Candida
and Candidiasis
SECOND EDITION
Cover: Candida albicans (red) and Staphylococcus aureus (green) biofilm stained with species-specific peptide nucleic acid (PNA)-FISH probes, demonstrating extensive adherence of S. aureus to the C. albicans hyphae. Courtesy Mary Ann Jabra-Rizk, University of Maryland, Baltimore.
Contents

Contributors / vii
Preface / xi

1 Candida: What Should Clinicians and Scientists Be Talking About? / 1
 BRAD SPELLBERG, KIEREN A. MARR, AND SCOTT G. FILLER

SECTION I
THE ORGANISMS, THEIR GENOMICS, AND VARIABILITY / 9

2 An Introduction to the Medically Important Candida Species / 11
 GARY MORAN, DAVID COLEMAN, AND DEREK SULLIVAN

3 Comparative Genomics of Candida Species / 27
 GERALDINE BUTLER

4 The Genetic Code of the Candida CTG Clade / 45
 ANA CATARINA GOMES, GABRIELA R. MOURA, AND MANUEL A. S. SANTOS

5 Genome Instability and DNA Repair / 57
 GERMAN LARRIBA AND RICHARD A. CALDERONE

6 Switching and Mating / 75
 DAVID R. SOLL

7 Detection and Clinical Significance of Variability among Candida Isolates / 91
 LOIS L. HOYER

8 Cell Cycle and Growth Control in Candida Species / 101
 CHERYL A. GALE AND JUDITH BERMAN

SECTION II
HOST-PATHOGEN INTERACTIONS (THE HOST) / 125

9 Immunology of Invasive Candidiasis / 127
 LUIGINA ROMANI

10 Mucosal Immunity to Candida albicans / 137
 PAUL L. FIDEL, JR., AND MAIRI C. NOVERR

11 Innate Immunity to Candida Infections / 155
 MIHAI G. NETEA AND NEIL A. R. GOW

12 Vaccines and Passive Immunity against Candidiasis / 171
 BRAD SPELLBERG, YUE FU, AND ASHRAF S. IBRAHIM

13 Salivary Histatins: Structure, Function, and Mechanisms of Antifungal Activity / 185
 WOON SIK JANG AND MIRA EDGERTON

SECTION III
HOST-PATHOGEN INTERACTIONS (THE PATHOGEN) / 195

14 The Cell Wall: Glycoproteins, Remodeling, and Regulation / 197
 CAROL MUNRO AND MATHIAS L. RICHARD
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
<th>Authors/Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Stress Responses in Candida / 225</td>
<td></td>
<td>Alistair J. P. Brown, Ken Haynes, Neil A. R. Gow, and Janet Quinn</td>
</tr>
<tr>
<td>16</td>
<td>Adhesins in Opportunistic Fungal Pathogens / 243</td>
<td></td>
<td>Rebecca Zordan and Brendan Cormack</td>
</tr>
<tr>
<td>17</td>
<td>Encounters with Mammalian Cells: Survival Strategies of Candida Species / 261</td>
<td></td>
<td>Slavena Vykova and Michael C. Lorenz</td>
</tr>
<tr>
<td>18</td>
<td>Gene Expression during the Distinct Stages of Candidiasis / 283</td>
<td></td>
<td>Duncan Wilson, Francois Mayer, and Bernhard Hube</td>
</tr>
<tr>
<td>19</td>
<td>Biofilm Formation in Candida albicans / 299</td>
<td></td>
<td>Jonathan Sewell Finkiel and Aaron P. Mitchell</td>
</tr>
<tr>
<td>20</td>
<td>Candida spp. in Microbial Populations and Communities: Molecular Interactions and Biological Importance / 317</td>
<td></td>
<td>Amy E. Piispanen and Deborah A. Hogan</td>
</tr>
<tr>
<td>21</td>
<td>Back to the Future: Candida Mitochondria and Energetics / 331</td>
<td></td>
<td>Deepu Alex, Richard Calderone, and Dongmei Li</td>
</tr>
</tbody>
</table>

SECTION IV

ANTIFUNGAL DRUGS, DRUG RESISTANCE, AND DISCOVERY / 343

22	Antifungals: Drug Class, Mechanisms of Action, Pharmacokinetics/Pharmacodynamics, Drug-Drug Interactions, Toxicity, and Clinical Use / 345		Jeniel E. Nett and David R. Andes
23	The Impact of Antifungal Drug Resistance in the Clinic / 373		Russell E. Lewis and Dimitrios P. Kontoyiannnis
24	Insights in Antifungal Drug Discovery / 387		Françoise Gay-Andrieu, Jared May, Dongmei Li, Nuô Sun, Hui Chen, Richard Calderone, and Deepu Alex

SECTION V

CANDIDIASIS, EVOLVING DIAGNOSTICS, AND TREATMENT PARADIGMS / 417

26	Mucosal Candidiasis / 419		Sanjay G. Revankar and Jack D. Sobel
27	Systemic Candidiasis: Candidemia and Deep-Organ Infections / 429		Cornelius J. Clancy and M. Hong Nguyen
28	New Developments in Diagnostics and Management of Invasive Candidiasis / 443		Sujatha Krishnan and Luis Ostrosky-Zeichner
29	The Epidemiology of Invasive Candidiasis / 449		Michael A. Pfaller and Daniel J. Diekema

SECTION VI

COOL TOOLS FOR RESEARCH / 481

30	Cool Tools 1: Development and Application of a *Candida albicans* Two-Hybrid System / 483		Bram Stynen, Patrick van Dijck, and Hélène Tournu
31	Cool Tools 2: Development of a *Candida albicans* Cell Surface Protein Microarray / 489		A. Brian Mochn
32	Cool Tools 3: Large-Scale Genetic Interaction Screening in *Candida albicans* / 497		Yeissa Chabrier-Roselló, Anuj Kumar, and Damian Krysan
33	Cool Tools 4: Imaging *Candida* Infections in the Live Host / 501		Soumya Mitra, Thomas H. Foster, and Melanie Wellington
34	Cool Tools 5: The *Candida albicans* ORFeome Project / 505		Mélanie Legrand, Carol Munro, and Christophe D’Enfert

Index / 511
Contributors

DEEPU ALEX
Georgetown University Medical Center, Washington, DC 20057

DAVID R. ANDES
Department of Medicine, Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792

KATHERINE S. BARKER
Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Children’s Foundation Research Center, Le Bonheur Children’s Hospital, Memphis, TN 38163

JUDITH BERMAN
Department of Genetics, Cell Biology and Development and Department of Microbiology, University of Minnesota, Minneapolis, MN 55455

