SECOND EDITION

URINARY TRACT INFECTIONS

MOLECULAR PATHOGENESIS AND CLINICAL MANAGEMENT

EDITED BY

Matthew A. Mulvey
University of Utah School of Medicine
Salt Lake City, Utah

David J. Klumpp
Feinberg School of Medicine
Northwestern University
Chicago, Illinois

Ann E. Stapleton
University of Washington School of Medicine
University of Washington
Seattle, Washington

ASM PRESS
Washington, DC
To the memories of Walter Stamm, MD and Carleen Collins, PhD and to the courage of Richard Grady, MD and Laura Hart, MD
Contents

Contributors ix

Foreword xvii

Preface xix

I. CLINICAL ASPECTS OF URINARY TRACT INFECTIONS

1. Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection
 Duane R. Hickling, Tung-Tien Sun, and Xue-Ru Wu

2. Clinical Presentations and Epidemiology of Urinary Tract Infections
 Suzanne E. Geerlings

3. Diagnosis, Treatment, and Prevention of Urinary Tract Infection
 Paula Pietrucha-Dilanchian and Thomas M. Hooton

4. Urinary Tract Infections in Infants and Children
 Theresa A. Schlager

5. The Vaginal Microbiota and Urinary Tract Infection
 Ann E. Stapleton

6. Asymptomatic Bacteriuria and Bacterial Interference
 Lindsay E. Nicolle

7. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions
 John N. Krieger and Praveen Thumbikat

8. Urosepsis: Overview of the Diagnostic and Treatment Challenges
 Florian M. E. Wagenlehner, Adrian Pilatz, Wolfgang Weidner, and Kurt G. Naber

II. ORIGINS AND VIRULENCE MECHANISMS OF UROPATHOGENIC BACTERIA

9. Reservoirs of Extraintestinal Pathogenic *Escherichia coli*
 Amee R. Manges and James R. Johnson

10. Origin and Dissemination of Antimicrobial Resistance among Uropathogenic *Escherichia coli*
 Lisa K. Nolan, Ganwu Li, and Catherine M. Logue
CONTENTS

11 Population Phylogenomics of Extraintestinal Pathogenic
Escherichia coli 207
Jérôme Tourret and Erick Denamur

12 Virulence and Fitness Determinants of Uropathogenic
Escherichia coli 235
Sargurunathan Subashchandrabose and Harry L. T. Mobley

13 Uropathogenic Escherichia coli-Associated Exotoxins 263
Rodney A. Welch

14 Structure, Function, and Assembly of Adhesive Organelles
by Uropathogenic Bacteria 277
Peter Chahales and David G. Thanassi

15 Pathoadaptive Mutations in Uropathogenic Escherichia coli 331
Evgeni Sokurenko

16 Invasion of Host Cells and Tissues by Uropathogenic Bacteria 359
Adam J. Lewis, Amanda C. Richards, and Matthew A. Mulvey

17 Proteus mirabilis and Urinary Tract Infections 383
Jessica N. Schaffer and Melanie M. Pearson

18 Epidemiology and Virulence of Klebsiella pneumoniae 435
Steven Clegg and Caitlin N. Murphy

19 Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection,
and the Emerging Microbiota of the Urinary Tract 459
Kimberly A. Kline and Amanda L. Lewis

20 Integrated Pathophysiology of Pyelonephritis 503
Ferdinand X. Choong, Haris Antypas, and Agneta Richter-Dahlfors

III. HOST RESPONSES TO URINARY TRACT INFECTIONS
AND EMERGING THERAPEUTICS

21 Susceptibility to Urinary Tract Infection: Benefits and Hazards of the
Antibacterial Host Response 525
Ines Ambite, Karoly Nagy, Gabriela Godaly, Manoj Puthia, Björn Wullt,
and Catharina Svanborg

22 Innate Immune Responses to Bladder Infection 555
Byron W. Hayes and Soman N. Abraham

23 Host Responses to Urinary Tract Infections and Emerging
Therapeutics: Sensation and Pain within the Urinary Tract 565
Lori A. Birder and David J. Klumpp

24 Drug and Vaccine Development for the Treatment and Prevention of
Urinary Tract Infections 589
Valerie P. O’Brien, Thomas J. Hannan, Hailyn V. Nielsen,
and Scott J. Hultgren

Index 647
Contributors

Soman N. Abraham
Departments of Pathology, Molecular Genetics & Microbiology, and Immunology
Duke University Medical Center
Durham, NC 27710
Program in Emerging Infectious Diseases
Duke-National University of Singapore
Singapore 169857

Ines Ambite
Department of Microbiology, Immunology and Glycobiology
Institute of Laboratory Medicine
Lund University
Lund, S-223 62
Sweden

Haris Antypas
Swedish Medical Nanoscience Center
Department of Neuroscience
Karolinska Institutet
SE-171 77, Stockholm
Sweden

Lori A. Birder
Departments of Medicine and Pharmacology and Chemical Biology
University of Pittsburgh School of Medicine
Pittsburgh, PA 15261

Peter Chahales
Center for Infectious Diseases and Department of Molecular Genetics and Microbiology
Stony Brook University
Stony Brook, NY 11794

Ferdinand X. Choong
Swedish Medical Nanoscience Center
Department of Neuroscience
Karolinska Institutet
SE-171 77, Stockholm
Sweden
Steven Clegg
Department of Microbiology
University of Iowa College of Medicine
Iowa City, IA 52242

Erick Denamur
UMR 1137 INSERM and Université Paris Diderot, IAME,
Sorbonne Paris Cité
75018 Paris
France

Suzanne E. Geerling
Department of Internal Medicine, Division of Infectious Diseases
Center for Infection and Immunity Amsterdam (CINIMA)
Academic Medical Center
1105 AZ Amsterdam
The Netherlands

Gabriela Godaly
Department of Microbiology, Immunology and Glycobiology
Institute of Laboratory Medicine
Lund University
Lund, S-223 62
Sweden

Thomas J. Hannan
Department of Pathology & Immunology
Washington University Medical School
St. Louis, MO 63110

Byron W. Hayes
Department of Pathology
Duke University Medical Center
Durham, NC 27710

Duane R. Hickling
Division of Urology, Ottawa Hospital Research Institute
The Ottawa Hospital, University of Ottawa
Ottawa, ON K1Y 4E9
Canada

Thomas M. Hooton
Department of Medicine
University of Miami Miller School of Medicine
Miami, FL 33136

Scott J. Hultgren
Department of Molecular Microbiology
Center for Women's Infectious Disease Research
Washington University Medical School
St. Louis, MO 63110
James R. Johnson
Infectious Diseases Section
Veterans Affairs Medical Center
Minneapolis, MN 55417
Department of Medicine
University of Minnesota
Minneapolis, MN 55455

Kimberly A. Kline
Singapore Centre on Environmental Life Sciences Engineering
School of Biological Sciences
Nanyang Technological University
Singapore 637551

David J. Klumpp
Departments of Urology and Microbiology-Immunology
Feinberg School of Medicine
Northwestern University
Chicago, IL 60610

John N. Krieger
Department of Urology
University of Washington School of Medicine
Seattle, WA 98195

Adam J. Lewis
Division of Microbiology and Immunology
Pathology Department
University of Utah School of Medicine
Salt Lake City, UT 84112

Amanda L. Lewis
Department of Molecular Microbiology
Washington University School of Medicine
St. Louis, MO 63110

Ganwu Li
Department of Veterinary Microbiology and Preventive Medicine
College of Veterinary Medicine
Iowa State University
Ames, IA 50011

Catherine M. Logue
Department of Veterinary Microbiology and Preventive Medicine
College of Veterinary Medicine
Iowa State University
Ames, IA 50011

Amee R. Manges
School of Population and Public Health
University of British Columbia
Vancouver, BC V6T 1Z3
Canada
Contributors

Harry L.T. Mobley
Department of Microbiology and Immunology
University of Michigan Medical School
Ann Arbor, MI 48109

Matthew A. Mulvey
Division of Microbiology and Immunology
Pathology Department
University of Utah School of Medicine
Salt Lake City, UT 84112

Caitlin N. Murphy
Department of Microbiology
University of Iowa College of Medicine
Iowa City, IA 52242

Kurt G. Naber
Technical University
80333 Munich
Germany

Karoly Nagy
Department of Urology
South-Pest Hospital
Budapest 1204
Hungary

Lindsay E. Nicolle
Department of Internal Medicine and Medical Microbiology
University of Manitoba
Winnipeg, MB R3T 2N2
Canada

Hailyn V. Nielsen
Department of Molecular Microbiology
Center for Women’s Infectious Disease Research
Washington University Medical School
St. Louis, MO 63110

Lisa K. Nolan
Department of Veterinary Microbiology and Preventive Medicine
College of Veterinary Medicine
Iowa State University
Ames, IA 50011

Valerie P. O’Brien
Department of Molecular Microbiology
Center for Women’s Infectious Disease Research
Washington University Medical School
St. Louis, MO 63110
Melanie M. Pearson
Department of Microbiology
New York University Langone Medical Center
New York, NY 10016

Paula Pietrucha-Dilanchian
Department of Medicine
University of Miami Miller School of Medicine
Miami, FL 33136

Adrian Pilatz
Clinic for Urology, Pediatric Urology and Andrology
Justus-Liebig-University Gießen
D-35390 Gießen
Germany

Manoj Puthia
Department of Microbiology, Immunology and Glycobiology
Institute of Laboratory Medicine
Lund University
Lund, S-223 62
Sweden

Amanda C. Richards
Division of Microbiology and Immunology
Pathology Department
University of Utah School of Medicine
Salt Lake City, UT 84112

Agneta Richter-Dahlfors
Swedish Medical Nanoscience Center
Department of Neuroscience
Karolinska Institutet
SE-171 77, Stockholm
Sweden

Jessica N. Schaffer
Department of Microbiology
New York University Langone Medical Center
New York, NY 10016

Theresa A. Schlager
Department of Emergency Medicine
University of Virginia
Charlottesville, VA 22908

Evgeni Sokurenko
University of Washington
Seattle, WA 98195
Contributors

Ann E. Stapleton
Division of Allergy and Infectious Diseases
Department of Medicine
University of Washington
Seattle, WA 98195

Sargurunathan Subashchandrabose
Department of Microbiology and Immunology
University of Michigan Medical School
Ann Arbor, MI 48109

Tung-Tien Sun
Departments of Cell Biology, Biochemistry and Molecular Pharmacology
Departments of Dermatology and Urology
New York University School of Medicine
New York, NY 10016

Catharina Svanborg
Department of Microbiology, Immunology and Glycobiology
Institute of Laboratory Medicine
Lund University
Lund, S-223 62
Sweden

David G. Thanassi
Center for Infectious Diseases and Department of Molecular Genetics
and Microbiology
Stony Brook University
Stony Brook, NY 11794

Praveen Thumbikat
Department of Urology
Northwestern University School of Medicine
Chicago, IL 60611

Jérôme Tourret
Département d’Urologie, Néphrologie et Transplantation Groupe
Hospitalier Pitié-Salpêtrière
Assistance Publique-Hôpitaux de Paris
Université Pierre et Marie Curie
UMR 1137 INSERM and Université Paris Diderot, IAME, Sorbonne Paris Cité
75018 Paris
France

Florian M.E. Wagenlehner
Clinic for Urology, Pediatric Urology and Andrology
Justus-Liebig-University Gießen
D-35390 Gießen
Germany
Wolfgang Weidner
Clinic for Urology, Pediatric Urology and Andrology
Justus-Liebig-University Gießen
D-35390 Gießen
Germany

Rodney A. Welch
Department of Medical Microbiology and Immunology
University of Wisconsin School of Medicine and Public Health
Madison, WI 53706

Xue-Ru Wu
Departments of Urology and Pathology
New York University School of Medicine
Veterans Affairs, New York Harbor Healthcare Systems, Manhattan Campus
New York, NY 10016

Björn Wullt
Department of Microbiology, Immunology and Glycobiology
Institute of Laboratory Medicine
Lund University
Lund, S-223 62
Sweden
Urinary tract infection (UTI), the second most common infection of humans after pneumonia, has likely plagued the population for as long as humans have walked the face of the earth. The inception of antibiotics provided adequate therapy but did not prevent infections from recurring. While symptoms of the infections were well documented, little was known about the primary infecting pathogen, *Escherichia coli*. In 1976, Svanborg and colleagues demonstrated that *E. coli* causing acute pyelonephritis adhered in greater numbers to uroepithelial cells (1). Further research by several groups revealed that the adherence factor P fimbria was responsible. This structure was found to be comprised of a multi-protein complex with the actual adhesin placed at the tip of the fimbria. With the advent of molecular techniques, other advances arrived quickly. For example, in 1981, Welch and colleagues demonstrated that a knock out of the hemolysin gene attenuated *E. coli* in an intraperitoneal model (2). As discoveries abounded, some 14 years later, I teamed up with infectious diseases physician John W. Warren to edit a 15-chapter book titled *Urinary Tract Infections: Molecular Pathogenesis and Clinical Management*. This treatise covered the clinical aspect of UTI (5 chapters) and the molecular mechanisms of bacterial pathogenesis of UTI (10 chapters).

Now two decades have passed, and it was essential to update this broad topic. Editors Matthew A. Mulvey, David J. Klumpp, and Ann E. Stapleton have taken on the task of a second edition. The editors assembled an all-star lineup to cover the topic of clinical aspects of UTIs in eight chapters that include the anatomical and physiological aspects of UTI, clinical presentations, diagnosis and treatment, infections in children, involvement of the vaginal microbiome, asymptomatic UTI, prostatitis, pyelonephritis, and urosepsis (the most serious complication). In the second section (12 chapters), experts deal with reservoirs of infection, antimicrobial resistance, phylogeny, virulence, and fitness factors including exotoxins, structure of adhesins, adaptive mutations, and intracellular persistence, and this section includes chapters on other important uropathogens: *Proteus mirabilis, Klebsiella pneumoniae*, and Gram-positive pathogens. In the final section on host responses to UTI and emerging therapeutics (4 chapters), authors summarize the host response to UTI, innate immunity, sensation and pain in the bladder, and drug and vaccine development. Overall, this volume brings us up to date on the broad topic of UTI. Those interested in these common infections, whether it be in the laboratory or the clinic, will find the second
edition of *Urinary Tract Infections: Molecular Pathogenesis and Clinical Management* an indispensable book that should be on your shelf or on your computer. It is gratifying to see this critical topic brought up to date.

