Contents

Contributors / vii
Preface / xi

1 Candida: What Should Clinicians and Scientists Be Talking About? / 1
BRAD SPELLBERG, KIEREN A. MARR, AND SCOTT G. FILLER

SECTION I
THE ORGANISMS, THEIR GENOMICS, AND VARIABILITY / 9

2 An Introduction to the Medically Important Candida Species / 11
GARY MORAN, DAVID COLEMAN, AND DEREK SULLIVAN

3 Comparative Genomics of Candida Species / 27
GERALDINE BUTLER

4 The Genetic Code of the Candida CTG Clade / 45
ANA CATARINA GOMES, GABRIELA R. MOURA, AND MANUEL A. S. SANTOS

5 Genome Instability and DNA Repair / 57
GERMAN LARRIBA AND RICHARD A. CALDERONE

6 Switching and Mating / 75
DAVID R. SOLL

7 Detection and Clinical Significance of Variability among Candida Isolates / 91
LOIS L. HOYER

8 Cell Cycle and Growth Control in Candida Species / 101
CHERYL A. GALE AND JUDITH BERMAN

SECTION II
HOST-PATHOGEN INTERACTIONS (THE HOST) / 125

9 Immunology of Invasive Candidiasis / 127
LUIGINA ROMANI

10 Mucosal Immunity to Candida albicans / 137
PAUL L. FIDEL, JR., AND MAIRI C. NOVERR

11 Innate Immunity to Candida Infections / 155
MIHAI G. NETEA AND NEIL A. R. GOW

12 Vaccines and Passive Immunity against Candidiasis / 171
BRAD SPELLBERG, YUE FU, AND ASHRAF S. IBRAHIM

13 Salivary Histatins: Structure, Function, and Mechanisms of Antifungal Activity / 185
WOON SIK JANG AND MIRA EDGERTON

SECTION III
HOST-PATHOGEN INTERACTIONS (THE PATHOGEN) / 195

14 The Cell Wall: Glycoproteins, Remodeling, and Regulation / 197
CAROL MUNRO AND MATHIAS L. RICHARD
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Stress Responses in Candida</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Alistair J. P. Brown, Ken Haynes, Neil A. R. Gow, and Janet Quinn</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Adhesins in Opportunistic Fungal Pathogens</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Rebecca Zordan and Brendan Cormack</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Encounters with Mammalian Cells: Survival Strategies of Candida Species</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Slavena Vylkova and Michael C. Lorenz</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Gene Expression during the Distinct Stages of Candidiasis</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Duncan Wilson, François Mayer, and Bernhard Hube</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Biofilm Formation in Candida albicans</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>Jonathan Seewell Finkel and Aaron P. Mitchell</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Candida spp. in Microbial Populations and Communities: Molecular Interactions and Biological Importance</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Amy E. Piispänen and Deborah A. Hogan</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Back to the Future: Candida Mitochondria and Energetics</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>Deepu Alex, Richard Calderone, and Dongmei Li</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SECTION IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANTIFUNGAL DRUGS, DRUG RESISTANCE, AND DISCOVERY</td>
<td>343</td>
</tr>
<tr>
<td>22</td>
<td>Antifungals: Drug Class, Mechanisms of Action, Pharmacokinetics/Pharmacodynamics, Drug-Drug Interactions, Toxicity, and Clinical Use</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Jeniel E. Nett and David R. Andes</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>The Impact of Antifungal Drug Resistance in the Clinic</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>Russell E. Lewis and Dimitrios P. Kontoyiannis</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Insights in Antifungal Drug Discovery</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>Françoise Gay-Andrieu, Jared May, Dongmei Li, Nuo Sun, Hui Chen, Richard Calderone, and Deepu Alex</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Multidrug Resistance Transcriptional Regulatory Networks in Candida</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>P. David Rogers and Katherine S. Barker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SECTION V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CANDIDIASIS, EVOLVING DIAGNOSTICS, AND TREATMENT PARADIGMS</td>
<td>417</td>
</tr>
<tr>
<td>26</td>
<td>Mucosal Candidiasis</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>Sanjay G. Revankar and Jack D. Sobel</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Systemic Candidiasis: Candidemia and Deep-Organ Infections</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>Cornelius J. Clancy and M. Hong Nguyen</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>New Developments in Diagnostics and Management of Invasive Candidiasis</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>Sujatha Krishnan and Luis Ostrosky-Zeichner</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>The Epidemiology of Invasive Candidiasis</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>Michael A. Pfaller and Daniel J. Diekema</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SECTION VI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COOL TOOLS FOR RESEARCH</td>
<td>481</td>
</tr>
<tr>
<td>30</td>
<td>Cool Tools 1: Development and Application of a Candida albicans Two-Hybrid System</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>Bram Stynen, Patrick Van Dijck, and Hélène Tournu</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Cool Tools 2: Development of a Candida albicans Cell Surface Protein Microarray</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>A. Brian Mochon</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Cool Tools 3: Large-Scale Genetic Interaction Screening in Candida albicans</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>Yeissa Chabrier-Roselló, Anuj Kumar, and Damian Krysan</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Cool Tools 4: Imaging Candida Infections in the Live Host</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>Soumya Mitra, Thomas H. Foster, and Melanie Wellington</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Cool Tools 5: The Candida albicans ORFeome Project</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td>Mélanie Legend, Carol Munro, and Christophe D’Enfert</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>511</td>
</tr>
</tbody>
</table>
Contributors

DEEPU ALEX
Georgetown University Medical Center, Washington, DC 20057

DAVID R. ANDES
Department of Medicine, Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792

KATHERINE S. BARKER
Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Children’s Foundation Research Center, Le Bonheur Children’s Hospital, Memphis, TN 38163

JUDITH Berman
Department of Genetics, Cell Biology and Development and Department of Microbiology, University of Minnesota, Minneapolis, MN 55455

ALISTAIR J. P. BROWN
School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom

GERALDINE BUTLER
School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland

RICHARD A. CALDERONE
Department of Microbiology and Epidemiology, Medical School, Georgetown University, Washington, DC 20057

YEISSA CHABRIER-ROSELLÓ
Department of Pediatrics, University of Rochester, School of Medicine and Dentistry, Box 850, 601 Elmwood Ave., Rochester, NY 14642

HUI CHEN
Georgetown University Medical Center, Washington, DC 20057

CORNELIUS J. CLANCY
Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261

DAVID COLEMAN
Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental School & Hospital, Trinity College Dublin, University of Dublin, Dublin 2, Ireland

BRENDAN CORMACK
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205

CHRISTOPHE D’ENFERT
Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, and INRA, USC2019, F-75015 Paris, France

DANIEL J. DIEKEMA
Departments of Pathology and Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242

MIRA EDGERTON
Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214

PAUL L. FIDEL, JR.
Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, School of Dentistry, New Orleans, LA 70119

SCOTT G. FILLER
David Geffen School of Medicine at the University of California Los Angeles (UCLA), and Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502

JONATHAN SEWELL FINKEL
Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
THOMAS H. FOSTER
Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave., Box 648, Rochester, NY 14642

YUE FU
David Geffen School of Medicine at UCLA, and Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502

CHERYL A. GALE
Department of Pediatrics and Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455

FRANÇOISE GAY-ANDRIEU
Georgetown University Medical Center, Washington, DC 20057, and Nantes Atlantique Universities, EA1155-IICiMed, Nantes, France

ANA CATARINA GOMES
Genomics Unit, Biocant, BiocantPark–Parque Tecnologico de Cantanhede, 3060-197 Cantanhede, Portugal

NEIL A. R. GOW
School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom

KEN HAYNES
School of Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom

DEBORAH A. HOGAN
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755

LOIS L. HOYER
Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802

BERNHARD HUBE
Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Beutenbergstrasse 11a, D-07745 Jena, Germany

ASHRAF S. IBRAHIM
David Geffen School of Medicine at UCLA, and Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502

WOON SIK JANG
Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214

DIMITRIOS P. KONTOYIANNIS
University of Houston College of Pharmacy and University of Texas M. D. Anderson Cancer Center, Houston, TX 77030

SUJATHA KRISHNAN
Division of Infectious Diseases, University of Texas Medical School at Houston, Houston, TX 77030

DAMIAN KRYSAN
Departments of Pediatrics and Microbiology/Immunology, University of Rochester, School of Medicine and Dentistry, Box 850, 601 Elmwood Ave., Rochester, NY 14642

ANUJ KUMAR
Department of Molecular, Cellular, and Developmental Biology, Life Sciences Institute, 210 Washletnaw Avenue, Ann Arbor, MI 48109

GÉRÔN ל¡RIBA
Área Microbiología, Edificio Biológicas, F. Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain

MÉLANIE LEGRAND
Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, and INRA, USC2019, F-75015 Paris, France

RUSSELL E. LEWIS
University of Houston College of Pharmacy and University of Texas M. D. Anderson Cancer Center, Houston, TX 77030

DONGMEI LI
Georgetown University Medical Center, Washington, DC 20057

MICHAEL C. LORENZ
Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030

KIEREN A. MARR
Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205

JARED MAY
Georgetown University Medical Center, Washington, DC 20057

FRANÇOIS MAYER
Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Beutenbergstrasse 11a, D-07745 Jena, Germany

