CONTENTS

Contributors vii

Preface xi

I. MICROBIAL DIVERSITY IN POLAR ENVIRONMENTS 1

1. Bacterial Diversity in Polar Habitats
 Bronwyn M. Kirby, Samantha Easton, I. Marla Tuffin, and Don A. Cowan 3

2. *Archaea*
 Thomas D. Niederberger, Ian R. McDonald, and S. Craig Cary 32

3. Bacteriophages at the Poles
 Robert V. Miller 62

4. Fungi in Polar Environments
 Polona Zalar, Silva Sonjak, and Nina Gunde-Cimerman 79

II. ADAPTATIONS AND PHYSIOLOGY OF COLD-ADAPTED MICROORGANISMS IN POLAR ENVIRONMENTS 101

5. General Characteristics of Cold-Adapted Microorganisms
 Shawn Doyle, Markus Dieser, Erik Broemsen, and Brent Christner 103

6. Genomic and Expression Analyses of Cold-Adapted Microorganisms
 Corien Bakermans, Peter W. Bergholz, Debora F. Rodrigues, Tatiana A. Vishnivetskaya, Héctor L. Ayala-del-Río, and James M. Tiedje 126
7. Metagenomic Analysis of Polar Ecosystems
 Etienne Yergeau and Charles W. Greer
 156

8. Polar Microorganisms and Biotechnology
 Georges Feller and Rosa Margesin
 166

III. ECOLOGY AND BIOGEOCHEMICAL CYCLING OF POLAR MICROBIOLOGY COMMUNITIES
 181

9. Microbial Carbon Cycling in Permafrost
 Tatiana A. Vishnivetskaya, Susanne Liebner, Roland Wilhelm,
 and Dirk Wagner
 183

10. Polar Marine Microbiology
 Connie Lovejoy
 201

11. Cryospheric Environments in Polar Regions
 (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves)
 Mark Skidmore, Anne Jungblut, Matthew Urschel, and Karen Junge
 218

IV. CHALLENGES TO LIVING IN POLAR AND SUBPOLAR ENVIRONMENTS
 241

12. Low-Temperature Limits of Microbial Growth and Metabolism
 P. Buford Price
 243

13. Climate Change, Ozone Depletion, and Life at the Poles
 Helen A. Vrionis, Karen Warner, Lyle G. Whyte,
 and Robert V. Miller
 265

14. Life in Ice on Other Worlds
 Christopher P. McKay, Nadia C. S. Mykytczuk, and Lyle G. Whyte
 290

Index
 305
CONTRIBUTORS

Héctor L. Ayala-del-Río
Department of Biology, University of Puerto Rico at Humacao, Humacao, PR 00791

Corien Bakermans
Division of Mathematics and Natural Sciences, Altoona College, Pennsylvania State University, 3000 Ivyside Park, Altoona, PA 16601

Peter W. Bergholz
Department of Food Science, Cornell University, Stocking Hall, Room 412, Ithaca, NY 14853

Erik Broemsen
Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803

S. Craig Cary
Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand, and College of Earth, Ocean and Environment, University of Delaware, Lewes, DE 19958

Brent Christner
Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803

Don A. Cowan
Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa

Markus Dieser
Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803
Shawn Doyle
Department of Biological Sciences, Louisiana State University,
202 Life Sciences Building, Baton Rouge, LA 70803

Samantha Easton
Institute for Microbial Biotechnology and Metagenomics,
Department of Biotechnology, University of the Western Cape,
Bellville 7535, South Africa

Georges Feller
Laboratory of Biochemistry, Centre for Protein Engineering,
University of Liège, B–4000 Liège, Belgium

Charles W. Greer
National Research Council of Canada, Biotechnology Research Institute,
Montreal, QC H4P 2R2, Canada

Nina Gunde-Cimerman
Biology Department, Biotechnical Faculty, University of Ljubljana,
1000 Ljubljana, Slovenia

Anne Jungblut
Department of Botany, The Natural History Museum, Cromwell Road,
London SW7 5BD, United Kingdom

Karen Junge
Applied Physics Laboratory, University of Washington,
1013 NE 40th Street, Seattle, WA 98105

Bronwyn M. Kirby
Institute for Microbial Biotechnology and Metagenomics,
Department of Biotechnology, University of the Western Cape,
Bellville 7535, South Africa

Susanne Liebner
Department of Arctic and Marine Biology, University of Tromsø,
9037 Tromsø, Norway

Connie Lovejoy
Département de Biologie, Institut de biologie intégrative et des systèmes
(IBIS)/Québec–Océan, Université Laval, Québec City,
QC G1V 0A6, Canada

