ANIMALCULES

The Activities, Impacts, and Investigators of Microbes

BERNARD DIXON

ASM PRESS
Washington, DC
Contents

Introduction ix

1. **Touching Life at Many Points** 1

1. Disseminators Aloft? 3
2. *Pantoea* and the Locust 8
3. The Microbiology of Art 13
4. Why Do They Do It? 17
5. Out of the Blue 22
6. Reflections on Cellulolysis 26
7. Jelly From Space? 30
8. Botox and Dairy Cows 34
9. Fiction, Fact, and Reality 39
10. Microbiology for Gastronomes 43
11. The Double Life of *Escherichia coli* 48
12. Not All Cigars and Caviar 53
13. Microbial Versatility in Berlin 57
14. Whither Psychoneuroimmunology? 61
II The Ecological Context

15. Communal Diversity in Biofilms 69
16. Biofilm Life 74
17. Our Most Abundant Coterectionals 79
18. *Helicobacter* from the Seas? 83
19. Selective Agencies 87
20. Natural Disaster Microbiology 91
22. Ecology Lessons 100
23. Biocides in the Kitchen 105
24. Conjectures and Realities 110
25. Exterminating Pathogens 114
26. Learning from Denmark 118
27. Protozoa and Lurking Pathogens 122

III The Human Context

29. Questionable Experiments 133
30. Lyme Disease: the Public Dimension 138
31. Blatant Opportunism 142
32. Bioscience Embattled 147
33. “Playing God” 151
34. Microbes in the Media 156
35. A Little Learning . . . 161
36. Spotlight on Acetaldehyde 166
37. Measles, Polio, and Conscience 171
38. Myxomatosis: Grim Questions 175
39. Rationalizing Vaccination 179
40. A European Furor 184
41. Bioremediation and Greenery 189
42. The Citation Game 194

Animalcules: the Activities, Impacts, and Investigators of Microbes
IV Personalia

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.</td>
<td>Antony van Leeuwenhoek, Clifford Dobell, and Robert Hooke</td>
<td>201</td>
</tr>
<tr>
<td>44.</td>
<td>Robert Koch and His Postulates</td>
<td>206</td>
</tr>
<tr>
<td>45.</td>
<td>Hideyo Noguchi, Max Theiler, and Yellowjack</td>
<td>210</td>
</tr>
<tr>
<td>46.</td>
<td>René Dubos's Mirage of Health</td>
<td>215</td>
</tr>
<tr>
<td>47.</td>
<td>Ferdinand Cohn, Neglected Visionary</td>
<td>220</td>
</tr>
<tr>
<td>48.</td>
<td>Johannes Fibiger, a Dane to Remember</td>
<td>224</td>
</tr>
<tr>
<td>49.</td>
<td>Frederick Twort, Codiscoverer of Phages</td>
<td>228</td>
</tr>
<tr>
<td>50.</td>
<td>Alick Isaacs and Interferon</td>
<td>233</td>
</tr>
<tr>
<td>51.</td>
<td>Dissenters: Max von Pettenkofer and Friedrich Wolter</td>
<td>238</td>
</tr>
<tr>
<td>52.</td>
<td>Gerhard Domagk and the Origins of Sulfa</td>
<td>242</td>
</tr>
<tr>
<td>53.</td>
<td>Cecil Hoare's Eponymous Organism</td>
<td>246</td>
</tr>
<tr>
<td>54.</td>
<td>Ants and Fred Hoyle's Challenge to Darwinism</td>
<td>250</td>
</tr>
<tr>
<td>55.</td>
<td>Pioneers of American Microbiology</td>
<td>254</td>
</tr>
</tbody>
</table>

V Doing Microbiology

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.</td>
<td>At the Level of Cowpats</td>
<td>265</td>
</tr>
<tr>
<td>57.</td>
<td>Fishy Business</td>
<td>270</td>
</tr>
<tr>
<td>58.</td>
<td>Science à la Mode?</td>
<td>275</td>
</tr>
<tr>
<td>59.</td>
<td>“Wherever They Are Found . . .”</td>
<td>279</td>
</tr>
<tr>
<td>60.</td>
<td>There’s More To Do</td>
<td>284</td>
</tr>
<tr>
<td>61.</td>
<td>Self-Frustration</td>
<td>288</td>
</tr>
<tr>
<td>62.</td>
<td>Genomics and Innovation in Antibiotics</td>
<td>292</td>
</tr>
<tr>
<td>63.</td>
<td>The Relevance of Taxonomy</td>
<td>296</td>
</tr>
<tr>
<td>64.</td>
<td>Yeasts Are Complex...</td>
<td>300</td>
</tr>
<tr>
<td>65.</td>
<td>. . . And Yeasts Are Versatile</td>
<td>305</td>
</tr>
<tr>
<td>66.</td>
<td>Resounding Banalities</td>
<td>309</td>
</tr>
<tr>
<td>67.</td>
<td>Microbiology Present and Future</td>
<td>314</td>
</tr>
<tr>
<td>68.</td>
<td>Looking Back</td>
<td>318</td>
</tr>
<tr>
<td>69.</td>
<td>A Global Challenge</td>
<td>322</td>
</tr>
</tbody>
</table>

Index 327
Introduction

I took a drop or so of this water and looked at it through the microscope; and I discovered a great many animalcules that were red, and others that were green, whereof the biggest looked no bigger through the microscope than coarse sand doth to the naked eye, and others smaller and smaller, each after its kind. These animalcules were for the most part round, and the green ones were somewhat yellowish in the middle of their bodies. Their bodies seemed to be composed of particles that presented an oval figure; and therewithal they had short thin instruments which stuck out a little way from the round contour, and therewithal they performed the motions of rolling round and going forward; and when they took a rest and fixed themselves to the glass, they looked like a pear with a short stalk.

So wrote the Dutch draper and self-taught microscopist Antony van Leeuwenhoek on 9 February 1702 in a letter to his countryman Hendrik van Bleswyk. Along with an equally remarkable figure, the English polymath Robert Hooke, it was Leeuwenhoek who founded the science of microbiology three centuries ago by constructing and using elementary microscopes to observe otherwise invisible forms of life (see chapter 43). All of today’s microbiologists (who, ironically, spend less
time observing their subjects directly than studying them in other ways) are indebted to these diligent pioneers. Their work is all the more praiseworthy for being conducted nearly two centuries before Louis Pasteur, Robert Koch, Paul Ehrlich, and their fellow “microbe hunters” began to establish bacteriology as an experimental science closely linked with practical applications for human welfare.

Through the biochemical and serological techniques introduced by these luminaries, recently augmented by those of molecular genetics, our knowledge of what Leeuwenhoek called animalcules has deepened considerably. So too has awareness of our paradoxical relationship with the microbial world. We are conscious that microorganisms continually assail our tissues, those of other animals, and those of plants, and that they exhibit unparalleled versatility and adaptability in doing so. Yet we also recognize that animalcules have fashioned the biosphere and indeed much of the physical world, that they are crucial to the health of our planet, and that they provide many of the means by which we promote human health and environmental well-being.