ALISTAIR J. P. BROWN
School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom

GERALDINE BUTLER
School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland

RICHARD A. CALDERONE
Department of Microbiology and Epidemiology, Medical School, Georgetown University, Washington, DC 20057

YEISSA CHABRIER-ROSELLÓ
Department of Pediatrics, University of Rochester, School of Medicine and Dentistry, Box 850, 601 Elmwood Ave., Rochester, NY 14642

HUI CHEN
Georgetown University Medical Center, Washington, DC 20057

CORNELIUS J. CLANCY
Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261

DAVID COLEMAN
Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental School & Hospital, Trinity College Dublin, University of Dublin, Dublin 2, Ireland

BRENDAN CORMACK
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205

CHRISTOPHE D’ENFERT
Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, and INRA, USC2019, F-75015 Paris, France

DANIEL J. DIEKEMA
Departments of Pathology and Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242

MIRA EDGERTON
Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214

PAUL L. FIDEL, JR.
Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, School of Dentistry, New Orleans, LA 70119

SCOTT G. FILLER
David Geffen School of Medicine at the University of California Los Angeles (UCLA), and Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502

JONATHAN SEWELL FINKEL
Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
CONTRIBUTORS

THOMAS H. FOSTER
Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave., Box 648, Rochester, NY 14642

YUE FU
David Geffen School of Medicine at UCLA, and Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90302

CHERYL A. GALE
Department of Pediatrics and Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455

FRANÇOISE GAY-ANDRIEU
Georgetown University Medical Center, Washington, DC 20057, and Nantes Atlantique Universities, EA1155-IICiMed, Nantes, France

ANA CATARINA GOMES
Genomics Unit, Biocant, BiocantPark–Parque Tecnologico de Cantanhede, 3060-197 Cantanhede, Portugal

NEIL A. R. GOW
School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom

KEN HAYNES
School of Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom

DEBORAH A. HOGAN
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755

LOIS L. HOYER
Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802

BERNHARD HUBE
Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Beutenbergstrasse 11a, D-07745 Jena, Germany

ASHRAF S. IBRAHIM
David Geffen School of Medicine at UCLA, and Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90302

WOON SIK JANG
Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214

DIMITRIOS P. KONTOYIANNIS
University of Houston College of Pharmacy and University of Texas M. D. Anderson Cancer Center, Houston, TX 77030

SUJATHA KRISHNAN
Division of Infectious Diseases, University of Texas Medical School at Houston, Houston, TX 77030

DAMIAN KRYSAN
Departments of Pediatrics and Microbiology/Immunology, University of Rochester, School of Medicine and Dentistry, Box 850, 601 Elmwood Ave., Rochester, NY 14642

ANUJ KUMAR
Department of Molecular, Cellular, and Developmental Biology, Life Sciences Institute, 210 Wabash Avenue, Ann Arbor, MI 48109

GERMÁN LARRIBA
Área Microbiología, Edificio Biológicas, F. Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain

MÉLANIE LEGRAND
Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, and INRA, USC2019, F-75015 Paris, France

RUSSELL E. LEWIS
University of Houston College of Pharmacy and University of Texas M. D. Anderson Cancer Center, Houston, TX 77030

DONGMEI LI
Georgetown University Medical Center, Washington, DC 20057

MICHAEL C. LORENZ
Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030

KIEREN A. MARR
Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205

JARED MAY
Georgetown University Medical Center, Washington, DC 20057

FRANCOIS MAYER
Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Beutenbergstrasse 11a, D-07745 Jena, Germany

AARON P. MITCHELL
Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213

SOUMYA MITRA
Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave., Box 648, Rochester, NY 14642

GARY MORAN
Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental School & Hospital, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
GABRIELA R. MOURA
Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

CAROL MUNRO
Aberdeen Fungal Group, University of Aberdeen, School of Medical Sciences, Institute of Medical Sciences, Aberdeen, AB25 2ZD, United Kingdom

MIHAI G. NETEA
Department of Medicine and Nijmegen University Centre for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

JENIEL E. NETT
Department of Medicine, Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792

M. HONG NGUYEN
Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261

MAIRI C. NOVERR
Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, School of Dentistry, New Orleans, LA 70119

LUIS OSTROSKY-ZEICHNER
Division of Infectious Diseases, University of Texas Medical School at Houston, Houston, TX 77030

MICHAEL A. PFALLER
Department of Pathology, University of Iowa Carver College of Medicine, and Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52242

AMY E. PIISPANEN
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755

JANET QUINN
Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom

SANJAY G. REVANKAR
Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201

MATHIAS L. RICHARD
MICrobiologie de l’ALimentation au service de la Santé, Equipe “Virulence et Infection Fongique,” INRA UMR1319 AgroParisTech, 78850 Thiverval Grignon, France

P. DAVID ROGERS
Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Children’s Foundation Research Center, Le Bonheur Children’s Hospital, Memphis, TN 38163

LUIGINA ROMANI
Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy

MANUEL A. S. SANTOS
Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

JACK D. SOBEL
Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201

DAVID R. SOLL
Department of Biology, The University of Iowa, Iowa City, IA 52242

BRAD SPELBERG
Division of General Internal Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles (UCLA) Medical Center, and David Geffen School of Medicine at UCLA, Torrance, CA 90502

BRAM STYNNEN
VIB Department of Molecular Microbiology, K.U. Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, Postbus 2438, B-3001 Leuven, Belgium

DEREK SULLIVAN
Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental School & Hospital, Trinity College Dublin, University of Dublin, Dublin 2, Ireland

NUO SUN
Georgetown University Medical Center, Washington, DC 20057

HÉLENE TOURNU
VIB Department of Molecular Microbiology, K.U. Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, Postbus 2438, B-3001 Leuven, Belgium

PATRICK VAN DIJCK
VIB Department of Molecular Microbiology, K.U. Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, Postbus 2438, B-3001 Leuven, Belgium

SLAVENA VYLKOVA
Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030

MELANIE WELLINGTON
Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave., Box 690, Rochester, NY 14642

DUNCAN WILSON
Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Beutenbergstrasse 11a, D-07745 Jena, Germany

REBECCA ZORDAN
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
Preface

Over the past three decades, as one of the editors himself has witnessed, the experimental approaches and desired outcomes in the study of Candida spp. and the infections they cause naturally have changed. The overwhelming focus now is in molecular biology at a number of levels of research, such as genome comparisons and assessing virulence factors and host responses, as well as the promise of translational research into new antifungal drug discovery, diagnostics, and vaccines. The Candida community has been fortunate to witness the sharing of mutant libraries, strains, techniques, vectors, and probes; collaboration among laboratories seems to be increasing, a development that will be needed to solve the increasing complexity of research that requires interdisciplinary and “systems biology” approaches. Through genomics, we can now identify similarities and differences among Candida species, other human pathogenic and nonpathogenic fungi, and nonfungal species. “Oomics” studies and databases are especially useful in designing new targets for drug discovery, but their application extends beyond this goal, to showing why pathogens are pathogens. That knowledge is in many cases at our fingertips.