AARON P. MITCHELL
Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213

SOUMYA MITRA
Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave., Box 648, Rochester, NY 14642

A. BRIAN MOCHON
Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Brentwood Annex, Los Angeles, CA 90095-1732

GARY MORAN
Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental School & Hospital, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
Contributors

GABRIELA R. MOURA
Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

CAROL MUNRO
Aberdeen Fungal Group, University of Aberdeen, School of Medical Sciences, Institute of Medical Sciences, Aberdeen, AB25 2ZD, United Kingdom

MIHAI G. NETEA
Department of Medicine and Nijmegen University Centre for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

JENIEL E. NETT
Department of Medicine, Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792

M. HONG NGUYEN
Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261

MAIRI C. NOVERR
Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, School of Dentistry, New Orleans, LA 70119

LUIS OSTROSKY-ZEICHNER
Division of Infectious Diseases, University of Texas Medical School at Houston, Houston, TX 77030

M. DAVID ROGERS
Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Children’s Foundation Research Center, Le Bonheur Children’s Hospital, Memphis, TN 38163

LUIGINA ROMANI
Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy

MAIRI C. NOVERR
Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, School of Dentistry, New Orleans, LA 70119

JENIEL E. NETT
Department of Medicine, Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792

M. HONG NGUYEN
Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261

MICHAEL A. PFALLER
Department of Pathology, University of Iowa Carver College of Medicine, and Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52242

AMY E. PIISPANEN
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755

JANET QUINN
Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom

SANJAY G. REVANKAR
Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201

MATHIAS L. RICHARD
MICrobiologie de l’ALImentation au service de la Santé, Equipe “Virulence et Infection Fongique,” INRA UMR1319 AgroParisTech, 78850 Thiverval Grignon, France

P. DAVID ROGERS
Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Children’s Foundation Research Center, Le Bonheur Children’s Hospital, Memphis, TN 38163

LUGOINA ROMANI
Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy

MANUEL A. S. SANTOS
Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

JACK D. SOBEL
Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201

HÉLÈNE TOURNU
VIB Department of Molecular Microbiology, K.U. Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, Postbus 2438, B-3001 Leuven, Belgium

PATRICK VAN DIJCK
VIB Department of Molecular Microbiology, K.U. Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, Postbus 2438, B-3001 Leuven, Belgium

SLAVENA VYLKOVA
Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030

DUNCAN WILSON
Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave., Box 690, Rochester, NY 14642

REBECCA ZORDAN
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
Preface

Over the past three decades, as one of the editors himself has witnessed, the experimental approaches and desired outcomes in the study of Candida spp. and the infections they cause naturally have changed. The overwhelming focus now is in molecular biology at a number of levels of research, such as genome comparisons and assessing virulence factors and host responses, as well as the promise of translational research into new antifungal drug discovery, diagnostics, and vaccines. The Candida community has been fortunate to witness the sharing of mutant libraries, strains, techniques, vectors, and probes; collaboration among laboratories seems to be increasing, a development that will be needed to solve the increasing complexity of research that requires interdisciplinary and “systems biology” approaches. Through genomics, we can now identify similarities and differences among Candida species, other human pathogenic and nonpathogenic fungi, and nonfungal species. “Omics” studies and databases are especially useful in designing new targets for drug discovery, but their application extends beyond this goal, to showing why pathogens are pathogens. That knowledge is in many cases at our fingertips.

This is the fourth in a series of volumes on Candida and candidiasis (candidosis) and the first that is coedited to reflect a more thorough treatise of human disease, treatment, and expectations in health care delivery. Each of the preceding books emphasized different things. Candida and Candidosis (University Park Press, Baltimore, MD, 1979) and Candida and Candidosis: a Review and Bibliography, 2nd Ed. (Baillière Tindall, Oxford, U.K., 1988), both written by Frank C. Odds, focused on the species that cause candidiasis, including their morphogenesis, virulence, and structure; the first of these books included special emphasis on the types of candidiasis. Dr. Odds gave us meaning and direction, a unification to address new problems that existed. The third book, Candida and Candidiasis, edited by Richard A. Calderone, was published in 2002 by ASM Press.

The present book, Candida and Candidiasis, 2nd Edition, is a natural extension of the previous three. In this volume are emphasized genomes and variability, host-pathogen interactions, antifungal resistance and new drug discovery, and evolving diagnostics. Variability among Candida species is described with regard to genomes, molecular adaptation to the external milieu whether in a host or in vitro, and sexuality of Candida albicans; we have learned how variability contributes to resistance to triazole drugs. Traditional areas of interest remain. For example, research in morphogenesis and the cell cycle (and, ultimately, growth) has provided new heights of understanding. Major advances in immune responses are also covered in this volume. Chapters discuss vaccine candidates in the community and how host responses may be useful in diagnosis of blood-borne candidiasis. Virulence attributes are now placed in the context of gene families. While the cell wall is critically included, it is represented more now as an entity that interacts with the innate host system. Broad representation of specific pieces of the cell is included, ultimately reflecting the current interests among like scientists. Biofilms, either mixed-species or monospecific, tell us much about the survival of the fungus in the host.

Discovery has continued, and translational research is moving toward attainable goals. But have we made a difference in increasing awareness of public health issues in candidiasis? An answer to that question is not easily discerned. Candidiasis is the third most frequent hospital-acquired infection. But who knows that fact, beyond the candidiasis community? In reality, new drug discovery features little more than remodeled old drugs. The search for that magic bullet that can kill all 100+ fungal pathogens still survives, at least partially, but this objective lacks sense and is not part of the paradigm in antibacterial drug discovery.

We must lose the notion that we cannot do better. The greatest risk for the next decade is that candidiasis research will become lost in the current economic times, at least in the United States. Emphasis on other important, nonfungal pathogens has overwhelmed the goal of controlling candidiasis, cryptococcosis, aspergillosis, the endemic mycoses, and dermatophytosis in public health. Solutions to this dilemma are not easy. To a much broader extent, we in this field must educate the public by choosing leaders among us, especially physician-scientists, who can testify to the importance of these diseases. These leaders should be called on to seize the interest of “think tanks” and other groups that influence policy makers. But also, each of us needs to remind our professional societies, the major advocates of microbiology, that this field demands equal attention with all the other pathogenic microorganisms, whether in newsletters, public education, or influence peddling.

Even within our discipline, we cannot keep up with everything. Both of us marveled at the outstanding research presented at the most recent “Candida and Candidiasis”
conference, held in Miami Beach, Florida, in March of 2010. That message should continue to be carried to the public, in a language that conveys the importance of these diseases. For this reason, just as the present volume offers the most current information in this critical field, new books on Candida and candidiasis should continue to present new discoveries and developments.

RICHARD A. CALDERONE
CORNELIUS J. CLANCY
A
ala and α/α cells, in mating, 75–84
ABC transporters, in drug resistance, 66
Abdomen, candidiasis in, 433–434
Abscess, brain, 434
Accidental infections, versus opportunistic infections, 1–2
Ace2 protein
in biofilm formation, 301, 306
in carbon metabolism, 335
in cell cycle, 117
Acetic acid, stress response to, 228–229
N-Acetylglucosamine
in chitin synthesis, 197
in switching, 81, 83
Acid stress response, 228–229
Acinetobacter baumannii, Candida albicans interactions with, 319–320
Aco1 protein
in kidney lesions, 290
in liver lesions, 292
Acs1 protein, in kidney lesions, 290
Actin, in cell cycle, 106–107
Active immunization, 5, 175–178
Ada2 protein, in multidrug resistance, 410
Adaptive immunity
activation of, 156–157
in gastrointestinal candidiasis, 141
Adh proteins
in biofilm formation, 301, 307–308
in morphogenesis, 334
Adhesins, 243–245
in biofilms, 249–250, 303–304
in Candida albicans, 245–250
in Candida glabrata, 250–253
cell wall structure and, 243
for endothelial cell invasion, 289–290
evolution of, 254–255
functions of, 243
in Saccharomyces cerevisiae, 253–254
structure of, 243–254
types of, 270–272
Adhesion
Als protein family in, 31–32
cell-cell, in biofilm formation, 304–306
Adhesins molecules, in oropharyngeal candidiasis, 139
Afbgt1 protein, in cell wall, 199
Affirm test, for mucosal candidiasis, 424
Agglutinin-like sequence genes, 15–16
Ahp1 protein, in histatin response, 190
AI-2 protein, in fungal-bacterial interactions, 320
AIDS, see HIV/AIDS
AIRE gene, polymorphisms of, 161
Albaconazole, 396
Alkalisation, reversal of, 62
O-Alkylguanine-DNA alkyltransferase II, in DNA repair, 66
Als protein family, 31–32
adherence properties of, 245–247
amyloid formation and, 246–247
in biofilm formation, 301, 304–305
Candida albicans, 15–88, 245–247
in cell wall, 206, 208, 210
in colonization, 286
in dissemination, 289–290
evolution of, 254–255
in invasion, 288
iron acquisition and, 246
in kidney lesions, 291
in liver lesions, 293
regulation of, 247
strain variation due to, 94, 96
structures of, 200, 245–247
in vaccine development, 175–178
Alternative oxidase pathway, for respiration, 331
Ambiguous-intermediate theory, of codon reassignment, 46–48
Amino acids
formation of, in biofilm formation, 307
starvation of, 261
Aminocandin, 396
Amphotericin B
advantages of, 346
for candidemia, 430–431
chemical structure of, 349
disadvantages of, 346
dosing of, 351
spectrum of activity of, 349
susceptibility to, 465–466, 468
Animal models
for adhesion action, 2
Candida imaging in, 501–503
for disseminated candidiasis, 2, 4, 95–96
for gastrointestinal candidiasis, 141–142
for oropharyngeal candidiasis, 138
for vulvovaginal candidiasis, 143, 145
Animals, strain variation found in, 95
Annexin, in oropharyngeal candidiasis, 139
Anp1 protein, in DNA repair, 62
Antibiotics, vulvovaginal candidiasis due to, 172, 422
Antifungal drugs, see also specific drug classes (polyenes) and individual drug names
for Candida albicans, 16
clinical characteristics of, 345
Antifungal drugs (continued)
 discovery approaches to, 391
 current developments in, 395–396
 genetic approaches to, 394–395
 global candidiasis incidence and, 387–388
 myths about, 396–397
 traditional approaches to, 391–394
 treatment difficulties and, 388–391
 for disseminated candidiasis, 3–5, 9
 economic costs of, 390–391
 historical overview of, 345
 mitochondria as targets of, 335–336
 pharmacodynamics of, 356–357
 pharmacokinetics of, 354–355
 resistance to
 genetic instability and, 65–67
 multidrug, 404–412
 spectrum of activity of, 354
 targeting mitochondria, 335–336
 toxicity of, 357