Our grasp of these twin aspects of microbiology, though formidable, is far from complete—a most enticing factor for young people contemplating a career in science today. On one hand, we confront new, newly recognized, and resurgent pathogens, all posing intellectual and practical challenges. On the other hand, and perhaps even more astonishingly, research in recent years has demonstrated many hitherto unrecognized contributions of animalcules to the ever-renewing, ever-changing texture of nature.

The nitrogen cycle (almost the only aspect of nonmedical microbiology many of us encounter at school) is a prime example. Among its previously unsuspected contributors as nitrogen fixers are *Montastraea cavernosa* in Caribbean coral (7), *Bacillus marisflavi* in plant rhizospheres in the Beijing region of the People’s Republic of China (4), and a methanogenic archaeon in deep-sea hydrothermal vents in the Pacific Ocean (8). Even more radically, discoveries such as the anammox reaction (in which bacteria oxidize ammonium anaerobically, using nitrite rather than oxygen as the electron acceptor, producing N_2 gas) have raised profound questions about the validity of the conventional model of the nitrogen cycle.
Meanwhile, advances elsewhere have revealed similar lacunae in our picture of other segments of the cat’s cradle of processes that sustain the biosphere. Just two recent examples are the revelation of a fifth pathway of carbon fixation (1) and the realization that picoplankton, tiny unicellular plants, play major roles in mobilizing organic matter deep in the oceans (9).

Sometimes overlooked as an important component in the portfolio of microbiology is the degree to which its insights and practical skills assist other sciences and promote our understanding of the world in often surprising ways. Just over 50 years ago, Jan Kluyver and C. B. van Niel published their splendid book *The Microbe’s Contribution to Biology* (6). This reviewed the many spin-offs from studies, largely on bacteria, that were enhancing both knowledge of other aspects of biology and the conceptual foundations of science. Topics ranged from work on phototrophic bacteria, which facilitated understanding of green plant photosynthesis, to emerging ideas about the unity, flexibility, and evolution of terrestrial life.

A 21st-century revision of Kluyver and van Niel would have a good deal more to say on all of these issues in the light of modern molecular genetics. It might, for example, cite the remarkable work of Roman Biek and others in using a fast-evolving organism (feline immunodeficiency virus) to discern the population structure and demographic history of its natural wildlife host, the cougar. As they point out (2), these findings could not have been obtained in any other way and were not apparent from host genetic data.

Another item for inclusion would be the extraordinary paper by Tom Dillehay and colleagues which indicates that when the first Americans came from Asia, they took a coastal route rather than traveling inland (3). The evidence was microbiological: the remains of nine species of marine algae recovered from hearths and other features at an archaeological site in Monte Verde in southern Chile.

Furthermore, there are the ways in which investigations on microbial cilia (shorter cousins of Leeuwenhoek’s “short thin instruments” or flagellae) are contributing to our comprehension of another unexpected series of discoveries, in very recent years, on the roles of cilia in human development and disease. For example, patients with polycystic kidney
disease, one of the commonest genetic disorders, have cilia whose abnormalities are becoming better understood through research on the flagellae of the alga *Chlamydomonas*.

The present book is based on the "Animalcules" columns which I have been writing regularly since 1996 for *Microbe* (formerly *ASM News*), published by the American Society for Microbiology. I am grateful to Michael Goldberg for asking me to make these contributions and to both him and Patrick Lacey, the production manager of *Microbe*, for their support over the past decade. I also thank the many people who, in recent years, have suggested that the articles could be brought together in book form. Above all, I am grateful to my partner, Kath Adams, for help in manifold ways.

As an edited and orchestrated collection of pieces about animalcules, their activities, and their investigators, this book certainly does not purport to be comprehensive. Moreover, while I have resisted temptations to revise the entire text, or even to modify assertions that seem more questionable with the passage of time, I have added a significant amount of new material here and there in order to accommodate more recent developments. Just two pieces (those on Antony van Leeuwenhoek and Cecil Hoare) did not appear originally as articles in *Microbe*. One piece ("Pioneers of American Microbiology") was published in *ASM News*, though not in the "Animalcules" series.

Contributing to a recent special section of *Science*, James Tiedje and Timothy Donohue (10) pointed out that the incredible diversity of today’s microbial world reflects the accumulated evolutionary response to diverse environments over the 3.5 billion years that microorganisms have inhabited Earth. Paul Falkowski and colleagues (5) added that the microbial world drives some of the largest-scale phenomena on the planet, from photosynthesis and nitrogen cycling to pandemics of infectious disease.

Animalcules contains no more than snapshots taken from this vast mosaic of microbial (and macrobial) activity. Experts are unlikely to learn anything on their own subject here, but I hope that they may find items of interest about happenings elsewhere in the jungle.

Bernard Dixon
References

Index

A

Abyssomicin C, 25
Acanthamoeba, in biofilms, 71
Acanthamoeba polyphaga, in protozoa, 123
Acetaldehyde generation, 166–169
Acetobacter xylinum, in cellulose modification, 57–58
N-Acetyl-L-homoserine lactone, in intercellular signaling, 276–277
Acinetobacter, in biofilms, 74–75
Acromyrmex, fungus gardens of, 251
Acrylamide, in food, 55
Actinobacillus pleuropneumoniae, virulence of, 128–129
Actinobacteria, new, 25
Adhesives, medical, 56
Adriatic Sea, Helicobacter pylori in, 84–86
Aeromonas, in fish infections, 271–272
Agriculture
Escherichia coli dissemination in, 265–267
genetically manipulated products in, 151–155, 184–188
locust swarms and, 8–12
medical research related to, 279–283
new viruses in, 286
AIDS, citation analysis of, 197
Air pollution, in stone building destruction, 15–16
Albus, William, 257
Alcohol, see also Wine
ingestion of, acetaldehyde generation in, 166–170
production of, yeasts in, 308
Alcohol dehydrogenase deficiency, 167
Algae, virus-induced bloom of, 23
American Society for Microbiology, early years of, see Society of American Bacteriologists
Anderson, E. S.
on antibiotics for livestock, 120
on typhoid fever outbreak, 159–160
Animals Can Do Anything (George), 11–12
Anne, David, Rabid, 40–41
Anthroposophy, 171–174
Antibiotic(s)
development of, 292–295
rejected, 294
Antibiotic resistance
agents causing, 87–90
in bird microorganisms, 4–6
causes of, 179–180
Denmark policy on, 118–121
in kitchen biocides, 105–109
in natural disasters, 92–93
plant-human transfer of, 279–281
Ants, fungus gardens of, 251–253
Apoptosis, in *Saccharomyces cerevisiae*, 301
Aquaculture, fish pathogens in, 270–274
Arcobacter, in seawater, 86
Art work, deterioration and restoration of, 13–16
Ascomycetes, lichen association with, 18–20
Asparaginase, for acrylamide reduction, 55
Astaxanthin production, 45–46, 306–307
Astroviruses, in mink farms, 286
Attine ants, fungus gardens of, 251–253
Austin, Brian, on fish pathogens, 271–272
Autographa californica, genetically modified, 134–135
Avian influenza, 103, 267–268
Avoparcin, in pig fodder, 118

