Contents

Contributors vii
Preface xiii
Acknowledgments xv

1 New Technologies for Studying Biofilms 1
 Michael J. Franklin, Connie Chang, Tatsuya Akiyama, and Brian Bothner

2 Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs 33
 Jeniel E. Nett and David R. Andes

3 Biofilm Development 51
 Tim Tolker-Nielsen

4 Division of Labor in Biofilms: the Ecology of Cell Differentiation 67
 Jordi van Gestel, Hera Vlamakis, and Roberto Kolter

5 Candida albicans Biofilm Development and Its Genetic Control 99
 Jigar V. Desai and Aaron P. Mitchell

6 Candida Biofilms: Development, Architecture, and Resistance 115
 Jyotsna Chandra and Pranab K. Mukherjee

7 Biofilm Formation by Cryptococcus neoformans 135
 Luis R. Martinez and Arturo Casadevall

8 Aspergillus Biofilm In Vitro and In Vivo 149
 Anne Beauvais and Jean-Paul Latgé

9 Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria 163
 Cécile Berne, Adrien Ducret, Gail G. Hardy, and Yves V. Brun

10 Biofilm Matrix Proteins 201
 Jiunn N. C. Fong and Fitnat H. Yıldız

11 Bacterial Extracellular Polysaccharides in Biofilm Formation and Function 223
 Dominique H. Limoli, Christopher J. Jones, and Daniel J. Wozniak

12 The Biology of the Escherichia coli Extracellular Matrix 249
 David A. Hufnagel, William H. DePas, and Matthew R. Chapman

13 Antimicrobial Tolerance in Biofilms 269
 Philip S. Stewart

14 How Biofilms Evade Host Defenses 287
 Emmanuel Roilides, Maria Simitisopoulou, Aspasia Katragkou, and Thomas J. Walsh
15 c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Pseudomonas Aeruginosa Review 301
 Dae-Gon Ha and George A. O’Toole

16 Mechanisms of Competition in Biofilm Communities 319
 Olaya Rendueles and Jean-Marc Ghigo

17 Dispersal from Microbial Biofilms 343
 Nicolas Barraud, Staffan Kjelleberg, and Scott A. Rice

18 Chemical Biology Strategies for Biofilm Control 363
 Liang Yang and Michael Givskov

19 From Biology to Drug Development: New Approaches to Combat the Threat of Fungal Biofilms 373
 Christopher G. Pierce, Anand Srinivasan, Anand K. Ramasubramanian, and José L. López-Ribot

Index 389
Contributors

Tatsuya Akiyama
Center for Biofilm Engineering
Department of Microbiology and Immunology
Montana State University-Bozeman
Bozeman, MT 59717

David R. Andes
Department of Medicine and Department of Medical Microbiology and Immunology
University of Wisconsin
Madison, WI 53706

Nicolas Barraud
Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences
The University of New South Wales
Sydney, NSW 2052, Australia

Anne Beauvais
Unité des Aspergillus
Institut Pasteur
75015 Paris, France

Cécile Berne
Department of Biology
Jordan Hall JH142
Indiana University
Bloomington, IN 47405

Brian Bothner
Center for Biofilm Engineering
Department of Chemistry and Biochemistry
Montana State University-Bozeman
Bozeman, MT 59717

Yves V. Brun
Department of Biology
Jordan Hall JH142
Indiana University
Bloomington, IN 47405
Arturo Casadevall
Department of Molecular Microbiology and Immunology
Johns Hopkins Bloomberg School of Public Health
Baltimore, MD 21205

Jyotsna Chandra
Center for Medical Mycology and Mycology Reference Laboratory
Department of Dermatology
University Hospitals of Cleveland and Case Western Reserve University
Cleveland, OH 44106

Connie Chang
Center for Biofilm Engineering
Department of Chemical and Biological Engineering
Montana State University-Bozeman
Bozeman, MT 59717

Matthew R. Chapman
Department of Molecular, Cellular, and Developmental Biology
University of Michigan
Ann Arbor, MI 48109

William H. DePas
Department of Microbiology and Immunology
University of Michigan
Ann Arbor, MI 48109

Jigar V. Desai
Department of Biological Sciences
Carnegie Mellon University
Pittsburgh, PA 15213

Adrien Ducret
Department of Biology
Jordan Hall JH142
Indiana University
Bloomington, IN 47405

Jiunn N. C. Fong
Department of Microbiology and Environmental Toxicology
University of California, Santa Cruz
Santa Cruz, CA 95064

Michael J. Franklin
Center for Biofilm Engineering
Department of Microbiology and Immunology
Montana State University-Bozeman
Bozeman, MT 59717

Jean-Marc Ghigo
Institut Pasteur
Unité de Génétique des Biofilms
Département de Microbiologie
F-75015 Paris, France
Michael Givskov
Singapore Centre on Environmental Life Sciences Engineering
Nanyang Technological University
Singapore
Costerton Biofilm Center
Department of International Health, Immunology, and Microbiology
University of Copenhagen
2200 København N, Denmark

Dae-Gon Ha
Departments of Microbiology and Immunology
Geisel School of Medicine at Dartmouth
Hanover, NH 03755

Gail G. Hardy
Department of Biology
Jordan Hall JH142
Indiana University
Bloomington, IN 47405

David A. Hufnagel
Department of Molecular, Cellular, and Developmental Biology
University of Michigan
Ann Arbor, MI 48109

Christopher J. Jones
Department of Microbiology and Environmental Toxicology
University of California, Santa Cruz
Santa Cruz, CA 95064

Aspasia Katragkou
Infectious Diseases Unit
3rd Department of Pediatrics
Faculty of Medicine
Aristotle University School of Health Sciences
Hippokration Hospital
54642 Thessaloniki, Greece
Transplantation-Oncology Infectious Diseases Program
Weill Cornell Medical Center of Cornell University
New York, NY 14850

Staffan Kjelleberg
Centre for Marine Bio-Innovation and School of Biotechnology and
Biomolecular Sciences
The University of New South Wales
Sydney, NSW 2052, Australia
Singapore Centre on Environmental Life Sciences Engineering, and the School
of Biological Sciences
Nanyang Technological University
Singapore 639798
CONTRIBUTORS

Roberto Kolter
Department of Microbiology and Immunobiology
Harvard Medical School
Boston, MA 02115

Jean-Paul Latgé
Unité des Aspergillus
Institut Pasteur
75015 Paris, France

Dominique H. Limoli
Department of Microbial Infection and Immunity
Ohio State University
Columbus, OH 43210

José L. López-Ribot
Department of Biology
South Texas Center for Emerging Infectious Diseases
The University of Texas at San Antonio
San Antonio, TX 78249

Luis R. Martinez
Department of Biomedical Sciences
College of Osteopathic Medicine
New York Institute of Technology
Old Westbury, NY 11568

Aaron P. Mitchell
Department of Biological Sciences
Carnegie Mellon University
Pittsburgh, PA 15213

Pranab K. Mukherjee
Center for Medical Mycology and Mycology Reference Laboratory
Department of Dermatology
University Hospitals of Cleveland and Case Western Reserve University
Cleveland, OH 44106

Jeniel E. Nett
Department of Medicine and Department of Medical Microbiology and Immunology
University of Wisconsin
Madison, WI 53706

George A. O’Toole
Departments of Microbiology and Immunology
Geisel School of Medicine at Dartmouth
Hanover, NH 03755