Harry L. T. Mobley
Frederick G. Novy Distinguished University Professor and Chair,
Department of Microbiology and Immunology
University of Michigan Medical School
Ann Arbor, Michigan

Preface

For centuries the pain and other symptoms associated with urinary tract infections (UTIs) were erroneously ascribed to the wrath of gods, bile, phlegm, bad air, or numerous other culprits. The treatments for UTIs were at times equally off-target and included the use of bleeding and enemas, while the administration of narcotics and certain herbs provided palliative support. In the late 1800s, as evidence for the germ theory of disease mounted in the wake of Pasteur and Koch, the idea that microbes were responsible for UTIs took hold. This led to the development of more efficacious treatment options, culminating in the discovery and optimization of antibiotics that continue to this day. These achievements coincided with stunning advancements in our understanding of cellular functions and developmental processes within the urinary tract, inflammatory responses, microbiology, and the roles of both innate and adaptive host defenses. Still, despite this progress, UTIs continue to rank among the most common of infectious diseases, with most UTIs being attributable to strains of uropathogenic Escherichia coli (UPEC).

In 1996, for the first edition of this book, Harry L. T. Mobley and John W. Warren assembled an all-star cast of authors to highlight the multiple host and bacterial factors that impact the pathogenesis and treatment of UTIs. A lot has happened since, including remarkable progress in our ability to sequence and manipulate both bacterial and host genomes. The first E. coli genome, belonging to the nonpathogenic strain MG1655, was sequenced in 1997, followed a few years later by the urosepsis isolate and reference UPEC strain CFT073. Today, several thousand E. coli genomes have been sequenced, including many UPEC isolates. These data have revealed a huge amount of diversity among UPEC isolates, while also shedding light on the evolution and adaptability of uropathogens. These developments overlapped with the adoption of new, more facile approaches to manipulate UPEC genomes, greatly enhancing our ability to disrupt and functionally test specific pathogen-associated loci. This work is providing leads for the generation of more efficacious therapeutics for the treatment and prevention of UTIs.

Though powerful, antibiotics have not provided a cure-all for UTIs. Many individuals endure multiple recurrent UTIs despite antibiotic treatments, while circumstances such as catheterization render others prone to chronic infections. Many UPEC isolates are now resistant to multiple antibiotics, including some drugs that should be reserved as last resort choices. In terms of medical costs and loss of life, the rapid emergence and expansion of multidrug-resistant UPEC and related strains in recent years is considered by some to be more problem-
atic than methicillin-resistant *Staphylococcus aureus* (MRSA) was over the past two decades. The rising tide of antibiotic-resistant UPEC strains is showing no signs of subsiding, being driven in part by the overuse and misuse of antibiotics in both the clinic and in agriculture. Epidemiology informed by sequencing data is showing how antibiotic resistance and other genetic elements move among UPEC strains, facilitated by human activities such as global travel and the utilization of high-throughput animal processing and food distribution networks. To better combat UTIs, and antibiotic-resistant strains in particular, scientists are working to create effective anti-UTI vaccines and new antibiotics that have fewer off-target effects. Some researchers are optimizing the use of probiotic bacterial strains that can interfere with UPEC colonization of the urinary tract, while others aim to develop antivirulence strategies that modify virulence mechanisms and host responses rather than the bacteria themselves. The realization that UPEC can act as facultative intracellular pathogens in both humans and mice is also spurring the development of new treatment approaches while at the same time challenging long-held views concerning the etiology of chronic and recurrent UTIs.

Advances in bacterial genomics have been complemented by the development of new approaches to identify UTI susceptibility factors in human populations. This work, coupled with robust UTI model systems, is beginning to explain why some individuals are more prone to UTIs, making links with innate host defense regulators, adaptive immunity, inflammatory responses, and pain perception within the urinary tract. Clinically, we are gaining a much more complete understanding of the host and bacterial factors that contribute to the onset and progression of UTIs, as well as variables that can confound treatments. These variables include patient age, sex, and catheterization, as well as the makeup of protective microbial communities within the vaginal microbiota, the gut, and potentially even the bladder itself.

In this book, leading experts have reviewed the clinical diagnostics and management of UTIs in adults and children, along with associated complications such as urosepsis and prostatitis. In other chapters we take a detailed look at the origins of UPEC and associated antibiotic-resistance factors, with consideration of bacterial population dynamics, genome architecture, and evolution. The mechanisms by which uropathogens colonize the urinary tract and cause disease are thoroughly examined, with analysis of the adhesive organelles and myriad other bacterial and host factors that affect UPEC survival and virulence within the urinary tract. This includes an assessment of innate and adaptive host responses that are triggered during the course of a UTI, and the protective effects of microbial communities within the urogenital tract. The molecular biology and clinical importance of other uropathogens, including *Klebsiella pneumoniae*, *Proteus mirabilis*, and Gram-positive opportunists such as *S. aureus*, are also discussed in detail. Finally, we turn our attention to emerging antibacterial therapeutics, including the use of probiotics and bacterial interference measures. Much of the information presented in the following pages builds on work that was just coming to light when the first edition of this book was published nearly 2 decades ago. We are eager to see where the next 20 years take the field and hope that this new book, like the first edition, serves as both a resource for the community and a stimulus for future research endeavors.

Matthew A. Mulvey
David J. Klumpp
Ann E. Stapleton
Index

ABC transporters, 237, 241, 573
 Klebsiella pneumoniae, 440
 Proteus mirabilis, 414–416
 Staphylococcus aureus, 465
Abdominal stoma conduit, bacteriuria and, 93
Abscess
 perirenal, 150
 prostatic, 151
 renal, 150
Accidental pathogen, 332
Ace, 301–304, 306, 466–467
 ACTH (adrenocorticotrophic hormone), 138–139
 Acinetobacter baumannii, 180
 Acinetobacter (phylum), 473, 476, 480
 Actinobacteria, 473–477, 482–484
 Actinomyces, 478, 484
 Activator protein 1 (AP-1), 525
 Acute kidney injury (AKI), 513–514
 Acute hemorrhagic cystitis and, 70
 Adhesion
 interplay between adherence and motility, 245
 Adjuvants, vaccine, 615–616
 Adrenocorticotrophic hormone (ACTH), 138–139
 Aerobactin, 126, 129, 238–239, 440, 602
 Aerococcus, 472–473, 484
 Aeromonas hydrophila, 268–269
 Afa/Dr family of pili, 281, 283–284
 Afferent nerves, 567–569
 Ag43, 298–299, 534
 aggr gene, 125
 Aging female
 anatomy and physiology, 13–14
 asymptomatic bacteriuria
 diagnosis, 89
 incidence, 93–94
 microbiology of, 99
 prevalence, 92, 94–95
 immune breakdown in, 560
 incidence of UTI, 79
 prevalence of UTI, 13–14
 Aging male, asymptomatic bacteriuria in
 diagnosis, 89
 incidence, 93–94
 microbiology of, 99
 prevalence, 92, 95
 Agmatine, Proteus mirabilis swarming and, 397
 AIDA-I, 293, 295
 AipA autotransporter, 412
 AKI (acute kidney injury), 513–514
 Akt, 268
 Algorithm, for management of urosepsis, 148–150
 Allelic variation under positive selection, 214–215
 Alldynia, 577–583
 Alloscardovia omnicolens, 478
 α-hemolysin (Hly), 126, 128–129, 246, 253, 264–269
 host response to, 507–508
 mechanism, 267–269
 renal damage and, 603–604
 structure, 266–267
 toxoid vaccine, 620
 uropathogenic E. coli (UPEC), 264–269, 507–508
 as virulence factor, 264–266
 α-keto acids, 414
 Aluminum-based adjuvants, 615
 Staphylococcus saprophyticus, 463–464
 as virulence factors, 334–335
 Adjuvants, vaccine, 615–616
 Adrenocorticotrophic hormone (ACTH), 138–139
 Aerobactin, 126, 129, 238–239, 440, 602
 Aerococcus, 472–473, 484
 Aeromonas hydrophila, 268–269
 Afa/Dr family of pili, 281, 283–284
 Afferent nerves, 567–569
 Ag43, 298–299, 534
 aggr gene, 125
 Aging female
 anatomy and physiology, 13–14
 asymptomatic bacteriuria
 diagnosis, 89
 incidence, 93–94
 microbiology of, 99
 prevalence, 92, 94–95
 immune breakdown in, 560
 incidence of UTI, 79
 prevalence of UTI, 13–14
 Aging male, asymptomatic bacteriuria in
 diagnosis, 89
 incidence, 93–94
 microbiology of, 99
 prevalence, 92, 95
 Agmatine, Proteus mirabilis swarming and, 397
 AIDA-I, 293, 295
 AipA autotransporter, 412
 AKI (acute kidney injury), 513–514
 Akt, 268
 Algorithm, for management of urosepsis, 148–150
 Allelic variation under positive selection, 214–215
 Alldynia, 577–583
 Alloscardovia omnicolens, 478
 α-hemolysin (Hly), 126, 128–129, 246, 253, 264–269
 host response to, 507–508
 mechanism, 267–269
 renal damage and, 603–604
 structure, 266–267
 toxoid vaccine, 620
 uropathogenic E. coli (UPEC), 264–269, 507–508
 as virulence factor, 264–266
 α-keto acids, 414
 Aluminum-based adjuvants, 615

