 7–8
M. pneumoniae infection, 72–74
plague, 225, 229–230
Q fever, 43–48
West *Nile virus* infection, 21–22
Epsyn toxin, *C. perfringens*, 217
Erythema migrans, 154
northeastern United States, 167
southern United States, 158–165, 167
E. coli, 96
E. coli O157:H7, 217
EV 71 infection, see Enterovirus 71 infection
Evolution, degenerative, 59
Exotoxin, hemodialysis water, 123
Eye complications, M. pneumoniae, 72
Feces, clindamycin concentration, 114–115
Fever, isolated, Q fever, 37–38
Flavivirus, serologic cross-reactivity, 26
Flavobacterium, 122–123
Flea-borne disease, plague, 229–230
Fluoride, hemodialysis water, 126–127
Fluroquinolones, for plague, 232
Francisella tularensis, 216–217
Geographic distribution
Buruli ulcer disease, 138–140
Q fever, 45–48
Global Buruli Ulcer Initiative (WHO), 138, 149
Gram-negative bacteria, hemodialysis water, 129, 131–132
Guillain-Barré syndrome, M. pneumoniae, 69–70
Hand-foot-and-mouth disease, enterovirus 71, 1–9
Hantavirus, 217
Hazardous material model, 220
Heart disease, hemodialysis patients, 128
Hemin, defects in S. aureus small-colony variants, 95–110
Hemodialysis
using poor-quality water
consequences of chemical contamination, 126–128
consequences of microbial contamination, 128–132
water treatment station, 123–126, 129, 131
water-transmissible disease, 121–135
Hemolytic anemia, M. pneumoniae, 72
Hepatitis
M. pneumoniae, 72
Q fever, 37–38, 42
Herpangina, enterovirus 71, 1–9
Homosexuals, amebiasis, 206, 208
Horses, West Nile virus, 24
Host range, Borrelia, 165–166
Hydrogen peroxide production, M. pneumoniae, 66
IFAT test, Babesia, 187
Immunocompromised patients
babesiosis, 186
Q fever, 39
Immunohistochemistry, C. burnetii, 43
Immunologic response, Q fever, 34–36
Indirect hemagglutination test, amebiasis, 202–203
Inflammatory response
to hemodialysis with poor-quality water, 128
to M. pneumoniae, 62, 67
Ingestion, of bioterrorism agent, 218
Insect vector, Buruli ulcer disease, 140
Institutionalized individuals, amebiasis, 207–208
Iron, hemodialysis water, 127
Japanese encephalitis virus serocomplex, 11–12
Junin virus, 217
Kidney disease
M. pneumoniae, 70
water-transmissible diseases and hemodialysis, 121–135
Lactobacillus acidophilus, 96
Lactoferrin acquisition, M. pneumoniae, 66–67
Lassa virus, 217
Latex agglutination test, amebiasis, 202
Lipopolysaccharide, hemodialysis water, 123
Liver abscess, amebic, 197–212
Livestock, C. burnetii, 43–44
Lizard blood, bactericidal activity, 166
Lyme disease-like illness, 153–173
Magnesium, hemodialysis water, 126–127
Malaria, atypical, 185
Maltese cross form, Babesia, 176, 179, 187
Marburg virus, 217
Meat packing workers, Q fever, 31
mecA gene, 90
Menadione, defects in S. aureus small-colony variants, 95–110
Meningitis
Borrelia, 155
enterovirus 71, 1–9
M. pneumoniae, 69–70
Q fever, 38
viral, surveillance in New York City, 14, 19–21
Meningoencephalitis
M. pneumoniae, 69–70
Q fever, 38
West Nile virus, 11–28
Methicillin-resistant *Staphylococcus aureus*, see *Staphylococcus aureus*, oxacillin-resistant

Microcystsins, hemodialysis water, 123, 128–129

Microimmunofluorescence test, Q fever, 42–43

Military personnel

M. pneumoniae infection, 74

Q fever, 31

Milk, raw, *C. burnetii*, 29, 44–45

Mosquito

surveillance and control in New York City before 1999, 12–13
during and after 1999, 17

