Microbial Metal and Metalloid Metabolism

ADVANCES AND APPLICATIONS

Edited by
John F. Stolz and
Ronald S. Oremland
DEDICATION

This volume begins with a tribute to Dr. Terry Beveridge as we felt it very appropriate to dedicate this volume to him (Chapter 1). Terry, who passed away in 2007, was a major contributor to the field of microbe/metal interactions and one who touched many of our lives, either directly or through his seminal work on microbe/mineral interactions.
CONTENTS

Contributors ix
Preface xiii

1. Geochemical Reactivity of Bacterial Surfaces: a Tribute to T. J. Beveridge
 F. Grant Ferris
 1

I. ENVIRONMENTS 11

2. From Geocycles to Genomes and Back
 Arpita Bose, Sebastian Kopf, and Dianne K. Newman
 13

3. Hyperthermophile-Metal Interactions in Hydrothermal Environments
 James F. Holden, Angeli Lal Menon, and Michael W. W. Adams
 39

4. Microbe-Metal Interactions on Seafloor Basalts
 Jason B. Sylvan, Amanda G. Turner, and Katrina J. Edwards
 65

5. Microbial Transformations of Arsenic in the Subsurface
 Jonathan R. Lloyd, Andrew G. Gault, Marina Héry, and Jean D. MacRae
 77

II. PROCESSES 91

6. Mineralogical Controls on Microbial Reduction of Fe(III) (Hydro)oxides
 Colleen M. Hansel and Christopher J. Lentini
 93
CONTENTS

7. Microorganisms and Processes Linked to Uranium Reduction and Immobilization
 Joel E. Kostka and Stefan J. Green
 117

8. Direct and Indirect Processes Leading to Uranium(IV) Oxidation
 Rizlan Bernier-Latmani and Bradley M. Tebo
 139

9. Anaerobic Respiratory Iron(II) Oxidation
 J. Cameron Thrash, Sarir Ahmadi, and John D. Coates
 157

10. Accentuate the Positive: Dissimilatory Iron Reduction by Gram-Positive Bacteria
 Kelly C. Wrighton, Anna E. Engelbrektson, Iain C. Clark, Ryan A. Melnyk,
 and John D. Coates
 173

11. Regulation of Arsenic Metabolic Pathways in Prokaryotes
 Chad W. Saltikov
 195

III. NEW TECHNOLOGIES 211

12. Transcriptome Analysis of Metal-Reducing Bacteria
 Dwayne A. Elias and Matthew W. Fields
 213

13. Application of Proteomics in Bioremediation
 Peter Chovanec, Partha Basu, and John F. Stolz
 247

14. Monitoring Microbial Activity with GeoChip
 Joy D. Van Nostrand, Sanghoon Kang, Ye Deng, Yuting Liang, Zhili He,
 and Jizhong Zhou
 261

 John F. Stolz, Mahmoud M. Berekaa, Eduard Fisher, Ganna Polshyna,
 Minuahni Thangavelu, Rishu Dheer, Antonio Garcia Moyano, Sâmy El Assar,
 and Partha Basu
 283

16. Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids
 Carolyn I. Pearce, Shaun M. Baesman, Jodi Switzer Blum, Jonathan W. Fellowes,
 and Ronald S. Oremland
 297

17. Microbial Respiration of Anodes and Cathodes in Electrochemical Cells
 Kelvin B. Gregory and Dawn E. Holmes
 321

Index 361
CONTRIBUTORS

Michael W. W. Adams
Department of Biochemistry and Molecular Biology, University of Georgia,
Athens, GA 30606

Sarir Ahmadi
Department of Plant and Microbial Biology, University of California,
Berkeley, CA 94720

Shaun M. Baesman
U.S. Geological Survey, Water Resources Division, Menlo Park, CA 94025

Partha Basu
Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282

Mahmoud M. Berekaa
Environmental Sciences Department, Alexandria University, Alexandria, Egypt

Rizlan Bernier-Latmani
Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne,
CH 1015 Lausanne, Switzerland

Arpita Bose
Department of Organismic and Evolutionary Biology, Harvard University,
Cambridge, MA 02138

Peter Chovanec
Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282

Iain C. Clark
Department of Plant and Microbial Biology, University of California,
Berkeley, CA 94720

John D. Coates
Department of Plant and Microbial Biology, University of California,
and Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory,
Berkeley, CA 94720
Ye Deng
Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019

Rishu Dheer
Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282

Katrina J. Edwards
Geomicrobiology Group, Department of Biological Sciences, Marine Environmental Biology Section, and Departments of Biological Sciences and Earth Sciences, University of Southern California, Los Angeles, CA 90089

Samy El Assar
Botany Department, Alexandria University, Alexandria, Egypt

Dwayne A. Elias
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6036

Anna E. Engelbrektson
Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720

Jonathan W. Fellowes
School of Earth, Atmospheric & Environmental Sciences, University of Manchester, Manchester, M13 9PL United Kingdom

F. Grant Ferris
Department of Geology, University of Toronto, 22 Russell St., Toronto, ON M5S 3B1, Canada

Matthew W. Fields
Department of Microbiology, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717

Edward Fisher
Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282

Andrew G. Gault
Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston ON K7L 3N6, Canada