This is the fourth in a series of volumes on Candida and candidiasis (candidosis) and the first that is coedited to reflect a more thorough treatise of human disease, treatment, and expectations in health care delivery. Each of the preceding books emphasized different things. Candida and Candidosis (University Park Press, Baltimore, MD, 1979) and Candida and Candidosis: a Review and Bibliography, 2nd Ed. (Baillière Tindall, Oxford, U.K., 1988), both written by Frank C. Odds, focused on the species that cause candidiasis, including their morphogenesis, virulence, and structure; the first of these books included special emphasis on the types of candidiasis. Dr. Odds gave us meaning and direction, a unification to address new problems that existed. The third book, Candida and Candidiasis, edited by Richard A. Calderone, was published in 2002 by ASM Press.

The present book, Candida and Candidiasis, 2nd Edition, is a natural extension of the previous three. In this volume are emphasized genomes and variability, host-pathogen interactions, antifungal resistance and new drug discovery, and evolving diagnostics. Variability among Candida species is described with regard to genomes, molecular adaptation to the external milieu whether in a host or in vitro, and sexuality of Candida albicans; we have learned how variability contributes to resistance to triazole drugs. Traditional areas of interest remain. For example, research in morphogenesis and the cell cycle (and, ultimately, growth) has provided new heights of understanding. Major advances in immune responses are also covered in this volume. Chapters discuss vaccine candidates in the community and how host responses may be useful in diagnosis of blood-borne candidiasis. Virulence attributes are now placed in the context of gene families. While the cell wall is critically included, it is represented more now as an entity that interacts with the innate host system. Broad representation of specific pieces of the cell is included, ultimately reflecting the current interests among like scientists. Biofilms, either mixed-species or monospecific, tell us much about the survival of the fungus in the host.

Discovery has continued, and translational research is moving toward attainable goals. But have we made a difference in increasing awareness of public health issues in candidiasis? An answer to that question is not easily discerned. Candidiasis is the third most frequent hospital-acquired infection. But who knows that fact, beyond the candidiasis community? In reality, new drug discovery features little more than remodeled old drugs. The search for that magic bullet that can kill all 100+ fungal pathogens still survives, at least partially, but this objective lacks sense and is not part of the paradigm in antibacterial drug discovery.

We must lose the notion that we cannot do better. The greatest risk for the next decade is that candidiasis research will become lost in the current economic times, at least in the United States. Emphasis on other important, nonfungal pathogens has overwhelmed the goal of controlling candidiasis, cryptococcosis, aspergillosis, the endemic mycoses, and dermatophytosis in public health. Solutions to this dilemma are not easy. To a much broader extent, we in this field must educate the public by choosing leaders among us, especially physician-scientists, who can testify to the importance of these diseases. These leaders should be called on to seize the interest of “think tanks” and other groups that influence policy makers. But also, each of us needs to remind our professional societies, the major advocates of microbiology, that this field demands equal attention with all the other pathogenic microorganisms, whether in newsletters, public education, or influence peddling.

Even within our discipline, we cannot keep up with everything. Both of us marveled at the outstanding research presented at the most recent “Candida and Candidiasis”
conference, held in Miami Beach, Florida, in March of 2010. That message should continue to be carried to the public, in a language that conveys the importance of these diseases. For this reason, just as the present volume offers the most current information in this critical field, new books on *Candida* and candidiasis should continue to present new discoveries and developments.

RICHARD A. CALDERONE
CORNELIUS J. CLANCY
Index

A
ala and αα cells, in mating, 75–84
ABC transporters, in drug resistance, 66
Abdomen, candidiasis in, 433–434
Abscess, brain, 434
Accidental infections, versus opportunistic infections, 1–2
Ace2 protein
in biofilm formation, 301, 306
in carbon metabolism, 335
in cell cycle, 117
Acetic acid, stress response to, 228–229
N-Acetylglucosamine
in chitin synthesis, 197
in switching, 81, 83
Acid stress response, 228–229
Acinetobacter baumannii
Candida albicans interactions with, 319–320
Aco1 protein
in kidney lesions, 290
in liver lesions, 292
Acs1 protein, in kidney lesions, 290
Actin, in cell cycle, 106–107
Active immunization, 5, 175–178
Ada2 protein, in multidrug resistance, 410
Adaptive immunity
activation of, 156–157
in gastrointestinal candidiasis, 141
Adh proteins
in biofilm formation, 301, 307–308
in morphogenesis, 334
Adhesins, 243–259
in biofilms, 249–250, 303–304
in Candida albicans, 245–250
in Candida glabrata, 250–253
cell wall structure and, 243
for endothelial cell invasion, 289–290
evolution of, 254–255
functions of, 243
in Saccharomyces cerevisiae, 253–254
structure of, 243–254
types of, 270–272
Adhesion
Als protein family in, 31–32
cell-cell, in biofilm formation, 304–306
Adhesion molecules, in oropharyngeal candidiasis, 139
Afbgt1 protein, in cell wall, 199
Affirm test, for mucosal candidiasis, 424
Agglutinin-like sequence genes, 15–16, 30–32
Ahp1 protein, in histatin response, 190
AI-2 protein, in fungal-bacterial interactions, 320
AIDS, see HIV/AIDS
AIRE gene, polymorphisms of, 161
Albaconazole, 396
Alkylatation, reversal of, 62
O-Alkylguanine-DNA alkyltransferase II, in DNA repair, 66
Als protein family, 31–32
adherence properties of, 245–247, 270–272
amyloid formation and, 246–247
Candida albicans, 15–88, 245–247
in cell wall, 206, 208, 210
in colonization, 286
in dissemination, 289–290
evolution of, 254–255
in invasion, 288
iron acquisition and, 246
in kidney lesions, 291
in liver lesions, 293
regulation of, 247
strain variation due to, 94, 96
structures of, 200, 245–247
in vaccine development, 175–178
Alternative oxidase pathway, for respiration, 331
Ambiguous-intermediate theory, of codon reassignment, 46–48
Amino acids
formation of, in biofilm formation, 307
starvation of, 261
Aminocandin, 396
Amphotericin B
for candidemia, 430–431
chemical structure of, 349
disadvantages of, 346
dosing of, 351
drug-drug interactions of, 353
for mucosal candidiasis, 421
spectrum of activity of, 349
susceptibility to, 465–466, 468
Animal models
for adhesion action, 2
Candida imaging in, 501–503
for disseminated candidiasis, 2, 4, 95–96
for gastrointestinal candidiasis, 141–142
for oropharyngeal candidiasis, 139
for vulvovaginal candidiasis, 143, 145
Animals, strain variation found in, 95
Annexin, in oropharyngeal candidiasis, 139
Anp1 protein, in DNA repair, 62
Antibiotics, vulvovaginal candidiasis due to, 172, 422
Antifungal drugs, see also specific drug classes (polyenes) and individual drug names
for Candida albicans, 16
clinical characteristics of, 345