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Thu, 18 Jul 2019 05:56:56

647
Ambient temperature fimbria (ATF), 409
Amikacin
 origin of, 195
 resistance, 196
Aminoglycoside acetyltransferase, 191
Aminoglycosides
 for catheter-associated UTI, 34
 indications, 195
 mechanism of action, 196
 origin of, 195
 resistance, 144, 591
 mechanisms, 196
 prevalence, 196
 side effects, 195
 for uncomplicated pyelonephritis, 54
 for urosepsis, 141–143, 146
 for UTI in children, 74
Amoxicillin
 for asymptomatic bacteriuria, 106
 resistance, 58
Amoxicillin-clavulanic acid
 for asymptomatic bacteriuria, 106
 for ESBL-producing E. coli, 49
 for pyelonephritis during pregnancy, 31
 for uncomplicated cystitis, 51–52
 for UTI during pregnancy, 31
 for UTI in children, 74
Ampicillin resistance, 124, 145
Amplification of gene copies, 337
Amygdala, 582
Anaerococcus, 483
 A. lactolyticus, 482
Analgesia in the bladder, bacterial, 580, 582–583
Anatomy, 3–18
 abnormalities, 10–14
 in aging female, 13–14
 asymptomatic bacteriuria and, 100
 bladder-outlet obstruction, 12–13
 calyceal diverticula, 11
 in children, 71
 medullary sponge kidney, 10–11
 pelvic anatomy, 13
 ureteral obstruction, 11–12
 vesicoureteric reflux, 12
 bladder, 4–5
 microscopic, 6–8
 upper urinary-collecting system, 4
 ureterovesical junction, 4, 5
 urethra, 5–6
 vagina, 6
Animal models, for polymicrobial UTI, 461–462
Anterior vaginal-wall prolapse (cystocele), 14
Antibacterial peptides, UTI susceptibility and, 538
Antibiotic prophylaxis. See Antimicrobial prophylaxis
Antibiotics. See Antimicrobial(s)
Anticholinergic medications, for neurologic patients, 17
Antigen 43, 249
Antimicrobial(s)
 growth promoters, 170
 intracellular bacterial communities, effectiveness against, 600
 stewardship, 170
 use in food animals, 170
Antimicrobial peptides, 556
 Klebsiella pneumoniae interactions with, 439
 in neutrophil granules, 509
 produced by nephron urothelium, 509
Antimicrobial prophylaxis, 56–58, 591
 in catheterized patients, 33
 continuous prophylaxis, 57
 postcoital prophylaxis, 56–57
 self-diagnosis and self-treatment, 57–58
 special considerations about, 58
 with vesicoureteral reflux, 75
Antimicrobial resistance, 179–198
 avian pathogenic E. coli (APEC), 183–187, 197
 ExPEC, 162–167, 170
 Klebsiella pneumoniae, 448–449
 mechanisms of, 187–198
 aminoglycosides, 195–196
 β-lactams, 191–193
 fluoroquinolones, 190–191
 fosfomycin, 194
 nitrofurantoin, 193–194
 overview, 187–188
 silver-containing agents, 197–198
 tetracyclines, 194–195
 trimethoprim-sulfamethoxazole, 189–190
 origins of, 180–187
 overview, 48–49
 in UTI prophylaxis, 58
 vancomycin-resistant S. aureus (VRSA), 144–145
Antimicrobial therapy
 in children, 73–74
 in pregnant women, 31–32
 pyelonephritis, 514–515
 for urosepsis, 141–147
 vaginal microbiotic alterations with, 82
AP-1 (activator protein 1), 525
APEC. See Avian pathogenic E. coli
Apoptosis, FimH-dependent urothelial, 575–578
Arginine, Proteus mirabilis swarming and, 397
Arthrobacter, 484
Aspiratory samples, 89, 90
Asymmetric unit membrane (AUM), 365, 566
Asymptomatic bacteriuria, 87–111
 analgesic activity, 580, 582–583
 ASB strains as therapy, 607–608
 bacterial interference, 110–111
 in children, 71
 co-evolution of bacteria and host, 541
Corynebacterium urealyticum, 473
defined, 87
deliberate establishment of, 542
in diabetics, 34–35
diagnosis, 88–91
 aspiration samples, 90
 catheter specimens, 90
 inflammatory markers, 90–91
 in men, 89–90
 pyuria, 90–91
 quantitative urine culture, 88
 voided urine specimens, 88–90
in women, 88–89
differential diagnosis, 543–544
epidemiology, 91–94
 incidence, 93–94
 prevalence, 36, 91–93, 529
group B Streptococcus, 469–470
innate immune system and, 561
microbiology of, 97–100
 catheterized patients, 99–100
 diabetic women, 98–99
 healthy women, 98
 infants and children, 98
 institutionalized elderly, 99
 older women and men, 99
 pregnant women, 98
as model for pathoadaptive mutation in UPEC, 339–340
molecular characteristics of susceptibility, 529, 532, 534, 539–541
morbidity and mortality, 100–104
 after invasive genitourinary procedures, 104
 catheterized patients, 103–104
 diabetic women, 101–102
 elderly patients, 102–103
 healthy women, 101
 infants and children, 100–101
 pregnant women, 102
mutation in strains, 345–346
natural history, 97–104
 microbiology, 97–100
morbidity and mortality, 100–104
overview, 28–29, 87
pathogenesis, 94–97
 host factors, 94–95
 organism factors, 95–97
in pregnant women, 31, 469–470, 611
prevalence of, 36, 91–93, 529
Proteus mirabilis, 383
reductive evolution in, 529
screening for and treatment of, 104–110
 after invasive genitourinary procedures, 109
 children, 104–105
 diabetic patients, 107
 elderly institutionalized patients, 107
 indwelling urethral catheter patients, 107–108
 older women, 107
 pregnant women, 105–107
 renal transplant patients, 109–110
 spinal cord injury patients, 109
in vivo evolution of E. coli strains, 215
ATF (ambient temperature fimbria), 409
Atopobium, 483
ATP, as autocrine mediator, 573–574
Atrophic vaginitis, 82
Attachment inhibitors, 60, 542
Attenuated vaccines, 619
Augmentation cystoplasty, bacteriuria and, 93
AUM (asymmetric unit membrane), 365
Autotransporter toxins, 247
Autotransporters, 248–249, 271, 293–300, 534
functions in uropathogenic E. coli (UPEC), 298–300
Ag43, 298–299
FdeC, 300
UpaB, 299
UpaG, 299
UpaH, 299
overview, 293–295
Proteus mirabilis, 411–412
secretion pathway, 296–298
structure, 295–296
Avian pathogenic E. coli (APEC), 166, 168, 208
antimicrobial resistance, 183–187, 197
relationship to NMEC and UPEC strains, 216
sequencing of O1:K1:H7 strain, 212
Bacillus cereus pili, 308
Bacterial interference, 110–111
Bacterial prostatitis. See Prostatitis
Bacterial spectrum in urosepsis, 143–144
Bacterial vaginosis (BV), 82, 471–472, 477, 480, 482–483, 485
Bacteriuria
 asymptomatic, 28–29, 45, 55
 catheter-associated, 32–33, 460
 Gardnerella vaginalis, 477
interpretation of urine culture results, 44–45
microbiology of, 97–100
natural history of, 97–104
patterns of response to therapy, 35
in pregnancy, 15, 469–470
in prostatitis, 122, 124
rapid detection strategies, 45
threshold for diagnosis, 27
Bacteroides, 479, 482
Bam complex, 297–298
BarA-UvrY two-component system, 601
Barrier function, urothelial, 569
Bedwetting, 72
Behavioral risk factors for asymptomatic bacteriuria, 94
Benign prostatic hyperplasia (BPH) and bladder-outlet obstruction, 13
β-defensin, 542, 556
β-hemolysin, group B Streptococcus, 471
Beta-lactam antibiotics
mode of action of, 191
recurrence of UTI associated with, 82
resistance
mechanism, 192
prevalence, 192–193
for uncomplicated cystitis, 50–52
for uncomplicated pyelonephritis, 53–54
for urosepsis, 141–142
for UTI during pregnancy, 31
β-lactam inhibitor (BLI), for urosepsis, 146
β-lactamases, 180, 192–193
New Delhi metallo (NDM) β-lactamases, 163, 193, 214
Biarylmannose-derivative FimH antagonists, 605–606
Bifidobacterium, 478, 483
Biofilms, 90, 95, 97
catheter-associated bacteria, 460–462
CAUTI and, 605, 609
curl, 247
Enterococcus, 466–467, 604–605, 609
Klebsiella pneumoniae, 436, 444–448
matrix composition, 247
prevention of urinary catheter biofilm formation, 421–422
Proteus mirabilis, 385, 405–406, 417, 419, 421–422
Staphylococcus epidermidis, 465
uropathogenic E. coli (UPEC), 247–248
expression within, 248
inhibition of formation, 248
regulation of formation, 248
in urosepsis, 143
Bladder
anatomy, 4–5
diabetic cystopathy, 14
filling and emptying, neural control of, 567–568
micturition cycle, 9–10
neurogenic, 42, 71, 218
primary bladder-neck obstruction (PBNO), 16
urothelium, 7
Bladder cells, bacterial invasion of, 360–371
Bladder epithelial cells, 556–557
Bordetella pertussis, 293, 296
Bruton’s tyrosine kinase (BTK), 531
BV. See Bacterial vaginosis
“By-product of commensalis” hypothesis, 224
Caderhin, 570
Caldotonin gene-related peptide (CGRP), 568, 572
Calcium (Ca2+) signaling, 508
Calyceal diverticula, 11
Calyces, 4
Candida spp., asymptomatic bacteriuria and, 97
Capsule
E. coli prostatitis isolates, 125–128
group B Streptococcus, 471
group II type, 248, 249
Klebsiella pneumoniae, 436–439
K1-type, 249
Proteus mirabilis swarming and, 305–306
shift in antigenicity, 338
Staphylococcus saprophyticus, 464
uropathogenic E. coli (UPEC), 248, 249–250
Carbapenem
resistance, 144, 448
for urosepsis, 146
CARS (counter-regulatory anti-inflammatory response syndrome), 138
CAS (chromes azul S) assay, 414, 417
Caspases, 576
Cathelicidin, 370, 509–510, 538, 556
Catheter-acquired bacteriuria
morbidity, 103–104
treatment, 107–108
Catheter-associated urinary tract infections (CAUTIs)
biofilms and, 460–462, 605, 609
daily risk, 590
Enterococcus faecalis, 306, 310–311, 461, 466–469,
604–605, 609
Escherichia coli strains infecting, 218
Gram-positive uropathogens, 460–462, 465
Klebsiella pneumoniae, 435–436, 445, 448–450
overview, 32–34
percentage of health care-associated infections, 590
polymicrobial, 462
prevention using probiotic E. coli, 561
Proteus mirabilis, 384, 385, 419–422
role of adherence and biofilm formation in, 605
Staphylococcus epidermidis, 465
treatment, 33–34
Catheterization
clean intermittent catheterization (CIC), for neurologic patients, 17
risk increase for asymptomatic bacteriuria, 95
Catheters
bacterial interferences and, 110–111
biofilms on, 90, 95, 97, 447–448
indwelling, 32–34, 93
bacterial interference, 111
bacteriuria, 95, 103, 107–108
obstruction, 385
prevention of urinary catheter biofilm formation, 421–422
silver-coated, 197
urine samples for asymptomatic bacteriuria diagnosis, 90
Cats, as ExPEC reservoir, 165–166
Cavernitis, 151
CCLs, 535
cmaA, 396
CDC42, 533
Cefixime, for bacterial prostatitis, 124–125
Cefotaxime resistance, 144–145, 192
Ceftazidime resistance, 144
Ceftriaxone, for uncomplicated pyelonephritis, 54
Cell membrane receptors, genetic variants affecting, 528
Cell-cell communication, 251
Cellobiose metabolism, by Klebsiella pneumoniae, 448
Cellular invasion, by Proteus mirabilis, 399–400
Central nervous system circuits in cystitis pain, 581–582
Cephalosporin for pyelonephritis during pregnancy, 31
for urosepsis, 146
for UTI in children, 74
Cephalothin resistance, 124
Ceramide, 289, 532
CGRP (calcitonin gene-related peptide), 568, 572
Chaperone/usher (CU) assembled pili, 243, 251, 279–289
assembly at outer membrane, 285–286
chaperone-subunit complex formation, 284–285
fiber, 281–283
functions of, 287–289
gene clusters, 282
inhibitors, 607
Klebsiella pneumoniae, 443
P pili, 289
pilus usher, 286–287
structure, 281–284
type 1 pili, 287–288
Chemotaxis, 245
Children
asymptomatic bacteriuria diagnosis, 88
incidence, 93
microbiology, 99
morbidity, 100–101
prevalence, 92
screening, 104–105
treatment, 104–105
urinary tract infection in, 69–75
clinical presentation, 72
diagnosis, 72–73
epidemiology, 69–70
imaging, 74–75
laboratory work-up, 72–73
management and treatment, 73–74
overview, 30–31
pathogenesis, 70–71
prophylaxis, 75
treatment, 31
vesicoureteral reflux, 70–72
vesicoureteral reflux, 70–72, 100, 105
Chitosan, as bladder cell exfoliant, 372
Chrome azul S (CAS) assay, 414, 417
Chronic pelvic pain syndrome (CPPS) E. coli in, 129–132
pathogenesis of, 131–132
virulence factors in, 130
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), 36
Chronic urinary retention, 13
ChuA, 239, 240
Ciprofloxacin
for asymptomatic bacteriuria, 108
for prophylaxis, 57
resistance, 144–145, 191, 476, 591
for uncomplicated cystitis, 50–52
for uncomplicated pyelonephritis, 53–54
for urosepsis, 142–147
Circumcision, 71
Citrobacter
asymptomatic bacteriuria, 97
C. freundii
adhesins, 280
intracellular bacterial communities (IBCs), 600
Clathrin-coated pits, 595
Claudins, 566
Clean intermittent catheterization (CIC), for neurologic patients, 17
Clean-catch technique, 43–44
ClfA, 301–302, 304
Clinical diagnosis of urinary tract infection, 41–42
Clinical syndromes
acute pyelonephritis, 30
asymptomatic bacteriuria, 28–29
complicated UTI, 29–30
prostatitis, 30
special patient groups
catheterized patients, 32–34
children, 30–31
diabetes mellitus, 34–35
men, 31
pregnant women, 31–32
uncomplicated cystitis, 29
urosepsis, 30
Clostridium difficile
antimicrobial resistance, 180
colitis, 591
diarrhea, UTI prophylaxis and, 58
Clot formation, in pyelonephritis, 511–512
Clue cells, 480, 485
CmfA, 395–396
Cna, 301–302, 304
CNF-1. See Cytotoxic necrotizing factor-1
Coagulase-negative staphylococci, asymptomatic bacteriuria and, 97
Colibactin, 126, 128–129
Colicin, 126
Collagen hug model of ligand binding, 302–304
Colony morphology, variation in E. coli, 337–338
Commensals, 529
Commensals, as opportunistic pathogens, 332
virulence as by-product of commensalism, 224
Community-acquired UTI, 28
Companion animal reservoirs of ExPEC, 165–166
Comparative genomics, of UPEC strains, 211
Compensatory endocytosis, 365
Complement-mediated phagocytosis, 556–557
Complicated urinary tract infection (UTI) defined, 28, 460
Condom catheter, 89, 95
Conjugate vaccines, 619–620
Conjugative plasmids, 180, 182
Conjugative transposons, 182
Contamination, of voided urine sample, 43–44
Contraceptive method, effect on vaginal microbiota, 82
Convergent evolution, 350
Corticotropin-releasing factor/hormone, 139, 568, 571–572
Corynebacterium, 484
C. diptheriae pili, 278, 307, 308, 310
C. renale pili, 278
C. urealyticum, 473
Cost of urinary tract infections, 36–37, 79–80, 236, 556
Counter-regulatory anti-inflammatory response syndrome (CARS), 138
Cox2, 537–538
COX-2 (cyclooxygenase-2) inhibitors, 558
CP923, 618–619
CP/CPPS (chronic prostatitis/chronic pelvic pain syndrome), 36
cps gene cluster, 438
Cpx, 601
Cranberry, 55, 75, 372, 515, 608–609
Crosstalk, molecular, 513
csg gene cluster, 290–292
CsrA, 394
CTX-M
CTX-M-1, 168
CTX-M-9, 168
CTX-M-15, 162–163
CTX-M-32, 168
Escherichia coli, 213–215
extended-spectrum beta-lactamase (ESBL), 49, 192
CueO, 339
Culture-negative urine, 481
Curli, 247, 278, 289–293
assembly machinery, 292
assembly on the bacterial surface, 291–292
extracellular nucleation-precipitation, 292
functions in UPEC, 292–293
structure, 292–293
as virulence factor, 534
Curlicide, 607
CXCL1, 559
CXCL2, 537, 559–560
CXCL8, 534–535
CXCR1, 504, 508, 535, 540, 560
CXCR2, 535
Cyclic adenosine monophosphate (cAMP) and UPEC expulsion, 599
Cycloxygenase-2 (COX-2) inhibitors, 558, 603
Cyclophosphamide-induced cystitis, 581
Cystic fibrosis, 338
Cystitis
acute cystitis, modeling the outcomes of, 602–603
acute hemorrhagic cystitis, 70
acute uncomplicated cystitis
antimicrobial treatment, 29
clinical diagnosis, 42
overview, 29
treatment, 49–53
clinical diagnosis, 42
clinical picture, 150
CNS circuits in pain, 581–582
Corynebacterium urealyticum encrusting cystitis, 473
cyclophosphamide-induced cystitis, 581
dipstick diagnosis, 46–47
incidence, 36
interpretation of urine culture results, 44
modeling outcomes of acute, 602–603
polymicrobial, 481
symptoms, 29, 527, 589
Cystocele, 14
Cytokines
as markers of the septic response, 138
pro-inflammatory, 138–139
response to infection, 534–535
Cytolethal-distending toxin 1, 126
DAF (decay-accelerating factor), 342–343
DamX, 371
Debilitated patients, *Escherichia coli* strains infecting, 218
Decay-accelerating factor (DAF), 342–343
Defensins, 439, 509, 538
DegP periplasmic protease, 285
Denaturing high-performance liquid chromatography (DHPLC), 482
Dendritic-cell maturation, *Klebsiella pneumoniae* induction of, 439
Detrusor-external sphincter dyssynergia (DESD), 16–17
Dexamethasone, 53
DHFR (dihydrofolate reductase), 182, 189
DHPLC (denaturing high-performance liquid chromatography), 482
DHPPP (dihydro-6-hydroxymethylpterin-pyrophosphate), 189
DHPS (dihydropteroate synthase), 189
Diabetes mellitus, 14–15
asymptomatic bacteriuria, 95
diagnosis, 89
microbiology of, 98–99
morbidity, 101–102
prevalence, 92
treatment, 107
Enterococcus UTI, 466
UTI in, 34–35
asymptomatic bacteriuria, 34–35
complications, 34
risk of recurrent, 34
treatment, 34
Diabetic cystopathy, 14
Diagnosis, 27, 41–48
asymptomatic bacteriuria, 88–91
aspiration samples, 90
catheter specimens, 90
inflammatory markers, 90–91
in men, 89–90
pyuria, 90–91
quantitative urine culture, 88
voided urine specimens, 88–90
in women, 88–89
clinical, 41–42
Gram-positive UTI, 460
laboratory, 43–48, 72–73, 460
dipsticks, 46–48, 460
interpretation of culture results, 44–45
LE (leukocyte esterase), 46–48
nitrite testing, 46–48
pyuria, 45
rapid detection for bacteriuria, 45
voided urine collection techniques, 43–44
voided urine contamination, 43–44
voided urine culture, 43
point of care for UTI, 460
self, 57–58
UTI in children, 72–73
Dialister, 482
Dibekacin, origin of, 195
Dienes line, 401–402
Differential diagnosis, molecular tools for, 543–544
Dihydrofolate reductase (DHFR), 182, 189
Dihydro-6-hydroxymethylpterin-pyrophosphate (DHPPP), 189
Dihydropteroate synthase (DHPS), 189
Dimercaptosuccinic acid (DMSA) scans, 527
Dipsticks, 43, 46–48, 73, 460
DisA decarboxylase, 393–394
D-mannose, 60
DMSA (dimercaptosuccinic acid) scans, 527
DNA gyrase, 190, 336
DNA microarrays, 254
DNA topoisomerase IV, 190
DNA mismatch repair genes, 338–339
Dock, lock, and latch model, 304
Dogs, as ExPEC reservoir, 165–166
Doppler ultrasonography, for renal scarring detection, 75
Doripenem, 143
Dorsal-root ganglia, 567
Doxycline, for bacterial prostatitis, 124–125
Dr adhesins mutations in, 342–343
vaccine targeting, 622
DraE adhesin, 434
DsdA, 339
Dynamin2, 367
Dysfunctional voiding, 16
Dysuria in cystitis, 29
in prostatitis, 122, 124
EAEC (enteroaggregative *Escherichia coli*) prostatitis, 125
Ehp, 307–311, 467, 596, 605, 624
Eco-evo view of bacterial pathogens, 331–333
Ecto-enzymes, 574
Efflux pumps in aminoglycosides, 196
β-lactam resistance, 192
fluoroquinolone resistance, 190–191
Klebsiella pneumoniae, 449
EHPEC (enterohemorrhagic *E. coli*), quorum-sensing system in, 251
EibD autotransporter, 296
Epidermal-growth factor (EGF), 572
Elderly individuals immune breakdown in, 560
invasive group B *Streptococcus* disease in, 470
Encopresis, 30
Encrusting cystitis, *Corynebacterium urealyticum* and, 473
Endocytosis compensatory, 365
urothelial, 569
Endothelial NOS (eNOS), 573
Endotoxin, 138
donotoxinemia, 611
vaccine, 619
Enterococcal Escherichia coli (EAEC) prostatitis, 125
Enterobacter
 antimicrobial resistance, 48
 E. cloacae
 antimicrobial resistance, 145
 pyelonephritis, 150
 intracellular bacterial communities (IBCs), 600
 urinary tract infection in children, 70
Enterobacteriaceae
 asymptomatic bacteriuria, 97
 fluoroquinolone resistance, 190
 incompatibility groups, 187
 plasmid replicons, 187
 UTI in children, 70
Enterobacterial-repetitive intergenic-consensus (ERIC) polymerase chain reaction (PCR), 213, 217
Enterobacteriaceae
 asymptomatic bacteriuria, 97
 UTI in children, 70
Enterobacteria
 asymptomatic bacteriuria, 97
 catheter-associated UTI (CAUTI), 461, 466–469
E. faecalis
 Ace, 301–304, 306
 adhesins, 281, 301–302, 307–311
 antimicrobial resistance, 144–145
 biofilm, 604–605, 609
 catheter-associated UTI (CAUTI), 306, 310–311, 461, 591, 604–605, 609
 Ebp pilus, 605
 inhibition biofilm formation, 248
 invasion of host cells, 372
 laboratory model for study of, 461
 nosocomial UTIs, 301, 306
 pili, 307–311, 467, 596
 sortases, 604–605
 urine contamination, 480
 UTI, 459, 461–462, 466–469
E. faecium
 adhesins, 281
 antimicrobial resistance, 144–145
 pili, 307–311
 epidemiology of UTI, 466
 frequency of urinary tract colonization, 504
 immune responses to, 467–469
 urosepsis, 143
 UTI in children, 70
 vaccines, 624
 virulence factors, 466–467
Enterohemorrhagic E. coli (EHEC), quorum-sensing system in, 251
Enteropathogenic Escherichia coli (EPEC) intimin protein, 300
Environmental reservoirs of ExPEC, 164–165
EPEC (enteropathogenic Escherichia coli) intimin protein, 300
Epidemiology, 36–37
 asymptomatic bacteriuria, 91–94
 incidence, 93–94
 prevalence, 91–93
 ExPEC strains, 215–219
 urinary tract infection, 590, 592
 in children, 69–70
 of enterococcal, 466
 group B Streptococcus UTI, 469
 polymicrobial, 461–462
 Staphylococcus saprophyticus, 462–463
 urosepsis, 136, 137
Epidermal growth-factor receptor (EGFR), 569–570
Epithelitis, clinical picture, 151
Epithelial cells, bladder, 556–557
Epithelial integrity, infection-associated breakdown of, 511
EQUC (expanded-quantitative urine culture), 484
ERIC (enterobacterial-repetitive intergenic-consensus) polymerase chain reaction (PCR), 213, 217
Erk, 581
ESBL (extended-spectrum beta lactamases), 28, 49, 74, 162–163, 165–166, 168, 192
Escherichia coli. See also Extraintestinal pathogenic E. coli; Uropathogenic Escherichia coli
 acute hemorrhagic cystitis, 70
 adhesins, 280, 281, 293, 295, 334–335, 341–343
 AIDA-I, 293, 295
 α-hemolysin (Hly), 126, 128–129, 246, 253, 264–269, 507–508
 analgesic activity, 580, 582–583
 antimicrobial resistance, 48–49, 124, 144–146, 162–167, 170, 179–198
 asymptomatic bacteriuria, 28, 71, 88, 95–97, 97–100, 561
 avian pathogenic E. coli (APEC), 166, 168, 208
 antimicrobial resistance, 183–187, 197
 relationship to NMEC and UPEC strains, 216
 sequencing of O1:K1:H7 strain, 212
 bacterial interference, 110–111
 biofilms, 143
 catheter-associated UTI (CAUTI), 33
 chromosome, 209
 colony type variations, 337–338
 commensal strains, 208
 curli, 289–293
 in diabetics, 14–15
 diseases caused by, 208
 eco-evo categories of, 332
 enteroaggregative E. coli (EAEC) prostatitis, 125
enterohemorrhagic *E. coli* (EHEC), quorum-sensing system in, 251
enteropathogenic *E. coli* (EPEC) intimin protein, 300
epidemiology, 36
extended-spectrum beta lactamases (ESBL), 28, 49, 74, 162–163, 165–166, 168
fimbriae
 innate immune activation, 532–534
 P fimbriae, 532–533
 type 1 fimbriae, 533–534
genetic population structure, 208–209
horizontal gene transfer, 335
lactobacilli inhibition of, 81
multidrug-resistant strains, 213–214, 556
NDM-1 β-lactamase, 193
neonatal meningitis *Escherichia coli* (NMEC), 208, 216, 218–219
number of cells on Earth, 208
periurethral colonization, 70
phylogenetic groups, 128
pili, 280–281
polymicrobial extraintestinal infections, 221–223
population-genetics structure of *E. coli* species, 208–209
probiotic, 333–334, 561
prostatitis, 121–132, 151
pyelonephritis, 150
renal and perirenal abscess, 151
sexual transmission, 333
swarming by, 389
urosepsis, 143
UTI in children, 74
Variome database, 351
virulence factors, 96
i n vivo evolution of strains, 215
Escherichia fergusonii, 212
Esp, 466
EstA autotransporter, 295–296
Estradiol-releasing vaginal ring (Estring), 82
Estriol cream, 609