transmission of West Nile virus, 11–28

Mucocutaneous syndromes, *M. pneumoniae*, 71

Muramylpeptides, hemodialysis water, 123

Mycobacteria, hemodialysis water, 123, 129–130

Mycobacterium avium, 123

Mycobacterium chelonae, 123, 130, 132

Mycobacterium fortuitum, 123

Mycobacterium gordonae, 123

Mycobacterium intracellulare, 123

Mycobacterium kansasi, 123

Mycobacterium scrofulaceum, 123

Mycobacterium tuberculosis, 217

Mycobacterium ulcerans, 137–152, see also Buruli ulcer disease

culture, 143–144

laboratory diagnosis, 142–146

reservoir, 149

Mycolactone, 141

Mycoplasma

culture, 64

genome, 59

Mycoplasma buccale, 58

Mycoplasma faecium, 58

Mycoplasma fermentans, 58

Mycoplasma genitalium, 58–59, 66

Mycoplasma hominis, 58, 64

Mycoplasma lipophilum, 58

Mycoplasma mycoides, 58

Mycoplasma orale, 58, 60

Mycoplasma penetrans, 58

Mycoplasma pipientis, 58

Mycoplasma pneumoniae

antibiotic resistance, 63–64

culture, 64

Mycoplasma pneumoniae infection, 57–84

background, 58–61
diagnosis, 60, 64
epidemiology, 72–74

age distribution, 73

epidemics in closed/semiclosed settings, 73–74

seasonality, 73

transmission, 73

extrapulmonary, 61, 68–72

arthropathies, 70–71
cardiac complications, 71
dermatologic complications, 71

hematopoietic complications, 72

neurologic complications, 69–70

renal complications, 70

pathophysiology

antigenic variation, 68
cytadherence, 65–66
cytotoxicity, 66–67

inflammatory effects, 62, 67

intracellular location, 68

molecular mimicry and autoimmunity, 61–62, 67–68

respiratory tract, 61–64

antibiotic therapy, 63–64

asthma and, 63

clinical presentation, 61–63

Mycoplasma primatum, 58

Mycoplasma salivarium, 58, 60

Mycoplasma spermophilum, 58

Myocarditis

M. pneumoniae, 71

Q fever, 36, 38

Nantucket fever, see Babesiosis

Neisseria gonorrhoeae, 96

Nephritis, *M. pneumoniae*, 70

New York City, West Nile virus infection, 11–28

Nipah virus, 217

Nitrites, hemodialysis water, 127

Nosocomial infection

clindamycin-resistant *C. difficile*, 116–118

oxacillin-resistant *S. aureus*, 87

Osteomyelitis, Q fever, 42

Oxacillin-resistant *Staphylococcus aureus*, see *Staphylococcus aureus*, oxacillin-resistant

Pair formation, *Babesia*, 176

Pancreatitis, *M. pneumoniae*, 72

Paralysis, flaccid, enterovirus 71 infection, 1–9

PCR diagnostic methods

amebiasis, 199, 201

anthrax, 226

Babesia, 188

Buruli ulcer disease, 145

M. pneumoniae, 64
plague, 231
Q fever, 43
Penicillin-resistant Staphylococcus aureus, 85–86
Peptidoglycans, hemodialysis water, 123
Pericardial effusion, M. pneumoniae, 71
Pericarditis
M. pneumoniae, 71
Q fever, 36, 38
Peripheral neuropathy, Q fever, 38
Pets, C. burnetii, 29, 44
Phase variation, C. burnetii, 32, 34
Physician education, West Nile virus outbreak, 18
Physician reporting, West Nile virus infection, 14–16, 25–26
Piroplasms, 175–195
Plague
bioterrorism agent, 216–217, 221, 229–232
clinical presentation, 225, 229–231
diagnosis, 225, 231
epidemiology, 225, 229–230
infection control, 232
treatment, 225, 231–232
Plasmodium, 187
Plasmodium falciparum, 183
“Pleuropneumonia-like organisms,” 58
Pneumonia
M. pneumoniae, 61–64
Q fever, 37–38
Pneumonic plague, 225–232
Polyivirus, 2
Polyradiculitis, M. pneumoniae, 69–70
Post-Q fever fatigue syndrome, 32, 39
Potassium, hemodialysis water, 126
Prednisone, for Q fever, 49
Pregnancy, Q fever in, 29, 36–37, 39, 48–50
Proteomics, development of assay for Buruli ulcer disease, 146–148
Pseudomembranous colitis, 111
Pseudomonas, 122–123
Pseudomonas aeruginosa, 96, 123
Psychosis, M. pneumoniae-related, 69–70
Public health system, response to West Nile virus outbreak, 11–28
communication with medical community, 18
media blitz, 18
mosquito control, 17
public education, 17–18
Pulmonary edema, enterovirus 71, 1–9
Pyrogenic reactions, hemodialysis patients, 131–132
Q fever, 29–56
acute, 29, 31–32, 35, 37–40, 49–50
aerosol transmission, 44
age and sex distribution, 45
animal models, 33
chronic, 30–31, 33, 39–42, 49–50
clinical presentation, 36–42
diagnosis, 42–43
epidemiology, 43–48
geographical repartition, 45–48
historical aspects, 30–32
host-bacterium relationships, 34–36
immunologic response, 34–36
physiopathology, 32–34
post-Q fever fatigue syndrome, 32, 39
in pregnancy, 29, 36–37, 39, 48–50
reservoirs, 31, 43–44
transmission, 29, 31
for Q fever, 49
Rifampin
for Buruli ulcer disease, 148
for Q fever, 49
Salmonella, 217
Salmonella enterica, 96–97, 218
SCCmec, see Staphylococcal cassette chromosome mec
Searles’ ulcer, see Buruli ulcer disease
Seasonality, M. pneumoniae infection, 73
Serratia marcescens, 96
Sex distribution, Q fever, 45
Shell vial assay, C. burnetii, 43
Shigella, 96–97
Shigella dysenteriae, 217–218
Skin disease
Buruli ulcer disease, 137–152
M. pneumoniae, 71
Skin test
Buruli ulcer disease, 145–146
tuberculosis, 145
Small-colony variants
recovered from patients, 96–99
S. aureus, 95–110
detection, 99–100
electron transport defects, 95–110
mechanisms for phenotypic changes, 103–104
metabolic basis, 100
persistence, 99–100
reduced alpha-toxin production, 100–103
sample cases of infection, 96
Smallpox virus, 214, 216–217
Sodium, hemodialysis water, 126
Spirochetes, 153–173
Splenectomized patients, babesiosis, 176, 178
Staphylococcal cassette chromosome mec (SCCmec), 90–91