Stefan J. Green
Georgia Institute of Technology, School of Biology and School of Earth and Atmospheric Sciences, Atlanta, GA 30332-0230

Kelvin B. Gregory
Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213

Colleen M. Hansel
School of Engineering and Applied Sciences, Department of Earth and Planetary Sciences, Pierce Hall, Room 118, 29 Oxford Street, Harvard University, Cambridge, MA 02138

Zhili He
Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019
Marina Héry
HydroSciences UMR 5569 CNRS—Universités Montpellier I and II—IRD,
Place Eugene Bataillon, CC MSE 34095 Montpellier cedex 5, France

James F. Holden
Department of Microbiology, University of Massachusetts, Amherst, MA 01003

Dawn E. Holmes
Physical and Biological Sciences, S305, Western New England College,
Springfield, MA 01119

Sanghoon Kang
School of Science and Computer Engineering, University of Houston—
Clear Lake, Houston, TX 77058

Sebastian Kopf
Division of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125

Joel E. Kostka
Georgia Institute of Technology, School of Biology and School of Earth and
Atmospheric Sciences, Atlanta, GA 30332-0230

Christopher J. Lentini
School of Engineering and Applied Sciences, Engineering Sciences Laboratory,
58 Oxford Street, Room 305, Harvard University, Cambridge, MA 02138

Yuting Liang
Institute for Environmental Genomics, Department of Botany and
Microbiology, University of Oklahoma, Norman, OK 73019

Jonathan R. Lloyd
School of Earth, Atmospheric and Environmental Sciences and Williamson
Research Centre for Molecular Environmental Science, University of
Manchester, Manchester M13 9PL, United Kingdom

Jean D. MacRae
Department of Civil and Environmental Engineering, University of Maine,
Orono, ME 04469-5711

Ryan A. Melnyk
Department of Plant and Microbial Biology, University of California,
Berkeley, CA 94720

Angeli Lal Menon
Department of Biochemistry and Molecular Biology, University of Georgia,
Athens, GA 30606

Antonio Garcia Moyano
Centro de Biología Molecular, Universidad Autonoma de Madrid,
Madrid, Spain

Dianne K. Newman
Divisions of Biology and Geological and Planetary Sciences and
Howard Hughes Medical Institute, Caltech, Pasadena, CA 91125
Ronald S. Oremland
U.S. Geological Survey, Water Resources Division, Menlo Park, CA 94025

Carolyn I. Pearce
Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN K8-96, Richland, WA 99352

Ganna Polshyna
Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282

Chad W. Saltikov
Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064

John F. Stolz
Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282

Jodi Switzer Blum
U.S. Geological Survey, Water Resources Division, Menlo Park, CA 94025

Jason B. Sylvan
Geomicrobiology Group, Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, CA 90089

Bradley M. Tebo
Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 20000 NW Walker Rd., Beaverton, OR 97006

Mirunalni Thangavelu
Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282

J. Cameron Thrash
Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720

Amanda G. Turner
Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089

Joy D. Van Nostrand
Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019

Kelly C. Wrighton
Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720

Jizhong Zhou
Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019
The impact of microbial activity in shaping the composition of the soil, water, and atmosphere of the Earth over the millennia is now well recognized. Moreover, in a remarkable feat of biological evolution, over a third of the elements in the periodic table have found some use in the chemistry of life. Of the 114 elements typically listed in the table, fewer than half are inert or have no known biological function (Wackett et al., 2004). Over 60 elements (in elemental form or as compounds) are involved in some form of microbial structure or activity (Color Plate 1). Those who grow organisms in culture recognize the major (i.e., carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), minor (calcium, potassium, magnesium, sodium, and chlorine), and trace (cobalt, copper, iron, manganese, molybdenum, nickel, selenium, tungsten, vanadium, and zinc) elements as typical constituents of a defined medium. But there are other elements that are necessary for cellular processes, such as quorum sensing (e.g., boron), and in the active sites of metalloenzymes. Even toxic metals and metalloids can be involved in energy generation and carbon fixation. For example, tellurate can serve as an electron acceptor in anaerobic respiration (Chapter 16) and arsenite can serve as an electron donor in photoautotrophy (Chapter 11). The latter speaks directly to the fact that photosynthesis can be distilled down to the microbe having sufficient quanta of light of the appropriate wavelength for which its photosystem has been tuned (e.g., light harvesting and reaction center pigments), a source of electrons [e.g., H₂O, H₂S, Fe(II), or As(III)], and carbon.

The recent discovery that arsenate may replace some of the cellular phosphate to allow for growth under phosphate-limited conditions suggests that crafty organisms may substitute for other essential elements (Wolfe-Simon et al., 2010), such as selenium substituting for sulfur. For those elements that do not have a direct biological function (e.g., uranium), their chemical form, toxicity, and mobility can nonetheless be influenced by microbes because they may be bound to the cell, transported out of the cell, oxidized, reduced, or...
methylated (Chapters 7 and 8). Iron continues to provide surprises with anaerobic iron oxidation (Chapter 9) and iron reduction by gram-positive bacteria (Chapter 10). Microbe-metal interactions are regulated by mineralogical (Chapter 6) and genetic (Chapter 12) controls. The net results of these activities and interactions are robust biogeochemical cycles.