B
Bacillus subtilis, for fish infections, 271–272
Bacteriophages
component transfer of, 278
discovery of, 228–232
periodic variations in, 80–81
Baculoviruses, genetically modified, 134–136
Baird, Bill, on star jelly, 32–33
Baldry, Peter, on pathogen extermination, 215
Banalities, in writing, 309–313
Barnard, Christiaan, heart transplantation by, 152–153
Bastian, Henry, on spores, 222–223
The Battle Against Bacteria (Baldry), 215
Botulinum, in biofilms, 76
Beck, William S., on Fibiger, 224
Beer production, 60, 308
Behring, Emil von, 225
Beijerinck, Martinus, 255, 259
Belt, Thomas, on ant fungus farming, 251
Benediktsdóttir, Eva, on fish pathogens, 273
Bergey, David H., on *Streptococcus hemolyticus*, 257
Biocides, in kitchen, 105–109
Biodiversity, 22–25, 69–73
Biofilms
biodiversity in, 69–73
eamples of, 74–78
Bioremediation
of art work deterioration, 13–16
of petroleum spills, 296–299
public attitude toward, 189–193
Bioterrorism, P4 high-containment laboratories and, 288–289
Biotin, 318–321
Birds
as disease vectors, 3–7
influenza in, 103, 267–268
large-scale die-off of, 322–323
psittacosis in, 143–144
Usutu virus in, 284–285
Bishop, David, on scorpion toxin in pesticides, 133–137
Bisset, Kenneth, on bacterial distortion in fixation, 291, 303
Bitting, Katherine G., on organisms in home canning, 257–258
Black-headed gulls, as disease vectors, 4–7
Blaser, Martin, on *Helicobacter pylori*, 124
Bock, Eberhard, on air pollution protection, 15–16
Books, fungal infections of, 43–44
Borovsky, P. F., 248
Botrylschia rhodina, in biofilms, 77
Botulinum toxin, 34–38
Bovine spongiform encephalopathy, 185–187, 279–280
Boyd, William, *Pathology for the Physician*, 41–42
Bray, John, on *Escherichia coli*, 49
Breed, Margaret S., on taxonomy, 256–257
Breed, Robert S., on taxonomy, 256–257
Breitbart, Mya, on viruses, 80
Bridges, Bryn, on adaptive mutation, 311
Brown, Michael, on microorganism evolution, 122–125
Bruce-Chwatt, Leonard, on Hoare, 248
Brucella abortus, discovery of, 127
Buella frigida, sexuality of, 17
Buildings, air pollution action on, 15–16
Burgdorfer, Willy, in Lyme disease organism discovery, 140
Burke, Derek, on interferon, 235
Candida, in acetaldehyde generation, 168
Candida albicans, quorum sensing in, 302
Cano, Raul, 260
Cantell, Kari, on interferon, 235
Carcinogens, acetaldehyde as, 166–169
Cardboard, cellulolysis of, 26–29
Carlsson, Victoria, 257
Carotenoid production, 306–307
Carr, Noel, 260
Carroll, James, 211
Carter, K. Codell, on Koch’s postulates, 206
Castellani, Aldo, 258
Cattle, botulism in, 34–38
Escherichia coli in, 50
foot-and-mouth disease in, 96–99, 100–101
mad cow disease in, 185–187, 279–280
rumen organisms in, 54–55
Cecina (beef product), 44–45
Cellini, Luigina, on *Helicobacter pylori* in seawater, 84–86
Cellulolysis, 26–29
Cellulose, modified, 57–58
Cellvibrio, in cellulolysis, 27
Cervical cancer, vaccines for, 181
Cha, Hyung Joon, on adhesives, 56
Chain, Ernst, 245
Chanock, Robert, 260
Characklis, William, on biofilms, 70
Chase, Martha, on bacteriophages, 229
Cherwell, Lord, security pass used by, 288
Chiang Kai-shek, Churchill meeting with, 242
Chlamyophila psittaci, in veterinary teaching hospital, 143–144
Cholera, see *Vibrio cholerae*
Churchill, Winston
security pass used by, 288
sulfa drugs for, 242
Cigar manufacture, fermentation in, 53–54
Citation analysis, 194–198
Citrobacter rodentium, phages of, 81
Citrus juices, bitter substances in, 45
Cladonia, lichen association with, 19
Clark, Paul F., on Noguchi, 212
Cloned animals, 164
Clostridium, in cellulolysis, 28

C
Caliciviruses
outbreaks of, 285
in walruses, 286
Camilli, Andrew, on virulence, 127–128
Cammack, Richard, 311–312
Campylobacter
birds disseminating, 4–6
in seawater, 86
Camus, Albert, *La Peste*, 39–40
Cancer
caused by nematodes, 224–227
vaccines for, 181–182
Candida, in acetaldehyde generation, 168
Candida albicans, quorum sensing in, 302
Cano, Raul, 260
Cantell, Kari, on interferon, 235
Carcinogens, acetaldehyde as, 166–169
Clostridium botulinum toxins, 34–38
Clostridium proteoclasticum, in rumen, 54–55
Clostridium tetani, extermination of, 116–117
Clothing, laundering, microorganisms surviving after, 290
Cobo, Fernando, on stem cell contamination, 144–145
Cognitive dissonance, in infectious disease treatment, 62–64
Cohen, Barnett, 258
Cohen, Sheldon, on psychoneuroimmunology, 64
Cohn, Ferdinand Julius, 220–223
“Cold-water disease,” of fish, 273
Cole, Eugene, on home biocides, 107–108
Colitis, hemorrhagic, 48
Collagen synthesis, using yeasts, 306
Colwell, Rita, 260
Common cold, psychoneurology of, 61–64
Concha, Angel, on stem cell contamination, 144–145
Conn, Harold J., 256
Conn, Herbert W., 254–256
The Conquest of Epidemic Disease (Winslow), 215
Contact lens storage, biofilms in, 70–71
Copper, antibiotic resistance due to, 87–90
Corked wine, 43–47
Corneal transplantation, 152–153
Coronary artery bypass surgery, 83–84
Corynebacterium, in acetaldehyde generation, 168
Corynebacterium ammoniagenes, in cigar manufacture, 54
Costerton, William, on biofilms, 70–71
Cowpats, research on, 266–268
Cows, see Cattle
Craig, Wallace, on psychoneuroimmunology, 61–64
Cremers, Hayo Canter, on escape of genetically engineered organisms, 161–162
Creutzfeldt-Jakob disease, variant, 185–187, 279–280
Crittenden, Peter, on lichen sexuality, 18–20
Cummings, Stephen, on cellulolysis, 28–29
Curtiss, Roy, 260
Cyanobacteria toxic products of, 322–324 virus symbiosis with, 23
Cyanophages, 81–82
Cyclidium glaucoma, habitats of, 24
Cylindrospermopsis raciborskii, in lake water, 324
Cytophaga, in cellulolysis, 27
D Dagley, Stanley, 260
Daims, Holger, on wastewater treatment, 59
Dantas, Gautam, on disasters, 93–94
Dark, Alvin, 212
Darwin, Charles
Hoyle challenge to, 250–253
on locust swarms, 8
on rabbit evolution, 177
Davies, David, on biofilms, 70–72
de Bruin, Eric, on collagen synthesis using yeasts, 306
De Graaf, Regnier, Leeuwenhoek association with, 202
de Kruif, Paul, Microbe Hunters, 41, 220
Debaryomyces hansenii, in cigar manufacture, 54
Defoe, Daniel, A Journal of the Plague Year, 40
Delbruck, Max, on phages, 228
Delisea pulchra, biofilms on, 76–77
Delwiche, Eugene A., 260
Demain, Arnold, 260
Demerec, Milislav, 258