ATP-binding cassette transporters, in multidrug resistance, 404
Autophagy, 265
Awp proteins, adhesive properties of, 253
Azoles, 352–355; see also individual drugs
 chemistry of, 354
 clinical uses of, 357–358
 drug-drug interactions of, 357
 mechanism of action of, 354
 monitoring of, 356
 new, 396
 pharmacodynamics of, 356–357
 pharmacokinetics of, 354–356
 resistance to
 genetic instability and, 65–67
 multidrug, 404–412
 spectrum of activity of, 354
 targeting mitochondria, 335–336
 toxicity of, 357

Azoles, 352–355; see also individual drugs
 chemistry of, 354
 clinical uses of, 357–358
 drug-drug interactions of, 357
 mechanism of action of, 354
 monitoring of, 356
 new, 396
 pharmacodynamics of, 356–357
 pharmacokinetics of, 354–356
 resistance to
 genetic instability and, 65–67
 multidrug, 404–412
 spectrum of activity of, 354
 targeting mitochondria, 335–336
 toxicity of, 357

Azoles for, 354
 polyenes for, 347
 polyenes for, 347

Blood cultures, disadvantages of, 2–3
Bloodstream, organism spread and escape by, 289–290
Bone infections, 435
Brain, candidiasis of, 434
Break-induced replication, 28, 60–61
Broad Institute database, 37
Bud proteins, in cell cycle, 106–107
Bud site selection, 104, 106
Burkholderia cenocepacia, Candida albicans interactions with, 320
Burkholderia cepacia, Candida albicans interactions with, 319–320

CaAda2 protein, in multidrug resistance, 410
Cables, in cell cycle, 106–107
CaCr1 protein, in multidrug resistance, 410
CaCr1 protein, in multidrug resistance, 410–411
Cadherins, in oropharyngeal candidiasis, 139
Cadmium, stress response to, 229
Calcineurin
 in mating, 79, 84, 85
 in reproduction, 75
Calcineurin
 drug resistance and, 310
 in multidrug resistance, 410–411
Calcium-binding proteins, in vulvovaginal candidiasis, 145
Calcifgp protein, n DNA repair, 62–63
Calprotectin, in oropharyngeal candidiasis, 156
Candida
 imaging of, in animals, 501–503
 number of species in, 11
 phylogeny of, 27
 stress response in, 225–242
 taxonomy of, 11
Candida africana, 92–93
Candida albicans, 14–16
 adaptive immune response to, 156–157
 adhesins of, 245–250, 270–272
 adjuvant immunotherapy for, 162–163
 azoles for, 354
 in bacteria-fungi populations
 disseminated infections due to, 318–319
 drug resistance and, 320
 farnesol effects on, 324
 gram-negative bacteria and, 319–320
 gram-positive bacteria and, 320–321
 in oral environment, 319
 in biofilms, 249–250, 299–315, 317–318
 versus C. dubliniensis, 33
 cell cycle in
 checkpoints of, 119–120
 perturbation of, 119
 stationary phase of, 119
 cell wall of, 157–158
 glycoproteins of, 200–214

ATP-binding cassette transporters, in multidrug resistance, 404
Autophagy, 265
Awp proteins, adhesive properties of, 253
Azoles, 352–355; see also individual drugs
 chemistry of, 354
 clinical uses of, 357–358
 drug-drug interactions of, 357
 mechanism of action of, 354
 monitoring of, 356
 new, 396
 pharmacodynamics of, 356–357
 pharmacokinetics of, 354–356
 resistance to
 genetic instability and, 65–67
 multidrug, 404–412
 spectrum of activity of, 354
 targeting mitochondria, 335–336
 toxicity of, 357

Azoles, 352–355; see also individual drugs
 chemistry of, 354
 clinical uses of, 357–358
 drug-drug interactions of, 357
 mechanism of action of, 354
 monitoring of, 356
 new, 396
 pharmacodynamics of, 356–357
 pharmacokinetics of, 354–356
 resistance to
 genetic instability and, 65–67
 multidrug, 404–412
 spectrum of activity of, 354
 targeting mitochondria, 335–336
 toxicity of, 357

Azoles for, 354
 polyenes for, 347
 polyenes for, 347

Blood cultures, disadvantages of, 2–3
Bloodstream, organism spread and escape by, 289–290
Bone infections, 435
Brain, candidiasis of, 434
Break-induced replication, 28, 60–61
Broad Institute database, 37
Bud proteins, in cell cycle, 106–107
Bud site selection, 104, 106
Burkholderia cenocepacia, Candida albicans interactions with, 320
Burkholderia cepacia, Candida albicans interactions with, 319–320

CaAda2 protein, in multidrug resistance, 410
Cables, in cell cycle, 106–107
CaCr1 protein, in multidrug resistance, 410
CaCr1 protein, in multidrug resistance, 410–411
Cadherins, in oropharyngeal candidiasis, 139
Cadmium, stress response to, 229
Calcineurin
 in mating, 79, 84, 85
 in reproduction, 75
Calcineurin
 drug resistance and, 310
 in multidrug resistance, 410–411
Calcium-binding proteins, in vulvovaginal candidiasis, 145
Calcifgp protein, n DNA repair, 62–63
Calprotectin, in oropharyngeal candidiasis, 156
Candida
 imaging of, in animals, 501–503
 number of species in, 11
 phylogeny of, 27
 stress response in, 225–242
 taxonomy of, 11
Candida africana, 92–93
Candida albicans, 14–16
 adaptive immune response to, 156–157
 adhesins of, 245–250, 270–272
 adjuvant immunotherapy for, 162–163
 azoles for, 354
 in bacteria-fungi populations
 disseminated infections due to, 318–319
 drug resistance and, 320
 farnesol effects on, 324
 gram-negative bacteria and, 319–320
 gram-positive bacteria and, 320–321
 in oral environment, 319
 in biofilms, 249–250, 299–315, 317–318
 versus C. dubliniensis, 33
 cell cycle in
 checkpoints of, 119–120
 perturbation of, 119
 stationary phase of, 119
 cell wall of, 157–158
 glycoproteins of, 200–214
polysaccharides in, 197–199
synthesis of, 198
chitin synthesis in, 197
chlamydospore form of, 14
codon reassignment in, 46
colonization by, 283–287
CUG codons of, 49–54
dependence of, 38, 289–294
distribution of, 14, 225–226, 453–458
echinocandins for, 359
escape mechanisms of, 160–161
flucytosine for, 352
gene families of, 31–33
generic code of, 49–53
genetic instability in, 57–74
aneuploidies in, 58–60
dNA repair and, 60–65
drug resistance derived from, 65–67
heterogeneity and, 57–58
point mutation and, 57–58
spontaneous versus induced, 67–68
genetic interaction screening in, 497–500
genetics of, 14
genome of, 27–34, 37–38, 505–510
histatin action against, 185–194
horizontal gene transfer to, 37
hyphal form of, 14
immunity modulation and, 268–270
infections due to, see Candida albicans infections
interspecies interactions with, 321
invasive properties of, 272–274, 287–289
kidney invasion by, 290–291
liver invasion by, 291–294
mating in, 14
biofilm formation and, 309
demonstration of, 76–77
host interactions with, 81
pheromones in, 78–80, 84–85
same-sex, 80
switching role in, 83–84
mating locus of, 75–76
mitochonrdia of, 331–336
morphological forms of, 331–336
morphological forms of cell cycle perturbation and, 119
cell regulation in, 108–119
distinguishing features of, 104–109
types of, 101–104
mucosal immunity to, 137–154
mutant libraries for, 394–395
ORFeome project, 505–510
organ infections with, 230–294
pathogenicity of, 14–15
pattern recognition receptors for, 157–160
phagocytosis of, 156, 261–262, 264
polyn for, 347
protein microarray for, 489–496
proteomic analysis of, 49–51, 262
repetitive DNA elements in, 29–30
multiDRG, 403–411
SC5314