A more practical ramification of microbe-mineral interactions is the realization that one cannot assume that an element will remain in a given chemical form or oxidation state once it has been released into the environment and exposed to microbial activity. Despite this revelation, we continue to introduce new chemicals and compounds into the environment with only rudimentary toxicology studies. Case in point, the organoarsenical roxarsone (3-nitro-4-hydroxy-benzene arsonic acid) has been used extensively in the production of broiler chickens in the United States as a prophylactic against coccidiosis and as a growth stimulant (Chapter 15). The compound passes through the chicken unmetabolized and into the litter. The litter is then applied to fields as fertilizer, whereupon soil microbes and those associated with the chicken frass degrade the roxarsone, releasing inorganic arsenic. Given that a sizeable percentage of the 9 billion chickens raised each year are given the feed additive and each chicken releases about 150 mg of roxarsone in its lifetime, poultry farming can be a significant non-point source of arsenic.

Many major discoveries and innovations have been made since the publication of the first volume of *Environmental Microbe-Mineral Interactions* ten years ago (Lovley, 2000). Recent advances in microbial ecology have been the result of employing both reductionist and holistic methodologies in an integrated approach, “from genes to geocycles” (Chapter 2). No longer dependent on culture, the geomicrobiologist has been free to investigate extreme environments where the microbial transformation of metals and metalloids is essential for survival, such as hydrothermal systems (Chapter 3), seafloor basalts (Chapter 4), and the subsurface (Chapter 5). Advances in technology such as pyrosequencing, microarrays, and mass spectrometry have resulted in a proliferation of the “−omics”: genomics, metagenomics, transcriptomics, proteomics, metabolomics, and metallomics. The number of annotated microbial genomes is now over 1200 with more than four times as many in production. The latter has facilitated advanced proteomic, genomic, and metagenomic studies of microbe-metal interactions in pure culture and natural environments using transcriptomics (Chapter 12), proteomics (Chapter 13), and geochip (Chapter 14) as well as functional biochemical and molecular probes (Chapter 15). The discovery of pili that function as “nanowires” and the development of microbial fuel cells (Chapter 17) are particularly noteworthy, because they have resulted in a fundamental advancement in our understanding of microbial energy generation. Metal-reducing bacteria, such as *Geobacter sulfurreducens*, immobilized on an electrode can literally generate free electrons and be used to power small electronics.

The purpose of this volume is to provide an overview of the current state of the field as well as some prognostication for future directions. It covers a wide range of topics and approaches with contributions by both established leaders in the field and by up-and-coming new investigators. There are both general introductory chapters and more focused contributions; thus, this volume
should be appropriate for advanced students, researchers, and professionals. We see its primary use as a reference, but it could be adopted for a graduate-level course (e.g., Applied and Environmental Microbiology, Biotechnology and Bioremediation). While we regret that we may be missing a few things, it does leave the door open for the next edition.

REFERENCES

COLOR PLATE 1 (PREFACE) Periodic table of the elements highlighting the currently known major, minor, trace, and biologically active elements. Updated from Wackett et al. (2004).
INDEX