B

B6.1 antibody, for vaccines, 174 B lymphocytes, in immune response, 156–157

Bacillus subtilis

Bcr1 protein in biofilms, 249, 301, 304, 306 in cell wall, 198 BcN transporter, in multidrug resistance, 404 Benzoic acid, stress response to, 228–229 Beta glucan test, 3

Bifidobacterium infantis

C

Candida holmii	antifungal susceptibility of, 466	distribution of, 453
Candida humicola	antifungal susceptibility of, 465, 466	distribution of, 453
Candida inconspicua	antifungal susceptibility of, 466–467	distribution of, 453
Candida intermedia	antifungal susceptibility of, 466–467	distribution of, 453
Candida kefyr	antifungal susceptibility of, 466–469	distribution of, 453
Candida krusei	resistance in, 375	
Candida lusitaniae	description of, 18	
Candida holmii	distribution of, 453, 462	
Candida humicola	distribution of, 453, 461	
Candida inconspicua	distribution of, 453	
Candida intermedia	distribution of, 453, 467	
Candida kefyr	distribution of, 453	
Candida krusei	distribution of, 453, 461	
Candida lusitaniae	distribution of, 453–454, 461	
Candida holmii	oropharyngeal, 419	
Candida humicola	mucosal, 425	
Candida inconspicua	distal geniet type of, 34	
Candida intermedia	genome of, 29, 34	
Candida kefyr	genome of, 29, 34	
Candida krusei	genome of, 29, 34	

Candida maritime

- mating type-like locus of, 34
- repetitive DNA elements in, 29

Candida norvegensis

- antifungal susceptibility of, 465–467 | distribution of, 453, 461 |
- resistance in, 375
- genome of, 29, 34
- mating type-like locus of, 34
- repetitive DNA elements in, 29

Candida parapsilosis

- antifungal susceptibility of, 17, 349–350, 465, 467, 468
- azoles for, 354
- in biofilms, 299, 304
- cell wall of, glycoproteins of, 203–208 in CTG clade, 11
- description of, 17
- distribution of, 17, 453–460
- echinocandins for, 359
- flucytosine for, 352
- gene families of, 31–33
- genome of, 27, 29–34, 36–37
- groups of, 92
- horizontal gene transfer to, 36–37
- immunity modulation and, 270
- infections due to, see Candida parapsilosis infections

Candida parapsilosis infections

- mating type-like locus of, 34
- mitochondrial of, 331–333, 335, 338
- phylogeny of, 27
- polynes for, 347
- quorum sensing in, 332
- resistance in, 375–376, 378, 389, 403
- vaccines for, 175
- Candida parapsilosis infections, 18
- animal models for, 2
- candidemia, 431–432
- invasive, 127, 131–132
- mucosal, 425
- oropharyngeal, 419
- **Candida lusitaniae**
- antifungal susceptibility of, 465–467 |
- distribution of, 433 |
- **Candida lipolytica** |
- antifungal susceptibility of, 466–467, 469 |
- distribution of, 453 |
- meiosis in, 34–35 |
- mitochondria of, 331 |
- **Candida lugdunensis** |
- antifungal susceptibility of, 349–350, 465–469 |
- azoles for, 354 |
- cell wall of, glycoproteins of, 203–208 in CTG clade, 10 |
- description of, 18 |
- distribution of, 453–455, 458, 461 |
- flucytosine for, 352 |
- gene families of, 31–32 |
- genome of, 27, 31–32, 34–35, 37 |
- horizontal gene transfer to, 37 |
- infections due to, 18 |
- mating type-like locus of, 34 |
- mitochondria of, 338 |
- phylogeny of, 27 |
- repetitive DNA elements in, 29–30 |
- resistance in, 375, 377, 389 |
- **Candida marina** |
- antifungal susceptibility of, 465, 466 |
- distribution of, 453 |
- **Candida metapsilosis** |
- antifungal susceptibility of, 465, 466 |
- discovery of, 11 |
- distribution of, 454, 462 |
- genome of, 29, 34 |
gene expression in, 283–298
incidence of, 387–388
oropharyngeal, see Oropharyngeal candidiasis
species causing, 11–18; see also specific species
vulvovaginal, see Vulvovaginal candidiasis
Candiduria, 435
CaNdt80 protein, in multidrug resistance, 405–406
Cap1 protein
in cell cycle, 107
in multidrug resistance, 405–406
in stress response, 228, 233–234, 266, 278
Cell proteins, in invasion, 288
Carbohydrate-active enzymes, 199
Carbon acquisition of
in kidney lesions, 290–291
in liver lesions, 292
metabolism of, mitochondria in, 336–337
starvation of, 268
CAR9 pathway
in immune response, 159
in invasive candidiasis, 129
Cardiovascular candidiasis, 434–435
CaRep1 protein, in multidrug resistance, 404–405
Caspofungin, 2358–360
Caspase, in immune response, 160
Cas5 protein, in cell wall, 198
Cas proteins, in invasion, 288
Catheters, in stress response, 227–228
Catalases, in stress response, 227–228
Catheterization, as candidiasis risk factors, 1
Cell proteins
in cell wall, 198, 215
in fungal-bacterial interactions, 321
in histatin response, 190
in mating, 79, 84
in stress response, 230–231
Cell cycle
cell biological features and, 104–109
checkpoints in, 119–120
cyclin regulation in, 109–119
morphological forms and, 101–104
perturbation of, 119
stationary phase in, 119
Cell dispersal, in biofilm formation, 306–308
Cell elongation, 108
Cell surface protein microarray, for Candida albicans, 489–496
Cell wall, 197–223
assembly of, gene families for, 32–33
biosynthesis of, 214–216
glycoproteins of, 200–204
histatin binding to, 187–188
immune system recognition of, 157–158
pga30 proteins in, 33
polysaccharides of, 197–199
remodeling of, 198, 215–216
structure of, 157, 243
synthesis of, 198
Cell-cell communication, in biofilms, 308–309
Cell-mediated immunity, in invasive candidiasis, 283–285
Central nervous system, candidiasis of, 434
Central venous catheters as candidiasis risk factors, 1
protocol for, 4
Cdk proteins, in biofilm formation, 301, 304, 306
Ccrl1 protein, in cell cycle, 110, 111, 116
CD11b/CD18, immunity modulation and, 270
Cdc5 protein, in cell cycle, 119
Cdc10 protein, in cell cycle, 117
Cdc11 protein, in cell cycle, 117
Cdc14 protein, in cell cycle, 117
Cdc19 protein, in kidney lesions, 290
Cdc24 protein, in cell cycle, 108
Cdc28 protein, in cell cycle, 111, 117, 119
Cdc42 protein
in bud site selection, 106
in cell cycle, 107–108
Cdc proteins, in cell cycle, 108–109
Cdc proteins in biofilm formation, 304
in drug resistance, 65–66, 310, 335–336
in nutrient stress response, 230
in multidrug resistance, 404–405, 407–408
in strain variation, 97
Chronic mucocutaneous candidiasis, 137
gene polymorphisms in, 161–162
inflammatory response in, 128
Chs chitin synthases, 197
Chp proteins in biofilm formation, 308
in cell wall, 202, 203
in dissemination, 290
Circulatory system, Candida access to, 289
Cir proteins in kidney lesions, 290
in mating, 84
Claviceps purpurea, 11, 34
Clb proteins, in cell cycle, 111, 117
Cln3 protein, in cell cycle, 110, 111, 119
Clotrimazole, for mucosal candidiasis, 421
Coccidioides immitis
antifungal drugs for, 349
azoles for, 84
polyenes for, 347
Codon(s), see also specific codons
reassignment of, 45–46
Coftness test, in drug development, 395
Coinhibition profile, in drug development, 395
Colonization of gastrointestinal tract, 283–285
gene expression in, 283–287
of oral epithelium, 285–287
of vaginal epithelium, 287
in vulvovaginal candidiasis, 144
Commensalism, in gastrointestinal tract, 283–285
Commercial testing kit, for strain variation, 91
Comparative expression profiling, in drug development, 393–394
Comparative genome hybridization, in strain variation, 94
Complement, in immune response, 156
Complement receptor 3, in immune response, 156
Complementation approach, in mating, 76
Complex haploinsufficiency, in genetic screening, 497–498
Compound libraries, for drug discovery, 392–393
Concentration-dependent killing, 346
Confocal microscopy, 502–503
CPH1 gene, Candida albicans, 14
Cph proteins in biofilm formation, 304
in mating, 79, 80, 84, 85
“Crabtree-positive” and “Crabtree-negative” organisms, 334, 337
Crd1 protein in general stress response, 230
Cht proteins, in cell wall, 202, 204, 211–213
Cdk1 protein, in biofilm formation, 308
Cmr1 protein, in multidrug resistance, 410
Cryptococcus
fluocytosine for, 352
polyenes for, 3
Cryptococcus neoformans
antifungal drugs for, 349
azoles for, 354
histatin action against, 185
invasive properties of, 274
nutrient starvation in, 268
resistance in, 375
Czo1 protein in cell wall, 198
in multidrug resistance, 410–411
Index