genetic instability in, 58
genome of, 28, 30
single nucleotide polymorphisms of, 28
single nucleotide polymorphisms of, 27–28
strain variability in, 91–99
stress responses in, 225–242, 264–267
switching in, 14–15, 82–83
discovery of, 77–78
host interactions with, 81
regulation of, 81–83
role in mating, 83–84
transcriptomic analysis of, 262
tRNA of, 46–47
two-hybrid system for, 483–487
virulence of, 15–16
WC1

generic instability in, 58
genome of, 28, 30
single nucleotide polymorphisms of, 28
yeast form of, 14
Candida albicans infections
animal models for, 2
candidemia, 431–432
cell wall of, 211
candidal cell wall of, 465
Candida albicans

distribution of, 453–459
echinocandins for, 345, 359
flucytosine for, 352
gene families of, 31
gene expression in, 283–298
genome of, 28, 31, 34, 38
mitochondria of, 335–336, 338
phylogeny of, 27
meiosis in, 34–35
mitochondria of, 335–336, 338
MLST methods for, 94–95
multiDRG, 403–405, 408, 411–412
probiotic effects on, 321–322
properties of, 16–17
proteomic analysis of, 262
quorum sensing in, 322
related to C. albicans clade, 11
repetitive DNA elements in, 29–30
resistance in, 66, 733, 375–376, 379, 389
vaccines for, 175, 176
Candida glabrata infections, 16–17
animal models for, 3
candidemia, 431–432
drugs for, 393
incidence of, 388
invasive, 127
mucosal, 425
oropharyngeal, 419
vulvovaginal, 424
Candida glabrata

distribution of, 453–456, 458, 462–463
probiotic effects on, 321–322
properties of, 16–17
quorum sensing in, 322
related to C. albicans clade, 11
repetitive DNA elements in, 29–30
resistance in, 66, 733, 375–376, 379, 389
vaccines for, 175, 176
Candida guilliermondii
antifungal susceptibility of, 465–469
azoles for, 354
Candida famata, 16
antifungal susceptibility of, 350, 466, 469
distribution of, 453–454
Candida fermentati, distribution of, 454, 462
Candida Gene Order Browser, 38
Candida Genome Database, 15, 36–37
Candida glabrata

distribution of, 16, 454–459
echinocandins for, 345, 359
flucytosine for, 352
infections due to, see Candida glabrata infections
meiosis in, 34–35
mitochondria of, 335–336, 338
MLST methods for, 94–95
nutrient starvation in, 268
phagocytosis of, 264–266
polyn for, 347
probiotic effects on, 321–322
properties of, 16–17
proteomic analysis of, 262
quorum sensing in, 322
related to C. albicans clade, 11
repetitive DNA elements in, 29–30
resistance in, 66, 733, 375–376, 379, 389
vaccines for, 175, 176
Candida albicans infections
animal models for, 2
candidemia, 431–432
drugs for, 393
incidence of, 388
invasive, 127
mucosal, 425
oropharyngeal, 419
vulvovaginal, 424
Candida albicans

distribution of, 453
repetitive DNA elements in, 29–30
resistance in, 40, 404–405
single nucleotide polymorphisms of, 27–28
strain variability in, 91–99
vaccines for, 176
Candida haemulonis
antifungal susceptibility of, 466–467
distribution of, 453
Vandals for, 453
Candida famata, 16
Candida holmii
- antifungal susceptibility of, 466
- distribution of, 453
Candida humicola
- antifungal susceptibility of, 465, 466
- distribution of, 453
Candida inconspicua, 18
- antifungal susceptibility of, 465–467
- distribution of, 453, 461
Candida intermedia
- antifungal susceptibility of, 466–467
- distribution of, 453
Candida kafyr, 18
- antifungal susceptibility of, 466–469
- distribution of, 453
- resistance in, 375
Candida krusei
- antifungal susceptibility of, 349–350
- description of, 18
- distribution of, 453–460
- echinocandins for, 359
- fluconazole for, 352
- infections due to, see Candida krusei infections
- MLST methods for, 94
- polypepides for, 347
- quorum sensing in, 322
- related to CTG clade, 11
- resistance in, 373, 375–376, 379, 389, 403
- vaccines for, 175
Candida krusei infections, 18
- animal models for, 2
- candidemia, 431–432
- invasive, 127, 131–132
- mucosal, 425
- oropharyngeal, 419
Candida lambica
- antifungal susceptibility of, 465–467
- distribution of, 453
Candida lipolytica, 18
- antifungal susceptibility of, 466–467, 469
- distribution of, 453
- meiosis in, 34–35
- mitochondria of, 331
Candida lipolytica var. lipolytica, 11
- antifungal susceptibility of, 349–350, 465–469
- azoles for, 354
- cell wall of, glycoproteins of, 203–208
- in CTG clade, 11
- description of, 17
- distribution of, 17, 453–460
- echinocandins for, 359
- fluconazole for, 352
- gene families of, 31–33
- genome of, 27, 29–34, 36–37
- groups of, 92
- horizontal gene transfer to, 36–37
- immunity modulation and, 270
- infections due to, see Candida parapsilosis infections
- mating type-like locus of, 34
- mitochondria of, 331–333, 335, 338
- polypepides for, 347
- quorum sensing in, 322
- repetitive DNA elements in, 30
- resistance in, 375–376, 378, 389
- single nucleotide polymorphisms of, 27
- strains of, 17
- vaccines for, 175
- virulence of, 17
Candida parapsilosis infections, 17
- candidemia, 431–432
- incidence of, 388
- oropharyngeal, 419
Candida auris
- antifungal susceptibility of, 466
- distribution of, 453
- mitochondria of, 331
Candida valida
- antifungal susceptibility of, 465–468
Candida wickerhamii
- antifungal susceptibility of, 466
- distribution of, 453
- meiosis in, 34–35
- mitochondria of, 331
Candida zeylanoides, 18
- antifungal susceptibility of, 465
- azoles for, 354
- cell wall of, glycoproteins of, 203–208
- in CTG clade, 11
- description of, 17
- distribution of, 17, 453–460
- echinocandins for, 359
- fluconazole for, 352
- gene families of, 31–33
- genome of, 27, 29–34, 36–37
- groups of, 92
- horizontal gene transfer to, 36–37
- immunity modulation and, 270
- infections due to, see Candida parapsilosis infections
- mating type-like locus of, 34
- mitochondria of, 331–333, 335, 338
- polypepides for, 347
- quorum sensing in, 322
- repetitive DNA elements in, 30
- resistance in, 375–376, 378, 389
- single nucleotide polymorphisms of, 27
- strains of, 17
- vaccines for, 175
- virulence of, 17
Candida albicans
- clinical characteristics of, 429–430
- costs associated with, 463–465
- drugs for, 430–432
- epidemiology of, 449–450
- shifts in, 451–452
- species distribution, 453–463
- immunology of, 127–136
- incidence of, 388
- length of stay in, 463–465
- mortality in, 373–376, 463–465
- organisms causing, 17–18
- protein microarray analysis in, 489–496
- proven, 431
- risk factors for, 430, 449
- treatment of, 430–432
Candidiasis deep-organ, see Deep-organ infections disseminated, see Disseminated candidiasis esophageal, see Esophageal candidiasis gastrointestinal, see Gastrointestinal candidiasis
gene expression in, 283–289
history of, 11
incidence of, 387–388
oropharyngeal, see Oropharyngeal candidiasis
species causing, 11–18; see also specific species
vulvovaginal, see Vulvovaginal candidiasis
Candida, 258

Cap1 protein
in cell cycle, 107
in multidrug resistance, 405–406
in stress response, 228, 233–234, 266, 278

Car proteins, in invasion, 288
Carbon
acquisition of
in kidney lesions, 290–291
in liver lesions, 292
metabolism of, mitochrondia in, 336–337
starvation of, 268
CARD9 pathway
Catalases, in stress response, 227–228,
Cat proteins, in stress response, 265–266

Caspofungin, 2358–360

Cas5 protein, in cell wall, 198

Catheters
Complementation approach, in matting, 76
Complex haploinsufficiency, in genetic variation, 97

Cdk proteins
in cell wall, 198, 215
in fungal-bacterial interactions, 321
in histatin response, 190
in mating, 79, 84
in stress response, 230–231

Cell cycle
Cell biological features and, 104–109
checkpoints in, 119–120
cyclin regulation in, 109–119
morphological forms and, 101–104
perturbation of, 119
stationary phase in, 119