Christopher G. Pierce
Department of Biology
South Texas Center for Emerging Infectious Diseases
The University of Texas at San Antonio
San Antonio, TX 78249

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Thu, 31 Jan 2019 20:59:16
Anand K. Ramasubramanian
Department of Biomedical Engineering
South Texas Center for Emerging Infectious Diseases
The University of Texas at San Antonio
San Antonio, TX 78249

Olaya Rendueles
Institute for Integrative Biology
ETH Zürich
8092 Zürich, Switzerland

Scott A. Rice
Centre for Marine Bio-Innovation and School of Biotechnology and
Biomolecular Sciences
The University of New South Wales
Sydney, NSW 2052, Australia
Singapore Centre on Environmental Life Sciences Engineering, and the School
of Biological Sciences
Nanyang Technological University
Singapore 639798

Emmanuel Roilides
Infectious Diseases Unit
3rd Department of Pediatrics
Faculty of Medicine
Aristotle University School of Health Sciences
Hippokration Hospital
54642 Thessaloniki, Greece

Maria Simitsopoulou
Infectious Diseases Unit
3rd Department of Pediatrics
Faculty of Medicine
Aristotle University School of Health Sciences
Hippokration Hospital
54642 Thessaloniki, Greece

Anand Srinivasan
Department of Biomedical Engineering
South Texas Center for Emerging Infectious Diseases
The University of Texas at San Antonio
San Antonio, TX 78249

Philip S. Stewart
Center for Biofilm Engineering
Montana State University-Bozeman
Bozeman, MT 59717

Tim Tolker-Nielsen
Department of Immunology and Microbiology
Faculty of Health and Medical Sciences
University of Copenhagen
DK 2000 Copenhagen, Denmark
Jordi van Gestel
Department of Microbiology and Immunobiology
Harvard Medical School
Boston, MA 02115

Hera Vlamakis
Department of Microbiology and Immunobiology
Harvard Medical School
Boston, MA 02115

Thomas J. Walsh
Transplantation-Oncology Infectious Diseases Program
Weill Cornell Medical Center of Cornell University
New York, NY 14850

Daniel J. Wozniak
Department of Microbial Infection and Immunity
Ohio State University
Columbus, OH 43210

Liang Yang
Singapore Centre on Environmental Life Sciences Engineering
Nanyang Technological University
Singapore
School of Biological Sciences
Nanyang Technological University
Singapore 639798

Fitnat H. Yildiz
Department of Microbiology and Environmental Toxicology
University of California, Santa Cruz
Santa Cruz, CA 95064
Preface

It is hard to imagine that 10 years have already passed since the first edition of *Microbial Biofilms* was published. The success of the first edition of this book prompted the American Society for Microbiology to commission this second edition. Unlike the first edition, when the field was finding its way and gathering strength to become an area of intense interest that spurred a decade of breathtaking research, now we are in a period in which the fruits of this work are being harvested. While in the first monograph the majority of the research was discovery-based, which is the case in most research areas at their inception, the findings of the last decade have resulted in an in-depth understanding of the molecular mechanisms underlying the biology and antimicrobial resistance of biofilms and their pathogenesis. Furthermore, proteomic and genomic approaches identified targets that can be exploited in our discovery efforts of antibiofilm therapeutic approaches, as well as tools that will aid these efforts. We also witnessed efforts at expanding the findings from basic research into translational applications, aimed at preventing and treating biofilm-associated diseases.

In spite of tremendous scientific advances, significant hurdles remain. More research is needed to study mixed-species biofilms and link the complex environments of biofilms and the microbial (bacterial, fungal, and viral) biome. Although reductive analyses based on single genes and proteins, as well as systems biology approaches, have identified several key modulators of biofilm growth, a unified mechanistic model that encompasses the role of these modulators and explains the distinct biology and pathogenesis of biofilms is still lacking. Cross-network analyses of these findings should go a long way toward creating such a model. Moreover, systematic analyses of these interactions may allow us to exploit the novel features of microbial biofilms to discover potent antibiofilm agents. A prerequisite for attaining this goal is the development of standardized methods to evaluate biofilm growth and antibiofilm activity as well as a more thorough understanding of *in vivo* biofilms. Standardized methods will pave the way for the development of new therapeutic strategies that can be tested in relevant *in vivo* biofilm models. Our efforts to discover therapeutic approaches by translating the scientific findings of the last decade should be accelerated, together with discovery and development of devices that prevent or inhibit biofilm formation.

In this edition, some chapters are updated by established investigators based on recent findings, while others are by new contributors, providing unique and fresh insights into the field. This book will take the reader on an exciting journey of bacterial and fungal biofilms, ranging all the way from basic molecular interactions to innovative therapies, with stops along the way to examine the division
of labor in biofilms, new approaches to combat the threat of microbial biofilms, and how biofilms evade the host defense. We would like to extend our thanks to all contributors, without whom completion of this exciting monograph would not have been possible. We thank them for their patience during the publication process and for giving up their valuable time to meet our deadlines. It is our hope that this volume will be of interest to basic science researchers and clinicians, and that it may provide inspiration for graduates and postgraduates to be attracted to the field of microbial biofilms.

Mahmoud Ghannoum
Matthew Parsek
Marvin Whiteley
Pranab K. Mukherjee
Acknowledgments

First off, we would like to acknowledge the authors. Under the best of circumstances, writing a book chapter is a lot of work. The authors have produced a collection of chapters of great breadth and depth. We thank them for supporting this publication and for their patience and efforts bringing it to fruition.

Since the publication of the first ASM biofilms book in 2004, the field has lost two of its great leaders, Bill Costerton and Peter Gilbert. We would like to pay special tribute to these individuals. Both were founding figures in biofilm microbiology, carrying out innovative, pioneering research. Both laid the early groundwork that shaped the field and trained a generation of scientists. Both conducted research that brought together diverse scientific disciplines. Both were also colorful characters that are sorely missed.

J. William Costerton lost his battle with cancer in 2012. He carried out much of his ground-breaking research at the University of Calgary. In 1995, he took on the leadership of the Center for Biofilm Engineering in Bozeman, Montana. He is well known for his key recognition of the prevalence and importance of biofilms in the environment and disease. He will also be remembered as a powerful advocate for biofilm research at a time when microbiology was somewhat reluctant to embrace the importance of biofilms. Another key aspect of Bill’s legacy was the extraordinary efforts he made to promote young researchers.