Epa proteins
 adherence properties of, 270–272
 binding specificities of, 251
 in biofilm formation, 303
 of Candida glabrata, 16, 250–253
 functions of, 250–251
 regulation of, 251–252
 structures of, 244, 250–251

Epithelial cells
 Als protein adhesion to, 245–246
 Candida interactions with, 262
 Epa adhesion to, 251
 invasion of, 288–289
 oral, colonization of, 285–287
 in oropharyngeal candidiasis, 139
 vaginal, colonization of, 287
 in vulvovaginal candidiasis, 144

Erg proteins
 in dissemination, 290
 in resistance, 65–67, 309, 405, 408
 in strain variation, 97

Erythematous oropharyngeal candidiasis, 12

Escherichia coli
 Candida albicans interactions with, 320, 321
 Candida glabrata interactions with, 321

Eosophageal candidiasis
 drugs for, 420, 421
 risk factors for, 2

Erest, for susceptibility, 466

EU-OPENSCREEN, 392

Exopolysaccharides, in biofilms, 308

Extracellular DNA, in biofilm formation, 308

Extracellular matrix, in biofilm formation, 306–308

Eye, candidiasis of, 432–433

F

Far proteins, in mating, 79–80

Farnesol
 as biofilm inhibitor, 302
 in cell cycle inhibition, 119

Fbp1 protein, in carbon metabolism, 336

Fcr proteins
 in biofilm formation, 308

Ferritin, 293

Fet proteins, in liver lesions, 293

Filamentation, 323
 in biofilm formation, 304–306
 in mating, 80, 85
 mitochondria and, 334

Filaments, 33

Fingertip printing, for Candida strain variation, 92, 94

Fitness test, in drug development, 394–395

Fkh2 protein
 in cell cycle, 119
 in colonization, 286

Fks proteins
 in cell wall, 199
 in drug resistance, 376

Flavohemoproteins, in nitrosative stress response, 228

Flo proteins
 adhesive properties of, 253–254
 in biofilm formation, 301
 evolution of, 254–255

Flucytosine
 advantages of, 346
 for Candida albicans, 16
 for candidemia, 431–432
 for Cardiovascular candidiasis, 434–435
 for central nervous system candidiasis, 434
 chemical structure of, 348
 clinical uses of, 357–358
 disadvantages of, 346
 for disseminated candidiasis, 3
 dosing of, 350
 drug-drug interactions of, 353
 for endophthalmitis, 433
 for hepatosplenic candidiasis, 433
 for invasive candidiasis, 388–389
 for mucosal candidiasis, 421
 for oesophageal candidiasis, 435
 for peritonitis, 433–434
 pharmacodynamics of, 356
 pharmacokinetics of, 355
 spectrum of activity of, 349, 354
 susceptibility to, 465–468
 for vulvovaginal candidiasis, 424

Flucytosine-amphotericin B deoxycholate, 3

G

Gain-loss theory, of codon reassignment, 46

Gal proteins
 in carbon metabolism, 335–336
 in methyl mismatch repair, 60–61
 in multidrug resistance, 411–412

Galectin(s)
 in immune response, 160
 in invasive candidiasis, 129–130

Galectin-3 receptor, in immune response, 157

Gas proteins, in cell wall, 202, 206, 211, 215

Gastrointestinal candidiasis, 433–434
 dissemination of, 141
 immunity to, 140–142