Estrogen
decline of contributing factor to UTI, 560–561
effect of loss on vaginal microbiota, 81–82
lactobacilli effect on, 14
supplementation, 561, 609
therapy, 609
urothelial structure, effect on, 570

Estrogen cream, 36, 82, 609
Estrogen-replacement therapy, 609

Evolution
allelic variation under positive selection, 214–215
“by-product of commensalism” hypothesis, 224
co-evolution of bacteria and host, 541
ExPc virulence, 224
host environment and, 529
molecular-convergent, 350
pathoadaptive mutations in UPEC, 331
reductive, 529
role of recombination in, 209
i n vivo evolution of *E. coli* strains, 215
Exfoliation
of bladder epithelial cells, 557
as host defense, 370
Exocytosis, 573–574
stretch-induced, 569, 573
vesicular, 573
Expanded-quantitative urine culture (EQUC), 484
Extended-spectrum beta lactamases (ESBL), 28, 49, 74, 162–163, 165–166, 168, 192
External sphincterotomy, 17
External-urethral sphincter, 6, 9, 16–17
Extraintestinal pathogenic *E. coli* (ExPEC), 161–170. See also Uropathogenic *Escherichia coli*
avian pathogenic *E. coli* (APEC), 166
companion animal reservoirs, 165–166
environmental reservoirs, 164–165
foodborne reservoirs, 167–169
beef and cattle sources, 169
pork and pig sources, 169
poultry sources, 167–169
human reservoir, 163–164
important lineages, 162–163
mutation rate, 214–215
population phylogenomics, 207–225
allelic variation under positive selection, 214–215
“by-product of commensalism” hypothesis, 224
CGA (clonal group A), 212–213, 217, 219, 221
clinical relevance of intrinsic virulence, 219–221
diversity within clones, 215
epidemiologic data based on proxy markers, 215–219
infants, UPEC and NMEC strains infecting, 218–219
origin of UPEC strains, 216–217
phylogenetics, 209–212
polymicrobial infections, 221–223
population-genetics structure, 208–209
relatedness of UPEC, NMEC, and APEC strains, 216
strains infecting debilitated patients, 218
UPEC-specific genes, search for, 211–214
virulence factors, phylogeny and, 217–218
public health perspectives, 169–170
UpaG autotransporter, 299
virulence factors, 123, 125–128, 208
F-actin, 366, 369
FIC fimbriae, 96, 125–126, 128, 244
FdeC, 300, 623
INDEX

Focal nephritis, 150
Folk remedies, 515
Foodborne reservoirs of human ExPEC, 167–169
Forskolin, 599
Fosfomycin
 for asymptomatic bacteriuria, 106
 for ESBL-producing E. coli, 49
 mode of action, 194
 for prophylaxis, 57
 for Proteus mirabilis, 419
 resistance
 mechanism, 194
 prevalence, 194
 for uncomplicated cystitis, 49, 51
Fournier’s gangrene, 151–152
frdA, 399
Fumurate, Proteus mirabilis swarming and, 397
fumC, 399
Functional analysis, pathoadaptive mutations and, 346–348
Fur (ferric-uptake regulator), 237–238, 440
 “Fur boxes,” 237
Fusiform vesicles, 557, 569, 599
Fusobacteria, 482
FyuA, 240, 622
Galabiose PapG antagonists, 606–607
Gap junctions, 567, 572
Gardnerella vaginalis, 471, 477–480, 482, 485
GBS. See Group B Streptococcus
Gene activation, 336, 339–340
Gene amplification, 337
Gene cassettes, 182
Gene clusters
 fimbriae, 244, 251
 fimbrial in Klebsiella pneumoniae, 442
 pili, 282
Gene expression
 global regulators of, 250–251
 Proteus mirabilis during UTI, 418–419
 uropathogenic E. coli (UPEC) gene expression
 in vivo, 253–254
Gene therapy, 542
Genetic drift, 337, 350
Genetic population structure, Escherichia coli, 208–209
Genetic variation, pathoadaptive evolution and, 337
Genetics
 asymptomatic bacteriuria and genetic factors, 94
 immune breakdown, 560
 predisposition to UTIs, 17, 35
 renal scarring and, 72
 susceptibility, to pyelonephritis, 504
Genome evolution, role of recombination in, 209
Genome organization, Proteus mirabilis, 418
Genome sequences, for uropathogenic E. coli (UPEC) strains, 251–253
Genome stability, UPEC, 339
Genomic islands, Escherichia coli, 210–215, 252–253
Genotoxins, 129
Gentamicin
 for catheter-associated UTI (CAUTI), 33
 discovery, 195
 resistance, 144, 145, 196
 Glial cells, 569
 Glomerular filtration
 in pyelonephritis, 512–513
 rate, urosepsis and, 140
 Glutamine, Proteus mirabilis swarming and, 396
 Gram-negative uropathogens, adhesins expressed by, 279–301
 autotransporters, 293–300
 Iha, 300
 pili, 279–293
 TosA, 300–301
 Gram-positive uropathogens, 459–486
 Actinobaculum schaalii, 473–477
 Aerococcus, 472–473
 catheter-associated UTI (CAUTI), 460
 complicated UTI, 460
 Corynebacterium urealyticum, 473
 Enterococcus, 459, 461–462, 466–469
 catheter-associated UTI (CAUTI), 461, 466–469
 epidemiology of UTI, 466
 immune responses to, 467–469
 virulence factors, 466–467
 Gardnerella vaginalis, 471, 477–480
 bacteriuria in pregnancy, 469–470
 epidemiology, 469
 immune response to, 470–471
 invasive disease in elderly, 470
 virulence factors, 470–471
 laboratory models for study of UTI, 461
 point of care diagnosis of UTI, 460
 polymicrobial UTI, 461–462, 480–481
 Staphylococcus saprophyticus, 459–466
 epidemiology of UTI, 462–463
 host response to UTI, 465–466
 laboratory models of UTI, 461
 polymicrobial UTI, 461
 virulence factors, 463–465
 uncomplicated UTI, 459
 uncultivated bacterial inhabitants of the urinary tract, 481–485
 urine contamination with, 480–481
 Group B Streptococcus (GBS), 459–460, 462, 469–471
 bacteriuria in pregnancy, 469–470
 in children, 70
 epidemiology, 469
 immune response to, 470–471

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Thu, 18 Jul 2019 05:56:56
Group B Streptococcus (GBS) (continued)
invasive disease in elderly, 470
treatment during pregnancy, 32
urine contamination, 480
UTI, 70, 459–460, 462, 469–471
vaccine, 470
virulence factors, 470–471
Growth in urine, 236–237
Growth promoter, 170
GspB, 463
GTPase, 514, 533
Guarding reflex, 9
Haemophilus
capsule biogenesis system of, 249
H. influenzae Hia adhesin, 295–296
Hammock theory, 14
HCN3 (hyperpolarization-activated cation-3), 9
Hedgehog/Wnt signaling, 570
Helicobacter pylori, VacA cytotoxin of, 293
Hematuria, in prostatitis, 124
Heme uptake
Proteus mirabilis, 414–416
receptor-mediated, 239
Hemolysin
α-hemolysin (Hly), 126, 128–129, 246, 253,
264–269
host response to, 507–508
mechanism, 267–269
renal damage and, 603–604
structure, 266–267
toxoid vaccine, 620
uropathogenic E. coli (UPEC), 264–269,
507–508
as virulence factor, 264–266
β-hemolysin, group B Streptococcus, 471
Proteus mirabilis, 412–413
Hia adhesin, 295–296
High-pathogenicity island (HPI), 214
Histamine, 559
Histidine, Proteus mirabilis swarming and, 397
Histone-like nucleoid structuring protein (H-Ns), 250
HmA, 239, 240, 622
Homologous recombination, gene exchange by, 335
Horizontal gene transfer (HGT), 25, 35–336, 181
Hospital-acquired UTI, 28
Host defenses, 71, 370. See also Innate immune system
bacteriuria and, 94
exfoliation of bladder epithelial cells, 557
innate immune response to bladder infection,
555–562
in pyelonephritis, 507–508
Host factor Q-beta (Hfq), 250–251
Host response to staphylococcal UTI, 465–466
HPI (high-pathogenicity island), 214
hpmA, 387–388, 391, 398–400, 412–413
Human reservoir of ExPEC, 163–164
hybB, 399
Hydrogen peroxide production by lactobacilli, 80–81
Hydronephrosis
imaging guidelines, 74
infected, 152
perinatal, 71
in pregnancy, 15
vesicoureteral reflux with, 71
Hypercolonization phenotype, 339
Hyperglycosuria, 14
Hyperpolarization-activated cation-3 (HCN3), 9
Hypogastric nerves, 567
Hypothalamic-pituitary-adrenal axis
stress activation of, 571
system inflammation and, 139
Hypoxia, nephron, 511, 514
IBCs. See Intracellular bacterial communities
Ibuprofen, 52, 603
IDSA (Infectious Diseases Society of America), 48
IgA, 615–616, 618, 622, 624
IgA1 protease, 293
IgG, 615–616, 618, 622, 624
Iha, 300, 335, 599
IL-1R-associated kinase 4 (IRAK4), 531–532
Imaging children after their first urinary tract infection, 74
Imidazolium salts, as bladder cell exfoliant, 372
Immune response. See also Innate immune response
tenterococcal UTI, 467–469
group B Streptococcus, 470–471
in pyelonephritis, 508–510
to Staphylococcus saprophyticus, 466–467
Immunocompromised individuals, E. coli strains infecting, 218
Immunotherapeutic compounds, 624–625
Incidence
in aging females, 79
of asymptomatic bacteriuria, 93–94
of Proteus mirabilis UTI, 384
of recurrent urinary tract infections, 590
of urinary tract infection, 36, 236
of uropathogenic Escherichia coli (UPEC) UTI, 556
Incontinence, urinary-urgency, 481, 484
Inducible nitric-oxide synthase (iNOS), 573
Indwelling catheters, 32–34, 93
bacterial interference, 111
bacteriuria, 95, 103, 107–108
Infants
asymptomatic bacteriuria
microbiology, 99
morbidity, 100–101
UTI in, 69–75 (See also Children)
vesicoureteral reflux, 100
Infectious Diseases Society of America (IDSA), 48