Rosa Margesin
Institute of Microbiology, University of Innsbruck, Technikerstrasse 25,
A-6020 Innsbruck, Austria

Ian R. McDonald
Department of Biological Sciences, University of Waikato,
Hamilton 3240, New Zealand

Christopher P. McKay
NASA Ames Research Center, Moffett Field, CA 94035

Robert V. Miller
Department of Microbiology and Molecular Genetics,
Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078
Nadia C. S. Mykytczuk
Department of Natural Resource Sciences, McGill University,
MacDonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue,
Quebec H9X 3V9, Canada

Thomas D. Niederberger
College of Earth, Ocean and Environment, University of Delaware,
Lewes, DE 19958

P. Buford Price
Physics Department, University of California, Berkeley, CA 94720

Debora F. Rodrigues
Department of Civil and Environmental Engineering, University of Houston,
N107 Engineering Building 1, Houston, TX 77204–4003

Mark Skidmore
Department of Earth Sciences, Montana State University, Bozeman, MT 59717

Silva Sonjak
Biology Department, Biotechnical Faculty, University of Ljubljana,
1000 Ljubljana, Slovenia

James M. Tiedje
Center for Microbial Ecology, 540 Plant and Soil Sciences Building,
Michigan State University, East Lansing, MI 48824–1325

I. Marla Tuffin
Institute for Microbial Biotechnology and Metagenomics,
Department of Biotechnology, University of the Western Cape,
Bellville 7535, South Africa

Matthew Urschel
Department of Microbiology, Montana State University, Bozeman, MT 59717

Tatiana A. Vishnivetskaya
Center for Environmental Biotechnology, The University of Tennessee,
676 Dabney-Buehler Hall, 1416 Circle Drive, Knoxville, TN 37996–1605,
and Biosciences Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37831–6038

Helen A. Vrionis
Department of Natural Resource Sciences, McGill University,
Macdonald Campus, 21,111 Lakeshore Road, Ste.-Anne-de-Bellevue,
QC H9X 3V9, Canada

Dirk Wagner
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43,
14473 Potsdam, Germany

Karen Warner
Department of Microbiology and Molecular Genetics,
Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078

Lyle G. Whyte
Department of Natural Resource Sciences, McGill University,
Macdonald Campus, 21,111 Lakeshore Road, Ste.-Anne-de-Bellevue,
QC H9X 3V9, Canada
Roland Wilhelm
Department of Natural Resource Sciences, McGill University,
Ste.-Anne-de-Bellevue, QC H9X 3V9, Canada

Etienne Yergeau
National Research Council of Canada, Biotechnology Research Institute,
Montreal, QC H4P 2R2, Canada

Polona Zalar
Biology Department, Biotechnical Faculty, University of Ljubljana,
1000 Ljubljana, Slovenia
Polar microbiology is a fast-growing field that can tell us much about the fundamentals of life on earth and the microbial contributions and consequences to such important global environmental issues as warming earth, ozone depletion, and elemental cycling. Polar microbiology has also recently received considerable attention because polar microbial communities are considered important analogues for astrobiology investigations looking for life on other very cold solar system bodies.

Over the last 20 to 30 years, microbiologists have had increasing access to the previously difficult to reach polar regions, which has resulted in tremendous progress in understanding the microbial ecology of these regions. This research has opened a door to a greater understanding of the physiology of the hardy microbial inhabitants of these extremely cold environments. During the International Polar Year of 2008, many international microbial investigations focusing on Arctic and Antarctic regions were conducted. They often lasted for a 3- to 4-year period. This book is a celebration of research undertaken in this exciting field of microbiology during the International Polar Year and over the 10 to 20 years that preceded it.

This is the ideal time to summarize the research carried out over the last decade that has increased our knowledge of the microbiology of the Arctic and Antarctic regions in our world. Much of the research initiated during the International Polar Year has been completed and the data compiled and analyzed. Now is the time to reflect on the major findings and conclusions that can be drawn from the International Polar Year’s activities. This book was inspired in part by the presentations at the 2008 International Polar and Alpine Microbiology Conference in Banff, Canada, where many of the contributors to Polar Microbiology first discussed the project.

Polar Microbiology has been created as a book that addresses polar microbiology in a general fashion and is designed to inform a broad audience of microbiologists on the microbial ecology and physiology of this fascinating world.
of ice and snow. *Polar Microbiology* is targeted toward a general microbiology audience rather than to just the polar microbiology community because it is our hope that this book will become a useful reference and general polar microbiology textbook for scientists and students in all areas of biology and geomicrobiology.