Gastrointestinal tract
 Candida in, 12
 commensalism in, 283–285
 surgery on, as candidiasis risk factor, 1–2

Gca proteins, in biofilm formation, 301, 307–308

Gen4 protein, in biofilm formation, 307

Gene families, 30–33

Gene Ontology, in drug development, 393

Gene transfer, horizontal, 35–37

General stress response, 229–230

Gene(s)
 27–43; see also individual organisms
 genome of

Genome
 databases for, 36–38
 gene families, 30–33
 horizontal gene transfer, 35–37
 mating type-like locus, 34
 meiosis, 34–35
 rearrangement of, strain variation and,
 repetitive DNA elements in, 29–30
 single nucleotide polymorphisms in,
 27–28

Geographical locations, strain variation and, 95

Germ tubes, formation of, 106, 110

Gin proteins, in biofilm formation, 308

Gnt proteins, in multidrug resistance, 411

Gerrin, 293

Glc proteins
 in biofilm formation, 308

Glickman
 in biofilm formation, 308

Glycans
 in cell wall, 199

Glycerol, accumulation of, in osmotic stress response, 227

Fusoabacterium nucleatum, in polymicrobial populations, 321

Gain-loss theory, of codon reassignment, 46

Gal proteins
 in carbon metabolism, 335–336
 in methyl mismatch repair, 60–61
 in multidrug resistance, 411–412

Galectin(s)
 in immune response, 160
 in invasive candidiasis, 129–130

Galectin-3 receptor, in immune response, 157

Gas proteins, in cell wall, 202, 206, 211, 215

Gastrointestinal candidiasis, 433–434
 dissemination of, 141
 immunity to, 140–142

Gastrointestinal tract
 Candida in, 12
 commensalism in, 283–285
 surgery on, as candidiasis risk factor, 1–2

Gca proteins, in biofilm formation, 301, 307–308

Gen4 protein, in biofilm formation, 307

Gene families, 30–33

Gene Ontology, in drug development, 393

Gene transfer, horizontal, 35–37

General stress response, 229–230

Gene(s)
 27–43; see also individual organisms
 genome of

Genome
 databases for, 36–38
 gene families, 30–33
 horizontal gene transfer, 35–37
 mating type-like locus, 34
 meiosis, 34–35
 rearrangement of, strain variation and,
 repetitive DNA elements in, 29–30
 single nucleotide polymorphisms in,
 27–28

Geographical locations, strain variation and, 95

Germ tubes, formation of, 106, 110

Gin proteins, in biofilm formation, 308

Gnt proteins, in multidrug resistance, 411

Gerrin, 293

Glc proteins
 in biofilm formation, 308

Glickman
 in biofilm formation, 308

Glycans
 in cell wall, 199

Glycerol, accumulation of, in osmotic stress response, 227

Fusoabacterium nucleatum, in polymicrobial populations, 321
INDEX

INDEX

Pseudomonas aeruginosa, Candida albicans interactions with, 318–320, 324
Pwp proteins, adhesive properties of, 253
Pxa proteins, in invasion, 288
Pyelomonas, 435
Pyk proteins
in carbon metabolism, 336
in kidney lesions, 291
in morphogenesis, 334
Pyrimidine dimers, reversal of, 62
Q
Quorum sensing
in biofilms, 308–309
in immunity modulation, 270
R
Rad proteins
in cell cycle, 120
in DNA repair, 63–65
in oxidative stress response, 278
Rapl1 protein, in mating, 79
Rap1 protein, adherence properties of, 272
Rasl protein
in cell cycle, 119
in quorum sensing, 322–323
Ras-CAMP signaling
in fungal-bacterial interactions, 320–323
in heat shock, 226–227
in stress response, 234
in weak acid stress response, 229
Rbt proteins
in biofilm formation, 302, 304
in cell cycle, 119
in cell wall, 205–206, 210
in colonization, 284–286
in invasion, 288
in kidney lesions, 291
in liver lesions, 293
in mating, 80, 84
Reactive nitrogen species
stress response to, 228, 264–267
suppression of, 269
Reactive oxygen species
in histatin action, 185–189
in mitochondria and, 334–335
stress response to, 227–228, 264–267
suppression of, 269
Recombination, in adhesin evolution, 254–255
Reconstituted human epithelial model, 286, 288
Redox-sensitive antioxidants, in stress response, 233
Reflectance confocal microscopy, 501–503
Rep1 protein, in multidrug resistance, 409–410
Repair systems, see also DNA repair
DNA genes for, 111–113
genetic instability and, 60–65
for oxidative stress, 227
Repetitive sequences, 29–30
Reservoirs, for invasive candidiasis and candidemia, 453
Resistance
to antifungal agents, see Drug resistance; Susceptibility
to Candida, immunity of, 127–128, 132–133
to histatin, 190
Respiration, in Candida, 331–335
Respiratory burst, in Candida killing, 156, 264–267
Restriction fragment length polymorphism analysis, in strain variation, 94
Retrotransposons, 30
Rev proteins, in DNA repair, 64–65
Rgo proteins
in cell cycle, 117
in oxidative stress response, 278
Rh1 protein, in cell wall, 199
Rfl1 protein, adherence properties of, 272
Rigl protein, in immune response, 158, 160
Rim proteins
in invasion, 288
in mating, 80
Risk factors, for candidiasis, 1–2
disseminated, 1–2, 171–172
esophageal, 2
oropharyngeal, 2
vulvovaginal, 145, 160
RNA, transfer, 46–47
Rpd3 protein, in switching, 82
Saccharomyces cerevisiae
adhesins in, 253–254
Als protein studies in, 246
budding site selection in, 106
Fas1 and, 253–254
polysaccharides in, 197–199
invasion, 288
in kidney lesions, 290
in liver lesions, 293
in mating, 80, 84
in oxidative stress response, 233
in quorum sensing, 322–323
Saccharomyces pombe
in biofilms, 302, 304
in cell cycle, 119
in cell wall, 205–206, 210
in colonization, 284–286
in invasion, 288
in kidney lesions, 291
in liver lesions, 293
in mating, 80, 84
in oxidative stress response, 233
in quorum sensing, 322–323
S
SafARI proteins
in cell cycle, 111–115, 119–120
in cell wall, 157
in migration, 80
San1 protein
in cell cycle, 108–109
Sap proteins
in cell wall, 202–204, 213
in colonization, 287
in immune modulation, 269
in invasion, 288
in kidney lesions, 291
in liver lesions, 292
in mating, 80
in switching, 81
SAPs (secreted aspartyl proteinases)
Candida albicans, 15–16
Sas10 protein, in oxidative stress response, 278
Scaffolds, for drug discovery, 392
Saccharomyces cerevisiae
interactions with, 318, 320
in drug development, 392
genetic interaction, 497–500
Sdh12 protein, in kidney lesions, 290
Sec proteins, in colonization, 286
Secreted aspartyl proteinases, 30–32
Candida albicans, 15–16
in cell wall, 213
Sed proteins, in cell cycle, 210
Septation, in cell cycle, 108–109
Septic arthritis, 435
Septins
in cell cycle, 108–109
genes for, 114
Ser residues, in adhesins, 244
Serratia marcescens, Candida albicans interactions with, 318, 320
Serum beta glucan test, 3
Sexual transmission, of candidiasis, 423
She3 protein, in cell cycle, 117
Sho1 protein
in cell wall, 198
in stress response, 232
Single nucleotide polymorphisms, 27–28
Single-strand annealing, in DNA repair, 64–65
Sir proteins, adherence properties of, 272
Skn7 protein, in stress response, 234
Sko1 protein, in cell wall, 198
Snl1 protein, in cell wall, 198
Snf1 protein, in cell wall, 199
Smr1 protein, in cell wall, 199
Sna2 protein, in multidrug resistance, 405, 408
Sod proteins
in cell wall, 204, 213
in colonization, 286
in histatin response, 190
in invasion, 288
in liver lesions, 293–294
in oxidative stress response, 264–265, 277
in stress response, 334–335
Sorbitol, stress response to, 227
Sorbitol, stress response to, 227
Sordarins, 396
Spitzenkörper, 107–108
Spinal cord, candidiasis of, 434
Spindle, 106