Cell dispersal, in biofilm formation, 306–308

Cell elongation, 108

Cell surface protein microarray, for Candida albicans, 489–496

Cell wall, 197–223
assembly of, gene families for, 32–33
biosynthesis of, 214–216
glycoproteins of, 200–214
histatin binding to, 187–188
immune system recognition of, 157–158
pectin in, 33
polysaccharides of, 197–199
remodeling of, 198, 215–216
structure of, 157, 243
synthesis of, 198

Cell-cell communication, in biofilms, 308–309

Cell-mediated immunity, in invasive candidiasis, 283–285

Central nervous system, candidiasis of, 434

Central venous catheters
as candidiasis risk factors, 1
protocol for, 4

Cek proteins, in biofilm formation, 301, 304, 306

Cen1 protein, in cell cycle, 110, 111, 116
CD11b/CD18, immunity modulation and, 270

Cdc5 protein, in cell cycle, 119

Cdc10 protein, in cell cycle, 117

Cdc11 protein, in cell cycle, 117

Cdc14 protein, in cell cycle, 117

Cdc19 protein, in kidney lesions, 290

Cdc24 protein, in cell cycle, 108

Cdc28 protein, in cell cycle, 117, 119

Cdc42 protein
in biofilm formation, 301, 308
in cell wall, 198
in quorum sensing, 323
in stress response, 232

Chitinases, in cell wall, 202, 204

Chitin synthases, in cell wall, 202, 203

Chlamydomonas, morphology of, 103–104
Chloramphenicol, 395

Chloroquine, targeting mitochondria, 335

Chromatin deacetylase, in switching, 82

Chronic mucocutaneous candidiasis, 137
gene polymorphisms in, 161–162
inflammatory response in, 128

Chs chitin synthases, 197

Chitin synthase proteins
in biofilm formation, 308
in cell wall, 202, 203
in dissemination, 290

Circulatory system, Candida access to, 289

Cit proteins
in kidney lesions, 290
in mating, 84

Clavispora lusitaniae, 11, 34

Cln3 protein, in cell cycle, 110, 111

Clotrimazole, for mucosal candidiasis, 421

Coccidioides immitis
antifungal drugs for, 349
azoles for, 354
pencillins for, 347

Codon(s), see also specific codons
reassignment of, 45–46

Cofrom test, in drug development, 395

Coinhibition profile, in drug development, 395

Colonization of gastrointestinal tract, 283–285
gene expression in, 283–287
of oral epithelium, 285–287
of vaginal epithelium, 287
in vulvovaginal candidiasis, 144

Commensalism, in gastrointestinal tract, 283–285

Commercial testing kit, for strain variation, 91

Comparative expression profiling, in drug development, 393–394

Comparative genome hybridization, in strain variation, 94

Complement, in immune response, 156
Complement receptor 3, in immune response, 156

Complementation approach, in mating, 76

Complex haphloinsufficiency, in genetic screening, 497–498

Compound libraries, for drug discovery, 392–393

Concentration-dependent killing, 346

Confocal microscopy, 501–503

CPH1 gene, Candida albicans, 14

Cph proteins
in biofilm formation, 304
in mating, 79, 80, 84, 85

“Crabtree-positive” and “Crabtree-negative” organisms, 334, 337

Crh proteins
in biofilm formation, 304
in cell wall, 202, 204, 211–213

Crk1 protein, in biofilm formation, 308

Crm1 protein, in multidrug resistance, 410

Cryptococcus
flucytosine for, 352
polyenes for, 3

Cryptococcus neoformans
antifungal drugs for, 349
azoles for, 354

histatin action against, 185
invasive properties of, 274
nutrient starvation in, 268
resistance in, 378

Cur1 protein
in cell wall, 198

in multidrug resistance, 410–411
Csa proteins
in biofilm formation, 301, 305
in cell wall, 202, 205–206, 210
in liver lesions, 293
Csh1 protein
in biofilm formation, 301
in mating, 84
CTA2 gene family, 33
Czf1 protein
in cytokinesis, 108–109
Cytokines
Cys3 protein, in heavy metal stress response, 229
Cyr1 protein, in cell cycle, 107
Cyclin(s), 109–119
Cyanide and azide (complex IV), in respiration, 329–330
CUN codons, reassignment of, 48
Cyc1 protein, in cell cycle, 107
Cys3 protein, in heavy metal stress response, 229
Cystic fibrosis, polymicrobial infections in, 230
Cytokines
in gastrointestinal candidiasis, 141
in immune response, 156–157
in oropharyngeal candidiasis, 139
in resistance, 128
Cytokinesis, in cell cycle, 108–109
Cytoskeletal cables, in cell cycle, 106–107
Ctf1 protein
in biofilm formation, 301, 306, 309
in switching, 82–83

D
Danish Center for Biological Sequence Analysis, glycoprotein data in, 201–202, 208
Daughter cells
in mating, 76–77
polarized, 107
DC-SIGN
in immune response, 156, 157, 160
in invasive candidiasis, 129–130
Dcw1 protein, in cell wall, 203
Ddr48 protein, in histatin response, 190
Dehomyces hanseii, 27
codon reassignment in, 46
gene families of, 31
genome of, 30–31, 34, 36–37
horizontal gene transfer to, 36–37
mating type-like locus of, 34
mitochondria of, 338
repetitive DNA elements in, 30
Debridement, for osteomyelitis, 435
Dectin(s)
gene polymorphisms in, 162
in immune response, 156, 158–162
in invasive candidiasis, 129–130
Dectin-1 defects
as candidiasis risk factor, 2
in vulvovaginal candidiasis, 145
Deep-organ infections, 346–347
DNA repair
DNA elements, repetitive, 17–18
DNA, extracellular, in biofilm formation, 319
Diploid sequence type, in genetic instability, 60–65
dissemination through, 289–290
Candida
adhesion to, 289
adverse effects with, 262, 289–290
anticandidal agents for, 3, 4
antifungal agents for, 3, 4
antifungal agents against, 248–249
Antifungal agents for Candida albicans, 49–54
adjustment of, 46–48
age of, 51–54
Candida albicans
ambiguity of, 49, 51
Candida albicans, 49–54
reassignment of, 46–48
age of, 51–54
CUN codons, assignment of, 48
Cyanide and azide (complex IV), in respiration, 331–336
Cyclin(a), 109–119
G1, 110, 117
genes for, 111
hypha-specific, 117–118
mitotic, 111, 116–117
Pcl, 118–119
regulation of, 117–118
Cyclin-dependent kinases, in cell cycle, 101
Cyr1 protein, in cell cycle, 107
Cys3 protein, in heavy metal stress response, 229
Cystic fibrosis, polymicrobial infections in, 230
Cytokines
in gastrointestinal candidiasis, 141
in immune response, 156–157
in oropharyngeal candidiasis, 139
in resistance, 128
Cytokinesis, in cell cycle, 108–109
Cytoskeletal cables, in cell cycle, 106–107
Ctf1 protein
in biofilm formation, 301, 306, 309
in mating, 80
in switching, 82–83
Ddr48 protein, in histatin response, 190
Dehomyces hanseii, 27
codon reassignment in, 46
gene families of, 31
genome of, 30–31, 34, 36–37
horizontal gene transfer to, 36–37
mating type-like locus of, 34
mitochondria of, 338
repetitive DNA elements in, 30
Debridement, for osteomyelitis, 435
Dectin(s)
gene polymorphisms in, 162
in immune response, 156, 158–162
in invasive candidiasis, 129–130
Dectin-1 defects
as candidiasis risk factor, 2
in vulvovaginal candidiasis, 145
Deep-organ infections, 346–347
DNA repair
DNA elements, repetitive, 17–18
DNA, extracellular, in biofilm formation, 319
Diploid sequence type, in genetic instability, 57–58
Disseminated candidiasis
animal models for, 2, 4, 95–96
antifungal agents for, 3, 4
Candida tropicalis, 17–18
chronic, 128, 433
diagnostic tests for, 2–3
epidemiology of, 171–172
from gastrointestinal candidiasis, 141
gene expression in, 289–294
gene polymorphisms in, 161–162
interstitial inflammatory response in, 128
oral candidiasis, 140
organ infections with, 290–294
origin of, 5
polymicrobial, 318–319
strain factors for, 1–2, 171–172
strain variation in, 95
DNA, extracellular, in biofilm formation, 308
DNA damage
repair of, 60–65, 111–113
reversal of, 62–65
DNA elements, repetitive, 29–30
DNA repair
genes for, 111–113
genetic instability and, 60–65
Dose fractionation, 346–347
Dot proteins, in oxidative stress response, 278
Double-strand break repair, 63–64
Drug resistance, 373–385; see also individual antifungal agents, resistance to acquired, 378
in biofilms, 309–310, 317–318
drug discovery and, 388–389
genetic instability in, 65–67
intrinsinc, 376–378
invasive candidiasis mortality and, 373–376
multi-locus molecular testing for, 379–380
multi-, see Multidrug resistance
pathogen virulence and, 376–378
strain variation in, 96–97
susceptibility testing and, 378–379
temporal trends in, 376–378
treatment failure due to, 378
Dsr1 protein, in nutrient starvation, 268
Duf3 protein, in histatin transport, 188
DYRK kinase, in biofilm formation, 306