A
Achromobacter SY8, 203
Acidithiobacillus ferrooxidans, 345
Actinobacteria, 214
iron reducers of, 181
Aeromonas hydrophila, 332, 335
Agrobacterium, 203
Alcaligenes faecalis, 197
Alkalilimnicola ehrlichii, 199–200, 250–251, 291
Alkaliphilus metalliredigens, 219
Alkaliphilus oremlandii, 286–287, 288, 292, 293
Alteration and weathering experiments, in situ, incubation studies of, 71–73
Aluminum substitution, rate and extent of Fe(III) reduction and, 105–106
Ammonium, electricity generation and, 337
An aeromyxobacter, 214
Anaeromyxobacter dehalogenans, 222, 226
Anodes, and cathodes, microbial respiration of, in electrochemical cells, 321–359
microbial electron transfer to, 333–343
Aquifers, arsenic-impacted, microbial ecology of, 83–84
arsenic in, microbially driven mobilization of, 82–83
Aquifaeles, 205
Arabidopsis, 215
Arabidopsis thaliana, 261
Archaec, 314, 334
Arsenate reductase activity assay, 287–290
Arsenate reductases, phylogenetic tree, based on 203 amino acid sequences, 83, 84
Arsenate respiration, regulation of, 201–202
Arsenic reductase activity, 201
arsenate-dependent regulation of, 202
Arsenate respiratory reductases, phylogenetic analysis of, 198, 199
Arsenate-respiring bacteria, cultivation of, enrichment media and, 284–287
methods for detection of, 283–295
Arsenic, 297–302
aquifers impacted by, microbial ecology of, 83–84
dissolved species of, release of, by resting incubated cells, 86, 87
four oxidation states of, 78
gaining energy from, 79–81
in aquifers, microbially driven mobilization of, 82–83
microbial cycling of, 77–78
microbial interactions with, 299–301
in subsurface sediments, 79–81
microbial transformations of, biochemistry of, 79–82
in subsurface, 77–90
optoelectrical properties of, 298
oxyanions, biochemical transformations of, by microbial cells, 78
proteome and transcriptome responses to, 203–204
toxicity of, cause of, 298
Arsenic-based metabolic pathways, 196–197
ars regulation of, 200–201
early microbiology studies of, 195–198
regulation of, 200–203
Arsenic-based metabolism, 195
Arsenic cycle, closing of, 81–82
Arsenic metabolic genes, environmental expression of, 204–205
Arsenic metabolic pathways, in prokaryotes, regulation of, 195–210
Arsenic operon, microbial resistance to AsV via, 79
Arsenic speciation, in Ohio River sediment matrix, 284–285, 286, 287
Arsenic-sulfide, biogenic precipitates of, electron micrographs of, 312, 313
bionanoparticles of, characteristics of, 312–314
Arsenic transformation, assessment of, 283–284
Arsenicals, plasmids conferring resistance to, 197
Arsenite, 79
oxidation of, 81–82
arsenate respiratory reduction and, 198
regulation of, 202–203
Arsenite oxidizers, 198
Arsenomethionine, 297
Bacillus arseniciselenatis, 284–285, 291
Bacillus beveridgei, 303, 311
Bacillus infernus, 181
Bacillus selenitireducens, 284–285, 287–290, 291, 292, 293, 305, 310
Bacillus subtilis, 223, 224
Bacterial cell surface reactivity, 6–7
Bacterial surfaces, geochemical reactivity of, 1–9
two phyla of, 174
influence on mineral precipitation in natural sediments, 4–5
on electrolytic cell anodes, 345–347
on electrolytic cell cathode, 347–348
structured surface array (S-layer) of, 3
Bacteroidetes, 344
Basalts, seafloor, microbe-metal interactions on, 65–76
microbial physiology of, 70–71
microbiology of, 67–71
production and alteration at mid-ocean ridges, flanks, and seamounts, 66
Batch cultures, and chemostats, 16–17
Benthic microbial fuel cells, and microbial communities, 21–22
Benthic microbial fuel cells, and microbial communities, 328–331
as source of power, 331
Beveridge, Terry J., tribute to, 1–9
Biofilms, responses to metal-reducing bacteria, 228–230
Biochemistry, microbe-metal, and geomicrobiology, 53–54
Bioinformatics, and subsequent studies, 23–24
Bionanoparticles, of group 15 and 16 metalloids, applications of, 303–305
Bioremediation, of contaminated environments, cultures and microbial communities for assessing, 248
proteomics in, 247–259
Bioremediation studies, benefit of microbial communities in, 253
Bradyrhizobium, 222
Brevibacillus, 183
Burton, E. F., 2
C
Carbonates, and silica redux, 6
Carboxydothermus ferrireducens, 188
Carboxydothermus hydrogenoformans, 188, 189
Cathodes, and anodes, microbial respiration of, in electrochemical cells, 321–359
Caulobacter, 222
Caulobacter crescentus, 224
Cellulomonas, iron reduction and, 181
CERCLA sites, 247
Chemostats, batch cultures and, 16–17
Chromate responses, to metal-reducing bacteria, 224
Chrysog Robert, 201
Citrobacter, 314
Clostridium butyricum, 182, 335
Cobalt, assimilation into metalloenzymes, 46–48
Common oligo reference standard probe, 262–264
Community approaches, to study microbial communities, 21–22
Community genome arrays, 261
Contaminants, metal, radioactive and toxic, in subsurface aquifers, 117
reduction of, Fe(III) reduction rates and bioavailability, 109
Contaminated environments, bioremediation of, cultures and microbial communities for assessing, 248
Crystal size, growth conditions of Fe(III) (hydr)oxides and, 103–104
Cultures, pure, isolation, characterization, and proteomic studies on, 252–253
Culturing techniques, and enrichment method, 17
Cyanobacteria, undergoing silification, 5
Cytochromes, c-type, in direct extracellular electron transfer, 188–189
outer membrane, 338–343
D
Deltaproteobacteria, 284–285
Denaturing gradient gel electrophoresis, PCR primers and, 291–293
Desulfitobacterium, 181, 214
Desulfitobacterium hafniense, 182–183, 188, 291
INDEX

Desulfobacterium metallireducens, 188
Desulfobacterales, 331
Desulfobulbus propionicus, 330
Desulfotomaculum, 214
Desulfotomaculum reducens, 185
Desulfovibrio, 214, 215, 216, 217, 219, 224, 225, 228, 229, 231, 232, 233
Desulfovibrio desulfuricans, 223, 227, 251, 252, 336
Desulfuromonas, 214, 219
Dethiobacter alkaliphilus, 188
Differential in gel electrophoresis analysis, 249–251
Dimethylselenide, 297
Dimethyltelluride, 297
Dissimilatory Fe(II)-reducing bacteria, gram positive, genome sequences and multiheme c-cytochromes of, 188, 189
Dissimilatory Fe(III)-reducing bacteria, 173
gram-positive, electron transfer and, 184
microbial fuel cell research, 182–184
Dissimilatory metal-reducing bacteria, cultured, respiration of Fe(III) (hydr)oxides and, 102–103
gram-positive, genera of, 174, 175–180
iron reduction by, 173–193
in dissimilatory reduction of Fe(III), 174, 175–180
iron-reducing, gram-positive, 174–182
M. bellicus strain VDY, effect of Fe(II) and Fe(III) on, 166–167
iterations of iron with, 168–169
respiratory versatility of, 106–107
respiring solid Fe minerals, 97
targeted stimulation of, 93
transfer of electrons to crystalline Fe(III) (hydr)oxides, 98
DNA-based methods, to study microbial communities, 20
Douglas, S., 5, 6