Peter Gilbert passed away in 2008. He was recognized for his contributions toward understanding biofilm antimicrobial tolerance. He was also known for his provocative ideas that inspired new research directions. During the course of his 30-year career at Manchester University, he authored over 250 research papers and reviews. Underneath his famous gruff exterior were a quick wit and a sharp sense of humor. A very telling insight into Peter was how beloved he was by his former trainees.
Index

ABC transporter. See ATP-binding cassette (ABC) transporter

Acetobacter xylinum, 368
β-1,6-N-Acetylglucosamine (β-1,6-GlcNAc), 251
Acetysalicylic acid, Candida albicans biofilm inhibition by, 380

Acinetobacter, 334
A. baumannii, 368
CUP (chaperone-usher pili), 164–165

Actinobacteria, division of labor in, 73–74
N-Acyl homoserine lactones (HSLs), 363, 365
Acyl-homoserine lactone synthase, 363, 365
Acyl-homoserine lactone synthase inhibitors, 363
2-Adamantanamine, 378

Adaptive responses, biofilm formation governed by, 59–60
Adhesin involved in diffuse adherence (AIDA), 178
Adhesins
antibodies against, 382
Candida albicans, 103–106
fimbrial, 164–173
Gram-negative bacteria, 163–188
fimbral adhesins, 164–173
nonfimbrial adhesins, 173–179
overview, 163–164
polysaccharide, 179–187
nonfimbrial adhesins, 173–179
T1SS, 173–177
T5SS, 174, 176, 177–179
polysaccharide, 179–187
extracellular polysaccharide (EPS), 179–183
holdfast, 184–185
polar surface polysaccharide from Rhizobiales, 185–186
slime, 186–187
Adhesion, inhibition of, 329–330
Adhesion factors, downregulation of, 330
AdrA, E. coli, 254, 257
Aerial hyphae, 73–74
Agglutinin like sequence (Als) family, Candida albicans, 104–106
Aggregatibacter actinomycetemcomitans
antimicrobial tolerance in biofilms, 270
dispersinB, 349