Inflammation
 acute kidney injury, 513–514
 in Enterococcus UTIs, 467–469
 mast cells and, 559, 562
 neutrophil-associated tissue damage, 558, 561–562
 UTI pain and, 577–578

Inflammatory markers, in asymptomatic bacteriuria, 90–91

Infundibulum, 4

Innate immune response
 bacteriuria and, 94
to bladder infection, 555–562
 cellular components of, 556–560
 epithelial cells, 556–557
 immune breakdown, 560–561
 genetic variants affecting the early, 526
 in pyelonephritis, 508–510
 to Staphylococcus saprophyticus, 466–467

Innate immune system
 bacterial inhibitors of, 541–542
 RNA polymerase II expression, 541–542
 TIR-domain proteins, 541
 therapeutic approaches that modify, 542–543
deliberate establishment of asymptomatic bacteriuria, 542
 gene therapy, 542
 receptor analogues, 542
 vaccination, 543
 UTI susceptibility and activation, 529–534
 autotransporters, 534
curli, 534
 iron acquisition systems, 534
 P fimbriae, 532–533
 TLR4, 531–532
 toxins, 534
type 1 fimbriae, 533–534

“In-series tension receptors,” 568

Insertion sequences (IS elements), 181

Integral theory, 13–14

Integrase, 182–183

Integrins, 366–368, 372, 592

Integrins, 182–184

Interferon (IFN)-β, 537

Interferon (IFN)-γ, 513

Interferon regulatory factors (IRFs), 525, 533

Interleukins
 IL-1, 138, 511, 514
 IL-4, 139
 IL-6, 508, 511, 514, 527, 534, 556
 levels in pyelonephritis, 543
 urine, 90–91
 IL-8, 508, 509, 534, 543, 558
 IL-10, 139, 559
 IL-1β, 556

Intermittent catheterization
 bacterial interference, 111

bacteriuria and, 103–104

Internal-urethral sphincter, 5

Inter-organ communication during infection, 513

Interstitial cystitis
 interstitial cystitis/bladder-pain syndrome (IC/BPS), 569
 urothelial damage during, 57–576

Intrinsic virulence, ExPEC, 220–221

Invasin, 300

Invasion of host cells, 359–372. See also Intracellular bacterial communities
 antibacterial defenses and liabilities, 370–371
 fates of intracellular UPEC, 360–363
 intracellular bacterial communities (IBCs), 361–364, 369–370
 of kidney cells, 371
 mechanisms of bladder cell invasion, 365–368
 regulation of intracellular growth and persistence, 368–369
 relevance to UTIs, 364–365
 targeting intracellular pathogens, 372

Invasive genitourinary procedures, bacteriuria and, 104, 109

IRAK4 (IL-1R-associated kinase 4), 531–532

IreA, 240, 622

IRF3, 537, 540

IroN, 602, 622

Iron acquisition
 Escherichia coli, 214, 238–239, 534, 602
 ferrous iron uptake, 240
 Klebsiella pneumoniae, 440–441
 genetics, 440–441
 role in virulence, 441
 siderophore production, 440
 pathogenesis, 602
 Proteus mirabilis, 396, 413–416
 receptor-mediated heme uptake, 239
 redundant systems, 239
 regulation of iron uptake, 237–238
 siderophores, 238–239, 534
 E. coli prostatitis, 125–129, 130
 Klebsiella pneumoniae, 440–441
 pathogenesis, 602
 Proteus mirabilis, 414–415
 uropathogenic E. coli (UPEC), 238–239, 534, 602
 uropathogenic E. coli (UPEC), 238–239, 534, 602
Iron receptors as vaccine candidates, 240
IS elements (insertion sequences), 181
Ischemia, nephron, 510–511, 513–514
IutA, 240, 622

Juxtaglomerular apparatus (JGA), 513

Kanamycin resistance, 196
KguS-KguR two-component system, 601
Kidney. See also
acute kidney injury, 513–514
anatomy, 4
medullary sponge, 10–11
renal scarring, 72, 75, 100, 509, 513, 531, 540, 590, 603
UPEC ascension to and colonization of the kidneys, 603–604
Kidney cells, bacterial invasion of, 371
Klebsiella
antimicrobial resistance, 48
asymptomatic bacteriuria, 95
UTI in children, 70
Klebsiella oxytoca
antimicrobial resistance, 145
frequency of urinary tract colonization, 504
Klebsiella pneumoniae, 435–450
adhesins, 280
antimicrobial resistance, 144, 145, 448–449
asymptomatic bacteriuria, 97
biofilms, 436, 444–448
capsule, 436–439

genetics of production, 438
production of, 436–437
role in virulence, 438–439
catheter-associated UTI (CAUTI), 435–436, 445, 448–450

colonization and adherence, 442–445
fimbriae, 442–445

gene clusters, 442–444
role in virulence, 444
structure and genetics, 443–444
frequency of urinary tract colonization, 504
future perspectives on, 449–450
genome plasticity, 449
hypermucoviscous phenotype, 436, 438
inhibition biofilm formation, 248
intracellular bacterial communities (IBCs), 444, 450, 600
invasion of host cells, 372
LPS, 437
NDM-1 β-lactamase, 193
as opportunistic pathogen, 436
overview, 435–436
pyelonephritis, 150
renal and perirenal abscess, 151
siderophores, 440–441
urease, 441–442
virulence factors, 436–449
Koch’s postulates, molecular, 236, 264–265, 532
Kpc fimbriae, 444
Laboratory diagnosis, 43–48
dipsticks, 46–48
interpretation of culture results, 44–45
LE (leukocyte esterase), 46–48
nitrite testing, 46–48
pyuria, 45
rapid detection for bacteriuria, 45
urinary tract infection in children, 72–73
voided urine collection techniques, 43–44
voided urine contamination, 43–44
voided urine culture, 43
Lactic acid, lactobacillus production of, 81
Lactobacillus, 482–485

decline in low-estrogen state, 14, 82
as dominant vaginal microbe, 80–81
exclusion of uropathogens by, 81
hydrogen peroxide produced by, 80–81
L. acidophilus, 608
L. crispatus, 80–81, 83, 484–485, 608
L. gasseri, 484
L. iners, 482
L. jensenii, 80–81
nonoxynol-9 toxic effect on, 82
probiotic, 83, 485, 608
protective role, 14, 80–81, 471–472
Lactoferrin, 441, 509
Lamina propria, 565–568
Lateral gene transfer. See Horizontal gene transfer
Lectinophagocytosis, 438
Leptotrichia, 482
Leukocyte esterase (LE), 43, 46–48, 73, 460, 482
Levofloxacin
for bacterial prostatitis, 124–125
resistance, 191
for uncomplicated cystitis, 50–51
for uncomplicated pyelonephritis, 53–54
urinary-bactericidal titer (UBT), 143
for urosepsis, 143
Lipid A, 138
Lipocalin, 509
Lipopolysaccharides (LPS), 138
hemolysis (HylA), 268
Klebsiella pneumoniae, 437
LPS-smooth/-rough phenotypic variation, 337–338
pain induction by, 578–580
Proteus mirabilis swarming and, 395
Lipoprotein receptor-related proteins (Lrp),
243–244, 391–393
Liposome receptor-related proteins (Lrp),
243–244, 391–393
Liposomes, 616
Listeria monocytogenes, host cell invasion, 365–366
LL-37, 509, 556
Lon protease, 391
Loss-of-function mutations, 337
Lower urinary tract dysfunction, 71
Lrp, 243–244, 391–393
LuxS, 447
Lysosomes, 368–369, 557
LysR regulators, 446
Macrophages
Enterococcus faecalis survival within, 468
response to bladder infection, 559–560, 562
uropathogenic Escherichia coli (UPEC) survival within, 371
magA, 438
Malate, Proteus mirabilis swarming and, 397
Mannose-resistant Klebsiella-like (MR/K) hemagglutinin, 407
Mannose-resistant Proteus-like (MR/P) fimbriae assembly, 405
expression, 404–405
genetic organization, 403–404
role in infection, 405–407
Mannosides, 372, 605–606
Mast cell-derived adjuvants, 616
Mast cells, response to bladder infection, 559, 562
MCP-1 (monocyte-chemotactic protein-1), 535
mecA gene, 462
Mechanoreceptor, 568
Mechanosensitive afferent nerves, 568
Medullary sponge kidney, 10–11
Men
aging, asymptomatic bacteriuria in diagnosis, 89
incidence, 93–94
microbiology of, 99
prevalence, 92, 95
asymptomatic bacteriuria incidence, 93–94
prevalence, 92
clinical diagnosis in, 42
overview of clinical syndromes, 31
voided urine specimens for asymptomatic bacteriuria diagnosis, 89–90
Metabolism
during Proteus mirabilis swarming, 398–399
of uropathogenic Escherichia coli (UPEC) during infection, 241–242
Metal acquisition systems. See also Iron acquisition
Proteus mirabilis, 413–416
zinc acquisition
Escherichia coli, 240–241
Proteus mirabilis, 396, 416
Metallo-β-lactamase, 193
Metalloproteases
metalloproteinase-9, 558, 560
Proteus mirabilis, 413, 416
Metals
competition for, 237
iron acquisition, 237–240
zinc acquisition, 240–241
Methicillin resistance, 462, 465
Methicillin-resistant S. aureus (MRSA), 70, 144–145, 465
Methyl-accepting chemotaxis, 388
MF59, 615
MHC class I molecules, curli adherence and, 293
Microbiology of bacteriuria, 97–100
Micturition, normal, 9–10
Midstream clean catch technique, 43–44
Mismatch-repair system, 338–339
MLEE (multilocus enzyme electrophoresis), 208
MLST. See Multilocus-sequence typing
Mobilome, 181
Molecular Koch’s postulates, 236, 264–265, 532
Molecular tools for risk assessment and prediction of UTI susceptibility, 543–544
Monocyte-chemotactic protein-1 (MCP-1), 535
Monophosphoryl lipid A (MPL), 615–616
Morganella morganii, 411
Motility, uropathogenic Escherichia coli (UPEC), 244–246
adherence and, 245
chemotaxis, 245
PapX as inhibitor of, 246
at population level, 245
regulation of flagellar, 242
MPL (monophosphoryl lipid A), 615–616
mrk-gene cluster, Klebsiella pneumoniae, 444
MrpA, 421, 623–624
MrpH, 421, 623–624
MrpJ, 410–411
MRSA (methicillin-resistant S. aureus), 70, 144–145, 465
MSCRAMMs, 301–307
Ace, 301–304, 306
assembly, 305
collagen hug model, 302–304
dock, lock, and latch model, 304–305
functions in uropathogenic bacteria, 305–307
overview, 301–302
SdrI, 307
structure, 302, 303
UafA, 304–305, 306
UafB, 306–307
Mucosal integrity, infection-associated disruption of, 510–511
Mucoviscosity-associated gene (magA), 438
Multidrug-resistant (MDR) pathogens, 590–591
emergence of, 180
enterococcal strains, 466
Escherichia coli, 556
Klebsiella pneumoniae, 448–449
Multilocus enzyme electrophoresis (MLEE), 208
Multilocus-sequence typing (MLST)
E. coli isolates in prostatitis, 124, 125
ExPEC, 161–162

MutaFlor, 333
Mutation(s)
- pathoadaptive, 331–351
- synonymous and nonsynonymous changes, 340–341, 345–346, 350

Mutation rates
- asymptomatic bacteriuria strains, 345–346
- commensals, 345
- with mutator phenotype, 338

Shigella, 345

uropathogenic E. coli (UPEC) strains, 214–215, 345

MutaFlor, 333
Mutator phenotype, 338–339

Mycobacterium tuberculosis, 70, 180

Myeloid differentiation primary response gene 88 (MYD88), 526–527, 531–533, 541, 604

Myeloperoxidase, 81

N-acetyl-neuraminic acid regulator (NanR), 249–250

Nalidixic acid, 190, 191

Na1P protease, 293, 296

Natural history of bacteriuria, 97–104

Natural killer cells, 560

NDM (New Delhi metallo) β-lactamases, 163, 193, 214

Necrotizing fasciitis, 151–152

Negative (purifying) selection, 341

Neisseria
- capsule biogenesis system of, 249
- N. meningitidis Na1P protease, 293, 296

Neomycin resistance, 196

Neonatal meningitis Escherichia coli (NMEC), 208

Neutrophils
- macrophage ingestion of apoptotic, 560, 562
- neutrophil-associated tissue damage, 558, 561–562
- neutrophil-dependent clearance of infection, 536
- neutrophil-induced oxidative injury of renal cells, 513–514
- recruitment of, 508–509, 535–537
- response to bladder infection, 558, 561–562
- New Delhi metallo (NDM) β-lactamases, 163, 193, 214
- NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), 138–139, 508