The Demon Under the Microscope (Hager), 243–245

Deng, Li, on viruses, 81–82

Denmark, antibiotics in livestock, 118–121

Denning, John and Paula, rabid dog of, 40–41

Dental hygiene, acetaldehyde generation and, 168–169

Dequin, Sylvie, yeasts in wine production, 308

d’Hérelle, Félix, on bacteriophages, 228–229

Diamond, Jared, on ant fungus gardens, 253

Diarrhea, *Escherichia coli*, 48–52

Diazepam, antibiotic resistance due to, 87–88

Dickinson, Richard, on *Saccharomyces cerevisiae*, 301–303

Diethylstilbestrol, 197

Dillon, Rod, on locust swarming, 8–12

Dimethyl sulfoxide, virus releasing, 23

Diphtheria, in literature, 41

Disasters, 91–95

Disinfectants, home, 105–109

Dobell, Clifford
 Hoare association with, 247
 on Leeuwenhoek, 201–205

Dodds, Charles, on hormones, 197

Dolejska, Monika, birds as disease vectors, 4–6

Domagk, Gerhard, discovering sulfa drugs, 242–245

Doñana National Park, waterfowl die-off in, 322–323

Dryden, John, on star jelly, 31

Dubos, René
 ASM lecture of 1974, 261
 on communicable diseases, 99
 on Koch’s postulates, 207

Duchaud, Eric, on *Flavobacterium psychrophilum*, 273

Duggan, Tony, on Hoare, 248

Duguid, John, on *Escherichia coli*, 51

Durate, J., on bioremediation, 191

Dyer, Paul, on lichen sexuality, 18–20

Ecological issues, see also Antibiotic resistance
 biofilms, 69–73, 74–78
 coterrestrials, 79–82
 in epidemics, 100–104
 extermination of pathogens, 114–117
 Helicobacter pylori, 83–86
 natural disasters, 91–95

Edsall, Geoffrey, 258

Educational institutions, microbiology departments in, 314–317

Ehrlich, Paul
 on magic bullets, 180
 Nobel Prize of, 239
 pioneering work of, 220
 Eisenhower, Dwight D., Churchill meeting with, 242
 Emiliana huxleyi, virus-induced bloom of, 23
 Emslie-Smith, Alan, on *Escherichia coli*, 50–51

Endocrine disrupters, 59–60

Entamoeba, in goats, 249

Enteridium, in star jelly, 32

Enterobacter cloacae
 in citrus juice debittering, 45
 in locust swarming, 10

Enterococcus, plant-associated, 280–281

Enterococcus casseliflavus, in locust swarming, 10–11

Eradication, of diseases, 114–117

Erwinia carotovora, 276

Erwinia uredovora, 307

Escherich, Theodor, on *Escherichia coli*, 51
Escherichia coli
- birds disseminating, 4–6
- in cowpats, 266–268
- pathogenic, 48–52
- in protozoa, 123–124
- in seawater, 86

Ethnomycology, star jelly and, 30–33

Eubacterium, in cellulolysis, 28

Eurobarometer opinion poll, 163–164

European Commission, symposium of 1999, 305–308

European Congress on Biotechnology, meeting of 2005, 53–56

The Europeans and Modern Biotechnology, 163

Euroscience Open Forum 2004, 147–150

Evans, G., on bioremediation, 191

Evans, Neal, on global warming, 325

Evolution, of microorganisms, 122–125

Experiments, questionable, 133–137

Extermination, of pathogens, 114–117

F

Fabregas, Jaime, on astaxanthin production, 46

Falkow, Stanley, on Koch's postulates, 207

Fantes, Karl, on interferon, 236

Farming, see Agriculture

Faruque, Shah, on viruses, 80–81

Fashions, in research, 275–278

Feikin, Daniel, on objections to immunization, 172–173

Fenner, Frank
- on disease eradication, 115
- on myxomatosis, 177

Fermentation, 259, 308

Fibiger, Johannes Andreas Grib, 224–227

Fiction, infectious disease descriptions in, 39–42

Fiedler, Hans-Peter, on antibiotic development, 294–295

Fincham, John, on microbiology, 315–316

Finter, Norman, on interferon, 235–236

Fish
- cyanotoxins in, 322–324
- pathogens of, 270–274

Fish, Durland, on Lyme disease, 140

Flaviviruses, new, 284–285

Flavobacterium psychrophilum, genome of, 273

Fleming, Alexander, penicillin development by, 243, 245

Flexner, Simon, Noguchi association with, 212

Florey, Howard, on penicillin development, 240–241, 245

Food, see also Meat
- genetically manipulated, 151–155, 184–188
- pathogens transmitted in, 217

Foot-and-mouth disease, 96–99, 100–101

Ferre, Patrick, on viruses, 80, 82

Foster, W. D., on Cohn, 220

Fox, Cecil H., on self-frustration, 288–289

Foxing, 43–44

Frescoes, deterioration and restoration of, 13–16

Frisch, Morten, on vaccines, 182

Fuligo septica, in star jelly, 32

Fungi
- in ant gardens, 251–253
- in art work deterioration and restoration, 13–16
- atypical, in natural disasters, 93
- in cellulolysis, 26–29
- in corked wine, 43–47
- in foxing, 43–44
- lichen association with, 18–20
- in star jelly, 30–33