E
Electricity, generation of, in electrolytes, 324–325
production of, and Fe(III) oxide reduction, 342–343
by Geobacteraceae, 338–341
by Shewanellaceae, 341–342
Electrochemical cells, classification of, 322
current direction and polarity of, 322–324
electrolytic, 322
fuel cells as, 324–325
galvanic, 322
microbial biocatalysis of, 321–359
microbial respiration of anodes and cathodes in, 321–359
Electrodes, and electrolytic cells as electron donors, 343–348
Electrolytic cell(s), and electrodes as electron donors, 343–348
anodes of, bacteria on, 345–347
cathodes of, bacteria on, 347–348
bacteria respiring on, 346
Electron acceptors, solid-phase, mechanisms of electron transfer to, 184–186
Electron donor responses, to metal-reducing bacteria, 233–236
Electron donors, electrolytic cells and electrodes as, 343–348
Electron recovery, artificial mediators enhancing, 334–335
Electron shuttles, extracellular, 52
Electron transfer, across cell wall, 49–50
direct, 338–343
direct extracellular, biochemistry of, 186–188
direct mechanism of, 186
extracellular, direct, c-type cytochromes in, 188–189
indirect, metabolic products of, and exogenous mediators of, 334–335
mediated mechanisms of, 185–186
metabolites as mediators of, 336–338
microbial fuel cell anodes and, 184
to insoluble metals, 49–50
Electron transport system, organization of, 216–219
Enrichment media, and cultivation of arsenate-respiring bacteria, 284–287
Enterobacter cloacae, 332
Enterococcus gallinarum, 342
Escherichia coli, 220, 262, 303, 336
phosphate metabolism in, resistance plasmids and, 197
Ethanol, as electron donor to stimulate bioreduction of U(VI), 125–126
Eukaryotes, role in U(VI) contaminated subsurface, 129

F
Fe, reduction potential of, 96
Fe couples, redox potentials of, 96
Fe cycling, in U(IV) stability in subsurface, 151
Fe (hydr)oxides, natural, coprecipitated ions of, 95–96
Fe minerals, physicochemical properties of, 94–96
solid, dissimilatory metal-reducing bacteria respiring, 97
Fe oxides, in abiotic U(IV) oxidation, 146–151
in U(IV) oxidation, S redox cycling and, 147–149
Fe(II), and Fe(III), use by microorganisms for
respiration, 158
oxidation of, nitrate-dependent, 158–168
environmental samples and, 158–159
diversity in, 162–163
pure cultures and, 161–162
(per)chlorate-dependent, 165
solid-phase, coupled with nitrate, 163
Fe(II)-oxidizing microorganisms, anaerobic,
phylogenetic diversity of, 160
Fe(III), bioavailability of, and Fe(III) reduction rates,
contaminant reduction and, 109
microbial reduction of, 96–98
Michaelis-Menten kinetic dependence of, 100
mineral surface area and, 99
mineralogical and geochemical controls on,
98–107
rates of, factors influencing, 99, 100
Fe(III) (hydr)oxides, as sparingly soluble at
circumneutral pH, 98–107
crystallinity of, rate of Fe(III) (hydr)oxide
reduction, 101
electron transfer to, at protein level, 102, 103
enhancement of contaminant attenuation and, 108
growth conditions of, crystal size and, 103–104
intrinsic susceptibility to microbial reduction, 102
mean force adhesion upon retraction of S.
oneidensis on, 102, 103
microbial reduction of, cascade of subsequent
redox reactions and, 108–109
impact on transport of metals and radionuclides,
107–109
mineralogical controls on, 93–115
mineral aggregation state of, 104–105
nanometer- and micrometer-sized particles of, 104
physicochemical properties of, in bioreduction
experiments, 95
reduction of, Fe(III) (hydr)oxide crystallinity and,
101
indirect, 98
solubility of, organic complexes influencing,
100–101
spectrum of crystallinities and bioavailabilities,
95
structural environment of, and reduction of,
101–102
structures of, 94–95
Fe(III) oxide, microbial reduction of, cation
substitution and, 105
Fe(III) oxide reduction, electricity production by,
342–345
Fe(III) phases, reduction of, 93–94
Fe(III)-reducing microbes, 97
Fe(III) reduction, rate and extent of, aluminum
substitution and, 105–106
rates of, reduction potential and, 106–107
Fe(III) reduction rates, and bioavailability of Fe(III),
contaminant reduction and, 109
Ferrihydrite, 94–95
Firmicutes, 181, 182, 185, 188, 214, 220, 284, 285
FISH-microautoradiography, 20–21
Fluorescence in situ hybridization, 19–20
Fuel cells, as electrochemical cells, 324–325
hydrogen, 325
mediator-less, organisms producing current in,
333, 334
microbial, 325–333. See Microbial fuel cells
two electrodes of, 324, 325
Functional gene arrays, 262–264
Fungi, role in U(VI)-contaminated subsurface,
129
Fyne, W. S., 1, 2, 4, 5, 6
G
Galvanic cell bio cathodes, 343–345
Gel electrophoresis, two-dimensional, 250–251
Gene responses, hypothetical, to metal-reducing
bacteria, 236–237
Genetics, microbial, 23
Genomes, geocycles to, 13–38
Genomics, 214
Geobacillus, 183
Geobacillus thermodenitrificans, 253
Geobacter, 214, 215, 216, 217, 219, 221, 223, 225,
228, 231, 232, 233, 253
Geobacter clade, subsurface, 128–129
Geobacter lovleyi, 222, 226
Geobacter metallireducens, 222, 223, 226, 237, 339
Geobacter species, genome sequences of, 128
Geobacter sulfurreducens, 186, 187, 220–223, 226, 230,
232, 235–237, 302, 303–305, 307, 310,
332, 338–340, 341
Geobacter uranium, 222–223, 237
cultures inoculated with, dissolved arsenic
speciation in, 85, 86
pure cultures of, arsenate reduction and
mobilization by, 84–86
Geobacteraceae, 330, 348
electricity production by, 338–341
Geochemical reactivity, of bacterial surfaces, 1–9
GeoChip, activity of, 269–270
application of, 266–267
data analysis by, 266–267
design of, 264–270
for microbial community analysis, 270–275
hybridization of, 265
image analysis by, 265–266
microarray application and, 267–270
monitoring of microbial activity with, 261–281
neural network analysis by, 266–267
probe design of, 264
quantitative capability of, 269
sensitivity of, 268–269
specificity of, 268
target preparation for, 264–265
GeoChip 3.0, for global change-related studies, 274
Geocycles, to genomes, 13–38
Geomicrobial activity, in situ study of, 15–16
Geomicrobiology, microbe-metal biogeochemistry
and, 53–54
Geothrix, 331
Geothrix fermentans, 330, 337
Glucose, as electron donor to stimulate bioreduction
of U(VI), 125–126
Gram-negative bacteria
distinguishing from gram-positive bacteria, 173–174
Gram-positive bacteria
distinguishing from gram-negative bacteria, 173–174
Groundwater, effective removal of U(VI) from,
129–131