Nissle-1917 strain, 333–334

Nitric oxide, 573

Nitrites, 43, 46–48, 73, 460

Nitrofurantoin for asymptomatic bacteriuria, 105–106, 110

creatinine clearance (CrCl) and, 50, 58

for prophylaxis, 57–58

for Proteus mirabilis, 419

resistance
- mechanism, 193
- prevalence, 193–194
- side effect, 50–51, 58
- for uncomplicated cystitis, 49–51

for UTI during pregnancy, 31

NMEC. See Neonatal meningitis Escherichia coli

NOD1, 556, 561

Nonoxynol-9, 82

Non-ribosomal peptide siderophore system (Nrp), 414, 417

Norfloxacın
- for asymptomatic bacteriuria, 110
- for prophylaxis, 33

resistance, 191

Nosocomial urinary tract infection, in children, 70

Novobiocin resistance, 462

Nrp (non-ribosomal peptide siderophore system), 414, 417

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), 138–139, 508

Nutraceuticals, 608–609

Nutrient requirements, uropathogenic Escherichia coli (UPEC), 236–241

Nutritional competence, 223

O-antigen
- loss of, 337–338
- as rheostat for LPS-induced pain, 578–580

Obstruction
- nephron, 512–513
- primary bladder-neck, 16
ureteral, 11–12
ureteropelvic-junction, 15
urosepsis and, 139–141
Occludins, 566
Ofloxacin resistance, 191
Oligella, 484
OM-89, 624–625
Opportunistic pathogens
features of, 332
Klebsiella pneumoniae, 436
uropathogenic E. coli (UPEC) as, 332–333
Opsonophagocytosis, 438, 464
Orchitis, clinical picture, 151
Ornithine, Proteus mirabilis swarming and, 397
Orthoptic bladder substitution, bacteriuria and, 93
Outer membrane, assembly of the pilus fiber at, 285–286
Outer membrane proteins, uropathogenic E. coli (UPEC), 248–249
Outer-membrane-associated adhesins of UPEC, 300
Outer-membrane iron receptors, 240
Outer-membrane vesicles (OMVs), 620
Overactive bladder, 573
OXA-derived β-lactamases, 192
P blood group
as pyelonephritis risk factor, 560
UTI susceptibility and, 538–539
P fimbriae, 7, 125, 128–129
innate immune activation, 532–533
mutation, 343
P blood group and UTI susceptibility, 538–539
uropathogenic E. coli (UPEC), 243–244
P pilis
assembly, 596
functions, 289
pathogenesis, 597–598
vaccines targeting, 621–622
P1 (adenosine) receptors, 574
pAA virulence plasmid, 125
Pain
bacterial analgesia in the bladder, 580–581
bacterial-pain phenotypes, 582
central sensitization, 579–580
chronic from transient infection, 579–581
CNS circuits in cystitis pain, 581–582
future directions and implications, 582–583
inflammatory, 577–578
interstitial cystitis/bladder-pain syndrome, 569
LPS-induced, 578–580
pathophysiological mechanisms, 569
TLR4-dependent UTI pain, 577–578, 583
UTI as visceral-pain model, 576–577
PAIs (pathogenicity islands), 70, 129, 183–186, 212, 220, 224, 243, 252–253, 335
p-amino benzoic acid (PABA), 189
PAML program, 214
PAMPs (pathogen-associated molecular patterns), 616
Pangenome, 209–210
pap operon, 213
PapA, 289
PapB, 244, 507
PapD chaperone, 285
PapDG vaccine, 621–622
PapE, 289
PapF, 289
PapG, 243, 289, 335, 506, 526, 532, 592, 597–598
antagonists, 606–607
mutation, 343
vaccines targeting, 621–622
PapI, 343
PapK, 289
PapX, 244, 246, 507
Pathoadaptive mutations
detection of, 348–350
functional analysis and, 346–348
genetic mechanisms for, 336–348
in uropathogenic E. coli, 331–351
Pathogen-associated molecular patterns (PAMPS), 616
Pathogenesis
asymptomatic bacteriuria, 94–97
host factors, 94–95
organism factors, 95–97
chronic pelvic pain, 131–132
complicated UTI, 604–605
Enterococcus faecalis, 604–605
recent discoveries in, 591–605
uncomplicated UTI, 592–604
urinary tract infection in children, 70–71
uropathogenic E. coli (UPEC), 592–604
ascension to and colonization of kidneys, 603–604
central metabolism and two-component systems, 601–602
cyclic AMP, 599
escape from endocytic vesicle, 599
FimH, 595
IBCs, 599–601
metal ions, 602
modeling outcomes of acute cystitis, 602–603
P pili, 596–598
type 1 pili, 592, 595
vagina role in, 80
Pathogenicity islands (PAIs), 70, 129, 183–186, 212, 220, 224, 243, 252–253, 335
Pathophysiogram of pyelonephritis, 515–516
Pathophysiology
of pyelonephritis, 515–516
Pathophysiology
pyelonephritis, 503–517
of urosepsis, 137–139
PathoSystems Resource Integration Center (PATRIC), 351
Pattern-recognition receptors (PRRs), 508, 529, 559, 616
Paxillin, 269
PBNO (primary bladder-neck obstruction), 16
PBP (penicillin-binding protein), 147, 191–192, 462
PCR testing, 45
PDGFRα (platelet-derived growth factor-receptor-α), 567
Pelvic anatomy, abnormal, 13
Pelvic nerves, 567
Penicillinase, 180
Penicillin-binding protein (PBP), 147, 191–192, 462
Pentraxin-related protein 3 (PTX3), 556–558
Peptostreptococcus, 483
Perirenal abscess, 150–151
Peristalsis, 9
Persistence of bacteria, 35
Pertactin, 293, 296
Phagocytosis
complement-mediated, 556–557
Klebsiella pneumoniae impairment of, 438
by macrophages, 560, 562
by neutrophils, 558
Pharmacokinetic/pharmacodynamic (PK/PD) properties, in treatment of severe UTI, 142
Phase variation, 7, 507
Phenazopyridine, 52
Phenol-soluble modulins (PSM), 464–465
Phenotypic variations, observations of in UPEC, 337–338
PhoP, 250
PhoP-PhoQ two-component system, 601
Phosphate transport, in Proteus mirabilis, 416–417
Photorhabdus temperata, 411
Phylogenetics, of Escherichia coli, 209–212
Physiology
abnormalities, 14–17
diabetes mellitus, 14–15
dysfunctional voiding, 16
neurologic patients, 16–17
pregnancy, 15
primary bladder-neck obstruction, 16
ureteropelvic-junction obstruction, 15
microscopic, 6–8
micturition, 9–10
urine transport, 9–10
Pic (protease involved in colonization), 246–247
PicU (protein involved in intestinal colonization), 265
Pili. See also Fimbriae
Afa/Dr family, 281, 283–284
Bacillus cereus, 308
chaperone/usher (CU) assembled, 243, 251, 279–289
adhesin, 283–284
assembly at outer membrane, 285–286
chaperone-subunit complex formation, 284–285
fiber, 281–283
functions of, 287–289
gene clusters, 282
P pilus, 289, 596–598
pilus usher, 286–287
structure, 281–284
type 1 pilus, 287–288, 592, 595
Corynebacterium, 278, 307, 308, 310
Enterococcus faecalis, 307–311, 467
gene clusters, 282
Gram-negative uropathogens, 279–301
Gram-positive uropathogens, 281, 301–311
assembly, 310
function in UTIs, 310–311
structure, 308–310
mannose-resistant (MR), 278, 403–407
mannose-sensitive (MS), 278
models of pilus assembly in Gram-negative and Gram-positive pathogens, 596
origin of term, 278
pathogenesis, 592–599
Proteus mirabilis, 281, 412
S pilus, vaccine targeting, 622
type 1
bladder cell invasion and, 360–361, 365–368, 371
functions, 287–288
pathogenesis, 592, 595
structure, 286–287
vaccines targeting, 620–621
type IV, 243, 412
as vaccine candidates, 620–622
Pilicides, 60, 244, 372, 607
Pilus adhesin, 283–284
Piperacillin/tazobactam resistance, 144
for urosepsis, 146
Pivmecillinam
for asymptomatic bacteriuria, 106
for uncomplicated cystitis, 49
Pix pilus, 244
Plasmid replicons, 187
Plasmids
fluoroquinolone resistance, 190–191
horizontal gene transfer, 335
incompatibility groups, 187
resistance, 183–187
Platelet-derived growth factor-receptor-α (PDGFRα), 567
Point of care diagnosis of UTI, 460
Polymicrobial UTI, 461, 479, 480–481
Polymorphonuclear cells (PMNs), recruitment of, 508–509
Population phylogenomics of extraintestinal pathogenic Escherichia coli, 207–225
Population-genetics analyses, 350
Positive selection
allelic variation under, 214–215
detection methods, 350–351
Postcoital prophylaxis, 56–57
Posterior fourchette-to-anus distance, 13
Postmenopausal women
 immune breakdown in, 560
 recurrent UTI in, 58–59
 vaginal microbiota alterations in, 81–82
Post-renal obstruction, urosepsis and, 139
Potassium sensitivity test, 575
Poultry, sources of ExPEC, 167–169
Pregnant women
 antimicrobial use in, 31–32
 asymptomatic bacteriuria, 31, 611
diagnosis, 88–89
 incidence, 93
 microbiology of, 98
 morbidity, 102
 prevalence, 92
 screening for, 105–107
treatment, 105–107
 group B Streptococcus (GBS) in, 32, 469–470
 physiology and anatomy changes, 15
 pyelonephritis, 31, 102, 105–107
Prevalence
 asymptomatic bacteriuria, 36, 91–93, 529
 prostatitis, 36
 uropathogenic Escherichia coli (UPEC)
 pathoadaptive mutations, 343–346
 virulence and fitness determinants, 594–595
 UTI in aging female, 13–14
 UTI in children, 69
Prevention of recurrent urinary tract infection, 36, 55–60
 antimicrobial prophylaxis, 56–58
 continuous prophylaxis, 57
 postcoital prophylaxis, 56–57
 self-diagnosis and self-treatment, 57–58
 special considerations about, 58
 antimicrobial-sparing approaches, 55
 attachment inhibitors, 60
 in postmenopausal women, 58–59
 probiotics, 59
 vaccines, 59–60
Prevotella, 482, 483
Primary bladder-neck obstruction (PBNO), 16
Probiotics, 75, 83, 608
 E. coli, 561
 Lactobacillus, 83, 485, 608
 Nissle-1917 strain, 333–334
Professional pathogens, 332
Progesterone, 102
Promoter polymorphisms, 539–541
Propaghe, horizontal gene transfer, 335
Prophylaxis
 antimicrobial, 56–58, 591
 in catheterized patients, 33
 continuous prophylaxis, 57
 postcoital prophylaxis, 56–57
 self-diagnosis and self-treatment, 57–58
 special considerations about, 58
 with vesicoureteral reflux, 75
 children, urinary tract infection in, 75
 cranberry products, 608–609
 Lactobacillus, 608
 postcoital, 56–57
 probiotics as, 608
 UTI in children, 75
Propionibacterium avidum, 478
Prophylaxis
 antimicrobial, 56–58, 591
 in catheterized patients, 33
 continuous prophylaxis, 57
 postcoital, 56–57
 self-diagnosis and self-treatment, 57–58
 special considerations about, 58
 with vesicoureteral reflux, 75
 cranberry products, 608–609
 Lactobacillus, 608
 postcoital, 56–57
 probiotics as, 608
 UTI in children, 75
Prostate massage, 151
Prostatic abscess, 151
Prostatitis, 121–132
 categories of syndromes, 121
 chronic, 129–132
 clinical picture of acute, 151
 E. coli in acute bacterial prostatitis, 121–132
 characteristics of E. coli isolates, 125–127
 clinical presentation, 124
 overview, 122
 in previously healthy young men, 123–126
 studies on, 122–123
 treatment, 124–125
 virulence, 123, 125–129
 Enterococcus, 466
 overview, 30
 prevalence, 36
 symptoms, 30
 treatment, 31
 Protease involved in colonization (Pic), 246–247
 Proteases, Proteus mirabilis, 413
 Protein involved in intestinal colonization (PicU), 265
 Protein-kinase C, 139
 Proteobactin, 414–417
 Proteus
 antimicrobial resistance, 48
 renal and perirenal abscess, 151
 UTI in children, 70
 Proteus mirabilis, 383–422
 adhesins, 280, 281, 623–624
 antimicrobial resistance, 145
 asymptomatic bacteriuria, 95, 97
 autotransporters, 295
 biofilms, 385, 405–406, 419
 catheter obstruction, 97
 characteristics of, 383
 clinical aspect of UTI, 419–422
 antibiotic resistance, 420
 prevention, 419
 treatment, 419–420
 urinary catheter biofilm formation,
 preventing, 421–422
 vaccine, 420–421
 disease, 383–384
 fimbriae, 14, 402–411, 623–624
Proteus mirabilis (continued)
ambient temperature fimbria (ATF), 409
conservation and expression of, 409–410
mannose-resistant Klebsiella-like (MR/K), 402–403, 407
mannose-resistant Proteus-like (MR/P), 402–407
Proteus mirabilis fimbria (PMF), 408–409
Proteus mirabilis P-like fimbria (PMP), 409
regulation of transition between swimming and swarming, 410–411
uroepithelial cell adhesin (UCA), 402–403, 407–408
vaccine potential of, 421
flagella, 386–388
antigenic variation, 387
cellular invasion and, 399–400
characteristics, 386–387
constitutive elongation mutants, 391
contribution to swarming, 389–395
regulation, 387
role in virulence, 387–388
frequency of urinary tract colonization, 504
Iha, 300
incidence of UTI, 384
invasion of host cells, 372
MrpJ motility inhibitor, 246
pili, 281, 412
polymicrobial UTI, 461
quorum sensing, 398
swarming, 388–402
bull’s-eye pattern on media, 389
capsule and, 395–396
cellular invasion and, 399–400
Dienes line formation, 401–402
DisA, 393–394
DNA replication without septation during, 389
extracellular contributors to, 396–397
flagella contribution to, 389–395

fhlDC regulation, 391
genes contributing to, table of, 392–393
glutamine, 396
Lon protease, 391
LPS and, 395
Lrp, 391–393
metal acquisition, 396
non-flagellar loci contributing to, 395–396
overview of, 388–389
putrescine, 396–397
role in virulence, 400
RppAB, 395
RshA-RscBC, 394–395
RsmA/csrA, 394
switch between swimming and swelling forms, 390, 410–411
transcription and metabolism during, 398–399