G

Gajdusek, Carleton, 260

Gale, Ernest, on *Escherichia coli*, 50–51

Gallo, Robert, 260

Garfield, Eugene
- on psychoneuroimmunology, 61–62
Index 333

Science Citation Index, 194–195
Gaskell, George, on bioremediation, 192–193
Gastrointestinal system, flora in, 56
Gel materials, ascribed to space, 30–33
Geminiviruses, in plants, 286
Genetically manipulated crops, controversy over, 151–155, 184–188
Genetically manipulated organisms concerns about, 110–113
escape into environment, 161–165
myxoma virus, 175–178
as pesticides, 133–137
Genomics, 292–295
George, Jean, on locust swarming, 11–12
Gest, Howard, 204, 258
Gilbert, Peter
on antibiotic resistance, 87
on biofilms, 76–77
Givaudan, Alain, on Steinernematidae, 287
Global warming, microbiologic aspects of, 322–326
Glucose receptors, in yeast, 307–308
Glycerol-3-phosphate dehydrogenase, in fermentation, 308
God, scientists emulating, 151–155
Govan, John, on Burkholderia cepacia, 281–282
Grahamia, 249
Gramicidin, 216
Granucci, Carlotta, on microorganisms surviving laundry, 290
Grapevines, viruses of, 286
Graphis scripta, lichen association with, 19
Gravesen, Anne, on Listeria monocytogenes disinfection, 55–56
Greenpeace, on genetically modified organisms, 161–165
Gregarization, of locusts, microorganism involvement in, 8–12
Gresser, Ion, on interferon, 235
Griffith, Fred, on pneumococci, 240
Groot, Herman, on genetically modified organisms, 161–162
Guaiacol, in locust swarming, 8–12
Gulig, Paul, on bacteriophages, 230
Gulls, as disease vectors, 4–7
Gunsalus, I. C., 258, 260

H
Haematococcus pluvialis, in astaxanthin production, 45–46
Haemophilus influenzae, vaccines for, 180–181
Hager, Thomas, The Demon Under the Microscope, 243
Hallier, Ernst, on pleomorphism, 221
Halvorson, Harlyn, 260
Hamers, W. H., on epidemiology, 100
Hansenula polymorpha, in collagen synthesis, 306
Harris, John, on transmitting pathogens, 217
Hayes, Paul, on viruses, 81–82
Heart transplantation, 152–153
Hedderma, Edou, on psittacosis prevention, 144
Heidarsdottir, Karen, on fish pathogens, 273
Heidlerberger, Michael, 258
Helicobacter, in horses, 208–209
Helicobacter canadensis, birds disseminating, 6
Helicobacter pylori in protozoa, 124
source of, 83–86
Hemolytic-uremic syndrome, 48
Hendriksen, Hanne Vang, on acrylamide in food, 55
Henle, Jacob, Koch’s postulates and, 206
Hepatitis B, vaccination for, 181–182
Hepatitis C virus, recombination of, 285–286
Hepatocellular carcinoma, hepatitis B vaccines and, 181–182
Hershey, Alfred, on bacteriophages, 229, 278
Heterothallism, of ascomycetes, 18–20
Heymann, David, on SARS (severe acute respiratory syndrome), 196
A History of Medical Bacteriology and Immunology (Foster), 220
Hoare, Cecil, *Trypanosoma cecili* and, 246–249
Hobbs, Betty, on typhoid fever outbreak, 159–160
Holm, Soren, on transmitting pathogens, 217
Holmstrom, Kim, on gut flora, 56
Homothallism, of ascomycetes, 18–20
Hoofnagle, Jay, 260
Hooke, Robert, 204
Horrobin, David, on drug development, 293–294
Horses, *Helicobacter* in, 208–209
Horton, Richard, on transmitting pathogens, 218
Hospitals, infections acquired in, 289
Hotchkiss, Joseph, on novel technology, 153–154
Howard-Jones, Norman, on Wolter, 241
Hoyle, Fred, on Darwin, 250–253
Hughes, T. McKenny, on star jelly, 31–32
Huisman, Jef, on cyanotoxins, 323
Human immunodeficiency virus infection, citation analysis of, 197
Human metapneumovirus, 285
Human papillomavirus, vaccination for, 181–182
Hurricane Katrina, 91–95

I
Immunization, see Vaccination
Influenza
avian, 103, 267–268
surveillance of, 112–113
Inglis, Timothy, on Koch's postulates, 207–209
Inland bearded dragon, *Mycobacterium marinum* in, 142–143
Insecticides, genetically modified, 133–137
Insects, swarming of, microorganism involvement in, 8–12
Institute for Scientific Information citation analysis by, 194–195, 318
on psychoneuroimmunology, 61–62
The Intelligent Universe (Hoyle), 250
Intercellular signaling, 276, 301–302
Interferon, description of, 233–237
International Union of Microbiological Societies, meeting of 2002, 284–287
Internet, impact of, 138–141
Isaacs, Alick
citation of, 194
on interferon, 233–237
Isaacs, Susannah, 235

J
Jansen, Vincent, on epidemics, 102
Jelly, ascribed to space, 30–33
Jenner, Edward, 114
Jessop, David, on psychoneuroimmunology, 64
Johnson, Paul, on human-nonhuman transfers of pathogens, 282
Jones, Barrie, on interferon, 235
Jones, Keith, on birds as disease vectors, 5
Jones, R. V., on self-frustration, 288–289
Journal of the Plague Year (Defoe), 40
Journalism
inaccurate information in, 161–165
infectious disease descriptions in, 39–42
research reporting in, 147–150
sensationalism in, 156–160

K
Kahn, Reuben L., 257, 258
Katrina, Hurricane, 91–95
Katz, Samuel, on vaccines, 180
Kennaway, Sir Ernest, on cancer causes, 226
Kermack, W. O., on epidemiology, 100
Keunen, J. G., 260
Kilbourne, Edwin, 260
Kissen, David, on psychoneuroimmunology, 63–64
Kitchen biocides, 105–109
Klebs, Edwin, 206
Klebsiella pneumoniae
in locust swarming, 10–11
resistance in, 88
Koch, Robert
on cholera, 239–240
Cohn encouragement of, 223
Fibiger association with, 225
Nobel Prize of, 239
pioneering work of, 220
postulates of, 206–209
Koide, S. S., on Noguchi, 213
Koprowski, Hilary, 260
Kundsin, Ruth, 260

L
La Peste (Camus), 39–40
Laboratories, high-containment P4, 288–289
Lactic acid bacteria, for fish infections, 271
Lactobacillus plantarum, in biotin assay, 320
Lainson, Ralph, trypanosome discovery by, 246
Lambert, Cary, on biofilms, 76
Lampen, Joe, 260
Landfills, paper degradation in, 28–29
Lanois, Anne, on Steinernematidae, 287
Lappin-Scott, Hilary, on biofilms, 71
Laundry, microorganisms surviving after, 290
Laybourn-Parry, Johanna, on viruses, 82
Leask, Ronnie, on star jelly, 32–33
Leeuwenhoek, Antony van, 201–205

Legionella pneumophila, in protozoa, 123–124, 282
Leishmania, viruses in, 286–287
Lennette, Edwin H., 260
Leptospira noguchi, 213
Leucoagaricus gongylophorus, in ant gardens, 251–252
Levy, Stuart, on home biocides, 106
Lichens, sexuality of, 17–21
Lilly Award of 1950, 259
Limonoids, bitterness of, 45
Lindegren, Carl, 258
Lindenmann, Jean
citation of, 194
on interferon, 233–237
Lister, Joseph, challenges to, 238
Listeria monocytogenes
alcohol interactions with, 55–56
in cold environment, 290
in washed vegetables, 145
Literature, infectious disease descriptions in, 39–42
Livestock, antibiotics for, 118–121
Lizards, Mycobacterium marinum in, 142–143
Locust swarming, microorganism involvement in, 8–12
Lyme disease, public interest in, 138–141