Flp (fimbrial-low-molecular weight protein), 165, 170, 171–172
tight adherence (Tad) pili, 165, 170, 171–172
Ag43 monomeric autotransporter adhesin, 177–178
Agrobacterium tumefaciens, 86
motility-based interference competition, 331
polysaccharide adhesins, 182–183, 185–186
Tad pilus, 172
AIDA (adhesin involved in diffuse adherence), 178
Air-liquid interface biofilms, 325
Alcohol dehydrogenase, 377
Alginate, Pseudomonas aeruginosa, 224–226,
230–231, 294, 308–309
colony phenotype, 226
role in biofilm biology, 230–231
significance, structure, and regulation, 225, 230
Alginate lyase, 381
Alkyl-quino lone (AQ)-dependent quorum sensing system, Pseudomonas aerugi nosa, 365
Allee effect, 320
AlpP protein, 84–85, 352
Als (agglutinin like sequence) family, Candida albicans, 104–106
Alternative CUP, 166–168
Altruistic behavior, 321, 322
Alzheimer’s disease, 172, 256
Aminocandin, 125
Aminoglycoside antibiotics, bacterial biofilm formation induced by, 142
2-Aminotetralin, 158
Amphotericin B
for Candida biofilms, 375
in catheter lock therapy, 377
enhanced activity with alginate lyase treatment, 381
for fungal biofilms, 35–36, 38–41, 44
resistance, 375
Candida, 101, 109–110, 125
Cryptococcus neoformans, 140, 141
synergy with anti-infl ammatory drugs, 158
Amyloid, 104, 172, 214, 255–256, 259
Anabaena, 72–73
Anidulafungin, 295
Antibiotics. See also Antimicrobials
bacterial biofilm formation induced by aminoglycosides, 142
in catheter lock therapy, 377
tolerance in biofilms, 271
Antibody
against fungal biofilms, 382
inhibition of biofilm formation by Cryptococcus neoformans, 138–139, 141–143
opsonization by, 292
radioimmunotherapy, 142–143
Antifungal(s)
catheter lock therapy, 38–39, 377–378
for Cryptococcus neoformans, 140–144
drug repurposing, 379–380
high throughput screening for small molecule compounds, 378–379
in vivo models for anti-biofilm drug discovery, 37–44
resistance, 382
Aspergillus fumigatus biofilms, 157
Candida albicans, 109, 126, 375
Cryptococcus neoformans, 140–141
mechanisms, 126–127, 375
strategies to combat, 376–380
surface coating with, 376–377
susceptibility profile of Candida biofilms, 125–126
tolerance to, 35
toxicity, 373–374
Antigen 43, E. coli, 251, 258
Anti-inflammatory drugs, synergistic interactions with amphotericin B or echinocandins, 158
Antimicrobial coatings, 376–377
Antimicrobials
bacteriocins, 327
colicins, 327
competition in biofilm communities, 327
innate immune system produced, 141
Antimicrobial tolerance in biofilms, 269–281
examples, 269–271
antibiotics, 271
biocides and antisepsics, 270
factors influencing biofilm susceptibility, 270–276
age, 274–275
antimicrobial chemistry, 270–272
cell density, 273–274
medium composition, 275–276
species composition, 275
substratum material, 272–273
fungal biofilms, 35
mechanisms, 276–281
antimicrobial depletion, 276–277
penetration, 277–279
physiology, 279–281
Antimicrobial toxins, of Bacillus subtilis, 80
Antiseptics
in catheter lock therapy, 377
Autotransporter T5SS adhesins, 176, 177–179
Azoles
 in combination therapy, 382
 for fungal biofilms, 35, 40
 resistance, 157, 382
Bacillus
 B. cereus, 140, 329
 B. licheniformis, 327, 349
motility-based interference competition, 332
Bacillus subtilis
 antimicrobial toxins, 80
 biofilm dispersal signals, 331
 biofilm-surface layer protein (BslA), 213–214
 bistable regulatory switches, 70, 77, 79
 differentiation, 76–79
 regulation of, 77–79
 dispersal from biofilm, 347
 EPS, 224, 226, 235–236
 colony phenotype, 226
 role in biofilm biology, 235–236
 significance, structure, and regulation, 235
 levan production by, 232
 life cycle, 86–87
Bacitracin, 327
Bacterial artificial chromosomes (BACs), 11
Bacteriocins, 327
BAP (biofilm-associated protein) family, 173–177, 209–213
B. cepacia
 CUP (chaperone-usher pili), 164
 in experimental evolution study, 334–335
 quorum-sensing in biofilm formation, 57, 60
B. cenocepacia
 BapA, 57–58
 Vibrio cholerae
 Cable pili, 168
 dispersal cells, 350
 dispersal from biofilms, 353
B. mallei
 BafA, 178
B. pseudomallei
 BbbA, 204–205, 215
B. thailandensis
 contact-dependent growth inhibition (CDI), 328
 T6SS of, 328, 332
B. xenovorans
 interaction with Pseudomonas aeruginosa, 325
 ornibactin secretion, 325
Bistable regulatory switches, 70, 77, 79
Blastospores, 100, 120, 122
BifA, 61, 305, 307, 311
Biocides, tolerance of bacteria to, 270
Biofilm(s)
 definition of, 251, 287, 302
 detection and quantitation methods, 289–290
 heterogeneity of, 322–323, 350–352
 life cycle of formation, 86
 phenotypic variation, 350–352
 prevalence of, 135
 subpopulations, 251
Biofilm development, 51–62
 adaptive responses governing, 59–60
 architecture and organization, species dependency of, 53
 bacterial subpopulation development and interaction, 58
 as cyclical process, 303
 group-level activity, 60
 initiation in response to environmental cues, 52–53
motility of bacteria, 55
 multiple pathways, 55–56
 nutritional conditions, 53–54
 as programmed process, 59–60
 steps in/phase of, 288–289
 termination of formation by environmental cues, 61
Biomaterials, to prevent biofilm formation, 376–377
Bistable regulatory switches, 70, 77, 79
Blastospores, 100, 120, 122
BmaI1, Burkholderia mallei, 365
Bordetella pertussis, filamentous hemagglutinin
 of, 179
Bradyrhizobium japonicum, polysaccharide adhesins
 of, 185–186
Brevibacillus, 325
Bromodeoxyuridine, 18
BslA, 213–214
B. cereus
 antimicrobial toxins, 80
 biofilm dispersal signals, 331
 biofilm-surface layer protein (BslA), 213–214
 bistable regulatory switches, 70, 77, 79
 differentiation, 76–79
 regulation of, 77–79
 dispersal from biofilm, 347
 EPS, 224, 226, 235–236
 colony phenotype, 226
 role in biofilm biology, 235–236
 significance, structure, and regulation, 235
 levan production by, 232
 life cycle, 86–87
Bacitracin, 327
Bacterial artificial chromosomes (BACs), 11
Bacteriocins, 327
BAP (biofilm-associated protein) family, 173–177, 209–213
Burkholderia cenocepacia
 BapA, 57–58
 Vibrio cholerae
 Cable pili, 168
 dispersal cells, 350
 dispersal from biofilms, 353
B. mallei
 BafA, 178
B. pseudomallei
 BbbA, 204–205, 215
B. thailandensis
 contact-dependent growth inhibition (CDI), 328
 T6SS of, 328, 332
B. xenovorans
 interaction with Pseudomonas aeruginosa, 325
 ornibactin secretion, 325
Butyrate, Cryptococcus neoformans biofilm
 inhibition by, 144
CaBChip (Candida albicans biofilm chip microarray
 system), 118, 379
Cable pili, of Burkholderia cepacia, 168
CaFA ribonuclease, 52
CalAp protein, Aspergillus fumigatus, 155
Calcineurin inhibitors, 382
Calcium chelation by alginate biofilms, 231