To this end, we asked the authors to first give a general overview of their particular area of polar expertise, outlining the major advances and general themes and principles of the subject. The authors were also asked to include the most relevant highlights of recent findings and to provide future questions that should be explored in their field. They were encouraged to compare the Arctic and Antarctic environments wherever appropriate and to comment on the effects of climate change on these fragile ecosystems. The High Arctic in particular is experiencing the greatest increases in temperatures on the planet, with subsequent detrimental effects, including habitat destruction (Vincent et al., 2009).

The world’s leading scientists in Arctic and Antarctic microbiology have written *Polar Microbiology*. The book is organized into four major thematic sections. In Part I, “Microbial Diversity of Polar Environments,” we start with a survey of what is currently known (surprisingly, quite a bit!) and what is not known (paradoxically, still quite a bit!) about the microbial inhabitants of polar environments. Here, the diversity of the four major microbial groups—bacteria, archaea, viruses, and eukaryotes—found in polar environments is presented separately in four chapters.

Part II addresses the adaptations and physiology of cold-adapted microorganisms. General aspects of the theme are discussed in Chapter 5, while exciting new discoveries revealed by genomic, proteomic, and metagenomic analyses are described in Chapters 6 and 7. This section concludes with a chapter on how this information is being used to increasingly develop and utilize cold-adapted microorganisms for biotechnological applications.

In Part III, “Ecology and Biogeochemical Cycling of Polar Microbiology Communities,” the significant ecological role and the importance of polar microbial communities in biogeochemical cycling is addressed through specific contributions focused on the major polar environments. These include (i) polar terrestrial systems, especially permafrost; (ii) polar marine systems; and (iii) cryosphere environments, including glaciers, ice shelves, and sea ice ecosystems.

Part IV of the book presents the challenges microorganisms face living in polar and subpolar environments and explores the low-temperature limits of microbial life. Growth, metabolism, and activity are addressed in Chapter 12. How climate change and ozone depletion are affecting polar communities is outlined in Chapter 13. Chapter 14 discusses how polar microbiology has become increasingly important to astrobiology and the search for microbial life on other worlds. Indeed, the primary targets for astrobiology investigations of other solar system bodies are Mars, in the short term, as well as Europa and Enceladus, in the mid- to longer term. Extremely cold temperatures characterize these targets, and as such, the best terrestrial analogues may be Earth’s polar regions.
We envision *Polar Microbiology* as a summation for a general audience of the major aspects of our current knowledge of the amazing diversity, ecology, adaptations, and utility of microorganisms living and thriving in the coldest regions of our planet. We hope that you, the reader, both enjoy it and find it to be a useful resource. We offer our sincere thanks to the amazing authors who spent considerable time and effort preparing and revising their contributions to this endeavor; we are truly grateful for their insights expressed in such a readable way.