M
Maalin, Ali Maow, as last smallpox victim, 114
Mackay, Ian, on human metapneumovirus, 285
Mad cow disease, 185–187, 279–280
Malachite green, for fish infections, 271
Manefield, Mike, on quorum sensing, 277
Manure, research on, 266–268
mar operon, for antibiotic resistance, 87–88
Marine and Freshwater Microbiology
Biodiversity program, 22–25
Marshall, Barry, on Helicobacter pylori, 83–84

Index
Matin, A. C., 260
Mayr, Ernst, on species definition, 222
McCollum, Elmer, on pasteurization, 151
McLaughlin-Borlace, Louise, on biofilms, 71
McMichael, Anthony, on global warming, 325
McSweegan, Edward, on Lyme disease vaccine, 141
Measles in disasters, 92
vaccination for, 102–103, 171–174
Meat botulinum toxin in, 37
foot-and-mouth disease and, 96–99
mad cow disease and, 185–187
Salmonella enterica serovar Typhi in,
159–160
Medawar, Peter, on scientific writing, 309
Mediterranean Sea, Helicobacter pylori in,
84–86
Meetings
European Congress on Biotechnology
(2005), 53–56
International Union of Microbiological
Societies (2002), 284–287
Society for Applied Microbiology
(2006), 74–78
Society for General Microbiology
(2007), 79–82
Society of American Bacteriologists,
see Society of American
Bacteriologists
World Congress of Biotechnology
(2000), 57–60
Melnick, Joseph, 258, 260
Melville, David, on avian influenza, 103
Mendel, Gregor, 3–4
Merigan, Tom, 235, 260
Merril, Carl, on bacteriophages, 230
Metapneumovirus, 285
Metchnikoff, Elie, cholera experiments of,
238–239
Meteors, jelly ascribed to, 30–33
Methyl bromide, bacteria degrading, 23
3-Methylcrotonyl-coenzyme A carboxylase
deficiency, 320
Meynell, Guy on art work deterioration and
restoration, 13
on foxing, 43–44
Microbacterium flavescent, in citrus juice
debittering, 45
Microbe Hunters (de Kruif), 41, 220
Microbiology, identity of, 314–317
Micrococcus luteus, in stem cells, 145
Microcystis aeruginosa, in waterfowl die-off, 322–323
Microscopes, Leeuwenhoek construction
of, 201–205
Middelboe, Mathias, on viruses, 81
Migration, of locusts, 8–12
Milk, pasteurization of, controversy over,
151–155
Mink farms, astroviruses in, 286
Mirage of Health (Dubos), 207, 215–219, 239
Misra, Peter, on botulinum toxin, 37
Modern Science and the Nature of Life
(Bean), 224
Molin, Soren, on biofilms, 74–75
More, Henry, on star jelly, 31
Moritella, in aquaculture, 272–273
Mosquitoes, as virus vectors, 284–285
Moxon, Richard, on virulence, 129
Mudd, Stuart, 258
Muirhead, Richard, on Escherichia coli in
cowpats, 266–268
Multiple carboxylase deficiency, 320
Muto, Manabu, on acetaldehyde
generation, 169
Mycobacterium avium, in protozoa, 123
Mycobacterium marinum, in lizards,
142–143
Mycobionts, lichen association with, 18–20
Myxomatosis, 175–178
Myxomycetes, in star jelly, 32
Myxotrichum chartarum, in cellulolysis, 26–29

N
Natural disasters, 91–95
Necrotizing fasciitis, media coverage of, 157
Nees von Esenbeck, Christian, on cellulolysis, 26
Neisseria, in acetaldehyde generation, 169
Nematodes, symbiotic bacteria in, 287
Neo-Darwinism, 250–253
Neonatal tetanus, eradication of, 116–117
Neurotoxins, Clostridium botulinum, 34–38
Nicholson, Karl, on respiratory infections, 113
Nieves-Rivera, Ángel, on star jelly, 30, 32
Nigrovic, Lise, on Lyme disease vaccine, 140–141
Nitrobacter, in stone corrosion, 16
Nitrosomonas, in stone corrosion, 16
Niva Bay, Denmark, biodiversity in, 24–25
Nobel Prizes
Domagk, 244–245
Ehrlich, 239
Fibiger, 224–227
Koch, 239
Medawar, 309
Ross, 239
Rous, 225
Theiler, 210–214
Noguchi, Hideyo, 210–214
Nosocomial infections, 289
Nybroe, Ole, on antibiotic resistance, 88–89

O
Ochrolechia parella, lichen association with, 19
Ochromonas danica, in biotin assay, 320
Oil spills, bioremediation of, 296–299
Opportunism, of microorganisms, 142–146
Oriental flushers, 167
Orihuela, Carlos, on virulence, 126
Outbreaks
calciiviruses, 285
Escherichia coli infections, 48–52
foot-and-mouth disease, 96–99, 100–101
measles, 171–174
poliomyelitis, 171–174
typhoid fever, 157–160
Oxford University, genetic modification experiments in, 133–137