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Mon, 26 Nov 2018 12:46:48
SPK-843 (polyene), 396
Spleen, Candida invasion of, 433
Sporothrix schenckii
azole for, 354
polyenes for, 347
Sprl protein, in cell wall, 201
Spt-Ada-Gcn5-acetyltransferase coactivator complex, in multidrug resistance, 410
Ssa proteins, histatin binding to, 188
Ssk proteins
in oxidative stress, 278
in stress response, 230, 232
Ssp proteins, in fungal-bacterial interactions, 320
Sst proteins, in mating, 84
Ssu proteins
in invasion, 288
in oxidative stress, 278
in stress response, 230, 232
Staphylococcus aureus
Ssa proteins, histatin binding to, 188
Spt-Ada-Gcn5-acetyltransferase coactivator complex, in multidrug resistance, 410
Sprl protein, in cell wall, 201
Streptococcus gordonii
Streptococcus oralis
Strain variability, 91–99
Stomatitis
Ste proteins
Stationary phase, of cell cycle, 119
Starvation, nutrient, 267–268
Stress, genetic instability in, 67–68
Streptococcus sanguinis,
Candida albicans interactions with, 317–318, 324
Streptococcus epidermidis
in biofilms, 309
Candida albicans interactions with, 317–318
Starvation, nutrient, 267–268
Stationary phase, of cell cycle, 119
Ste proteins
in mating, 79–80, 84, 85
in stress response, 230
Sractinidurent, 140, 146
in oral candidiasis, 420
STOP codons, 45
Strain variability, 91–99
clinical significance of, 95–97
detection of, 92, 94–95
species assignment and, 91–93
types of, 92, 94–95
Streptococcus anginosus, *Candida albicans* interactions with, 319
Streptococcus gordonii, *Candida albicans* interactions with, 319–321
Streptococcus oralis, *Candida albicans* interactions with, 319
Streptococcus pneumoniae, vaccines for, 173–174
Streptococcus sanguinis, *Candida albicans* interactions with, 319
Streptococcus thermophilus, for candidiasis, 321–322
Stress, genetic instability in, 67–68
Stress responses, 225–242
cellular, 226–230
general, 229–230
heat shock, 226–227
heavy metal, 229
host niches and, 225–226
in kidney lesions, 291
in liver lesions, 293–294
mitochondria in, 334–335
nitroative, 228, 264–267
nutritional starvation, 267–268
osmotic, 227
oxidative, 227–228, 264–267, 323, 334–335
in physiology, 264–267
signalling pathways in, 230–233
transcription factors in, 233–235
versus types of stress, 226
weak acid, 228–229
Stress-activated protein kinase pathway, in stress response, 230–232
Structure-activity relationship, in drug development, 393
Styl protein, in stress response, 230, 233
Succinate (complex II), in respiration, 332
Sull protein, in heavy metal stress response, 229
Sun proteins
in biofilm formation, 302, 305, 306
in mating, 84
Superoxide anions, stress response to, 227–228
Superoxide dismutases, see also Sod proteins
in cell wall, 202, 213
in oxidative stress response, 264–265
in stress response, 227–228
Surgeries, as candidiasis risk factor, 1–2
Susceptibility to drugs, 465–469; see also specific organisms, antifungal susceptibility of genetic instability and, 65–67
Tetraploidy, in
Telomeres, 29
Teeth, microbial populations on, 319
Tec1 protein
T-cell receptors, in oropharyngeal candidiasis
Tac1 protein
T-2307 (acrylamide), 396
Th1/Th2 cells
in immune response, 157, 163–164
in innate immunity, 157
in invasive candidiasis, 131
TIM complex, in mitochondrial function, 337–339
TLO proteins, 33
TMP-1363, targeting mitochondria, 336
Tolerance, to Candida, 127–128, 132–133, 142
Toll-like receptors
in innate immunity, 158–159
in invasive candidiasis, 129–130
polymorphisms of, 161
in vulvovaginal candidiasis, 423
TOM complex, in mitochondrial function, 337–339
Torulopsis, 11
Torulopsis glabrata, see *Candida glabrata*
Tos9 protein, in switching, 82
Toxicity studies, in drug development, 393
Tps proteins
in general stress response, 230
in oxidative stress response, 277
Tpx1 protein, in stress response, 233
TR region, in Als family, 244–245
Transcription factor complementation, in two-hybrid system, 483–487
Transferrin, 293
Transglycosidases, in cell wall, 211–213
Translation, molecules of, 45
Translesion synthesis, in DNA repair, 64–65
Translocaoses, in mitochondrial function, 337–339
Transposable elements, 30
Treg cells
in gastrointestinal candidiasis, 142
in innate immunity, 157
in invasive candidiasis, 132
Trehalose, in stress response, 266
heat, 226
oxidative stress, 277
Triazoles, 354
TRIF (Toll-IL-1 receptor domain-containing adapter-inducing beta interferon) pathway, in invasive candidiasis, 129
Tpr1 protein, in colonization, 286
Trr1 protein, in oxidative stress response, 277–278
Trxl protein
in histatin response, 190
in kidney lesions, 291
in oxidative stress response, 277–278
in stress response, 233
Tryptophan starvation, 132–133
Tsa1 protein, in oxidative stress, 278
Ttr1 protein, in kidney lesions, 291
Tup1 protein
in Als regulation, 247
in biofilm formation, 308
in cell cycle, 117, 118
Tye7 protein, in carbon metabolism, 335–336
Tyrosol, in quorum sensing, 308
Thioredoxin
in oxidative stress response, 277
in oxidative stress response, 227, 266
Thr residues, in adhesins, 244
Thrombophlebitis, 435
Th1/Th2 cells
in immune response, 157, 163–164
in innate immunity, 157
in invasive candidiasis, 131
TIM complex, in mitochondrial function, 337–339
TLO proteins, 33
TMP-1363, targeting mitochondria, 336
Tolerance, to Candida, 127–128, 132–133, 142
Toll-like receptors
in immune response, 158–159
in invasive candidiasis, 129–130
polymorphisms of, 161
in vulvovaginal candidiasis, 423
TOM complex, in mitochondrial function, 337–339
Torulopsis, 11
Torulopsis glabrata, see *Candida glabrata*
Tos9 protein, in switching, 82
Toxicity studies, in drug development, 393
Tps proteins
in general stress response, 230
in oxidative stress response, 277
Tpx1 protein, in stress response, 233
TR region, in Als family, 244–245
Transcription factor complementation, in two-hybrid system, 483–487
Transferrin, 293
Transglycosidases, in cell wall, 211–213
Translation, molecules of, 45
Translesion synthesis, in DNA repair, 64–65
Translocaoses, in mitochondrial function, 337–339
Transposable elements, 30
Treg cells
in gastrointestinal candidiasis, 142
in innate immunity, 157
in invasive candidiasis, 132
Trehalose, in stress response, 266
heat, 226
oxidative stress, 277
Triazoles, 354
TRIF (Toll-IL-1 receptor domain-containing adapter-inducing beta interferon) pathway, in invasive candidiasis, 129
Tpr1 protein, in colonization, 286
Trr1 protein, in oxidative stress response, 277–278
Trxl protein
in histatin response, 190
in kidney lesions, 291
in oxidative stress response, 277–278
in stress response, 233
Tryptophan starvation, 132–133
Tsa1 protein, in oxidative stress, 278
Ttr1 protein, in kidney lesions, 291
Tup1 protein
in Als regulation, 247
in biofilm formation, 308
in cell cycle, 117, 118
Tye7 protein, in carbon metabolism, 335–336
Tyrosol, in quorum sensing, 308