REFERENCE

ROBERT V. MILLER
LYLE G. WHYTE
INDEX

A
Acidic residues, protein structure and, 140
Alkaline phosphatases, 172–173
Alpine lake, seasonal dynamics of viruses, 70
Alpine sites, in Arctic region, 18–19
Aeromonas haloplanktis, 139
Amino acid biosynthesis, 136
Ampli con sequencing, in metagenomic analysis, 157
Antarctic phosphatases, 173
Antarctica, 3–16
aquatic habitats, prokaryotic diversity, 16, CP2
Archaec in terrestrial environments, 34–47
bacterial studies, 4–9
bioprospecting, 169
coastal waters, virus activity, 71
continental environments, 11
cryococonites, 15–16
cyanobacteria, 10
differences from Arctic environment, 157–158
dry valleys, 12–13, CP1
lakes, 16, CP2
lithic communities, 13–15
maritime and peninsula environments, 10
sea ice microbial communities, 21–23
seawater and sediments, metagenomic studies, 161
terrestrial soils, prokaryotic diversity, 12–13, CP1
unfrozen aqueous environments, 266
versus Arctic environment, 157–158
viruslike particles, 70–72
Antarcticine-NF3, 173
Archaec , 32–61
diversity of, polar comparisons of, 54
in Antarctic marine sponges, 50
in Arctic sea ice, 226–227
in lake habitats, 47–48, 52
in marine environments, 49–50, 53–54
in natural polar environments, 49–50
in polar environments, climate change and, 55
in polar seas, 204
in seawater and sea ice, 49, 50
in soil habitats, 34–47, 50–52
in terrestrial environments of Antarctica, 34–47
methanogenic, 189–193
Archaec 16S rRNA gene-based surveys, in natural polar environments, 36–43
oligonucleotides used in, 44–46
Archaec 16S rRNA gene sequences, phylogenetic diversity of, 33, CP4
polar sites surveyed for, 34, CP5
Arctic ecosystems, as sources of CO2, 186–187
Arctic and Antarctic environments, differences, 157–158
Arctic Ocean, and sea ice, *Archaec*, 53–54
sea ice, 23
Arctic region, 16–20
alpine sites, 18–19
and alpine freshwater environments, virus-to-bacterium ratio, 70
Archaec in seafloor environments, 54
Archaec in terrestrial environments, 50–53
bioprospecting, 169
lakes, 20
microbial mats, 20–21
permafrost, 19–20
sea ice microbial communities, 21–23
seawater and sediments, metagenomic studies, 159–161
tundras, 17–18, CP3
unfrozen aquatic environments, 266
Arctic region (continued)
 viruslike particles in seawater, 68–69
 viruslike particles in subzero bottom waters, 68
 winter sea-ice brines, viral and bacterial concentrations, 69
Arctic terrestrial ecosystems, carbon turnover in, 185–186
Arginine, protein structure and, 140
Arrhenius equation, 104
Arthrobacter psychrolactophilus, 175
Ascomycetous yeasts, in polar environments, 88–89
Aureobasidium pullulans, 90
B
 Bacillariophyta, 205
 Bacillus subtilis, 134
 polar, 203–204
 as cell factories, 169–170
 production of compatible solutes by, 136–137
Bacterial community, composition of, lysogens and, 65–66
Bacterial diversity in polar habitats, 3–31
Bacteriophages at the poles, 62–78
 diversity, 73
 functions, 62
 inorganic nutrients and, 67
 life choices of phages and, 62–66
 lysogeny, 64–65
 lytic and temperate life, 63, 64–65
 molecular studies, 73
 nutrient availability, 66–73
 outnumbering hosts in natural environment, 68
 productive life choice, 63–64
 soils, 71–72
Bacterioplankton, influence of stratosphere, 276–277
Bacteroides, 24
Bacteroidetes, 203
Basidiomycetous yeasts, in freshwater, 86
 in polar environments, 88–89
Berkeley Fluorescence Spectrometer, 253
Bioaugmentation, 174
Biochemical reactions, low-temperature challenge to, 138–139
Biogeochemical cycling, and ecology, of polar microbiology communities, 181–239
Biomolecules, cold-active, applications in biotechnology, 168
Biostimulation, 174
Biotechnology, cold-active biomolecules, 168
cold-active enzymes, 170–171
cold-active microorganisms, 166–180
polar plants and animals, 175–176
Black yeasts like fungi, in polar environments, 89–90
Brine, salinity, temperature as determinant, 225
Brine channel salinity, temperature as determinant, 225
Brine channel system, in columnar sea ice, 224
C
 Candida antarctica, 171
 Carbon, and energy metabolism, 136
 cellular, 185
 in polar environments, 267
Carbon cycling, in Arctic sea ice, 227–228
 glacier and ice-sheet communities, 223
 ice-sheet communities, 232
 permafrost-affected soils, 185, CP8
 microbial, in permafrost, 183–200
 viruslike particles, 71
Carbon dioxide, Arctic ecosystems, 186–187
 fluxes of, 267–268