P
P4 high-containment laboratories, 288–289
Pace, Norman, 260
Pael, Hans, on cyanotoxins, 323
Pansperma theory, 250
Pantoea agglomerans, locust swarming and, 8–12
Paoletti, Enzo, 260
Paper
cellulolysis of, 26–29
fungal infections of, 43–44
Pasteur, Louis
challenges to, 238
discoveries of, 206
Dubos address on, 261
pioneering work of, 220
on practical matters, 267
on spontaneous generation, 222
tribute to, 255
on vaccination, 180
vaccine development by, 243
Pasteurization, controversy over, 151–155
Pathology for the Physician (Boyd), 41–42
Paton, Alan, on plant protection with bacterial L forms, 295
Patterson, Jean, on viruses in Leishmania, 286–287
Pauling, Linus, on vitamin C, 149
Paulino, Marianna, on cigar manufacture, 53–54
Pawelczyk, Adam, on bioremediation of pollution, 60
Peak, Nicholas, birds as disease vectors, 4–5
Penicillium, in cecina, 44–45
Peptic ulcer disease, Helicobacter pylori in, 83–86
Pérez-Ortin, José, on wine yeasts, 46
Pesticides, genetically modified, 133–137
Petroleum spills, bioremediation of, 296–299
Pettenkofer, Max von, 238–241
Petty, Nicola, on viruses, 81
Phages
component transfer of, 278
discovery of, 228–232
periodic variations in, 80–81
Phenol, in locust swarming, 8–12
Pheromones, in locust swarming, 8–12
Phipps, James, vaccination of, 114
Photobacterium fischeri, quorum sensing in, 276
Photobionts, lichen association with, 18–20
Pichia pastoris, in collagen synthesis, 306
Pigs
antibiotic use in, 118
foot-and-mouth disease in, 97–98
new rotavirus in, 286
Pirie, N. W. “Bill,” on new notions, 277–278
Pisa Monumental Cemetery, art restoration in, 13–16
Pittet, Didier, on natural disasters, 91–95
Plague, in literature, 39–40
Plankton, Helicobacter pylori in, 84–86
Plants, see also Agriculture
antibiotic resistance in, 279–281
Enterococcus in, 280–281
fermentation of, in cigar making, 53–54
new viruses in, 286
protection of, bacterial L forms in, 295
Plotkin, Stanley, 260
Pneumonia
in literature, 41–42
severe community-acquired, unrecognized by media, 156
Poliomyelitis
eradication of, 114, 116–117
vaccination for, 171–174
Pollution
bioremediation of, 60, 189–193
from bird droppings, 4–6
from cowpats, 266–268
cyanotoxins in, 322–324
Helicobacter pylori in, 84–86
in stone building destruction, 15–16
Porter, Ian, on typhoid fever outbreak, 158
Pott, Sir Percival, on cancer causes, 225
Poultry, antibiotic use in, 118
Pramer, David, 258–260
Priest Pot, England, biodiversity in, 24–25
Priobes, 208
Probiotics, for fish infections, 271
Proteobacteria, N-acetyl-l-homoserine lactone of, 277
Protozoa
microorganism evolution and, 122–125
as pathogen reservoirs, 282
Pseudomonas aeruginosa
in biofilms, 70–72
environment-human transfer of, 297–299
intercellular signaling in, 276
isolates of, 296–299
Pseudomonas fluorescens, in biofilms, 72
Pseudomonas mendocina, 297–298
Pseudomonas putida, in biofilms, 74–75
Pseudomonas stutzeri, in fresco restoration, 14–15
Psittacosis, in veterinary teaching hospital, 143–144
Psychoneuroimmunology, 61–65
Pwдре ser (star jelly), 30–33

Q
Quorum sensing, 275–277, 302

R
Rabbits, myxomatosis in, 175–178
Rabid (Anne), 40–41
Radkau, Joachim, on bioremediation, 192
Ranalli, Giancarlo, on art work
deterioration and restoration, 13–16
Rapeseed oil, genetically modified, 186
Rede Lecture, 317
Reed, Sylvia, on psychoneuroimmunology,
61–64
Reed, Walter, 211
Refugees, infections in, 91–95
Reproduction, of lichens, 17–21
Research
citation analysis in, 194–198, 318
mature, 265–269
questionable experiments in, 133–137
reporting of, 147–150
trends in, 275–278
writing about, banalities in, 309–313
Resistance, antibiotic, see Antibiotic resistance
Resounding banalities, in research writing,
309–313
Respiratory infections, surveillance of,
111–113
Respiratory syncytial virus, vaccines for, 58
Ridgway, Harry, on Pseudomonas aeruginosa isolates, 297–299
Robertson-Welsh, Debra, on antibiotics for livestock, 120
Roccella, product from, 20
Rogers, Henry J., 260
Ronhede, Stig, on ant fungus farming,
251–253
Roosevelt, Franklin D., Churchill meeting with, 242
Rose, Tony, on biotin, 318–321
Ross, Ronald, Nobel Prize of, 239
Rotavirus, new P genotype of, 286
Rous, Peyton, on cancer-causing viruses, 225
Rushton, Stephen, on epidemics, 102

S
Sabin, Albert, 258
Saccharomyces cerevisiae
complex nature of, 300–304
glucose receptors in, 307–308
practical applications of, 306–308
St Leger, Raymond, on scorpion toxins, 134
Salaspuro, Mikko, on acetaldehyde, 166–169
Salk, Jonas, 258
Salmonella enterica serovar Typhi,
outbreaks of, 157–160
Salmonella enterica serovar Typhimurium,
virulence of, 128–129
Salmonellae, birds disseminating, 4–6
Sanarelli, Giuseppe, on myxomatosis, 175–176
Sapropelgia, in aquaculture, 270–274
SARS, see Severe acute respiratory syndrome)
Sawyer, Wilbur, on yellow fever, 211
Schatz, Albert, 258
Schiewer, Silke, on wastewater treatment, 60
Schiewer, Silke, on wastewater treatment,
60
Schiofield, David, on bacteriophages, 231
Science Citation Index, 194–195
Scorpion toxin, in genetically modified organisms, 133–137
Scott, Sir Walter, on star jelly, 31
Sea lice, 273
Seawater, Helicobacter pylori in, 84–86
Sedgwick, William T., 255
Self-frustration, in microbiology, 288–291
Sellards, Andrew, on yellow fever, 211
Semmelweis, Ignaz, 238
Seppälä, Helena, on antibiotics in livestock, 118
Severe acute respiratory syndrome (SARS) citation analysis of, 195–196
media coverage of, 156–157
Seviour, Bob, on sewage disposal, 268
Sewage disposal, 268
Sexuality, of lichens, 17–21
Seymour, Fabian, on lichen sexuality, 18–20
Sheehan, Brian, on virulence, 128–129
Shirley, Mark, on epidemics, 102
Shortridge, Keith, on avian influenza, 103
Signature-tagged mutagenesis, in virulence studies, 128–129
Silver, Simon, 260
Sisk, Jane, on pneumococcal vaccine, 180
Small, Henry, on psychoneuroimmunology, 61–62
Smallpox eradication of, 115–117
remaining stocks of, 289
Smith, Harry, on virulence, 127
Smith, Katherine, on epidemics, 101
Smith, Richard, on bacteriophages, 231
Smith, Theobald, on environmental factors, 255
Smith, Willie, on bacteriophages, 230
Snow, C. P., on scientists vs. literary intellectuals, 317
Snow, John, on cholera epidemic, 240
Society for Applied Microbiology, meeting of 2006, 74–78
Society for General Microbiology, meeting of 2007, 79–82
Society of American Bacteriologists meeting of 1899, 254–255
meeting of 1923, 256–258
meeting of 1950, 258–259
meeting of 1974, 259–261
Soil, antibiotic-resistant organisms in, 93–94
Sound reproduction, improvement of, bacteria in, 57–58
Space
gel materials ascribed to, 30–33
interstellar viruses from, 250
Spiroptera neoplastica, 225–227
Stahl, Stefan, on modified staphylococci, 58–59
Stalin, Josef, Churchill meeting with, 242
Stanier, Roger, 259
Staphylococcus, modified, 58–59
Staphylococcus epidermidis, in stem cells, 145
Star jelly, 30–33
Starkey, Robert L., 257, 260
Steiner, Rudolf
anthroposophy tenets of, 171–174
on immunization, 102
Steinernematidae, symbiotic bacteria in, 287
Stem cells, microbial contamination of, 144–145
Stewart, Colin, on cellulosysis, 28–29
Stickler, David, on biofilms, 72
Stinear, Tim, on human-nonhuman transfers of pathogens, 282
Stokes, Adrian, 213
Stomatococcus, in acetaldehyde generation, 168
Streptococcus, in acetaldehyde generation, 168
in acetaldehyde generation, 168
hemolytic, media coverage of, 157
Streptococcus pneumoniae, virulence of, 126–127
Stress, impact of, on infectious diseases, 61–64
Stringer, Sandra, on vegetable washing, 145
Struszczyk, Henryk, on modified cellulose, 57–58
Subdoligranulum variabile, in gut, 56
Suckling, Sir John, on star jelly, 31
Sulfa drugs, development of, 242–245
Summers, William C., on d’Herelle, 229
Superbugs, media coverage of, 157

