Rapid Detection,
Characterization, and
Enumeration of
Foodborne
Pathogens
CONTENTS

Contributors / ix
Preface / xix
Acknowledgments / xxi

1. The Public Health, Industrial, and Global Significance of Rapid Microbiological Food Testing 1
J. Hoorfar, S. Cahill, R. Clarke, G. C. Barker, A. Fazil, D. L. F. Wong, and P. C. H. Feng

I. ACCELERATED GENERIC TECHNIQUES

2. Strengths and Shortcomings of Advanced Detection Technologies 15

3. Chromogenic and Accelerated Cultural Methods 47
L. D. Goodridge and B. Bisha

4. Automated and Large-Scale Characterization of Microbial Communities in Food Production 63
E. Reynisson, K. Rudi, V. Þ. Marteinsson, J. Nakayama, N. Sakamoto, A. Rasooly, and J. Hoorfar

5. Fast and High-Throughput Molecular Typing Methods 81
P. I. Fields, C. Fitzgerald, and J. R. McQuiston

II. CRITICAL CONSIDERATIONS BEFORE SETTING UP RAPID METHODS

6. Sampling, Transport, and Sample Preparation in Emergency Situations and Rapid Response 95
S. O’Brien, P. Whyte, C. Iversen, and S. Fanning
CONTENTS

7. Statistics of Sampling for Microbiological Testing of Foodborne Pathogens 103
 T. Ross, P. M. Fratamico, L. Jaykus, and M. H. Zwietering

8. Preanalytical Sample Preparation and Analyte Extraction 121
 P. Rossmannith, J. Hedman, P. Rådström, J. Hoorfar, and M. Wagner

9. Criteria for Choosing the Right Rapid Method 137
 H. Joosten and J. Marugg

10. Your Results Are Your Controls: Inclusion of Critical Test Controls 145
 C. Löfström and J. Hoorfar

11. International Validation, Ring Trial, and Standardization of Rapid Methods 157
 S. Qvist

12. Statistical Data Analysis of Results Based on Alternative Detection and Enumeration Methods 163
 M. Greiner, H. Vigre, and I. Gardner

III. MEAT PRODUCTION CHAIN

13. Salmonella in Pork, Beef, Poultry, and Egg 179
 B. Malorny, A. Blumia, H. J. M. Aarts, C. Löfström, and J. Hoorfar

14. Yersinia enterocolitica in Pork 195
 M. Fredriksson-Ahomaa, T. Nesbakken, M. Skurnik, S. Thisted Lambertz,
 J. S. Dickson, J. Hoorfar, and H. Korkeala

15. Campylobacter in Poultry, Pork, and Beef 209
 M. H. Josefsen, C. Carroll, K. Rudi, E. Olsson Engvall, and J. Hoorfar

16. Shiga Toxin-Producing Escherichia coli in Food 229
 R. Stephan, C. Zweifel, P. Fach, S. Morabito, and L. Beutin

17. Rapid Screening of Animal Feeds for Mycotoxins and Salmonella Contaminations 241
 C. Wolf-Hall, H. Zhao, P. Hägghblom, and J. Hoorfar

IV. DAIRY PRODUCTION CHAIN

18. Listeria monocytogenes in Milk, Cheese, and the Dairy Environment 257
 A. D. Hitchins, K. N. Jordan, M. Sanaa, and M. Wagner

19. Bacillus cereus in Milk and Dairy Production 275
 M. Ehling-Schulz, U. Messelhäusser, and P. E. Granum

20. Staphylococcus aureus in the Dairy Chain 291
 B. Stessl, I. Hein, M. Wagner, and M. Ehling-Schulz

21. Cronobacter Species in Powdered Infant Formula 307
 K. N. Jordan and S. Fanning
V. FRESH PRODUCE, SEAFOOD, AND WATER

22. Pathogen Testing in Fresh Produce and Irrigation Water 321
 C. H. Rambo and S. D. Pillai

 A. Bosch, S. Bidawid, F. S. Le Guyader, D. Lees, and L. Jaykus

24. Protozoan Parasites: Cryptosporidium, Giardia, Cyclospora, and Toxoplasma 349

VI. FOOD SERVICE AND CATERING

25. Practical Sampling Plans, Indicator Microorganisms, and Interpretation of Test Results from Trouble-Shooting 373
 J. L. Kornacki

26. Clostridium perfringens in Food Service 381
 R. G. Labbé and K. Grant

27. Hepatitis A Virus in Ready-To-Eat Foods 393
 D. H. D’Souza, K. E. Kniel, and L. Jaykus

VII. CONCLUSIONS

28. Future Trends in Rapid Methods: Where Is the Field Moving, and What Should We Focus On? 413
 J. Hoorfar, B. B. Christensen, F. Pagotto, K. Rudi, A. Bhunia, and M. Griffiths