 increased, in loss of ice cover, 283–284
Carbon fluxes, and microbial activity, 185–187
Carbon pools, 185
Carbon turnover, electron shunting and, 279
 Arctic terrestrial ecosystems, 185–186
 phototrophy and, 278–279
Carotenoid pigments, in membrane stabilization, 109
Catalytic efficiency of enzyme, 104–108
Cell wall, peptidoglycan, at low temperature, 137
Cells, concentrations in glacial ice, 255–256, 257
 individual, live/dormant tests on, 261
Chemical reaction, reaction kinetics and, 104
Chlorarachniophytes, 206
Chlorophyll (Chl), autofluorescence, 260
 concentration in glacial ice, 256–257
 concentrations as function of depth, 253–256
Chryseobacterium greenlandense, 222–223
Cladosporium, filamentous melanized, 91–92
Climate change, Archaea in polar environments, 55
 biotic and abiotic factors influencing, 280–284
 effects on polar regions, 24
Coastal waters, sea ice in, 23–24
Cold, bacterial adaptation to, ecological evidence, 127–132
 gene expression responses, 132–138
 growth in, stability-activity relationship, 139
 protein adaptations, 138–141
Cold acclimation proteins, 112
Cold-adapted microorganisms, adaptations and physiology, 101–239
adaptations common to all psychrophiles, 127
general characteristics, 103–125
genome sequences, 127–129
genomic and expression analyses, 126–155
production of compatible solutes, 115
resistance mechanisms, 279–280
subeutectic metabolism, 116–119
subzero growth and metabolism, 117–119
water activity and freezing, 114–116
Cold environments, acclimation for life in,
134–138
cold shock proteins, 112
cold shock response, 111–112
Cold temperatures, fluidity at, 107–108
Comets, 300
Continental environments, in Antarctica, 11
Cosmetics, polar proteins, 172–173
Cryptarchaeota, 32, 47, 49, 50, 52, 54, 230
Cryoconite holes, 219–220
in glaciers, microbial colonization in, 88
Cryoconites, 15–16
Cryoecosystems, polar ice-shelf, 230
Cryospheric environments, in polar regions,
218–239
Cryptendolithic fungi, in Antarctic rock, 84
Cryptendolithic organisms, 14
Cyanobacteria, in Antarctic freshwater and terrestrial
habitats, 10
“invisible,” 257–260
microbial mats, 20–21, 230, 231
submicrometer-size, from ocean to ice,
256–260
Cyanophages, phylogenetic diversity, 73
D
Desulfotalea psychrophila, 170
Dinoflagellates, 207
Diversity
bacteriophages at the poles, 73
Dry valleys, in Antarctica, 12–13, CP1
Drying, global warming-induced, 282
Dunaliella antarctica, 176
E
Earth, cold environments, 127, 129
life, evidence favoring icy origin, 244–245
life on Mars before? 243–244
Ecology, and biogeochemical cycling, of polar
microbiology communities, 181–239
Enceladus, 299–300
Environmental microarrays, in metagenomic analysis,
157
Enzymes, catalytic efficiency, 104–107
cold-active, in biotechnology, 170–171
cold-adapted, structural features, 139
industrial, from polar microorganisms, 171–172
Escherichia coli, 112, 113, 173, 249
phage, probability of host infection, 67
Estuarine circulation, double, 208, 209
Eukarya, 205
Eukaryotes, extremophilic, in polar environments,
79–80
Eukaryotic phytoplankton, 175
Europa, 299, 301
Euryarchaeota, 32, 47, 50, 52, 54, 204–205, 230
as methanogens, 189, 190–191
Euryspsychrophile, gene expression responses of,
132–134
Exiguobacterium, adaptations to environmental
conditions, 142, 143, 147
cold- and warm-adapted strains compared,
141–147
ecological adaptation in, 131–132, 133
facultative anaerobes of, 145
rRNA operons, 144, 146
strains, genomic comparison, 142–147
Exiguobacterium sibiricum, 137
chromosome organization, 144, 145, 146
genome features, 144
isozyme expression at different temperatures,
134–136
Exopolysaccharides, production, 115–116
F
Flow cytometry, to study sizes of ice core, 245–246
Fluorescent in situ hybridization (FISH), 203
Food webs, microbial, and nutrient cycling,
209–212
from polar seas, 209–211
Freeze-thaw stresses, and microbial activity,
187–189
Freshwater, of terrestrial ecosystems, metagenomic
studies of, 162
Fungi, black yeastlike, in polar environments,
89–90
filamentous, 91–93
in Arctic sediments, 82–83
in extremely cold environments, 80–88
Fungi, black yeastlike (continued)
in glaciers and subglacial environments, 87
in polar environments, 79–99
in rock, 83–85
in seawater and sea ice, 85–86
in soil and permafrost, 80–83
in vegetation, 80
indigenous groups in polar environments, 88–93