Calgary Biofilm Device, 4, 5, 118, 123
Candida, 33–44, 99–110, 115–127. See also Candida
 albicans biofilms
 antifungal susceptibility profile, 125–126
 antifungal therapy for, 375
C. dubliniiniensis, 34, 40, 43, 123, 125, 382
C. glabrata, 34, 40, 43, 121–123, 382
C. krusei, 34, 123
C. metapsilosis, 123
C. orthopsilosis, 123
C. pseudotropicalis, 122
Candida (continued)
C. tropicalis, 34, 120, 122–125
factors influencing, 36–37, 120–125
Candida products, 124–125
flow conditions, 36, 120–121
host immune components, 37
microbial cohabitants, 123–124
nutrients, 37, 121–122
species variability, 122–123
substrate, 121
host defenses against biofilms, 29, 294–295
host tissue-associated models, 119
in vitro models, 116–118
in vivo models, 37–44, 118–119
animal models, 37–44
denture model, 39–41
for discovery of anti-biofilm drugs, 37–44
future directions, 43–44
mucosal candidiasis models, 42
subcutaneous implant model, 41–42
table of models, 37
urinary catheter model, 42
vascular catheter model, 37–39
metabolism, 108–109
mixed bacterial-fungal biofilms, 381
morphology and architecture, 119–120
nanoscale culture of, 379
quorum sensing, 288
resistance mechanisms, 126–127
significance in infection, 33–34
stages of formation, 100–101
with *Staphylococcus aureus*, 289
structure and development, 99–101
traits, 34–35
immune resistance, 35
structure, 34–35
tolerance to antifungals, 35
treatment strategies, 40
Candida albicans biofilm chip microarray system
(CaBChip), 118, 379
Candida albicans biofilms, 99–110
antibodies against, 382
antifungal resistance, 382
antifungal susceptibility profile, 125
catheter lock therapy for prevention of, 377
cell morphology and biofilm formation, 101–102
cell surface and adherence, 103–106
dispersal, 289
drug resistance, 109–110
extracellular matrix material, 106–108
factors influencing, 36–37, 120–125
flow conditions, 36, 120–121
host immune components, 37
microbial cohabitants, 123–124
nutrients, 37, 121–122
substrate, 121
formation, 375
gene expression, 102–103
GPI-anchored surface-bound proteins, 155
high-throughput models, 118
host tissue-associated models, 119
inhibition
by modified surfaces and antimicrobial coatings, 376–377
by natural products, 380
by photodynamic therapy, 382–383
by quorum sensing modulation, 380–381
by targeting matrix, 381
inhibitors, identification of, 378
in vitro models, 116–118
in vivo models, 37–44, 118–119
animal models, 37–44
denture model, 39–41
for discovery of anti-biofilm drugs, 37–44
future directions, 43–44
mucosal candidiasis models, 42
subcutaneous implant model, 41–42
table of models, 37
urinary catheter model, 42
vascular catheter model, 37–39
metabolism, 108–109
mixed bacterial-fungal biofilms, 381
morphology and architecture, 119–120
nanoscale culture of, 379
quorum sensing, 288
resistance mechanisms, 126–127
significance in infection, 33–34
stages of formation, 100–101
with *Staphylococcus aureus*, 289
structure and development, 99–101
traits, 34–35
immune resistance, 35
structure, 34–35
tolerance to antifungals, 35
treatment strategies, 40
Candidiasis
bloodstream infections, 377
model of, 42
mucosal biofilms, 34, 42
nosocomial, 34
photodynamic therapy for, 382–383
Capillary flow cell biofilm, 7
Capsular polysaccharide (CPS), 224–225, 231–232
Escherichia coli, 225, 231–232
role in biofilm biology, 231–232
significance, structure, and regulation, 225, 231
Streptococcus pneumoniae, 225, 231–232
Capsule, 330
Cryptococcus neoformans, 136, 138–140, 288, 292
Escherichia coli, 251, 258
synthesis, 231
Carbonylcyanide *m*-chlorophenylhydrazone (CCCP), 347
Caspofungin
for fungal biofilms, 39, 42
resistance, 382
Aspergillus fumigatus biofilms, 157
Candida biofilms, 125
Cryptococcus neoformans, 140, 141
CatB, in *Aspergillus* biofilms, 155
Catch bonds, 167
Catheter lock therapy, 38–40, 377–378
Catheters
Candida biofilms on, 116–122
modified surfaces and antimicrobial coating to prevent biofilm formation, 376–377
prevention of biofilm formation on, 142
Caulobacter crescentus
diguanlyate cyclase, 367
holdfast, 172, 180, 182–183, 184–185
tight adherence (Tad) pilis, 164, 165, 172
Cbk1, 105–106
CCCP (carbonylcyanide m-chlorophenylhydrazone), 347
CDC reactor, 4, 6, 7
CIDI (contact-dependent growth inhibition), 327–328
c-di-GMP
Acinetobacter baumannii, 368
alginate regulation, 308–309
biofilm formation
adaptive responses and, 59–60
initiation, 52–53
maturation, role in, 308–310
termination, 61–62
cellulose production and, 236, 257
chemical biology strategies targeting, 366–369
c-di-GMP
Acinetobacter baumannii, 368
alginate regulation, 308–309
biofilm formation
adaptive responses and, 59–60
initiation, 52–53
maturation, role in, 308–310
termination, 61–62
cellulose production and, 236, 257
chemical biology strategies targeting, 366–369
c-di-GMP
Acinetobacter baumannii, 368
alginate regulation, 308–309
biofilm formation
adaptive responses and, 59–60
initiation, 52–53
maturation, role in, 308–310
termination, 61–62
cellulose production and, 236, 257
chemical biology strategies targeting, 366–369
CsgD regulation by, 254
degradation of, 364
dispersal from biofilms, 310–312, 348–349, 353–356
Escherichia coli, 254, 257, 367
flagellar action and, 304
irreversible attachment and, 304–308
overview, 363–364
Salmonella enterica, 254
sensory input domains, 302
structure, 302
swarming motility and, 305
twitching motility and, 305
Vibrio cholerae, 234, 367
CdrA, Pseudomonas aeruginosa, 52, 179, 208–209, 309–310, 367
Cek1 kinase, 106
Cell-cell communication. See also Quorum sensing
dispersal, 347
in fungal biofilms, 375
inhibition of, 328–329
Cell differentiation. See Differentiation
Cell lysis
during biofilm formation, 80
eDNA from, 82
prophage-induced, 84–85, 353
Pseudomonas aeruginosa, 84–85
Cellulose, 224
Escherichia coli, 226, 236–237, 251–254, 256–258
role in biofilm biology, 237
significance, structure, and regulation, 225, 236–237
Cellulose synthase, 236
Cell wall
Candida albicans, 103
proteins in Aspergillosis biofilms, 155
Central venous catheter, Candida biofilms of, 119
Cerebrospinal fluid, Cryptococcus neoformans biofilm formation and, 136
CFEM proteins, 108
Cfl1 protein, Cryptococcus neoformans, 138
Chaperone-usher pilis (CUP), 164–167
Cheaters, 321–322
Chemical biology strategies for control of biofilms, 363–369
Chitinase, 156, 205–206
Chitosan, 143, 380
Chlorhexidine for Candida biofilms, 125–126
resistance in Candida albicans biofilms, 101
surface coating with, 377
Chondromyces apiculatus, 75
Citrobacter
C. diversus, antimicrobial tolerance in biofilms of, 270
C. koseri, 259
curli, 173, 255
rugose biofilms, 253