Animalcules: the Activities, Impacts, and Investigators of Microbes
Sussman, Max, on *Escherichia coli*, 49–50
Swarming, of locusts, microorganism involvement in, 8–12
Szybalski, Waclaw, 260

T
Taihu (lake), China, cyanobacteria in, 324
Tavío, Maria, on antibiotic resistance, 88
Taxonomy, relevance of, 296–299
Teague, Oscar, 211
Teloschistes capensis, sexuality of, 18
Terrorism, P4 high-containment laboratories and, 288–289
Tetanus, neonatal, eradication of, 116–117
Theiler, Max, 210–214
Thevelein, Johan, on glucose receptors in yeast, 307–308
Thompson, Kimberly, on Lyme disease vaccine, 140–141
Thorson, Anna, on avian influenza, 267–268
Tick(s), carrying *Borrelia burgdorferi*, 138–141
Tick-borne encephalitis, 285
Tischler, Max, 260–261
Tobacco, fermentation of, 53–54
Tombusvirus, in plants, 286
Toole, Michael, on disasters, 92
Torrance, Alfred, on pathogen extermination, 215
Torres, Juan, on myxomatosis, 177–178
Totman, Richard, on psychoneuroimmunology, 61–64
Toxins
Clostridium botulinum, 34–38
cyanobacteria, 322–324
Escherichia coli, 48–52
scorpion, 133–137
Tracking Down Enemies of Man (Torrance), 215
Transplantation, 152–153
Tremella, in star jelly, 32
Trends, in research, 275–278

Triebe, Henry, on fungal degradation of cardboard, 26–29
2,4,6-Trichloroanisol, in wine, 44
Trichoderma, in corked wine, 44
Trypanosoma, Hoare work with, 246–249
The Trypanosomes of Mammals (Duggan), 248
Tsuchida, Takayasu, on bacterial isolation, 59
Tsunami of 2004, 91–95
Tuberculosis
eradication of, 115
pathology of, 207
stress effects on, 64
Turner, Sarah, on quorum sensing, 277
Twort, Antony, 229
Twort, Frederick, 228–232
Typhoid fever outbreak, media coverage of, 157–160

U
Untersuchungen über Bacterien (Cohn), 221
Usnic acid, pharmaceutical properties of, 20
Usutu virus, 284–285

V
Vaccination
diseases preventable by, 180
epidemiology and, 100–104
for exterminating pathogens, 114–117
fish pathogens, 272–273
foot-and-mouth disease, 96–99
hepatitis B, 181–182
Lyme disease, 140–141
measles, mumps, rubella, 102–103
myxomatosis, 175–178
objections to, 171–174
rationalizing, 179–183
respiratory syncytial virus, 58
yellow fever, 210–214
van West, Pieter, on fish pathogens, 270–271
Vandamme, Peter, on *Burkholderia cepacia*, 281–282
VanRooyen, Michael, on disasters, 94
Vegetables, washing of, 145
Veldkamp, Hans, 260
Verdoes, Jan, on carotenoid production, 306–307
Verrucosispora, discovery of, 25
Veterinary studies, *see also* Cattle; Pigs
antibiotics as growth promoters, 118–121
new viruses, 286
opportunistic infections, 142–146
student infections in, 142–144
Vibrio, in seawater, 86
Vibrio cholerae
bacteriophage interactions with, 80–81
early work on, 238–241
Vibrio vulnificus, phages of, 230
Villas-Boas, Silas, on *Clostridium proteoclasticum*, 54–55
Virulence, 126–129
Viruses, *see also specific viruses*
cancer-causing, 225
cyanobacterial symbiosis with, 23
ecology of, 79–82
genetically manipulated, 175–178
in *Leishmania*, 286–287
new, 284–286
symbiosis of, 23
Vogel, Gretchen, on disasters, 92

W
Waksman, Byron, 260
Waksman, Selman
on soil organisms, 257
on unified approach to microbiology, 279, 282
Waldenström, Jonas, birds as disease vectors, 5–6
Waldman, Ronald, on disasters, 92
Walker, Malcolm, on genetically modified foods, 185
Wallis, Tim, on virulence, 129
Walrus, calicivirus in, 286
Wang, Chengshu, on scorpion toxins, 134
Warren, Robin, on *Helicobacter pylori*, 83–84
Wastewater treatment, biotechnology for, 58–60
Water pollution
bioremediation of, 60
from bird droppings, 4–6
from cowpats, 266–268
cyanotoxins in, 322–324
Helicobacter pylori in, 84–86
Webb, Jeremy, on biofilms, 75–76
Weber, Roland, on fungal degradation of cardboard, 26–29
Weissenbock, Herbert, on Usutu virus, 284–285
Welch-Novy-Russell Lecture, 258–259
Wells, H. G., autobiography of, 42
West Nile virus, Usutu virus similar to, 284–285
Westlake, Donald, on *Pseudomonas aeruginosa* isolates, 297–299
White, Andrew, on star jelly, 30, 32
White, David, 260
Wiesel, Torsten, on Noguchi, 213
Wildy, Peter, 260
Wilkinson, Marjorie, on *Escherichia coli*, 50–51
Williams, Greer, on Noguchi, 212
Williams, Michael, on typhoid fever outbreak, 158
Wilson, Mary, on transmitting pathogens, 218
Wine
corked, 43–47
yeasts for, 46–47
Winogradsky, Serge, Theiler association with, 255
Winslow, Charles-Edward Amory
on pathogen extermination, 215
Welch-Novy-Russell Lecture, 258–259
Wolter, Friedrich, as anticontagionist, 239–241
Wood, Thomas, on biofilms, 72
Woodmansey, Emma, on biofilms, 77
World Congress of Biotechnology, meeting of 2000, 57–60
World Health Organization, disease eradication programs of, 115–117, 173

X
Xanthophyllumyces dendrorhous, in carotenoid production, 306–307
Xanthoria parietina, sexuality of, 20

Y
Yamagiwa, Katsusaburo, on cancer causes, 226
Yamakawa, K., on biotin, 321
Yaws, eradication of, 116
Yeast
complex nature of, 300–304
practical applications of, 305–308
wine, 46–47
Yellow fever
eradication of, 115
vaccine for, 210–214
Yersinia pestis, in literature, 39–40
Yuan, Xunlai, on lichen fossils, 20–21

Z
Zaehner, Hans, on antibiotic development, 294–295
Zinsser, Hans, 211
Zook, Douglas, promoting scientific literacy, 163