H
Halobacterium, 205
Herminiimonas arsenicoxydans, 203
Hydrogen fuel cells, 325
Hydrogenobaculum, 205
Hydrothermal environments, hyperthermophile-
metal interactions, 39–63
marine, hyperthermophiles found in, 42
Hydrothermal fluids, metal chemistry of, 40–42
Hyperthermophile metabolism, metals used in, 42–44
Hyperthermophile-metal interactions, in
hydrothermal environments, 39–63
Hyperthermophilic iron reducers, description of, 49

I
Immobilization strategies, biomineralization of U(VI)
with organophosphate, 129–131
Incubation studies, seafloor, 71–72
subseafloor, 72–73
Inositol phosphates, 131
Iron. See also Fe(II), Fe(III)
and biosphere, 24–26
and oxygen, U(IV) oxidation in presence of, 147, 148
as energy source, 27–29
as nutrient, 26–27
assimilation into metalloenzymes, 44–45
assimilatory reduction of, gram-positive, 174
at earth’s surface, 24–26
biogeochemical cycle of, microorganisms
contributing to, 157
(bio)geochemistry of, 24–29
biomineralization of, 163–164
biomineralization products of, metal adsorption to,
164–165
contact with dissimilatory metal-reducing
microorganisms, 51–52
in soils and sediments, 213
oxidation states of, 157–158
oxidized minerals, as sink for heavy metals and
metalloids, 165
reduction of, environmental constraints on, 53
responses of, to metal-reducing bacteria, 219
Iron chelators, 52–53
Iron formations, banded, Fe(II)-oxidizing bacteria in
production of, 163
Iron oxides, oxyhydroxides, and hydroxides. See
Fe(III) (hydr)oxides
Iron redox cycle, microbially mediated, 158–159
Iron reduction, 230–231
Iron(II), oxidation of, anaerobic respiratory, 157–159
Isotope array, 22

J
Janthinobacterium lividum, 344

K
Klebsiella pneumoniae, 262

L
Lake Matano, Indonesia, iron-rich, as case study,
29–32
Leptospirillum, 253
Leptothrix discophora, 344–345
Listeria monocytogenes, 186

M
Manganese, and oxygen, U(IV) oxidation in presence
of, 152
Manganese oxides, for U(IV) oxidation, 151–152
Marine environments, GeoChip and, 273–274
INDEX