Index 421
CONTRIBUTORS

H. J. M. Aarts
Laboratory for Zoonoses and Environmental Microbiology (LZO), National Institute for Public Health (RIVM), Centre for Infectious Disease Control, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands

G. C. Barker
Food Research Institute, Norwich Research Park, Colney, Norwich, NR4 7UA, United Kingdom

L. Beutin
National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR), Diederstorfer Weg 1, D-12277 Berlin, Germany

A. K. Bhunia
Department of Food Sciences, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907

S. Bidawid
Microbiology Research Division, Health Canada, Food Directorate, Bureau of Microbial Hazards, Sir F.G. Banting Research Centre, Tunney’s Pasture, Ottawa, Ontario, Canada K1A 0K9

B. Bisha
Department of Animal Sciences, Center for Meat Safety and Quality, Colorado State University, Fort Collins, CO 80523

A. Bosch
Virus Entèrics, Department of Microbiology, University of Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
CONTRIBUTORS

S. Cahill
Nutrition and Consumer Protection Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00183 Rome, Italy

C. Carroll
School of Natural Sciences, National University of Ireland, Galway, University Road, Galway City, Ireland

M. Carter
Silliker Inc., 160 Armory Drive, South Holland, IL 6047

B. B. Christensen
National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark

L. S. Christensen
Danish National Food Institute, Division of Microbiology and Risk Assessment, Technical University of Denmark, Mørkhøj Bygade 28, Building H, 2860 Søborg, Denmark

R. Clarke
Nutrition and Consumer Protection Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00183 Rome, Italy

J. S. Dickson
Department of Animal Science, Inter-Department Program in Microbiology, 215F Meat Laboratory, Iowa State University, Ames, IA 50011

B. R. Dixon
Health Canada, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Ottawa, ON, K1A 0K9, Canada

D. H. D’Souza
Department of Food Science and Technology, University of Tennessee-Knoxville, 2605 River Drive, Room 102 FSPB, Knoxville, TN 37996-4591

J. P. Dubey
U.S. Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705

M. Ehling-Schulz
Food Microbiology Unit, Clinic of Ruminants, Department for Farm Animals and Veterinary Public Health, Veterinaerplatz 1, A-1210 Vienna, Austria
P. Fach
AFSSA (French Food Safety Agency), Laboratory for Study and Research on Food Quality and Processes (LERQAP), 23 Av. du Général De Gaulle, Fr-94706 Maisons-Alfort, France

S. Fanning
WHO–Collaborating Centre for Research, Reference & Training on Cronobacter, Centre for Food Safety, UCD Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland

R. Fayer
U.S. Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Environmental Microbial and Food Safety Laboratory, Beltsville, MD 20705

A. Fazil
Public Health Agency of Canada, 160 Research Lane, Unit 206, Guelph, Ontario, N1G 5B2, Canada

P. C. H. Feng
U.S. Food & Drug Administration, HFS-711, 5100 Paint Branch Parkway, College Park, MD 20740

P. I. Fields
Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop C03, Atlanta, GA 30333

C. Fitzgerald
Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop C03, Atlanta, GA 30333

P. Fratamico
U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA 19038

M. Fredriksson-Ahomaa
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P.O. Box 66, FI-00014 University of Helsinki, Finland

I. Gardner
Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616

L. D. Goodridge
Department of Animal Sciences, Center for Meat Safety and Quality, Colorado State University, Fort Collins, CO 80523
K. Grant
Health Protection Agency, Centre for Infections, London, NW9 5HT, United Kingdom

P. E. Granum
Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, N-0033 Oslo, Norway

M. Greiner
Federal Institute for Risk Assessment, Scientific Services, Epidemiology, Biostatistics and Mathematical Modelling, D-14195 Berlin, Germany

M. Griffiths
Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada, N1G 2W1

P. Håggblom
Department of Chemistry, Environment and Animal Feed, National Veterinary Institute, SE-75189 Uppsala, Sweden

J. Hedman
Department of Biology, Swedish National Laboratory of Forensic Science (SKL), SE-581 94 Linköping, Sweden

I. Hein
Institute of Milk Hygiene, Milk Technology and Food Safety, Department for Farm Animals and Veterinary Public Health, Veterinaerplatz 1, A-1210 Vienna, Austria

D. E. Hill
U.S. Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Environmental Microbial and Food Safety Laboratory, Beltsville, MD 20705

A. D. Hitchins
U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5100 Paint Branch Parkway, College Park, MD 20740-3835

J. Hoorfar
National Food Institute, Technical University of Denmark, Mørkøj Bygade 19, DK-2860 Søborg, Denmark

C. Iversen
Centres for Food Safety & Foodborne Zoonomics, UCD Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
L. Jaykus
Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624