CLASI-FISH (combinatorial labeling and spectral imaging-FISH), 18
Clotrimazole, 378
Coaggregation symbiosis, 289
Colanic acid, 224–226, 233–234, 251, 259
colony phenotype, 226
colonization, resistance to, 332
Colony biofilm, cultivation of, 4, 5–6
Community systems (CoSy) biology, 335
Competition in biofilm communities, 319–335
evolution of competitive interactions, 324, 325–332, 333–335
ecological and evolutionary parameters in biofilms, 320–324
competition in multispecies biofilms, 321–322
genetic and phenotypic diversity, 322–323
generic expression profiles, 323–324
group effects, 320
kin competition, 322
experimental evolution, 334–335
theoretical modeling, 333–334
interference competition, 325–332
adhesion inhibition, 329–330
alteration of biofilm development, 328–332
antimicrobial compounds, 327
bacteriocins, 327
biofilm dispersal, 330–331
Competition in biofilm communities (continued)
cell-to-cell communication, inhibition of, 328
colicins, 327
contact-dependent growth inhibition, 327–328
environment alteration, 326
growth inhibition, 326–328
matrix degradation, 330
motility-based, 331–332
predation, 328
resistance to colonization, 332
summary of strategies, 324
toxic metabolic byproducts, 326–327
mechanisms of competition, 324–332
exploitative competition, 324–325
interference competition, 324, 325–332
predation, 328
resistance to colonization, 332
summary of strategies, 324
C-signaling, 75, 76
CSLM (confocal scanning laser microscopy), 3, 6–7, 15–20
CSP (competence-stimulating peptide), 329
CS1 pilus, of Escherichia coli, 166, 168
CUP (chaperone-usher pilus), 164–167
Curcumin, 382
Curli, 251–259
biogenesis pathway, 255–256
history of, 255
plant interaction, 259–260
Cyanobacteria, filamentous multicellularity in, 72–73
Cyclic diguanylate. See c-di-GMP
Cyclic diguanylate-regulated two-partner secretion
Cyclosporine, 382
Cystic fibrosis
Aspergillus biofilms, 158, 296, 381
Burkholderia cepacia cable pili, 168
evolution of Pseudomonas aeruginosa populations, 353
host defenses against Pseudomonas aeruginosa biofilms, 293–294
metagenomic analysis, 10
Pseudomonas aeruginosa alginate production in patients, 230–231
DC-SIGN, 152
2-decenoic acid, 347, 355
Defensins, 158, 292
Dendritic cells, 290
Denture model, of fungal biofilm, 39–41
Detection methods, 289–290
Developmental robustness or canalization, 70
DGC. See Diguanylate cyclase
Diclofenac, synergistic interactions with amphotericin B or echinocandins, 158
Dictyostelium discoideum, 328
differentiation, 67–87
in Bacillus subtilis, 76–79
in cyanobacteria, 72–73
probabilistic, 79
temporal, 73
terminal, 71
Diguanylate cyclase (DGC), 52, 236, 254, 257, 348, 364, 366–368
Pseudomonas aeruginosa, 302, 305–310, 312
DipA, Pseudomonas aeruginosa, 311
Dispersal from biofilms, 289, 303, 310–312, 330–331, 343–356
c-di-GMP and, 310–312
ecological and evolutionary aspects, 352–354
effectors of, 346, 349–350
Escherichia coli, 348, 349–350
glutamate-mediated, 311
motile phase of biofilm life cycle, 344–346
nitrous oxide and, 311
opportunities for biofilm control, 354–356
phenotype of dispersal cells, 350–352
Pseudomonas aeruginosa microcolonies, 84–85
regulation and coordination in seeding dispersal, 347–349
starvation-induced, 348
DispersinB, 202, 349, 354
Division of labor, 68–70
Bacillus subtilis, 79–80
bacterial multicellularity, 71–74
in actinobacteria, 73–74
in cyanobacteria, 72–73
in myxobacteria, 73, 74–76
conceptual and theoretical basis for, 69
definition, 67–68
ecology of cell differentiation, 67–87
phenotypic heterogeneity, 70, 79
phenotypic specialization distinct from, 71
phenotypic trade-offs and, 72–74
Pseudomonas aeruginosa, 80–82
spatial, 73
DNase, 56, 82, 107, 109, 207, 308, 349
DNA sequencing, 10–11
Dormant state, *Cryptococcus neoformans*, 144
Dornase alfa (*Pulmozyme*), 43
Doxycline, in catheter lock therapy, 377
DppV, in *Aspergillus* biofilms, 155
DPS (DNA-binding protein from starved cells), 216
Drip-flow reactor, 4, 6–7
Drug discovery, high throughput screening for, 378–379
Eap1, *Candida albicans*, 104
EcDOS, 348
Echinocandins
for fungal biofilms, 35, 39, 41
for *Candida* biofilms, 375
in catheter lock therapy, 377
in combination therapy, 382
immunomodulatory effects on host cells, 295
resistance
in *Aspergillus fumigatus* biofilms, 157
Candida biofilms, 125–126
synergy with anti-inflammatory drugs, 158
ECM. See Extracellular matrix
Ecological and evolutionary parameters in biofilms, 320–324
cooperation in multispecies biofilms, 321–322
dispersal, 352–354
genetic and phenotypic diversity, 322–323
genetic expression profiles, 323–324
group effects, 320
kin competition, 322
eDNA (extracellular DNA), 151, 156–157, 289
Mycobacterium xanthus biofilms, 237–238
nucleoid-binding proteins and, 216
polysaccharide interaction with, 237–238
Pseudomonas aeruginosa, 56, 57, 82, 237, 307–308
quorum-sensing, role in generation of, 57
targeting for control of biofilms, 381
EDTA
for *Candida* biofilms, 126
for *Cryptococcus neoformans* biofilm, 143–144
Efflux pumps, 110, 126, 375, 381
Efg1 transcription factor, 108–109
Enterobacteriaceae, 249
cellulose production, 237, 257
colic acid, 233
CUP (chaperone-usher pili), 164–165
extracellular matrix
in host and disease, 257–258
outside the host, 259
rugose biofilms, 253
Enterococcus, 291, 295
Environment alteration, interference by, 326
Enzyme-linked immunosorbent assay (ELISA) spot assay, for *Cryptococcus neoformans*, 138–139
Epigenetics, 10
EPM (exopolymeric matrix), of *Cryptococcus neoformans*, 137–143
EPS. See Exopolysaccharide
Erythrosine, 382
Escherich, Theodor, 249
Escherichia coli
adesins, polysaccharide, 180–181
Ag43 monomeric autotransporter adhesin, 177–178
alternative CUP pathway, 166, 168
antimicrobial tolerance in biofilms, 276
capsular polysaccharide (CPS), 225, 231–232
c-di-GMP, 254, 257, 367
cellulose, 251–254, 256–258
colic acid, 226, 233–234
colicin production, 327
contact-dependent growth inhibition (CDI), 328
CS1 pilus, 166, 168
CUP (chaperone-usher pili), 164–167
curli, 165, 166, 172–173, 251–259
dispersal from biofilm, 348, 349–350
enterohemorrhagic *E. coli* (EHEC), 172, 250, 259
environmental alteration by, 326
in experimental evolution study, 334
extracellular matrix (ECM), 251–260
extraintestinal pathogenic *E. coli* (ExPEC), 250
genome plasticity, 249
group effects, 320
habitats, 249–251
indole production, 329
interspecies biofilms, 258
intracellular bacterial communities, 250–251, 258
K12 strain, 251, 253, 257, 259
laboratory biofilm models, 251–253
motility-based interference competition, 331–332
O157:H7, 250, 259
pellicle formation, 251–253