E
Eap1 protein
additive properties of, 248–249
in biofilms, 249–250, 301, 305
in cell wall, 210
in mating, 84
in switching, 82–83
Elephantomycinae, 358–360; see also individual drugs
new, 396
resistance to, 65–67, 376–378
Ecm proteins, in cell wall, 202, 203
Economic costs, of candidiasis, 390–391
EFG1 gene, Candida albicans, 14
Ef5l protein
in Abs regulation, 247
in biofilm formation, 301, 304, 306
in cell cycle, 117–118
in colonization, 284
in switching, 82–83
Efg proteins, in cell cycle, 119
Efh proteins, in colonization, 284
Efungimab, 3, 175
Electron transport chain complexes, 331
Empirical therapy, for disseminated candidiasis, 3
Ena proteins, in kidney lesions, 291
Endocarditis, 434–435
Endocytosis, 272
Endonucleases, in DNA repair, 63
Endophthalmitis, 432–433
Endothelial cells
adhesion to, 289
Asl protein adhesion to, 245–246
Candida interactions with, 262, 289–290
dissemination through, 289–290
Epa adhesion to, 251
Enterobacter clade, Candida albicans interactions with, 318
Enterococcus faecalis, Candida albicans interactions with, 318

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Mon, 20 May 2019 11:10:32
INDEX

Glycerol-3-phosphatase, in osmotic stress response, 227
Glycerol-3-phosphate dehydrogenase, in osmotic stress response, 227
Glycolases, in DNA repair, 62
Glycolysis
mitochondria in, 336–337
in morphogenesis, 334
Glycoproteins, cell wall, 200–214
anchoring processes of, 200
functions of, 214
glucosyltransferases in, 211
GPI-anchored, 200–201, 203–208
Pir group, 201
Plb family in, 213
Sap family in, 213
Sod family in, 213
soluble, 200
structural variations in, 201–202, 208
study methods for, 213–214
subgroups of, 200
surface, 210–211
tandem repeats in, 208–210
transglycosylases in, 211–213
Glycoside hydrolases, in cell wall, 202
Glycosylphosphatidylinositol-anchored proteins, 200, 202–208, 243–254
Glyoxalate cycle, carbon starvation and, 268
Gnc proteins, in biofilm formation, 301
Gnp proteins, in invasion, 288
Hda1 protein, in switching, 82
Hcg1 protein, in dissemination, 289–290
Hd1 protein, in switching, 82
Heart, candidiasis of, 434–435
Heat shock, response to, 226–227
Heat shock protein antibodies, for vaccinees, 175
Heavy metal stress response, 229
Helicases, in immune response, 158
Hepatosplenic candidiasis, 433
Heterozygosity, genetic instability and, 57–58
Hgc1 protein, in cell cycle, 101, 110, 111, 117–119
HIS genes, for histatin, 185–194
Histatins, 185–194
binding to Candida, 187–188
Candida response to, 190
cell-specific expression of, 185
family members of, 185–186
fungicidal activity of, 188–190
interaction with membranes, 187
intracellular effects of, 190
levels in saliva, 186
in oropharyngeal candidiasis, 140
overview of, 185
resistance to, 190
secretion of, 188
spectrum of activity of, 185
structure of, 186–188
targeting mitochondria, 335
uptake of, 188
Histoplasma capsulatum
antifungal drugs for, 349
azoles for, 354
polyenes for, 347
Hit compounds, in drug development, 393
HIV/AIDS
Candida incidence in, 387–388
colonization in, 286
histatin levels in, 186
mucosal candidiasis in, 137
oropharyngeal candidiasis in, 140
vulvovaginal candidiasis in, 424
Hkr1 protein
in cell wall, 199
in stress response, 232
Hmx proteins, in liver lesions, 293
Hpt proteins, in oxidative stress response, 278
Hog1 protein
in general stress response, 229
in histatin response, 190
in respiration, 338
in stress response, 233–235, 266
Homologous recombination in DNA repair, 63–64
in genetic instability, 57–58
Horizontal gene transfer, 35–37
Hormone replacement therapy, 156
Hsk1 protein, in oxidative stress response, 278
Icl1 protein
in carbon metabolism, 336
in carbon starvation, 268
in invasion, 288
in kidney lesions, 291
in oxidative stress response, 278
Icfoungipen, 396
Ifa proteins, 33
Iff proteins
in oxidative stress response, 278
in carbon metabolism, 336
in carbon starvation, 268
in invasion, 288
in kidney lesions, 291
in oxidative stress response, 278
Imidazoles, 354
Immunodeficiency, see also HIV/AIDS
passive immunization; Vaccines
Immunodeficiency, see also HIV/AIDS
invasive candidiasis, 172–174
oropharyngeal candidiasis, 12
vulvovaginal candidiasis, 423
Immunology, of invasive candidiasis, 127–136
Immunoregulation, in gastrointestinal tract, 142
Indolamine 2,3-dioxygenase, in resistance, 128, 132–133
Infections, candidal, see Candidiasis
Infectious Diseases Society of America, susceptibility testing guidelines of, 379
Inflammation, in immune response, 160
Inflammatory response
in Candida albicans, 15
Hwp1 protein
in biofilm formation, 303, 304, 306, 309
in colonization, 286
in invasion, 288
Hwp proteins
adherence properties of, 247–248, 272
in biofilms, 249, 301, 306
in cell cycle, 119
in cell wall, 205, 210
in mating, 80
regulation of, 248
structures of, 244, 247–248
Hxt proteins, in kidney lesions, 290
Hydrolases, in immunity modulation, 269
Hydroxy radical, stress response to, 227–228
Hyper-immunoglobulin E syndrome
autosomal dominant, 132
gene polymorphisms in, 161
Hypermutable cell populations, 67–68
Hypersomatic stress response, 227
Hyperplasticization, bud formation in, 278
Hyphae, morphology of, 101–103, 299–300
Hyr proteins
invasive properties of, 272
in biofilm formation, 306
in cell wall, 207
in colonization, 286
in kidney lesions, 291
Hyr/lff protein family, 32–33
I
Ic1l protein
in carbon metabolism, 336
in carbon starvation, 268
in invasion, 288
in kidney lesions, 291
in oxidative stress response, 278
Icfoungipen, 396
Ifa proteins, 33
Iff proteins, in biofilm formation, 301, 307, 308
Iff proteins
adherence properties of, 272
in cell wall, 201, 207, 210–211
Iff proteins, in heavy metal stress response, 229
Imidazoles, 354
Immune reconstitution inflammatory syndrome, 128
Immunodeficiency
adaptive, see Adaptive immunity
Candida survival strategies in, 261–282
innate, see Innate immunity
modulation of, 268–270
mucosal, see Mucosal immunity
Immunization, see Active immunization; Passive immunization; Vaccines
Immunodeficiency, see also HIV/AIDS
invasive candidiasis, 172–174
oropharyngeal candidiasis, 12
vulvovaginal candidiasis, 423
Immunology, of invasive candidiasis, 127–136
Immunoregulation, in gastrointestinal tract, 142
Indolamine 2,3-dioxygenase, in resistance, 128, 132–133
Infections, candidal, see Candidiasis
Infectious Diseases Society of America, susceptibility testing guidelines of, 379
Inflammation, in immune response, 160
Inflammatory response
in candidiasis, 128
innate immunity in, 156
Index

Isw2 protein, in oxidative stress response, 278
Lsr2 protein, in oxidative stress response, 278