G
β-Galactosidase, 172
Genetic resources, polar, bioprospecting of, 169
Genome topology, 138
Genomic and expression analyses, of cold-adapted microorganisms, 126–155
Geological transformations, impact on ice and glaciers, 277–278
Geomyces, 91
Geothermal sites, 12–16
Glacial ice, cell concentrations, 255–256, 257
formation, 87
liquid veins, microbes confined to, 246
microbes, growth and survival, limits, 252
metabolic rates, for growth, maintenance, and survival, 249–251
repair of macromolecular damage, 251
wind transport and deposition, 253–254
microbial sizes, 245–246
microbial survival and metabolism, 246–248
microbes metabolizing by redox reactions, 247–248
submicrometer-size cyanobacteria, 256–260
surfaces of mineral grains, microbes, 247, 248
Glacier and ice-sheet communities, biogeochemical cycling, 223
Glaciers and ice sheets as microbial habitat, 218–219
ecology, 219
fungi, 87
microbiology, 218–224
Global carbon cycle, 183–200
Global warming, 280–281
Glycine, effect on protein conformation, 141
H
Habitat change, biotic and abiotic factors, 280–284
Halorhodospira lacusprofundi, 112, 115
Haptophyceae, 205, 206
α-Helices and β-sheets, proteins and, 140–141
Hydrocarbon bioremediation, 173–175
Hydrocarbon degraders, 18, 174
Hypoliths, 13
Ice, glacial. See Glacial ice
life on other worlds, 290–304
terrestrial ecosystems, metagenomic studies, 162
subglacial, yeasts in, 89
Ice crystal, bright field image of, 113
Ice-free regions in Antarctica, 11
Ice sheets and glaciers as microbial habitat, 218–219
ecology, 219
microbiology, 218–224
Ice-shelf communities, biogeochemical cycling,
232–233
microbiology, 228–233
Ice shelves, as microbial habitat, 228
ecology of, 228–232
Ice structure, ice-interacting proteins influencing, 115
Ice substrates, unfrozen water in, 114
Immunity, superinfection, lysogenic conversion and, 65
Iron cycling, in sea ice, 228
L
Lactase, 172
Lakes, Archaea, 47–48
hypersaline, Archaea, 48
layers of ice cover of, 86
of Arctic regions, Archaea, 52
types of ice in, 86
Large-insert libraries, in metagenomic analysis, 157
Light, importance of, in polar environments, 270–271
Lipid membranes, fluidity of, 108–109
Lipids, archaeal, 109
Lithic communities in Antarctica, 13–15
Low temperature. See Temperature, low
Lysogenic conversion, 65–66
Lysogeny, 64–65, 71–72
Lytic conversion, 64–65
M
Macromolecular stability at low temperature, 109
Macrozooplankton, 210–212
Marine ecosystems, seawater and sediments, metagenomic studies, 159–161
Marine environments, Archaea, 53–54
Marine microbiology, polar, 201–217
Marine protists, 205–207
Marine sponges, Antarctic, Archaea, 50
Mars, 291–299
average surface temperature, 291
crater distribution, ground ice, and crustal magnetism, 298–299, CP11
Earth analogs, 294–298
evidence favoring icy origin of life, 244–245
life here before life on Earth? 243–244
search for life, 291
sites for past and present life, 298–299
soils, 293
subsurface environments, 293–294
subsurface ice, 294, 295
surface environment, 291–293
Membrane lipids, fluidity, 137
Metagenomic analysis, amplicon sequencing, 157
environmental microarrays, 157
large-insert libraries, 157
methods available, 156–157, CP6
next-generation sequencing, 156
of polar ecosystems, 156–165
shotgun sequencing, 156–157
Metagenomic studies, Antarctic, summary, 159, 160
Arctic, summary, 159
Metagenomics, application to polar environments, 158–159
definition of, 156
Methane, fluxes of, 267–268
production in permafrost-affected tundra, 189–193
Methane-cycling microbial communities, 189–194
Methane-oxidizing Proteobacteria, 192, 193–194
Methanococcales, 112, 115, 134, 137–139
phospholipids in, 109
proteins of, 107
Methanogenesis, 189–193
Methanogenium frigidium, 112, 139
Methanogens, 17–18
Euryarchaeota as, 189, 190–191
Methanosarcina mazei, 193
Methanotrophs, 189
Methanotrophy, associated with submerged mosses, 193–194, CP9
Methylbacterium psychrophilum, 194
Methylbacterium tundripaludum, 194
Methylocella tundrae, 194
Methylocystis rosea, 194
Microbial activity, carbon fluxes, 185–187
freeze-thaw stresses, 187–189
Microbial communities, hydrogenology in defining, 266
metabolic transitions, 278–280
methane cycling, 189–194