INDEX
Escherichia coli (continued)
physiological flexibility, 250
polysaccharides, 180–181, 329–330, 332
rugose biofilms, 253
surface-active compounds, 329–330, 332
UpaG trimeric autotransporter adhesin, 178
uropathogenic E. coli (UPEC), 232, 250–251, 258, 327
Wzi protein, 181
Essential oils, for Candida biofilms, 126
Evolution
biofilm dispersal, 352–354
of competitive interactions, 324, 325–332, 333–335
experimental evolution, 334–335
theoretical modeling, 333–334
of cooperation, 321–322
ecological and evolutionary parameters in biofilms, 320–324
cooprration in multispecies biofilms, 321–322
dispersal, 352–354
genetic and phenotypic diversity, 322–323
Genetic expression profiles, 323–324
group effects, 320
kin competition, 322
Exopolysaccharide (EPS), 288
Bacillus subtilis, 213–214
in biofilm maturation process, 308–310
degradation to allow dispersal, 349
dowregulation of adhesion factor genes by, 330
irreversible attachment, role in, 306–308
Pseudomonas aeruginosa, 206, 294
in theoretical modeling of competitive interactions, 333
Vibrio cholerae, 202–205
Experimental evolution in biofilms, 334–335
Exploitative competition, 324–325
Extracellular DNA. See eDNA (extracellular DNA)
Extracellular matrix (ECM), 288–289
Aspergillus fumigatus, 150–157
Candida, 106–108, 124
degradation of, 330
Enterobacteriaceae
in host and disease, 257–258
outside the host, 259
Escherichia coli, 251–260
matrix proteins, 201–217
targeting for control of biofilms, 381
Extracellular polymeric substances (EPSs), 344
Extracellular polysaccharide (EPS)
adhessins, 179–183
Bacillus subtilis, 76, 80
biosynthesis, secretion, and anchoring, 180–182
polyasaccharide diversity, 182–183
structure and function, 180
Farnesol, 109, 288, 380–381
Feedback loops, 70, 72, 77, 234
Filamentous fungi
biofilm formation by, 150, 375
hydrophobin-mediated adhesion in, 155
Filastatin, 126, 378
Fimbral adhesins, 164–173. See also Pili; specific adhesins
alternative CUP, 166–168
assembly and secretion of, 166
cable pili, of Burkholderia cepacia, 168
CS1 plus, 166, 168
CUP (chaperone-usher pili), 164–167
curli, 165, 166, 172–173
elements, 165
Fip (fimbral-low-molecular weight protein), 165, 170, 171–172
MSHA (mannose-sensitive hemagglutinating) pilus, 717
nucleation-precipitation pilus, 165, 166, 172–173
tight adherence (Tad) pili, 164, 165, 170, 171–172
toxin coregulated pilus (TCP), 165, 171
type 1 pili, 165, 167
type IV pili, 165, 168–171
components, 170
type 1Va, 165, 169–171
type 1Vb, 165, 170, 171
FimX protein, Pseudomonas aeruginosa, 305–306
FISH (fluorescent in situ hybridization), 3, 16, 18
FK506, 382
FKSI gene, 107–108
Flagella
Bacillus subtilis, 76
dispersal, role in, 350
Escherichia coli, 251, 254
loss of, 344
Pseudomonas aeruginosa attachment to surfaces, 303–304
structure, 304
swarming motility, 304–305, 308
FleQ, Pseudomonas aeruginosa, 228–229, 303–305, 307
Flow conditions, influence on fungal biofilms, 36, 120–121
Fip (fimbral-low-molecular weight protein) pili, 165, 170, 171–172
Fluconazole
for fungal biofilms, 36, 39–40
resistance, 375, 382
Cryptococcus neoformans, 140
Staphylococcus epidermidis–Candida mixed biofilm, 123
Flufenamic acid, Candida albicans biofilm inhibition by, 380
Fluorescence photoactivated localization microscopy (FPLAM), 15
Fluorescence resonance energy transfer (FRET), 367
Fluorescent imaging, 15–19
Fluorescent in situ hybridization (FISH), 3, 16, 18
Founder effect, 86
Fourier transform infrared spectrometry (FT-IR), 3, 16, 19
FPLAM (fluorescence photoactivated localization microscopy), 15
Frequency-dependent selection, 323
FRET (fluorescence resonance energy transfer), 367
Fruiting bodies, of myxobacteria, 74–76
FT-IR (Fourier transform infrared spectrometry), 3, 16, 19
Fumitremorgin B, 155
Fungal biofilms. See also Candida; Candida albicans
antifungal resistance
mechanisms of resistance, 375
strategies to combat resistance, 376–380
combating, 376–383
antibodies, 382
catheter lock therapy, 377–378
combination therapy, 382
high throughput screening for small molecule compounds, 378–379
matrix targeting, 381
modified surfaces and antimicrobial coating to prevent biofilm formation, 376–377
natural products, 380
photodynamic therapy, 382–383
quorum sensing modulation, 380–381
repurposing older drugs, 379–380
Cryptococcus neoformans, 135–145
development of, 374–375
drug resistance, 157
fungus-bacteria interactions, 123–124
host factors influencing, 35–37
flow conditions, 36
host immune components, 37
nutrient composition, 37
substrates and conditioning, 36–37
in vivo models and drug discovery, 37–44
animal models of Candida infection, 37–44
denture model, 39–41
Fusarium keratitis, 42–43
future directions, 43–44
mucosal candidiasis models, 42
subcutaneous implant model, 41–42
table of models, 37
urinary catheter model, 42
vascular catheter model, 37–39
medically important genera, 34
mixed bacterial-fungal biofilms, 381
significance in infection, 33–34
traits, 34–35
immune resistance, 35
structure, 34–35
tolerance to antifungals, 35
Fungal infections. See also Fungal biofilms
aspergilloma, 36, 43, 149–151, 153
aspergillosis, 36, 43, 149–152
candidiasis
bloodstream infections, 377
model of, 42
mucosal biofilms, 34, 42
nosocomial, 34
photodynamic therapy for, 382–383
keratitis, 42–43, 119, 149
mortality rate associated with, 373
Fusarium keratitis, 42–43, 119
Fusarium oxysporum, 42–43
Fusarium solani, 43
GAG, Aspergillus fumigatus, 150–153
Galactomannan, Aspergillus fumigatus, 150–152
Galacto-pyranose, 152
Galacto-pyranose, (N-acetyl)-Galactosamine, 152
Geldanamycin, 157, 158, 382
Gene expression
biofilm-associated in Candida albicans, 102–103
profiles of biofilm bacteria, 323–324
Genomics, 10–11
metagenomics, 10–11
single-cell, 11
Gentian violet, for Candida biofilms, 126
GlcNAc-binding protein A (GbpA), 205–206
Gliotoxin, 155, 296
α-1,3-Glucan, Aspergillus fumigatus, 150–153
β-Glucan
Candida albicans, 295
targeting for control of biofilms, 381
β-1,3 Glucan, Candida albicans, 107, 109
Gluconacetobacter xylinus, 236–237, 257
Gluconoxylomannan (GXM), 136, 138–141, 292
Glutamate, 311
Glycerol biosynthetic genes, 109
Glycophosphatidylinositol (GPI) anchor
Aspergillus, 155
Candida albicans, 103–105
Gram-negative bacteria, adhesins of, 163–188
fimbrial adhesins, 164–173
nonfimbrial adhesins, 173–179
overview, 163–164
polysaccharide, 179–187
Gram-positive bacteria, bacteriocin production by, 327
Green fluorescent protein, 17, 19
Group effects, in biofilms, 320
Group selection, 352
GXM (glucuronoxylomannan), 136, 138–141, 292
Haemophilus influenzae
CUP (chaperone-usher pili), 164
filamentous hemagglutinin, 179
Hap autotransporter, 178
Haloferax volcanii, 5
Hap autotransporter, 178
Hemagglutinin-like adhesins, 176, 179
Heme NO/O2-binding (HNOX) protein, 348
Heterocysts, 72–73
Heterogeneity in biofilms, 2, 322–323
genetic variability, 2
phenotypic, 350–352
physiological heterogeneity, 2
stochastic gene expression events, 2
High-throughput models, for Candida biofilms, 118
Histatin 5, surface coating with, 377
Histone deacetylase, 144
HNOX (heme NO/O2-binding) protein, 348
H-NS (histone-like nucleoid-structuring protein), 216
Hog1 kinase, 106
Holdfast, 172, 180, 182–183, 184–185
Hollowing, 84
Homoserine lactones (HSLs), 363–365
Host defenses against biofilms, 290–296
Candida, 291, 294–295
Enterococcus, 291, 295
Pseudomonas aeruginosa, 291, 293–294
Staphylococcus, 291, 292–293
Hsp90, 108, 157, 158, 375, 382
Human Metabolome database, 15
HU protein, 216
Hwp1, Candida albicans, 104–105
Hydrogen peroxide, role in competition, 326–327, 332
Hydrophobins, in Aspergillosis biofilms, 155–156
Hyphae
aerial, 73–74
Candida albicans, 101–102, 119
Hyphomicrobium, 185
H. vulgare, 183
Hyphomonas spp., 185
Hypoxia
Candida biofilms, 108–109, 125
Cryptococcus neoformans biofilm formation and, 144
Hyr1 gene, 295
IBCsintracellular bacterial communities, 250–251, 258
ica operon, 227–228
IHF (integration host factor), 216
IL-6, 258
IL-8, 258
IL-10, 152
IL-1 receptor antagonist (IL-1Ra), 152
Imaging biofilms, 15–20
attenuated total reflection Fourier transform infrared spectrometry (ATR/FT-IR), 16, 19
confocal scanning laser microscopy (CSLM), 3, 6–7, 15–20
fluorescence photoactivated localization microscopy (FPLAM), 15
fluorescent in situ hybridization (FISH), 3, 16, 18
photoactivated localization microscopy (PLAM), 15
Raman spectrometry, 3, 16, 20
stochastic optical reconstruction microscopy (STORM), 15
Imaging flow cells, 4, 7
Immune resistance of fungal biofilms, 35
Immune responses, 290–296
to Cryptococcus neoformans, 136, 140–141, 141
Enterobacteriaceae extracellular matrix and, 258
to Pseudomonas aeruginosa, 231
Indole, 329
Innate immune system, antimicrobials produced by, 141
Integration host factor (IHF), 216
Interbacterial complementation, 255
Interference competition, 325–332
Interferon-γ, 295
Interleukin 6 (IL-6), 258
Interleukin 8 (IL-8), 258
Interleukin 10 (IL-10), 152
Intracellular bacterial communities (IBCsin), 250–251, 258
Iron, 325
iTRAQ, 15
Kannurin, for Cryptococcus neoformans, 140
K antigens, 231
Keratitis, 42–43, 119, 149
kil gene, 327
Kin competition in biofilms, 322
Kin selection, 352
Klebsiella
K. pneumoniae
antimicrobial tolerance in biofilms, 270–271
cellulose production, 237
microfluidics, 9
Wzi protein, 181
klebicsins, 327
Koch’s postulates, 135
Lab-on-a-chip, 8–9
Lactic acid bacteria, bacteriocin production by, 327
Lactobacillus
Candida biofilm interaction, 123, 124
environmental alteration by, 326
L. acidophilus, 330
Lactoferrin, 141, 158, 291, 294
Lap (large adhesin protein), 174–175, 177
LapA, Pseudomonas fluorescens, 306
LapA, Pseudomonas putida, 61
LapG protease, 349
Laser capture microdissection, 13
Las quorum-sensing system, 82
LasR, Pseudomonas aeruginosa, 365–366
LecA/LecB, in Pseudomonas aeruginosa biofilms, 56–57, 59, 207–208
Legionella pneumophila, 348
Levan, 224–226, 232–233
role in biofilm biology, 232–233
significance, structure, and regulation, 225, 232
Lipopolysaccharide (LPS), 181, 203
Liquid chromatography mass spectrometry (LCMS), 13–15
Listeria monocytogenes, 270
LL-37 peptide, 291
Lock therapy, 38–40, 377–378
Locks, 38–40