Iron, stress response to, 229
Ire1 protein, in biofilm formation, 301, 306
Interleukin-17, in innate immunity, 157
Interleukin-10, in invasive candidiasis, 132
Interleukin(s) Interferon-γ in immune response, 164 in invasive candidiasis, 132–133 Interleukin(s) in gastrointestinal candidiasis, 142 in oropharyngeal candidiasis, 139–140 in resistance, 128 in vulvovaginal candidiasis, 422 Interleukin-10, in invasive candidiasis, 132 Interleukin-17, in innate immunity, 157 Intra-abdominal candidiasis, 433–434 Intracellular trafficking, interference with, 269–270
Mitochondria, 331–341
Minimum inhibitory concentration (MIC), 397
Mincle
Miltefosin, 396
Microtubules, 106
Microscopic examination, 317–330
Monocytes, in immune response, 156
Molecular Libraries Program Centers Network, 392
Molecular testing, for drug resistance, 379–380
Monocytes, in immune response, 156
Morphogenesis
Molecular Libraries Program Centers Network, 392
Molecular testing, for drug resistance, 379–380
Monocytes, in immune response, 156
Morphogenesis
biofilm formation and, 299–300
of Candida albicans, 331–336
in oxidative stress, 278
in phagocytosis, 262, 264
Morphogenesis checkpoint, 119–120
Morphological forms, Candida
Mkc1 protein
Mitotic recombination, in strain variation, 94
Mik1 protein, in cell cycle, 107
Mls1 protein, in cell cycle, 302
in cell wall, 198
in drug resistance, 310
in histatin response, 190
in stress response, 230, 232
Mls1 protein, in cell cycle, 107
Mls1 protein, in cell cycle, 302
in cell wall, 198
in drug resistance, 310
in histatin response, 190
in stress response, 230, 232
Mlc1 protein, in cell cycle, 110
Mlc1 protein, in cell cycle, 302
in cell wall, 198
in drug resistance, 310
in histatin response, 190
in stress response, 230, 232
of Candida albicans, 331–336
in oxidative stress, 278
in phagocytosis, 262, 264
Morphogenesis checkpoint, 119–120
Morphological forms, Candida
cell cycle checkpoints in, 119–120
cell cycle perturbation and, 119
cyclin regulation in, 109–119
distinguishing features of, 104–109
in stationary phase, 119
types of, 101–104
Morphology index, 104
Mortality, drug resistance related to, 373–376
MRX complex, in DNA repair, 64
Msb2 protein
in cell wall, 198, 215
in stress response, 232
Msh proteins, in stress response, 229, 234
MTL genes, in mating, 75–76, 78, 81
MTT assay, in drug development, 393
Mucocutaneous candidiasis, chronic, see Chronic mucocutaneous candidiasis
Mucosal candidiasis, see also Esophageal candidiasis; Gastrointestinal candidiasis; Vulvovaginal candidiasis
Vulvovaginal candidiasis
anatomical sites of, 419
diagnosis of, 424–425
overview of, 419
pathogenesis of, 425
treatment of, 421
Mucosal immunity, 137–154
in biofilms, 145–146
in gastrointestinal candidiasis, 140–142
historical perspective of, 137–138
in invasive candidiasis, 129–130
in mammalian immune response, 160
in vaginitis, 145–146
in vulvovaginal candidiasis, 142–145
invasive candidiasis, 140–142
in oropharyngeal candidiasis, 139–140
in gastrointestinal candidiasis, 140–142
in oropharyngeal candidiasis, 129–130
in invasive candidiasis, 129
in candidemia, 430–431
in oral candidiasis, 138–140
in gastrointestinal candidiasis, 140–142
in biofilms, 145–146
in vaginitis, 145–146
in mucosal candidiasis, 421
Neutropenia
as risk factor, 1
vaccinations in, 173
Neutrophils
in immune response, 156
in oropharyngeal candidiasis, 139–140
NGT genes, in DNA repair, 62
Niches
Candida albicans, 14, 225–226, 336–337
Candida glabrata, 16
Candida parapsilosis, 17
Nkl1 protein, in stress response, 232
Nikkomycin Z, 396
Nitric oxide, stress response to, 228
Nitrogen acquisition
in kidney lesions, 291
in liver lesions, 292
Nitrosative stress response, 228, 264–267
NLRP3 gene, polymorphisms of, 163
Nonhomologous end joining, in DNA repair, 64
NgI protein
in cell cycle, 117–119
in heavy metal stress response, 229
in morphology, 103
N-terminal domain, of adhesins, 244
Nhl1 protein, in oxidative stress response, 278
Nuclear division, in cell cycle, 108–109
Nuclear migration, 106
Nucleotide binding domain leucine-reach repeat-containing receptors in immune response, 160
in invasive candidiasis, 129
Nucleotide excision repair, 63
Nup proteins, in biofilm formation, 302, 304
Nutrient acquisition, in kidney lesions, 290–291
Nutrient starvation, 267–268
Nystatin liposomal formulation of, 396
for mucosal candidiasis, 421
O
Och1 protein, in biofilm formation, 302
Odynophagia, in oral candidiasis, 420
OG1 gene, in DNA repair, 62
Op4 protein
in mating, 80
in switching, 81
Opa cells, see also Switching in mating, 76–78, 81
in morphology of, 103–104
Opb proteins, in mating, 76
Opportunistic infections, 12
versus accidental infections, 1–2
adhesins in, 243–259
Opre protein, in mating, 84
Oral contraceptives, vulvovaginal candidiasis due to, 422
Oral environment, microbial populations in, 319
Orf19.207 protein, in mating, 84
Orf19.207 protein, in mating, 84
OrFeome project, Candida albicans, 505–510
Oropharyngeal candidiasis
areas affected in, 138
biofilms in, 146
clinical manifestations of, 420
denture stomatitis, 140, 146
Pattern recognition receptors, 157–160
Peroxide, stress response to, 227–228
Pericarditis, 434–435
Pepstatin A, in invasion, 272
Pep12 protein, in biofilm formation, 302
Pep1 protein, in switching, 81
Pdx proteins
Pdr proteins
Pdh1 protein, in multidrug resistance, 405
Pda proteins, in liver lesions, 292
Pck1 protein
Pbs proteins, in stress response, 230–231
Pathogenicity,
Pasteur Institute, database of, 37
Passive immunization, 4–5
Parallel respiratory pathway, 332–333
Paracoccidioides brasiliensis
Paracoccidioides
Pacemakers, infection of, 435
Pacemaker, infection in, 435
Oxidative stress response, 227–228
Osmotic stress response, 190, 227
in morphogenesis, 334
in liver lesions, 292
invasion, 288
in histatin response, 190
in colonization, 287
in kidney lesions, 291
in liver lesions, 293
in matting, 84
Pjk proteins, in morphogenesis, 334
Phagocytosis
of Candida, 156, 261–262, 264
defenses against, 270
Pharmacodynamics, of antifungal drugs, 346–347
Pharmacokinetics, of antifungal drugs, 346–348
Pharmacology, of antifungal drugs, 347
Pharmacokinetics, of antifungal drugs, 347, 350
Pharmacology, of antifungal drugs, 347–348
Pharmacokinetics of, 345, 350
Phosphorylation, of antifungal drugs, 347
Phospho-proteins, of antifungal drugs, 347
Phosphorylation, of antifungal drugs, 347–350
Resistant, to, 348
resistance to, 347
spectrum of activity of, 347, 349–350
toxicity of, 348
Polymerase chain reaction, see PCR
Polymerases, in DNA repair, 64–65
Polysaccharides, of cell wall, 197–199
Polystictus versicolor
Pollen, in immunization, 405
Pollen, in immunity modulation, 269
Pols, in liver lesions, 292
Pol proteins, in DNA repair, 64–65
Populations, in stress response, 233–234
Pathogenicity, see specific organisms
Pattern recognition receptors, 157–160
in gastrointestinal candidiasis, 141
in invasive candidiasis, 129–130
Phr1 protein, in matting, 84
Pbs proteins, in stress response, 230–231
Pck1 protein
in carbon metabolism, 336
in carbon starvation, 202, 206, 211
in colonization, 287
in histatin response, 190
in invasion, 288
in kidney lesions, 291
in liver lesions, 292
Pca proteins, in cell wall, 202, 206, 211
in colonization, 287
in histatin response, 190
in invasion, 288
in kidney lesions, 291
in liver lesions, 292
Pcha guilliermondii
horizontal gene transfer to, 37
mating type-like locus of, 34
Pichia stiptis, 27
codon reassignment in, 46
horizontal gene transfer to, 36
mating type-like locus of, 34
Pir proteins
in cell wall, 201, 209
in histatin response, 190
Plagiodochia E, targeting mitochondria, 335
Phleomycin, 321
Phleomycin, in immunity modulation, 269
Pld proteins, in immunity modulation, 269
Pma proteins, in liver lesions, 292
PMSI protein, in methyl mismatch repair, 60–61
Pmnt I protein, in dissemination, 290
Pmnt proteins, in biofilm formation, 302
PNA-FISH analysis, for drug resistance, 379–380
Pneumocystis, farnesol effects on, 324
Pneumonia, 436
Point centeromeres, 29–30
Point mutation, genetic instability and, 57–58
Pol proteins, in DNA repair, 64–65
Polarisomes, 107–108
Polysomes, 347–353
clinical uses of, 350–351
drug-drug interactions of, 350
mechanism of action of, 347
new, 396
pharmacodynamics of, 347–348
pharmacokinetics of, 345, 350
resistance to, 403
spectrum of activity of, 347, 349–350
toxicity of, 348
Postantifungal effect, 346
Potassium hydroxide test, for vulvovaginal candidiasis, 423–424
Polymerases, in DNA repair, 64–65
Polymericus, in DNA repair, 64–65
Polymerase chain reaction, see PCR
Polyomaviruses, in DNA repair, 64–65
Polysaccharides, of cell wall, 197–199
Polystictus versicolor
Porphyromonas gingivalis
clinical uses of, 358
advantages of, 346
for candidiasis, 431
chemical structure of, 348
clinical uses of, 358
advantages of, 346
dosing of, 351
drug-drug interactions of, 353, 357
monitoring of, 356
for mucosal candidiasis, 421
pharmacokinetics of, 355–356
spectrum of activity of, 349, 354
susceptibility to, 465, 468
Postantifungal effect, 346
Potassium hydroxide test, for vulvovaginal candidiasis, 423–424
PgpR protein, in polymicrobial populations, 323
Pra proteins
in intracellular trafficking, 270
in invasion, 288
Pregnancy, vulvovaginal candidiasis in, 172, 422
Preimmunity, to Candida, 173–174
Prey proteins, in two-hybrid system, 483–487
Prh proteins, in matting, 84
Probionts, for candidiasis, 321–322
Phylopathic antifungal therapy, for disseminated candidiasis, 4–5
Prospective Antifungal Therapy (PATH) registry, 375
Prosthetic joint infections, 435
Protein microarray, for Candida albicans
Proteinase, Candida albicans, interactions with, 319
Posaconazole
advantages of, 346
for candidiasis, 431
chemical structure of, 348
clinical uses of, 358
disadvantages of, 346
dosing of, 351
drug-drug interactions of, 353, 357
monitoring of, 356
for mucosal candidiasis, 421
pharmacokinetics of, 355–356
spectrum of activity of, 349, 354
susceptibility to, 465, 468
Postantifungal effect, 346
Potassium hydroxide test, for vulvovaginal candidiasis, 423–424
PgpR protein, in polymicrobial populations, 323
Pra proteins
in intracellular trafficking, 270
in invasion, 288
Pregnancy, vulvovaginal candidiasis in, 172, 422
Preimmunity, to Candida, 173–174
Prey proteins, in two-hybrid system, 483–487
Prh proteins, in matting, 84
Probionts, for candidiasis, 321–322
Phylopathic antifungal therapy, for disseminated candidiasis, 4–5
Prospective Antifungal Therapy (PATH) registry, 375
Prosthetic joint infections, 435
Protein microarray, for Candida albicans, 489–496
Proteins, Candida albicans, 14
Protein-protein interactions, in two-hybrid system, 483–487
Pruritus, in vulvovaginal candidiasis, 423
Pseudohyphae, morphology of, 101–103
Pseudomembranous oropharyngeal candidiasis, 16
Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Mon, 20 May 2019 11:10:32
Sporothrix schenckii, Candida, Spleen, SPK-843 (polyene), 396
Staphylococcus aureus, Ssu proteins, in mating, 84
Streptococcus oralis, Streptococcus anginosus
Strain variability, 91–99
Stomatitis
Ste proteins
Stationary phase, of cell cycle, 119
Starvation, nutrient, 267–268
Stress responses, 225–242
Stress, genetic instability in, 67–68
Stress responses, 225–242
Streptococcus pneumoniae, vaccines for, 173–174
Streptococcus sanguinis, Candida albicans interactions with, 319
Streptococcus thermophilus, for candidiasis, 321–322
Stress, genetic instability in, 67–68
Stress responses, 225–242
Wt, T-2307 (acylamide), 396
T lymphocytes in gastrointestinal candidiasis, 141–142
in immune response, 156
in invasive candidiasis, 131–132
in oral candidiasis, 420
in oropharyngeal candidiasis, 138–139
invasive candidiasis, 131–132
in oropharyngeal candidiasis, 138–139
in drug resistance, 66, 407–408
in strain variation, 97
T-cell receptors, in oropharyngeal candidiasis, 139
in biofilm formation, 302, 304, 306
in mating, 84, 85
in immune response, 163–164
in innate immunity, 157
in invasive candidiasis, 131–132
in oropharyngeal candidiasis, 139–140
Thioredoxin in oxidative stress response, 277
in oxidative stress response, 227
in stress response, 227, 266
Thr residues, in adhesins, 244
Thrombophlebitis, 435
Thi1/Th2 cells in immune response, 157, 163–164
in innate immunity, 157
in invasive candidiasis, 131
TOM complex, in mitochondrial function, 337–339
TLO proteins, 33
TMP-1363, targeting mitochondria, 336
Tolerance, to Candida, 127–128, 132–133, 142
Toll-like receptors in immune response, 158–159
in invasive candidiasis, 129–130
polymorphisms of, 161
in vulvovaginal candidiasis, 423
Torulopsis, 11
Torulopsis glabrata, see Candida glabrata
Tox9 protein, in switching, 82
Toxicity studies, in drug development, 393
Tps proteins in general stress response, 230
in oxidative stress response, 277
Tpx1 protein, in stress response, 233
TR region, in Als family, 244–245
Transcription factor complementation, in two-hybrid system, 483–487
Transferrin, 293
Transglycosidases, in cell wall, 211–213
Translation, molecules of, 45
Translesion synthesis, in DNA repair, 64–65
Translocons, in mitochondrial function, 337–339
Transposable elements, 30
Treg cells in gastrointestinal candidiasis, 142
in innate immunity, 157
in invasive candidiasis, 132
Trehalose, in stress response, 266
heat, 226
oxidative s, 277
Triazoles, 354
TRIF (Toll-IL-1 receptor domain-containing adapter-inducing beta interferon) pathway, in invasive candidiasis, 129
Tpr1 protein, in colonization, 286
Trr1 protein, in oxidative stress response, 277–278
Trx1 protein in histatin response, 190
in kidney lesions, 291
in oxidative stress response, 277–278
in stress response, 227
Tryptophan starvation, 132–133
Tsa1 protein, in oxidative stress, 278
Trr1 protein, in kidney lesions, 291
Tup1 protein in Als regulation, 247
in biofilm formation, 308
in cell cycle, 117, 118
Tye7 protein, in carbon metabolism, 335–336
Tyrosol, in quorum sensing, 308
INDEX