Microbial diversity in polar environments, 1–99
Microbial evolution, new tool for study, 261
Microbial food webs, and nutrient cycling, 209–212
from polar seas, 209–210, 211
Microbial growth and metabolism, low-temperature limits, 243–264
Microbial mats, in Arctic region, 20–21
Micromonas, 202
Microorganisms, cold-adapted, adaptations and physiology in polar environments, 101–239
general characteristics, 103–125
Mixotrophy, 279
Molecular biology, polar proteins in, 172–173
N
Neisseria meningitidis, 138
Next-generation sequencing, in metagenomic analysis, 156
Nitrogen, influence on ozone and climate, 277
Nitrogen and phosphorus cycling in glacier and ice-sheet communities, 223–224
ice-shelf communities, 232–233
sea ice, 228
Nutrient cycling, microbial food webs, 209–212
Nutrients, availability and effects on productive growth, 66–67
bacteriophage lifestyle decisions and, 66–73
dilution of, in polar environments, 282–283
inorganic, phage growth and, 67
noncarbon, salts and, significance of, 268–270
O
Oceanography, polar, 208–209
Oligonucleotides, in archaeal 16S rRNA gene-based surveys, 44–46
Ornithogenic soils, 11
Ozone depletion, stratospheric, 272–277, CP10
P
Pandalus borealis, 175
Penicillium, 91–92
Penicillium crustosum, 87
Perchlorate, 293–294, 295
Permafrost, aerobic and anaerobic microorganisms in, 82
definition of, 80, 183
degradation of, 184
features providing habitats for microbial colonization, 184, CP7
fungi in, 80–83
in Arctic region, 19–20
microbial carbon cycling in, 183–200
Permafrost (continued)
 soils affected by, carbon cycle in, 185, CP8
 temperatures in, 184
 yeasts in, 89
Permafrost table, 183–184
Phage-infected bacteria at the poles, compared,
 72–73
Phages at the poles, 67–73
 life choices of, bacteriophages and, 62–66
Phosphate, phage production and, 67
Phospholipids, in Methanococcoides burtonii, 109
Phosphorus and nitrogen cycling
 glacier and ice-sheet communities, 223–224
 ice-shelf communities, 232–233
 sea ice, 228
Photobacterium profundum, 138
Phototrophs, missing, mystery of, 256
Phototrophy, and carbon turnover, 278–279
Phycoerythrin (Pe), autofluorescence in melted ice,
 260
Phytoplankton, 205, 209
Pichia pastoris, 176
Plankton, categorization, 210
Planktonic microorganisms, in sea ice, 117
Planococcus halocryophilus, 296, 297
Polar animals and plants in biotechnology, 175–176
Polar climate, variations in, adaptations mitigating,
 281–284
Polar ecosystems, metagenomic analysis, 156–165
Polar environments, adaptations and physiology of
 cold-adapted microorganisms, 101–239
 application of metagenomics, 158–159
Archea in, climate change and, 55
Archea isolated from, 34
ascomycetous and basidiomycetous yeasts, 88–89
bacteriophages, 62–78
black yeastlike fungi, 89–90
challenges to living in, 241–304
climate change, ozone depletion, and life in, 265–289
effects of climate change, 24
extremophilic eukaryotes, 79–80
fungi, 79–99
hydrocarbon bioremediation, 173–175
influence of diurnal and seasonal changes, 265
life in, factors affecting, 266–278
metagenomic analysis, 157–158
metagenomic studies, challenges, 158
microbial diversity, 1–99
 response to enhanced solar UV exposure, 274–277
Polar marine microbiology, 201–217
Polar microbiology, 202–207
Polar microbiology communities, ecology and
 biogeochemical cycling of, 181–239
Polar microorganisms, and biotechnology, 166–180
 industrial enzymes from, 171–172
Polar regions, cryospheric environments, 218–239
 sea ice communities, microbiology, 224–228
Polar research, 202
Pollutants, destruction of stratospheric ozone layer,
 273
Polynyas, 208–209
Pseudomonas, 205
Preprophage, pseudolysogenic, 66
Prochlorococcus, 257–260, 261
Prochlorococcus marinus, 257
Prokaryotes, number on Earth, 185
Proline, effect on protein conformation, 141
Protein fluorescence (Trp), concentrations of, as
 function of depth in ice cores, 253–256
Protein folding, 140–141
Proteins, α-helices and β-sheets and, 140–141
 chaperone, translation and, 134
 cold acclimation, 112, 138–141
 cold shock, 111–112
 conformation of, proline and glycine effects, 141
 disordered regions, 141, 142
 ice-interacting, influencing freezing and ice
 structure, 116
 polar, in molecular biology and cosmetics,