Umo proteins, 394
WosA, 394
vaccines against, 623–624
virulence factors, 384–419
autotransporters, 411–412
biofilm, 405–406, 417, 419, 421–422
fimbriae, 402–411
flagella, 386–388
gene expression during UTI, 418–419
genome organization, 418
hemolysin, 412–413
identified by signature-tagged mutagenesis, 417–418
metal acquisition systems, 413–416
phosphate transport, 416–417
proteases, 413
swarming, 388–402
type IV pili, 412
urease, 384–386
Providencia stuartii, 385
asymptomatic bacteriuria, 97
polymicrobial UTI, 461
urinary stones, 461
PRRs (pattern-recognition receptors), 508, 529, 559, 616
Pseudomonas
asymptomatic bacteriuria, 97
UTI in children, 70
Pseudomonas aeruginosa
antimicrobial resistance, 48
autotrophs, 338
biofilms, 143
EstA autotransporter, 295–296
frequency of urinary tract colonization, 504
hospital-acquired UTIs, 28
inhibition biofilm formation, 248
LPS variation, 338
mucoid phenotype, 336
polymicrobial UTI, 462
urosepsis, 143
Pseudorabies virus, 581
PSM (phenol-soluble modulins), 464–465
Pta autotransporter, 412
PTK2, 533
PTX3 (pentraxin-related protein 3), 556–558
Pudendal nerves, 567
Putrescine, Proteus mirabilis swarming and, 396–397
P2X3, 568
Pyelitis, Corynebacterium urealyticum, 473
Pyelonephritis, 503–517
Actinobaculum schaalii, 477
acute, 503, 515, 527
clinical diagnosis, 42
complicated pyelonephritis, clinical diagnosis, 42
incidence, 36
overview of clinical syndrome, 30
susceptibility, 527, 529–531, 536, 539–541
symptoms, 30, 527
treatment, 53–55
uncomplicated pyelonephritis, 42, 53–55
acute kidney injury (AKI), 513–514
asymptomatic bacteriuria, 29
bacterial colonization in renal tubular environment, 506
bacterial toxins and host responses, 506–508
chronic, 503
clinical diagnosis, 42
cinematic view of, 504–517
clinical picture, 150
defined, 503
differential diagnosis, 543
departmental view, 513
interpretation of urine culture results, 44
inter-organ communication, 513
mucosal integrity disruption, 510–511
nefro-obstruction, 512–513
P blood group as risk factor for, 560
P fimbriae and type 1 fimbriae synergy, 506–507
Pathogenic Staphylococcus, 469
innate immune responses, 508–510
Quiescent intracellular reservoirs (QIRs), 8, 603
Quinolones
Proteus mirabilis, 419
resistance, 336
Quorum sensing
Klebsiella pneumoniae, 446
Proteus mirabilis, 398
quorum-sensing (Qse) system, 251
R (resistance) plasmids, 183–184, 195–196
Rab35, 369
Rab27b, 366–367, 533
RAB27b+ vesicles, 557
RAC1, 533
Random-amplified polymorphic DNA (RAPD), 208, 217
RANTES promoter variant, 540
rapid detection strategies for bacteriuria, 45
RarA, 449
Rbs operon, 223
RcsBC, 394–395
Receptor analogues, to prevent bacterial attachment, 542
Receptor-mediated uptake of heme, 239
Recurrent urinary tract infections
asymptomatic bacteriuria strains as therapy, 607–608
in children, 69–70
defined, 35
genetic predisposition to, 35
incidence of, 590
overview, 35–36
prevention, 36, 55–60
antimicrobial prophylaxis, 56–58
antimicrobial-sparing approaches, 55
attachment inhibitors, 60
in postmenopausal women, 58–59
probiotics, 59
vaccines, 59–60
protective immunity and, 610–611
Reductive evolution, 529
Reflex. See Vescicoureteral reflux
Reinfection, 35
Relapse, 35
Renal abscess, 150–151
Renal function, impairment in urosepsis, 139–141
Renal papillae, 4
Renal pelvis, 4
Renal pelvis aspiration, 90
Renal scarring, 72, 75, 100, 509, 513, 531, 540, 590, 603
Renal transplant patients
asymptomatic bacteriuria, 29
bacteriuria, 104, 109–110
Renal-cortical scintigraphy, 74–75
Repair, urothelial, 570–572
INDEX

Repeats-in-toxin (RTX) family, 25, 300–301
E. coli hemolysin, 264–269
UpxA, 269
Resiniferatoxin, 572
Resistance, urosepsis treatment and, 144
Reverse vaccinology, 622–623
RfaH, 248, 269
Rheumatoid arthritis, 384
Rho GTPases, 246–247
Ribonuclease 7, 556
Ribosomal DNA (rDNA) restriction fragment-length polymorphism analyses, 208
Risk assessment, molecular tools for, 543
Risk factors, 35, 590
Risk increase for asymptomatic bacteriuria, 95
RmpA, 438
RmtB, 163
RNA polymerase II, 541–542
RNA-seq, 254
RpoS, 223
RppAB, 395
RrgA, 467
RsbA, 394–395
RseA, 250
RsmA, 394
RTX family of toxins. See Repeats-in-toxin (RTX) family
S fimbriae, 244, 539
S pili, vaccine targeting, 622
SadA, 299
Salmochelin, 126, 128, 238–239
in E. coli prostatitis, 130
uropathogenic E. coli (UPEC), 534, 602
Salmonella
curli, 289, 291
SadA, 299
serovar Typhimurium
cellular invasion, 399
iron chelation, 414
Sit genes, 240
swarming by, 389
typhi, cellular invasion and, 399
Schistosomiasis haematobium, 70
SdrG, 301, 304
SdrI, 307, 463
Sec systems, 463
Secondary vesicoureteric reflux, 15
Secreted autotransporter toxin (Sat), 246–247, 265, 271
Selfish DNA, 209
Self-preservation and nutritional competence (SPANC), 223
Sensation within the urinary tract, 565–583
Sepsis. See also Urosepsis
classifications of, 135
cytokines as markers, 138
diagnostic criteria for, 136, 137
epidemiology of, 136–137
Surviving Sepsis Campaign guidelines, 147–148
Septic shock
clinical diagnostic criteria of, 137
prevention, 152
Serine-protease autotransporter toxins of Enterobacteriaceae (SPATE), 247, 271
Serratia marcescens
antimicrobial resistance, 145
swarming, 398
Sewage, as ExPEC reservoir, 164
Sexual activity
as asymptomatic bacteriuria risk factor, 94
Gardnerella vaginalis transmission, 479
postcoital prophylaxis, 56–57
as UTI risk factor, 236
Shear stress for the renal tubule, 506–507
Shigella
as professional pathogen, 332
S. flexneri, infectious dose of, 334
SHV-1 β-lactamases, 192
Siderophores
E. coli prostatitis, 125–129, 130
Klebsiella pneumoniae, 440–441
pathogenesis, 602
Proteus mirabilis, 414–415
uropathogenic E. coli (UPEC), 238–239, 534, 602
Sigma E, 250
Signaling, 566, 570, 572–575
Signature-tagged mutagenesis (STM)
Klebsiella pneumoniae biofilm gene identification, 446–448
Proteus mirabilis, 388, 417–418
Silver compounds, 197
Single-nucleotide polymorphisms (SNPs), 17, 337
SIRS (systemic inflammatory response syndrome), 135, 138
Sit system, 240
16S rRNA methylation, 196
Small colony-forming variants, 338
Sneathia, 483
SNPs (single-nucleotide polymorphisms), 17, 337
SolcoUrovac, 617–618
Soluble tumor necrosis factor receptors (sTNFR-1), 102
Sortases, 305, 310, 604–605
Enterococcus faecalis, 467
Staphylococcus saprophyticus, 463
SPA (suprapubic-bladder aspiration) in children, 72–73
Space of Retzius, 5
SPANC (self-preservation and nutritional competence), 223
SPATE (serine-protease autotransporter toxins of Enterobacteriaceae), 247, 271
Spermicide use, as risk factor for asymptomatic bacteriuria, 94
Spinal cord injuries, asymptomatic bacteriuria and, incidence, 93–94
prevalence, 93
SraP, 463
Ss1E, 623
Ssp, 463
SssF, 463
Staphylococcus, 483, 484
S. aureus
antimicrobial resistance, 144–145, 180
autotrophs, 338
ClfA, 301–302, 304
Cna, 301–302, 304
inhibition biofilm formation, 248
methicillin-resistant, 70, 144–145, 465
phenol-soluble modulin (PSM), 465
renal and perirenal abscess, 151
SraP, 463
α-toxin, 268–269
toxin A, 138
urosepsis, 143
UTI, 70, 465
vancomycin-resistant S. aureus (VRSA), 144–145
S. epidermidis, 465
inhibition biofilm formation, 248
SdrG, 301, 304
S. saprophyticus, 459–466
adhesins, 281, 306–307
antibiotic resistance in, 462
in children, 70
community-acquired UTIs, 301
epidemiology of UTI, 462–463
frequency of urinary tract colonization, 504
host response to UTI, 465–466
invasion of host cells, 372
labotatory models of UTI, 461
polymicrobial UTI, 461
SdrI, 307
UafA, 304, 306
UafB, 306–307
virulence factors, 463–465
STM. See Signature-tagged mutagenesis
STNFR-1 (soluble tumor necrosis factor receptors), 102
Streptococcus, 483, 484
group A, host cell invasion by, 366
S. agalactiae, 459, 469 (see also group B Streptococcus)
asymptomatic bacteriuria, 95
frequency of urinary tract colonization, 504
invasion of host cells, 372
S. gordonii GspB, 463
S. pneumoniae RrgA, 304, 467
S. pyogenes Spy0128 pilin, 304
S. suis, 606
viridans streptococci group, urinary tract colonization by, 504
Streptomycin
discovery, 195
resistance, 196
Stress, urothelial consequences of, 571
Stretch-induced exocytosis, 569–570
StroVac, 617–618
Struvite crystals, Corynebacterium urealyticum, 473
Substance P, 568, 572
Sulfamethoxazole and trimethoprim
for asymptomatic bacteriuria, 106, 108, 109
for bacterial prostatitis, 124–125
mode of action, 189
for prophylaxis, 56–58
for prostatitis, 31
for Proteus mirabilis, 419
resistance, 48–49, 51, 58, 124, 213, 219, 419–420, 606
mechanism, 189–190
prevalence, 190
for uncomplicated cystitis, 49–51
for uncomplicated pyelonephritis, 53–54
for UTI children, 74
Sulfamethoxazole and trimethoprim (SMZ-TMP)
resistance, 419–420
Sulfamethoxazole-resistance genes, 182
Sulfonamide resistance, 124, 472
Suprapubic aspirate, 72–73, 89, 90
Surviving Sepsis Campaign, 147–148
Susceptibility to urinary tract infection
antimicrobial peptides, 538
asymptomatic bacteriuria, 529, 532, 534, 539–541
chemokine receptors and, 535, 537
cytokine response, 534–535
definitions, 525–529
innate immune activation and, 529–534
autotransporters, 534
curli, 534
iron acquisition systems, 534
P fimbriae, 532–533
TLR4, 531–532
toxins, 534
type 1 fimbriae, 533–534
IrF3 or IfnB defects, 537
molecular determinants and genetics, 538–541
adaptor gene polymorphisms, 539
CXCRI expression, 540
genetic variation, 539–541
IRF3 expression, 540
low TLR4 expression, 539
promoter polymorphisms, 539–541
receptors for bacterial adhesins, 538–539
molecular tools for risk assessment and predictions, 543–544
Susceptibility to urinary tract infection (continued)
neutrophil recruitment, 535–536
pyelonephritis, 527, 529–531, 536, 539–541
therapeutic approaches to modify, 542–543
deliberate establishment of asymptomatic bacteriuria, 542
gene therapy, 542
receptor analogue, 542
vaccination, 543
TLR5, TLR11, Thp, and COX2 defects, 537–538
Swarming motility of Proteus mirabilis, 383, 388–402
Systemic inflammatory response syndrome (SIRS), 135, 138
Systems vaccinology, 616–617
T cells, γβ, 560
TA (toxin-antitoxin) systems, 369
TaaP autotransporter, 412
Tamm-Horsfall protein (THP), 509, 533, 537–538
TCA (tricarboxylic acid) cycle, 601
TcpC, 527, 604
Temperature-sensitive hemagglutinin (Tsh), 247
Tendonitis, fluoroquinolones and, 58
Tension receptors, 568
Tetracyclines
mode of action, 194
resistance, 124, 182, 420
mechanism, 194–195
prevalence, 195
TGF (tubuloglomerular feedback), 513
TGF-β1 polymorphism, 541
Tigecycline, 194
Tight junctions, 7, 566, 575
TimeZone software package, 350
TIR domain proteins, 541
TIR domain-containing adaptor adaptor protein (TIRAP), 531–532
Tissue microbiology, 516–517
TNF-α (tumor necrosis factor-α), 138–139, 511, 514, 560
Toll-like receptors (TLRs)
in Enterococcus UTIs, 466–467
as pattern-recognition receptors (PRRs), 616
role in pyelonephritis response, 508
TcpC impairment of, 527
TLR1, 534, 560
TLR2, 534
TLR4, 526, 530–533, 556–557, 560, 592, 599, 604
low expression in patients with ABU, 539
MPL as agonist, 615
promoter variation, 539
recognition of LPS lipid A, 619
TLR4-dependent host defenses, 370–371
TLR4-dependent UTI pain, 577–578, 583
TLR5, 534, 537–538, 561
TLR11, 537–538
TonB system, 602
Klebsiella pneumoniae, 440–441
TonB-dependent receptors, in Proteus mirabilis, 414–415
TonB-ExbB-ExbD complex, 237
Topical vaginal estrogen therapy, 82
Torsades de pointe, fluoroquinolones and, 58
TosA, 252, 269, 300–301
Toxic-shock syndrome toxin 1, 138
Toxin-antitoxin (TA) systems, 369
Toxins
autotransporter, 247
E. coli prostatitis isolates, 125–129
pyelonephritis and, 507–508
RTX family, 252
uropathogenic E. coli (UPEC), 246–247, 263–272, 604–605
actions and epidemiology, table of, 265
autotransporter family, 271
cytotoxic necrotizing factor type 1 (CNF1), 265, 269–270
hemolysin (HlyA), 264–269, 507–508
PicU, 265
secreted autotransporter toxin (Sat), 265, 271
type V secretion family, 270–271
Vat, 265
Toxoid, 619–620
TraDIS (transposon-directed insertion-site sequencing), 255
TRAM, 526, 531–533, 539
Transcription, during Proteus mirabilis swarming, 398–399
Transcriptional profiling, 253–254
Transcriptomics
in pyelonephritis, 513
uropathogenic E. coli (UPEC), 253
Transfer RNA (tRNA) genes, 252
Transferrin, 441
Transitional stratified epithelium, 504
Transposase, 184
Transposon mutagenesis, 254
Transposon-directed insertion-site sequencing (TraDIS), 255
Transposons, 181–182, 189–190, 195–196
Transurethral-bladder catheterization, in children, 72–73
Treatment, 48–55
acute uncomplicated cystitis, 49–53
acute uncomplicated pyelonephritis, 53–55
antimicrobial resistance, 48–49, 179–198
anti-virulence therapies, 605–609
asymptomatic bacteriuria, 104–110
after invasive genitourinary procedures, 109
children, 104–105
diabetic patients, 107
elderly institutionalized patients, 107
indwelling urethral catheter patients, 107–108
older women, 107
pregnant women, 105–107
renal transplant patients, 109–110
spinal cord injury patients, 109
bacterial prostatitis, 124–125
of catheter-associated UTI (CAUTI), 609
chaperone/usher pathway inhibitors, 607
in children, 73–74
cranberry products, 608–609
curlicides, 607
drug and vaccine development, 589–626
estrogen therapy, 609
FimH antagonists, 605–606
ibuprofen, 603
intravesicular therapy, 607–608
need for new therapies, 589–591
nutraceuticals, 608–609
PapG antagonists, 606–607
probiotics, 608
pyelonephritis, 514–515
self, 57–58
vaccines (see Vaccines)
Tricarboxylic acid (TCA) cycle, 601
TRIF-related adaptor molecule (TRAM), 526, 531–533, 539
Trigone of the bladder, 5
Trimethoprim resistance, 476
Trimethoprim-sulfamethoxazole. See Sulfamethoxazole and trimethoprim
tubular necrosis, 513
Tubuloglomerular feedback (TGF), 513
Tumor necrosis factor (TNF)-α, 138–139, 511, 514, 560
Type V secretion system, 293
autotransporters in Proteus mirabilis, 411–412
toxins in, 270–271
Type IV secretion system, 534
Type IV pili, 243, 412
Type I fimbriae
innate immune-response activation by, 533–534
Klebsiella pneumoniae, 442–445
mutations, 341–342, 346–348
phase variation, 507
Salmonella, 443
synergy with P fimbriae, 506–507
uropathogenic E. coli (UPEC), 243, 506–507
Type I pili
bladder cell invasion and, 360–361, 365–368, 371
functions, 287–288
pathogenesis, 592, 595
structure, 286–287
vaccines targeting, 620–621
Type VI secretion system, 401–402
Type 3 fimbriae, of Klebsiella pneumoniae, 442–445
Type III secretion system, 251, 418
Type II toxin-antitoxin systems (TA), UPEC, 534
UafA, 301–304, 306, 463
UBT (urinary-bactericidal titer), 143
UCA (uroepithelial cell adhesin), 407–408
UcaA, 624
Umo proteins, 394
Uncomplicated urinary tract infection
defined, 28
demographics of, 459
Gram-positive uropathogens, 459
overview of clinical syndrome, 29
risk factors, 590
symptoms, 459
uropathogenic E. coli (UPEC), 592–604
Uncultivated bacterial inhabitants of the urinary tract, 481–485
UpaB, 248–249, 299
UpaC, 248–249
UpaG, 299
UpaH, 299, 534
UPEC. See Uropathogenic Escherichia coli
UPEC-specific genes, search for, 211–214
UPJO (ureteropelvic-junction obstruction), 15
UP1a, 360, 365–368
Upper urinary-collecting system, 4
UpxA, 269
Urease
Corynebacterium urealyticum, 473
Klebsiella pneumoniae, 441–442
genetics and structure, 441
role in virulence, 441–442
Proteus mirabilis, 383, 384–386
Staphylococcus aureus, 465
Staphylococcus saprophyticus, 463
virulence mechanism, 385
Ureter, 4
obstruction, 11–12, 139–140
urine transport, 9
Ureteral stents, bacteriuria and, 93
Ureteropelvic junction, 4
Ureteropelvic-junction obstruction (UPJO), 15
Ureterovesical junction, 4, 5, 71
Urethra
anatomy, 5–6
length, 13, 27, 236
Urethral catheterization, interpretation of urine culture results from, 44–45
Urethra-to-anus distance, 13
Urinary continence, female
in aging female, 13–14
hammock theory, 14
integral theory, 13–14
Urinary malakoplakia, 371
Urinary retention, chronic, 13
Urinary stones, 461
Proteus mirabilis and, 385–386, 420
Staphylococcus saprophyticus, 463–464
Urinary-bactericidal titer (UBT), 143
Urinary-urgency incontinence (UUI), 481, 484
Urine, uropathogenic *Escherichia coli* growth in,
236–237
Urine cultures
in children, 72–73
expanded-quantitative urine culture (EQUC), 484
interpretation of results, 44–45
quantitative, 44–45, 73, 88, 484
voided urine, 43
Urinary interleukin-8 (IL-8), 91
Urine sample
collection in children, 72–73
contamination, 480–481
Urine transport, 9–10
Uro-adherence factor A (UafA), 301–304, 306, 463
Uro-adherence factor B (UafB), 463
Uroepithelial cell adhesin (UCA), 407–408
Uromune, 624
Uropathogenic *Escherichia coli* (UPEC), 208. See also *Escherichia coli*
adhesins, 70–71, 506–507, 592–599
allelic variation under positive selection, 214–215
antimicrobial resistance, 179–198
asymptomatic bacteriuria, 96
attachment, 60
autotransporter adhesins, 298–300
in chronic pelvic pain syndrome, 129–132
curli, 290, 292–293
cytokine response to infection, 534–535
dispersal, 600
ecological cycle, 333
escape from endocytic vesicle, 599
expulsion of internalized, 599
fimbriae, 242–244, 506–507
FIC fimbria, 244
gene clusters, 244, 251
lack of gene expression *in vivo*, 253–254
P fimbriae, 7, 243–244, 506–507, 532–533
phase variation, 507
pilicides, 244
Pix fimbria, 244
S fimbria, 244
type 1 fimbriae, 243, 245, 506–507
Yad fimbria, 244
Ygi fimbria, 244
frequency of urinary tract colonization, 504
gene sequences, 251–253
heterogeneity of strains, 610
incidence of UTI, 556, 590
initiation of the innate immune response by,
526
intracellular bacterial communities (IBCs), 7, 35,
236, 239, 246, 249–250, 361–364, 369–370, 571, 591, 599–600
invasion of host cells, 359–372
antibacterial defenses and liabilities, 370–371
fates of intracellular UPEC, 360–363
intracellular bacterial communities (IBCs),
361–364, 369–370
of kidney cells, 371
mechanisms of bladder cell invasion, 365–368
regulation of intracellular growth and persistence, 368–369
relevance to UTIs, 364–365
targeting intracellular pathogens, 372
iron acquisition, 238–239, 534, 602
lysosome neutralization, 557
as a model organism for uncomplicated UTI, 591
motility, 244–246
adherence and, 245
chemotaxis, 245
PapX as inhibitor of, 246
at population level, 245
regulation of flagellar, 242
multi-drug resistance, 591
mutation rate, 214
nutrient requirements, 236–241
competition for metals, 237
growth in urine, 236–237
iron acquisition, 237–240
zinc acquisition, 240–241
as opportunistic pathogen, 332–333
origin of strains, 216–217
pathoadaptive mutations, 331–351
amplification of gene copies, 337
detection of, 348–350
evidence of occurrence, 337–338
functional analysis of traits, 346–348
gene inactivation, 336–337, 339–340
genetic variation, 337, 340
genome instability, 339
genome-wide screens for prevalence of,
343–346
horizontal gene transfer compared, 336
mutator phenotype, 338–339
phenotypic variations, observations of,
337–338
pathogenesis, 592–604
ascension to and colonization of kidneys,
603–604
central metabolism and two-component
systems, 601–602
cyclic AMP, 599
escape from endocytic vesicle, 599
FimH, 595
IBCs, 599–601
metal ions, 602
modeling outcomes of acute cystitis, 602–603
INDEX