U
Uec1 protein, in invasion, 273, 288
Ultraviolet light damage, DNA repair in, 62, 63
Ume6 protein
 in biofilm formation, 302
 in cell cycle, 118
 in morphology, 102–103
Upc proteins, in drug resistance, 66
URA3 gene, Candida albicans, 15
Ura proteins, in nutrient starvation, 267–268
Urinary tract, candidiasis of, 435
Utr proteins, in cell wall, 202, 204
Uvr proteins, in DNA repair, 63

V
Vaccines, 171–184
 for active immunization, 175–178
 adjuvants for, 177
 barriers to efficacy of, 172–174
 development of, 163–164
 for mucosal candidiasis, 425
 for passive immunization, 174–175
 rationale for, 171–174
Vacuolar inheritance, 108
Vaginal candidiasis, see Vulvovaginal candidiasis
Vaginal-relapse theory, 423
Ventilator-related infections, 319–320, 436
Virulence factors, see also specific organisms
 drug resistance and, 375–376
 versus host defenses, 155
 in oral candidiasis, 420
 strain variation and, 96
 stress responses and, see Stress responses
Voriconazole
 advantages of, 346
 for Candida albicans, 16
 for candidemia, 431–432
 chemical structure of, 348
 clinical uses of, 358
 disadvantages of, 346
 dosing of, 351
 drug-drug interactions of, 353, 357
 monitoring of, 356
 for mucosal candidiasis, 421
 pharmacokinetics of, 355
 spectrum of activity of, 349, 354
 susceptibility to, 465–467
 toxicity of, 357
Vps51 protein
 of Candida albicans, 262
 in invasion, 273
Vulvar vestibulitis syndrome
 gene polymorphisms in, 162–163
 recurrent, 423
Vulvovaginal candidiasis
 animal models for, 143, 145
 biofilms in, 146
 complicated, 424
 drugs for, 421, 424
 epidemiology of, 420
 gene expression in, 287
 immunity to, 142–145
 incidence of, 145, 387–388
 microbiology of, 420, 422–423
 natural history of, 144
 pathogenesis of, 420, 422–423
 pathophysiology of, 155
 recurrent, 145, 162, 172
 risk factors for, 145, 172, 422–423
 species causing, 11–12
 treatment of, 424
 vaccines for, 172

W
Wap proteins
 in cell wall, 205
 in liver lesions, 293
Weak acid stress response, 228–229
Wh11 protein
 in mating, 84
 in switching, 81
White cells, see also Switching
 in mating, 76–78
White-opaque switch, Candida albicans, 15
Whole-genome duplication, in cell cycle, 110
Wildlife, strain variation found in, 95
Wor proteins, in switching, 82–83, 104
Wpre protein, in mating, 84

X
Xanthomonas campestris, Candida albicans interactions with, 320

Y
Yak1 protein, in biofilm formation, 302, 306
Yap proteins
 in multidrug resistance, 405–406
 in stress response, 233–234
Yapsins, 213
Yarrowia lipolytica
 cell wall of, 209
 cyclins of, 110
Yck proteins, in invasion, 288
Yeast cells, morphology of, 101–103, 299–300
Yeast Gene Order Browser, 38
Ygb proteins, in liver lesions, 293
YHBI protein, in histatin response, 190
YhB proteins
 in invasion, 288
 in liver lesions, 293
 in nitrosative stress response, 228
 in stress response, 266–267
Yku protein, in DNA repair, 64
Yps7 protein, in cell wall, 204
YTTYPL tandem repeats, in cell wall, 210
Ywp1 protein, in biofilm formation, 302, 303–304

Z
Zap proteins, in biofilm formation, 302, 307
Zinc, stress response to, 229
Zygomycetes, antifungal drugs for, 349