Mass spectrometry, matrix-assisted laser desorption/ionization-time of flight, 250 to drive proteomics in bioremediation studies, 250, 251–252
Matrix-assisted laser desorption/ionization-time of flight mass spectrometry, 250, 252
Metabolites, as mediators of electron transfer, 336–338
Metagenomics, metatranscriptomics, and metaproteomics, 22–23
Metal-contaminated site, Lake DePue, Illinois, 270–272
Metal-reducing bacteria, transcriptome analysis of, 213–246
Metal reduction, dissimilatory, 48–53
Metal respiration, chemistry of, 48–49
Metal-respiring bacteria, iron-containing proteins in, 214
Metalloenzymes, metal assimilation into, 44–48
Metalloids, group 15 and group 16, bionanoparticles of, applications of, 303–305
toxic group 15 and group 16, environmental significance of, 297–302
microbial interaction with, 302–303
microbial oxyanion reduction of, nanoparticles formed from, 297–319
Metals, and radionuclides, transport of, microbial Fe(III) (hydr)oxide reduction and, 107–109
contaminant, radioactive and toxic, in subsurface aquifers, 117
fermentative reduction of, in U(VI) bioremediation, 127–128
interactions of microbes with, 65–66
transition, for biological cells, 213–246
Methanococcus maripaludis, 236
Methylarsonous acid, 297
Microarray technology, 261
Microbe-metal interactions, on seafloor basalts, 65–76
Microbial activity, monitoring of, with GeoChip, 261–281
Microbial communities, and benefit in bioremediation studies, 253
and cultures, for assessing bioremediation of contaminated environments, 248
methods available to study, 14–24
Microbial community, GeoChip for analysis of, 270–275
Microbial electron transfer, to anodes, 333–343
Microbial fuel cell anodes, electron transfer and, 184
Microbial fuel cell reactors, and microbial communities, 331–333
Microbial fuel cells, 182, 325–333
abiotic, 327
as sustainable energy, 328
benthic, and microbial communities, 328–331
direct electron transfer mechanism of, 326
electrochemically reactive sulfide and, 336
electron donors in, 327
Microbial life, fluid flow and, below ocean bottom, 67
Microbial oxyanion reduction, of toxic group 15 and 16 metalloids, nanoparticles formed from, 297–319
Microbial respiration, of anodes and cathodes, in electrochemical cells, 321–359
Microoccus denitrificans, 262
Microorganisms, and processes linked to uranium reduction and immobilization, 117–138
Microscopy, in situ, 14–15
Mineral aggregation, Fe(III) (hydr)oxides and, 104–105
Mineral precipitation, sorption of, 4
Mineralogical controls, on microbial reduction of Fe(III) (hydr)oxides, 93–115
Molecular probes, 290–293
Molybdenum, assimilation into metalloenzymes, 45–46
Montastraea faveolata, 274
Murray, R. G. E., 1–4

N

N oxides, cycling with, 149–151
for indirect biological and abiotic U(IV) oxidation, 145–146
for oxidation of U(IV), 144–146
direct and indirect biological pathways of, 144
Nanoparticles, formed from microbial oxyanion reduction of toxic group 15 and 16 metalloids, 297–319
Nickel, assimilation into metalloenzymes, 46–48
Nitrate, as co-contaminant with U(VI), 117
solid-phase Fe(II) oxidation coupled with, 163
Nitrate-dependent Fe(II) oxidation, 158–168
Nitrate reductase and dimethyl sulfoxide reductase, 290
Nucleic acid quality, GeoChip analysis and, 267
Nutrient levels, at liquid-surface interface, 229

O

Ocean bottom, fluid flow and microbial life below, 67
Oil- and pesticide-contaminated sites, GeoChip and, 273
Oligotrophic groundwater, and sediments, 228
Organophosphate(s), as route to remediation of uranium-contaminated sites, 131
biomineralization of U(VI) with, 129–131
soluble, for subsurface precipitation and stabilization of uranium, 130–131
Oxygen, and iron, U(IV) oxidation in presence of, 147, 148
and manganese, U(IV) oxidation in presence of, 152
for oxidation of U(IV), 140–144
advantages and disadvantages of, 143
Oxygen/nitrate responses, to metal-reducing bacteria, 230–233
PCR amplification, primers for, 284
PCR-based methods, to study microbial communities, 18–19
PCR primers, and denaturing gradient gel electrophoresis, 291
Pelobacter carbinolicus, 342
Perchlorate, reduction of, iron inhibition of, 167–168
Photoferrotrophy, 27–28
PhyloChip, 269, 272–273
Pilin, conductive, 338–343
Plasmids, conferring resistance to arsenicals, 197
Probe coverage, GeoChip analysis and, 267
Prokaryotes, arsenic metabolic pathways, 195–210
basalt-hosted, abundance and diversity of, 67–70
Proteobacteria, 214
β-Proteobacteria, 214, 219, 223
Proteome analysis, 248
Proteomics, applications of, 249
environmental, 249
gel and gel-free, 249–253
in bioremediation, 247–259
mass-spectrometry-driven, in bioremediation studies, 250, 251–252
Proteus vulgaris, 336
Pseudomonas, 198
Pseudomonas aeruginosa, 218, 226, 303, 337
Pseudomonas fluorescens, 344
Pseudomonas syringae, 262
Pyrobaenium, 203–204
Pyrobaculum aerophilum, 204
Pyrococcus furiosus, 262
R
Radionuclides, and metals, transport of, microbial Fe(III) (hydr)oxide reduction and, 107–109
Ralstonia metallireducens, 226
Reticulitermes flavipes, 312–314
Rhodobacter sphaeroides, 303
Rhodobacter strain SW2, 15
Rhodoferax, 331
Rhodoferax ferrireducens, 222
Rhodopseudomonas palustris, 332, 342
RNA (rRNA) gene, small-subunit ribosomal, 118
Rock, alteration at and below seafloor, 66
S
S redox cycling, U(IV) oxidation by Fe oxides and, 147–149
16S rRNA/DNA molecule, 18
Saccharomyces cerevisiae, 198
Scanning electron microscopy, 15
Seafloor incubation studies, 71–72
Selenium, 297–302
bionanoparticles of, characteristics of, 311–312
elemental, bionanoparticles of, characteristics of, 305–307
precipitates, electron micrographs of, 305, 306
microbial interaction with, 299–301
optoelectrical properties of, 298
oxyanion reduction of, 302
toxicity of, cause of, 298
Selenocysteine, 297
Selenomethionine, 297
Shewanella putrefaciens, 218
Shewanellaceae, 331
electricity production by, 341–342
Siderophile system, and strontium responses, 228
Single-cell approaches, to study microbial communities, 20–21
Stable isotope probing, 21–22
Strontium responses, to metal-reducing bacteria, 228
Subseafloor incubation studies, 72–73
Subsurface, microbial transformations of arsenic in, 77–90
Subsurface Geobacter clade, 128–129
Sulfate reduction, 230–231
Sulfurhydrogenibium, 205
Sulfurhydrogenibium yellowstonense, 205
Sulfurospirillum, 204, 285–287, 290
Sulfurospirillum arsenophilus, 290
Sulfurospirillum barnesii, 290, 291, 292, 293
Sulfurospirillum deleyianum, 290
Surface sorbates and coprecipitates, Fe(III) (hydr)oxides and, 105–106