Staphylococcus aureus

infection in hemodialysis patients, 121, 129–130
methicillin-resistant, see *Staphylococcus aureus*, oxacillin-resistant
oxacillin-resistant, 85–93
community-onset infections, 85–93
emergence and spread, 86–89
nosocomial infections, 87
penicillin-resistant, 85–86
small-colony variants, 95–110
detection, 99–100
electron transport defects, 95–110
mechanisms for phenotypic changes, 103–104
metabolic basis, 100
persistence, 99–100
reduced alpha-toxin production, 100–103
sample cases of infection, 96
vancomycin-resistant, 91

Staphylococcus epidermidis, 96–100

Stenotrophomonas maltophilia, 122–123, 131

Stevens-Johnson syndrome, *M. pneumoniae*, 71

Streptococcus pneumoniae, 71

Streptococcus pneumoniae, 71

Streptogramin-resistant *Clostridium difficile*, 114, 118

Sulfate, hemodialysis water, 127

Superoxide anion production, *M. pneumoniae*, 66

Swamps, *M. ulcerans*, 139–140

Taiwan

enterovirus 71 epidemic, 1998, 3–7
enterovirus 71 outbreak, 2000, 8–9

Terrorism, 213

Tetracycline, for plague, 232

Tetrad form, *Babesia*, 176, 179, 187

Theileria, 182–183

Thrombotic thrombocytopenic purpura, *M. pneumoniae*, 72

Tick-borne disease

babesiosis, 175–195
bioterrorism agents, 217

Borreliia infections, 153–173
C. burnetii infection, 44

TOPOFF drill (May 2000), 221

Toxoplasma gondii, 183

Tracheobronchitis, *M. pneumoniae*, 62–64

Transfusion-transmitted disease, babesiosis, 178–180

Transplacental transmission, babesiosis, 179

Travel, international, 208–209

Tuberculin skin test, 145

Tularemia, 216–217

Ulcer, skin, see Buruli ulcer disease

Ultrafiltration, treatment of hemodialysis water, 124–125

UV radiation, treatment of hemodialysis water, 124–125

Vaccine

anthrax, 224–225, 227–228
Buruli ulcer disease, 148

Q fever, 50

Vancomycin-resistant *Staphylococcus aureus*, 91

Vascular infection, *Q. pyrogenes*, 41–42

Vibrio cholerae, 217

Viral hemorrhagic fever, 216

WA1-type babesial parasite, 176, 179–184, 186

Water distribution and delivery system, hemodialysis facility, 124, 130

Water storage, hemodialysis facility, 124–125, 130

Water treatment station, hemodialysis facility, 123–126, 129, 131

Waterborne disease

Buruli ulcer disease, 139–140
hemodialysis and, 121–135

West Nile virus infection, 11–28

avian surveillance, 23
clinical presentation, 14–16
epidemiology during 1999 outbreak, 21–22
future surveillance in United States, 25
laboratory testing, 25–26
mosquito surveillance, 22–23

New York City, 11–28

outbreak in 2000, 24–25
outbreak investigation, 16

public health response

communication with medical community, 18
media blitz, 18
mosquito control, 17
public education, 17–18
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>seroprevalence survey in New York City, 1999, 23–24</td>
</tr>
<tr>
<td>simultaneous bird die-off, 18–19</td>
</tr>
<tr>
<td>surveillance during 1999 outbreak, 19–21</td>
</tr>
<tr>
<td>active surveillance, 20</td>
</tr>
<tr>
<td>enhanced passive surveillance, 19–20</td>
</tr>
<tr>
<td>evaluation, 22</td>
</tr>
<tr>
<td>laboratory and retrospective surveillance, 20–21</td>
</tr>
<tr>
<td>surveillance during winter 1999–2000, 24</td>
</tr>
<tr>
<td>Yellow fever virus, 217</td>
</tr>
<tr>
<td>Yersinia pestis, see Plague</td>
</tr>
<tr>
<td>Ziehl-Neelsen stain, M. ulcerans, 142</td>
</tr>
<tr>
<td>Zinc, hemodialysis water, 127</td>
</tr>
</tbody>
</table>