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Mon, 26 Nov 2018 12:46:48
U
Uce1 protein, in invasion, 273, 288
Ultraviolet light damage, DNA repair in, 62, 63
Ume6 protein
 in biofilm formation, 302
 in cell cycle, 118
 in morphology, 102–103
Upc proteins, in drug resistance, 66
URA3 gene, Candida albicans, 15
Ura proteins, in nutrient starvation, 267–268
Urinary tract, candidiasis of, 435
Utr proteins, in cell wall, 202, 204
Uvr proteins, in DNA repair, 63

V
Vaccines, 171–184
 for active immunization, 175–178
 adjuvants for, 177
 barriers to efficacy of, 172–174
 development of, 163–164
 for mucosal candidiasis, 425
 for passive immunization, 174–175
 rationale for, 171–174
Vascular inheritance, 108
Vaginal candidiasis, see Vulvovaginal candidiasis
Vaginal-relapse theory, 423
Ventilator-related infections, 319–320, 436
Virulence factors, see also specific organisms
 drug resistance and, 375–376
 versus host defenses, 155
 in oral candidiasis, 420
 strain variation and, 96
 stress responses and, see Stress responses
Voriconazole
 advantages of, 346
 for Candida albicans, 16
 chemical structure of, 348
 clinical uses of, 358
 disadvantages of, 346
 dosing of, 351
drug-drug interactions of, 353, 357
 monitoring of, 356
 for mucosal candidiasis, 421
 pharmacokinetics of, 355
 spectrum of activity of, 349, 354
 susceptibility to, 465–467
 toxicity of, 357
Vps51 protein
 of Candida albicans, 262
 in invasion, 273
Vulvar vestibulitis syndrome
 gene polymorphisms in, 162–163
 recurrent, 423
Vulvovaginal candidiasis
 animal models for, 143, 145
 biofilms in, 146
 complicated, 424
 drugs for, 421, 424
 epidemiology of, 420
 gene expression in, 287
 immunity to, 142–145
 incidence of, 145, 387–388
 microbiology of, 420, 422–423
 natural history of, 144
 pathogenesis of, 420, 422–423
 pathophysiology of, 155
 recurrent, 145, 162, 172
 risk factors for, 145, 172, 422–423
 species causing, 11–12
 treatment of, 424
 vaccines for, 172

W
Wap proteins
 in cell wall, 205
 in liver lesions, 293
Weak acid stress response, 228–229
Whi11 protein
 in mating, 84
 in switching, 81
White cells, see also Switching
 in mating, 76–78
White-opaque switch, Candida albicans, 15
Whole-genome duplication, in cell cycle, 110
Wildlife, strain variation found in, 95
Wor proteins, in switching, 82–83, 104
Wpre protein, in mating, 84

X
Xanthomonas campestris, Candida albicans interactions with, 320

Y
Yak1 protein, in biofilm formation, 302, 306
Yap proteins
 in multidrug resistance, 405–406
 in stress response, 233–234
Yapsins, 213
Yarrowia lipolytica
 cell wall of, 209
 cyclins of, 110
Yck proteins, in invasion, 288
Yeast cells, morphology of, 101–103, 299–300
Yeast Gene Order Browser, 38
Ygb proteins, in liver lesions, 293
YHBI1 protein, in histatin response, 190
Yhb proteins
 in invasion, 288
 in liver lesions, 293
 in nitrosative stress response, 228
 in stress response, 266–267
Yku protein, in DNA repair, 64
Yps7 protein, in cell wall, 204
YTTYPL tandem repeats, in cell wall, 210
Ywp1 protein, in biofilm formation, 302, 303–304

Z
Zap proteins, in biofilm formation, 302, 307
Zinc, stress response to, 229
Zygomycetes, antifungal drugs for, 349