T
Tellurate, microbial respiration of, 302–303
Tellurium, 297–302
 biogenic, precipitate morphology of, control of, 307–311
 elemental, bionanoparticles of, 307–311
 microbial interaction with, 299–301
 optoelectrical properties of, 298
 toxicity of, cause of, 298
Tellurocysteine, 297
Telluromethionine, 297
Terrestrial sites, GeoChip and, 274
Terrestrial subsurface, ecology of U(VI)-reducing taxa in, 121–128
 soils and sediments of, environmental conditions in, 121–123
Thermincola, 186
 Thermincola ferriacetica, 183
 Thermincola potens, 183, 188, 189
Thermoanaerobacter, 181, 186, 214
Thiobacillus denitrificans, 144–145, 226
Transcriptome analysis, of metal-reducing bacteria, 213–246
Transcriptomics, 215–216
Transmission electron microscopy, 15
Transposon mutagenesis, 230
Tungsten, assimilation into metalloenzymes, 45–46

U
U(IV), oxidation of, abiotic, 140–143
 Fe oxides in, 146–147, 148
 Mn oxides in, 151–152
 biological, 143–144
 direct and indirect processes leading to, 139–156
 direct biological, 144–145
 environmental oxidants for, 140, 1412
 in presence of oxygen and iron, 147, 148
 in presence of oxygen and manganese, 152
 indirect biological and abiotic, 145–146
 iron oxides for, biological pathways of, 147, 148
 oxygen for, 140–144
 advantages and disadvantages of, 143
U(IV) oxides, 119
Uranium, bioimmobilization of, chemistry of, 118–120
 bioreduction of, 226
 contamination from, as environmental problem, 226
 environments contaminated by, taxonomic profiling of 16S rRNA gene sequences and, 121, 124
 geochemistry of, 120
 hexavalent. See U(VI)
 immobilization of, “biostimulation” of, 120
 mobility in porous media, complexation and redox reactions controlling, 119
 reduced, long-term stability in subsurface, 139–140
 reduction and immobilization of, microorganisms and processes linked to, 117–138
 responses to metal-reducing bacteria, 226–228
 subsurface precipitation and stabilization of, soluble organophosphates for, 130–131
 Uranium-contaminated sites, remediation of, organophosphates as route to, 131
 stimulation of native microbiota in, 139
Uranium(IV). See U(IV)
U(VI), biomineralization of, with organophosphate, 129–131
 bioreduction of, ethanol or glucose in stimulation of, 125–126
 bioremediation, fermentative reduction in, 127–128
 investigations of, 125
 immobilization of, biostimulation of, electron donor influencing, 127
 microbiological immobilization from water, 119
 oxidation of, nitrate-dependent, bacteria to catalyze, 150
 soluble Fe as inhibitor of, 150
 reduction methods, unifying biochemical features of, 120
 reduction of, and Fe(III) reduction, organisms capable of, 121
 to U(IV), 139, 140
 reductive immobilization of, in remediation, 117 via biostimulation, 124–125
 removal from groundwater, 129–131
U(VI) contaminated subsurface, fungi in, role of, 129
 microbial eukaryotes in, role of, 129
U(VI)-reducing microorganisms, phylogenetic tree of, 120, 122–123
U(VI)-reducing taxa, cultivated, metabolic and phylogenetic diversity and, 120–121
 ecology of, in terrestrial subsurface, 121–128
INDEX ▪ 369

V
Veillonella atypica, 304, 305, 307, 309, 312

W
Water, and sediments, chemistry of, in subsurface, microbial metabolism and, 121–123

Whole-genome ORF arrays, 262
Whole-genome sequence approaches (phylogenomics), 18–19
Wolinella succinogenes, 291