algorithm for management of, 148–150
antimicrobial therapy, 141–147
aminoglycosides, 142–143
bacterial spectrum of pathogens, 143–144
beta-lactams, 142
biofilm infection, 143
fluoroquinolones, 142–143
pharmacokinetic/pharmacodynamics and, 142
selection of antimicrobials for empiric therapy, 144–147
clinical pictures of severe urogenital infections, 150–152
acute prostatitis, 151
cavernitis, 151
cystitis, 150
epididymitis/orchitis, 151
Fournier’s gangrene, 151–152
prostatic abscess, 151
pyelonephritis, 150
renal and perirenal abscess, 150–151
cytokines as markers, 138
definition, 135–136
diagnostic criteria of sepsis and septic shock, 137
epidemiology, 136–137
Gardnerella vaginalis, 479
neuro-endocrine axis and, 139
overview, 30
pathophysiology, 137–139
prevention, 152
renal function alterations, 139–141
Surviving Sepsis Campaign (SSC), 147–148
treatment, 515
Uroseptic shock, 30
Urostim, 624
Urothelial plaques, 7
Urothelial-cell turnover, 7
Urothelium, 6
barrier function, 569
cell interactions, 572–580
cells and repair, 570–572
damage during UTI, 575–576
FimH mediation of UPEC adherence to, 595
functioning, 566
signaling, 566, 572–575
structure of, 565–566
turnover rate, 570
Urovac, 617–618, 625
UroVaxom, 624
Urvakol, 624
Ushers, 286–287, 443
UUI (urinary-urgency incontinence), 481, 484
VacA cytotoxin, 293
Vaccines
candidate vaccines, table of, 612–613
challenges in developing, 610–617
adjuvant choice, 615–616
Vaccines (continued)

- choice of immunogens, 611, 614–615
- choice of recipients, 611
- recurrent UTI and protective immunity, 610–611
- route of administration, 615

Enterococcus vaccines, 624

- ExPEC, 170
- group B *Streptococcus*, 470
- iron receptors as candidates for, 240
- OM-89/UroVaxom, 624–625
- P pili, 289, 621

Proteus mirabilis, 420–421, 623–624

- pyelonephritis, 611
- reverse vaccinology, 622–623
- specific-antigen vaccines in development, 611, 614, 619–623
 - conjugate vaccines, 619–622
 - FimH, 620–621
 - P pili, 621
 - PapDG vaccine, 621–622
 - pili as candidates, 620–622
 - reverse vaccinology, 622–623
 - subunit vaccines, 614, 622–623
- toxoid vaccines, 620

- susceptibility to UTI and, 543

- systems vaccinology, 616–617
- uropathogenic *E. coli* (UPEC), 612–623
- whole-cell vaccines in development, 611, 617–619
 - attenuated vaccines, 619
 - CP923, 618–619
 - inactivated vaccines, 617
 - SolcoUrovac, 617–618
 - StroVac, 617–618

Vacuolating autotransporter toxin (Vat), 265

Vagina, 6

- protective role of lactobacilli in, 80–81
- role in the pathogenesis of urinary tract infection, 80

Vaginal estrogen treatment, 36, 609

Vaginal Lactobacillus suppositories, 608

Vaginal microbiota, 79–83

- alterations associated with antimicrobial therapy, 82
- alterations associated with loss of estrogen, 81–82
- alterations associated with UTI, 81
- bacterial vaginosis, 471–472
- clinical implications, 82–83
- contraceptive method effect on, 82
- protective role of lactobacilli, 80–81

Vancomycin resistance, 145, 466

Vancomycin-resistant *S. aureus* (VRSA), 144–145

Variome Project, 351

Vasoactive-intestinal polypeptide (VIP), 568

Vat (vacuolating autotransporter toxin), 265

Veillonella, 483

Vesicoureteral junction, 100

Vesicoureteral reflux, 4, 5, 12, 590, 611

- antimicrobial prophylaxis, 75
- in children, 70, 71–72, 100, 105
- primary, 71–72
- as pyelonephritis risk factor, 504
- secondary, 72

Vesicular exocytosis, 573

Vesicular recycling, 569

Vesicular trafficking, 8

VIP (vasoactive-intestinal polypeptide), 568

Viridans streptococci group, urinary tract colonization by, 504

Virulence

- acute prostatitis *E. coli*, 123, 125–129
- chronic prostatitis *E. coli*, 130
- determinants of uropathogenic *E. coli* (UPEC), 235–255
- evolution of
 - genetic mechanisms, 333–336
 - horizontal gene transfer, 335–336
 - pathoadaptive mutations, 336–351
- extraintestinal, 219–221
 - “by-product of commensalism” hypothesis, 224
 - clinical correlation, 220–221
 - hierarchical organization of factors involved, 221–222
 - intrinsic virulence, 220–221
 - measuring virulence, 219–220

Proteus mirabilis, 384–419

Virulence factors. See also specific virulence factors

- acquisition of, 334
- adhesins, 334–335
- *Enterococcus faecalis* urinary tract infection, 466
- group B *Streptococcus*, 470–471
- horizontal gene transfer and, 335–336
- *Klebsiella pneumoniae*, 436–449
- phylogeny, correlation with, 217–218
- *Staphylococcus saprophyticus* UTI, 463–465
- uropathogenic *E. coli* (UPEC), 130, 592–599

Visceral pain, UTI as model of, 576–577

Visceral-pain hypersensitivity, 569

Voided urine specimens

- as asymptomatic bacteriuria, 88–90
- men, 89–90
- women, 88–89
- collection techniques, 43–44
- contamination, 88–89

Voiding cystourethrography, 74

Voiding dysfunction, 16, 504

VRSA (vancomycin-resistant *S. aureus*), 144–145

Waterways, *E. coli* in, 165

Whole-cell vaccines in development, 611, 617–618

Whole-genome sequencing, 45
Wildlife, as *E. coli* reservoir, 165
Wolffian ducts, 5

Women
- aging female
 - anatomy and physiology, 13–14
 - asymptomatic bacteriuria, 89, 92–95, 99
 - immune breakdown in, 560
 - incidence of UTI, 79
 - UTI prevalence in, 13–14
- asymptomatic bacteriuria in aging
 - diagnosis, 89
 - incidence, 93–94
 - microbiology of, 99
 - prevalence, 92, 94–95
- asymptomatic bacteriuria in healthy
 - microbiology of, 98
 - morbidity, 101
 - treatment, 105
- lifetime risk of UTI, 79
- postmenopausal
 - immune breakdown in, 560
 - recurrent UTI in, 58–59
 - vaginal microbiota alterations in, 81–82
- pregnant
 - antimicrobial use in, 31–32
 - asymptomatic bacteriuria, 31, 611
 - diagnosis, 88–89
 - incidence, 93

- asymptomatic bacteriuria in aging
 - diagnosis, 89
 - incidence, 93–94
 - microbiology of, 99
 - prevalence, 92, 94–95
- asymptomatic bacteriuria in healthy
 - microbiology of, 98
 - morbidity, 101
 - treatment, 105
- lifetime risk of UTI, 79
- postmenopausal
 - immune breakdown in, 560
 - recurrent UTI in, 58–59
 - vaginal microbiota alterations in, 81–82
- pregnant
 - antimicrobial use in, 31–32
 - asymptomatic bacteriuria, 31, 611
 - diagnosis, 88–89
 - incidence, 93

- microbiology of, 98
- morbidity, 102
- prevalence, 92
- screening for, 105–107
- treatment, 105–107
- group B *Streptococcus* (GBS) in, 32, 469–470
- physiology and anatomy changes, 15
- pyelonephritis, 31, 102, 105–107
- voided urine specimens for asymptomatic
 - bacteriuria diagnosis, 88–89

WosA, 394

Xenorhabdus nematophila, 411

Yad fimbriae, 244
YadA adhesin, 295

Yersinia
- *Y. pestis* YadA adhesin, 295
- *Y. pseudotuberculosis* invasion protein, 300

Yersiniabactin, 126, 128–129, 238–239, 253, 534, 602
Ygi fimbriae, 244

ZapA, 391, 398, 413, 416, 420
Zinc acquisition
 - *Escherichia coli*, 240–241
 - *Proteus mirabilis*, 396, 416
ZnuACB system, 241–242
Zonal-Phylogeny analysis, 350