 172–173
 stability, 109–110
 structure, electrostatic interactions and, 139–140
 hydrophobic interactions and, 139
 thermal, structural compensation, “flexibility
 concept” of, 110
Protoctista, 24, 170
 methan-oxidizing, taxonomy of, 192, 193–194
α-Proteobacteria, 203–204
β-Proteobacteria, aerobic heterotrophic, 87
γ-Proteobacteria, 203
Protists, marine, 205–207
 photosynthetic, 201
Pseudoalteromonas antarctica, 173
Pseudoalteromonas haloplanktis, 110, 169–170, 171,
 172, 175
 thermodependent activity of, 106–107, 111
Pseudolysogeny, 66
Pseudomonas putida, 174
Pseudomonas stutzeri, 174–175
Psychrobacter, ecological adaptation in, 131–132, 133
Psychrobacter arcticus, 137, 170
 isozyme expression at different temperatures, 134,
 135, 136
Psychrobacter cryohalolentis, growth rate of, effect of temperature on, 104
Psychromonas ingrahamii, 136–137
Psychrophiles, active division, temperature dependence, 167
biodiversity, 166
gram-negative, gene expression during cold-acclimated growth, 147, 148
high abundance, 166–167
in tap water temperatures, 167–168
Psychrophilic and psychrotolerant microorganisms, 93
Psychrophilic prokaryotes, molecular adaptations in genes, proteins, and enzymes in, 105–106
Quartz stone sublithic cyanobacterial communities, 15
Redox fluorimetry, 261
RNA stability, at low temperatures, 112–113
Rock, fungi in, 83–85
microbes in, 83–84
Saccharomyces cerevisiae, 176
Salts, and noncarbon nutrients, significance, 268–270
Sea ice, Archaea in, 49
Arctic, phage-host systems from, 70
as microbial habitat, 224–225
ecology of, diversity and cold adaptations, 225–227
fungi, 85–86
phylogenetic diversity, 226
planktonic microorganisms, 117
Sea-ice brines, salinity, 85
Sea ice communities, biogeochemical cycling, 227
in Antarctic and Arctic region, 21–23
of polar regions, microbiology, 224–228
Seafloor environments, of Arctic region, Archaea in, 54
Seas, polar, microbial food webs, 209–210, 211
Seawater, fungi in, 85–86
Seawater and sediments, of marine ecosystems, metagenomic studies, 159–161
Seawater environments, Archaea, 50
Shewanella, 170
Shotgun sequencing, in metagenomic analysis, 156–157
Silica cycling, in sea ice, 228
Silicic acid, 228
Snow, as photochemical reactor, 277–278
Soil habitats, Arctic regions, Archea, 50–52
Soils, methane consumption, 193–194, CP9
fungi, 80–83
permafrost-affected, terrestrial ecosystems, metagenomic studies, 161–162
tundra, diverse microorganisms, 188
yeasts, 89
Solute compatible, production by bacteria, 136–137
Sphingopyxis alaskensis, 128, 136, 137
Stetteria hydrogenophila, 112–113
Squamenopiles, marine (MASTs), 206–207
Stratospheric ozone depletion, 272–277, CP10
Subglacial environments, 220–223
Subglacial microbial communities, molecular analysis, 222
Subtilisin, 171–172
Sulfur cycling, in carbon turnover, 269
Supraglacial environments, 219–220
Supraglacial lakes and ponds, 228–232
Syndiniales, 207
Synechococcus, 259–260, 261
Temperature, as determinant of salinity of brine, 225
diurnal and seasonal variations, 271–272
low, adaptation of nonpsychrophiles, 248–249, 254
cell wall, 137
kinetic and biochemical challenges, 104–108
macromolecular stability, 110–113
Terrestrial ecosystems, freshwater, metagenomic studies, 162
ice of, metagenomic studies, 162
soil of, metagenomic studies, 161–162
Thaumarchaeota, 204
Thelebolus, 92–93
Titan, 300
Transport protein systems, 137–138
Tundra, permafrost-affected, methane production, 189–193
Tundra soils, arctic, 17–18, CP3
Ultraviolet radiation, microbial life at poles, 270–271
photochemical effects, ozone depletion, 273–274
solar, enhanced, response of polar communities to, 274–277
factors affecting, 273
U
Vegetation, fungi, 80
Viruses, 207
Viruslike particles, in Arctic and Antarctic phages, 67–68
 in carbon cycling, 71
Viscosity of liquid, 107

Wastewater treatment, cold environments, 175
Water, importance in polar environments, 266
 liquid, physical properties at −25 and +25°C, 130
Water activity, in contact with ice, temperature and,
 113, 294, 296
Water column profile, 208, 209
Yeast, ascomycetous, in polar environments, 88–89
 basidiomycetous, in freshwater, 86
 in polar environments, 88–89
 in permafrost, 82
Zooplankton, 209