H. Joosten
Nestlé Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland

K. N. Jordan
Teagasc, Moorepark Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland

M. H. Josefsen
National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark

K. E. Kniel
Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716

H. Korkeala
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, FI-00014 University of Helsinki, Finland

J. L. Kornacki
Kornacki Microbiology Solutions, Inc., P.O. Box 163, McFarland, WI 53558

R. G. Labbé
Department of Food Science, University of Massachusetts, Amherst, MA 01003

F. S. Le Guyader
Laboratoire de Microbiologie-LNR, Departement EMP, IFREMER, 1 rue de l’Ile d’Yeu, BP 21105, 44311 Nantes cedex 03, France

D. Lees
European Community Reference Laboratory, CEFAS Laboratory, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom

C. Löfström
National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark

B. Malorny
Federal Institute for Risk Assessment, National Reference Laboratory for Salmonella, Diedersdorfer Weg 1, D-12277 Berlin, Germany
V. P. Marteinsson
Matis—Icelandic Food Research and BioTech R&D, Vínlandsleið 12, 113 Reykjavík, Iceland

J. Marugg
Nestlé Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland

J. McQuiston
Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop C03, Atlanta, GA 30333

U. Messelhäuser
Bavarian Health and Food Safety Authority, Veterinärstr. 2, D-85764 Oberschleißheim, Germany

S. Morabito
Food-Borne Zoonoses Unit, Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy

J. Nakayama
Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, 6-10-1 Hakozaki Higashi-ku, Fukuoka, Japan 812-8581

T. Nesbakken
Norwegian School of Veterinary Science, Dept. of Food Safety and Infection Biology, P.O. Box 8146 Dep., 0033 Oslo, Norway

S. O’Brien
Centres for Food Safety & Foodborne Zoonomics, UCD Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland

R. O’Kennedy
School of Biotechnology, Dublin City University, Dublin 9, Ireland

E. Olsson Engvall
National Veterinary Institute, SE-751 89 Uppsala, Sweden

F. Pagotto
Bureau of Microbial Hazards Health Products and Food Branch, P/L 2204E Room E412, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada

S. D. Pillai
Food Safety and Environmental Microbiology Program, Texas A&M University, Room 418B Kleberg Center, MS 2472, College Station, TX 77843-2472
S. Qvist
NordVal, c/o National Veterinary Institute, P.O. Box 750, Sentrum N-0106, Oslo, Norway

P. Rådström
Department of Applied Microbiology, Lund University, Veterinärplatz 1, SE-221 00 Lund, Sweden

C. H. Rambo
Food Safety and Environmental Microbiology Program, Texas A&M University, Room 418B Kleberg Center, MS 2472, College Station, TX 77843-2472

A. Rasooly
Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, and Cancer Diagnosis Program, National Cancer Institute, 6130 Executive Blvd., Rockville, MD 20852

E. Reynisson
Matis—Icelandic Food Research and Biotech R&D, Vílingsleið 12, 113 Reykjavík, Iceland

T. Ross
Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart 7001, Tasmania, Australia

P. Rossmanith
Christian Doppler Laboratory for Molecular Food Analytics, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria

K. Rudi
Norwegian University of Life Sciences, P.O. Box 5003, No-1432 Ås, and Hedmark University College, 2318 Hamar, Norway

N. Sakamoto
Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, 6-10-1 Hakozaki Higashi-ku, Fukuoka, Japan, 812-8581

M. Sanaa
Agence Française de Sécurité Sanitaire des Aliments, Directorate of Risk Assessment, 27-31, avenue du Général Leclerc, BP 19-94701 Maisons-Alfort Cédex, France

M. Santín
U.S. Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Environmental Microbial and Food Safety Laboratory, Beltsville, MD 20705
M. Skurnik
Haartman Institute, Department of Bacteriology and Immunology, P.O.
Box 21, FI-00014 University of Helsinki, Finland

R. Stephan
Institute for Food Safety and Hygiene, University of Zurich,
Winterthurerstrasse 272, CH-8057 Zurich, Switzerland

B. Stessl
Institute of Milk Hygiene, Milk Technology and Food Safety,
Department for Farm Animals and Veterinary Public Health,
Veterinaerplatz 1, A-1210 Vienna, Austria

S. Thisted Lambertz
National Food Administration, P.O. Box 622, SE-75126 Uppsala,
Sweden

H. Vigre
Department of Microbiology and Risk Assessment, National Food
Institute, Technical University of Denmark, DK-2860 Søborg, Denmark

M. Wagner
Institute of Milk Hygiene, Milk Technology and Food Science,
Department of Veterinary Public Health and Food Science, University of
Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria

P. Whyte
Centres for Food Safety & Foodborne Zoonomics, UCD Veterinary
Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland

C. Wolf-Hall
Department of Veterinary and Microbiological Sciences, Great Plains
Institute of Food Safety, 1523 Centennial Blvd., P.O. Box 6050-Dept.
7690, North Dakota State University, Fargo, ND 58108

D. L. F. Wong
Food Safety, Zoonoses and Foodborne Diseases (FOS), Sustainable
Development and Healthy Environments (SDE), World Health
Organization, 20 Avenue Appia, CH-1211 Geneva 27, Switzerland

H. Zhao
Great Plains Institute of Food Safety, 1523 Centennial Blvd., P.O. Box
6050-Dept. 7690, North Dakota State University, Fargo, ND 58108
C. Zweifel
Institute for Food Safety and Hygiene, University of Zurich,
Winterthurerstrasse 272, CH-8057 Zurich, Switzerland

M. H. Zwietering
Laboratory of Food Microbiology, Agrotechnology & Food Sciences
Group, Wageningen Agricultural University, Postbus 8129, 6700EV,
Wageningen, The Netherlands
PREFACE

The current increase in public attention to food safety, especially foodborne microbes, has increased research into new, rapid methods of detection of foodborne pathogens. Faster and better detection and characterization of pathogens are the cornerstones of the fight against foodborne pathogens.

The food industry and control authorities are putting substantial efforts into testing in order to ensure and document safer foods, prevent product recalls, and limit economic losses. But how are the current rapid methods validated, what is the cost-benefit of using rapid methods, and which rapid method is the appropriate one to choose? These are some of the questions that this book attempts to answer.

A group of 85 experts from 50 research centers provides readers with the latest developments in this field. One of the book’s unique aspects is that it focuses on commodities rather than pathogens. Thus, it is organized according to food production lines rather than types of pathogens. For each production line, rapid methods are described for a number of important target pathogens.

Another unique aspect of the book is the presentation of open-formula, noncommercial protocols. There are many commercial kits available, and new ones are frequently introduced while others are withdrawn. Some kits are better validated than others, and some perform better on certain types of samples. It is not the intention of this book to promote specific commercial kits, but rather to discuss the scientific basis for new methods. For this reason, and to avoid bias toward certain products, we have done our best to limit mention of commercial kits.

The book is organized into seven sections and contains a total of 28 chapters. Section I is a state-of-the-art review of the latest laboratory technologies that can accelerate test results. Section II, entitled “Critical Considerations before Setting Up Rapid Methods,” serves as an introduction to the field of rapid methods and provides an overview of the critical issues.

Section III deals with the sample types, testing considerations, and main foodborne pathogens in the meat production chain. In Section IV, the latest
rapid methods concerned with the dairy production chain are reviewed, along with practical implications for sampling schemes and pathogens of concern to the public health. Section V provides the reader with the latest developments in the testing of fresh produce, water, and seafood, which is considered as an emerging public health issue due to the increasing international trade of fresh produce.

In the sixth section, the latest testing issues in the food service and catering industry are discussed and guidelines for rapid testing are given. In the last section, “Conclusions,” the final chapter of this book looks to the future of rapid methods by explaining research needs and discussing emerging areas.

I hope those readers who work in the food industry and end-use laboratories will find these protocols useful and implement them for actual testing. For those scientists developing new methods and adopting new protocols, the discussions especially in Section II will be helpful with the less elucidated aspects, such as statistics, sampling plans, validation, and so on. For those students who are involved in test development both at the undergraduate and postgraduate levels, this book will help them to understand important aspects of laboratory work. Finally, by consulting this book, quality control managers will become more familiar with the principles of testing when they are deciding to use a new test or detecting a different pathogen. This book is written in the hope that it makes the food your company produces safer.

J. Hoorfar
ACKNOWLEDGMENTS

In today’s demanding work culture, it is not easy to find time for extracurricular work such as book contributions; in particular, writing updated reviews can be quite time-consuming. That is why I express my heartfelt gratitude to the large panel of my colleagues who contributed to the chapters. Their enthusiasm to share expertise and knowledge has made this book possible.

Coordinating the European project BIOTRACER project (FOOD-2006-CT-036272), one of the world’s largest food microbiology research projects, provided me with the opportunity to collaborate closely with many excellent scientists from different disciplines of microbial food safety. One of the outcomes of this collaboration is this book. The European project BIOTRACER supported a large number of scientists and much of the work that is described in different chapters of this book.

The advice and dedication of senior editor Eleanor Riemer and the editorial staff at ASM Press have contributed to the quality of this book.

I thank my dedicated administrative team in Copenhagen, Iben Bang-Berthelsen, Solveig Lind Bouquin, and Jeffrey Skiby, who supported me directly and indirectly through editorial support or by relieving me from some of the day-to-day work in order to focus on this book project.

Last but not least, I thank my family for putting up with me sitting many nights in front of a computer to do this work.

J. Hoorfar