Macrocolony formation, Pseudomonas aeruginosa biofilms, 310
Macrophages, 290, 292–296
MAP kinases, 106
Matrix proteins, 201–217
Bacillus subtilis BslA, 213–214
Bap protein family, 209–213
nucleoid-binding proteins, 216
OMVs, 215–216
Pseudomonas aeruginosa, 207–209
CdrA, 208–209
LecA and LecB, 207–208
matrix proteome, 209
OMVs, 215
Vibrio cholerae, 202–207
Bap1, 204–205, 215
GbpA, 205–206
matrix proteome, 206–207
OMVs, 215
RbmA, 202–204
RbmC, 204–205
Matrix proteome of Pseudomonas aeruginosa, 209
of Vibrio cholerae, 206–207
Maturation, formation, 308–310
Medical devices
biofilm formation on, 377
Cryptococcus neoformans biofilms, 136
Melanin, 151, 153–154
Meningoencephalitis, Cryptococcus neoformans, 138
Metabolism, Candida albicans biofilm, 108–109
Metabolomics, 13–15
Metagenomics, 10–11
metaXCMs, 15
Methamphetamine abuse and Cryptococcus neoformans infection, 144
Methylene blue, 383
METLIN database, 15
Micafungin
for fungal biofilms, 40
resistance in Candida biofilms, 125
Microarrays, 12
Microcins, 327
Microcolonies
Candida albicans, 101
Cryptococcus neoformans, 137, 141
dispersal from, 345
Pseudomonas, 53, 58–59, 80–85, 308–310
species dependency, 53
Microfluidics, 5, 7–10
Microtiter plates, cultivation and study of static biofilms on, 3–5
Miniaturization approaches for studying biofilms, 7–10
Miniaturized total analysis system, 8
Minocycline, in catheter lock therapy, 377
MKc1 kinase, 106
Monomeric autotransporter adhesins (MAAs), 176, 177–178
MorA, Pseudomonas aeruginosa, 307
Moraxella catarrhalis, inhibition by hydrogen peroxide, 327
Motile phase of the biofilm life cycle, 344–346
Motility. See also Flagella
swarming, 304–305, 308
twitching, 304–306, 308
Motility-based interference competition, 331–332
MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), 288
MSHA (mannose-sensitive hemagglutinating) pilus, 717
MucilAir, 158
Mucosal candidiasis models, 42
Multicellularity, bacterial, 71–74
Multidrug resistance (MDR) pumps, in Aspergillus fumigatus, 157
Mutacin I, 327
Mutanobactins, 381
Myxobacteria, multicellularity in, 73, 74–76
Myxococcus xanthus
chimeric fruiting bodies, 75–76
eDNA, 237–238
life cycle, 86–87
multicellularity, 74–75
predation by, 259, 328
slime, 182–183, 186–187
MZmine, 15
Natural products, antibiofilm activity of, 380
NdvB gene, in Pseudomonas aeruginosa, 56
NDV-3 vaccine, 44
Neisseria gonorrhoeae, Lactobacilli interference with growth, 326
Neisseria meningitidis, inhibition by hydrogen peroxide, 326
Neutrophil apoptosis, 153
Next-generation sequencing, 10–11
Nitric oxide (NO)
c-di-GMP signaling interference, 368–369
dispersal, role in, 311, 331, 348–349, 353, 355–356
Nitric oxide synthase (iNOS), 292
Nitrogenase, 72
NLRP3 inflammasome, 144
Nonsteroidal anti-inflammatory drugs, Candida albicans biofilm inhibition by, 380
Nrgl, 109
Nucleation-precipitation pili, 165, 166, 172–173
Nucleoid-binding proteins, 216
Nutrient composition, influence on fungal biofilms, 37
Nystatin resistance, 101, 125, 375
Oxidative burst, PMN, 290, 292
Pf4 bacteriophage, 354
Penetration, of antimicrobials in biofilms, 277
Pel, Pseudomonas aeruginosa, 207, 224–226, 228, 306–309
colony phenotype, 226
role in biofilm biology, 228
significance, structure, and regulation, 228
Pellicles, 325
Escherichia coli, 251–253
Peripheral rods, Myxococcus xanthus, 75
Persister cells, 375
Aspergillus fumigatus, 157
Candida albicans, 110
P4a bacteriophage, 354
Phagocytosis, 290–292, 294–296
protection from, 230
Phenazines, 381
Phenol-soluble modulins (PSMs), 289
Phenotypic heterogeneity, 70, 79, 350–352
Phenotypic trade-offs and division of labor, 72–74
Phosphodiesterase (PDE), 52, 348, 364, 366
Pseudomonas aeruginosa, 302, 305, 307–308, 310–312
Phosphorylation cascade, in Bacillus subtilis differentiation, 77
Photoactivated localization microscopy (PLAM), 15
Photodynamic therapy, 382–383
Photorhabdus luminescens, 327
P1A. See Polysaccharide intercellular adhesion
Pili
alternative CUP, 166–168
assembly and secretion of, 166
attachment pili of Gram-negative bacteria, 164–173
cable pili, of Burkholderia cepacia, 168
CSI pili, 166, 168
CUP (chaperone-usher pili), 164–167
curli, 165, 166, 172–173
toxin coregulated pilus (TCP), 165, 171
type 1 pili, 165, 167
Escherichia coli, 250, 251, 258
inhibition by 2-pyridone, 256
UPEC, 250
type IV pili, 165, 168–171, 328
components, 170
Pseudomonas aeruginosa, 304–306, 308, 350
twitching motility, 304–306, 308
type IVa, 165, 169–171
type IVb, 165, 170, 171
PilZ1 protein, 308
PilZ, Pseudomonas aeruginosa, 306
PLAM (photoactivated localization microscopy), 15
Plectonema boryanum, 73
Pleurocidin, 158
Polyene resistance, in Aspergillus fumigatus biofilms, 157
Polymethylmethacrylate, antifungal incorporation into, 377
Polymorphonuclear neutrophils (PMNs), 290–296
Polyphenism, 70
Polysaccharide adhesins, 179–187
extracellular polysaccharide (EPS), 179–183
holdfast, 184–185
polar surface polysaccharide from Rhizobiales, 185–186
slime, 186–187
Polysaccharide intercellular adhesion (PIA), 224–228
colony phenotype, 226
roles in biofilm biology, 227–228
significance, structure, and regulation, 224–227
Polysaccharides, bacterial extracellular, 223–238
aggregative, 224–229
Pel of Pseudomonas aeruginosa, 224–226, 228
polysaccharide intercellular adhesion (PIA), 224–228
Psl of Pseudomonas aeruginosa, 224–226, 228–229
architectural, 224–226, 233–237
Bacillus EPS, 224, 226, 235–236
cellulose, 224, 226, 236–237
colic acid, 224–226, 233–234
Vibrio polysaccharide (VPS), 224, 226, 233, 234
colony phenotypes, 226
functions, 224
future perspectives on, 237–238
protective, 224–226, 229–233
alginate, 224–226, 230–231
capsular polysaccharide (CPS), 224–225, 231–232
levan, 224–226, 232–233
structure, 223, 225
Polysaccharide synthesis locus. See Psl
Polytetrafluoroethylene peritoneal dialysis fistula, 136
Porphyromonas gingivalis, 271, 330
PP7 bacteriophage, 354
Pqs quorum-sensing system, 57–58, 82–83
Predation, 328
ECM protection from, 251, 259
by Myxococcus xanthus, 259
Programmed cell death, 71, 80
Phage, 84–85, 346
Propionibacterium acnes, 271
Prosthetic cardiac valves, Cryptococcus neoformans
biofilms of, 136
Proteomics, 13–15
shotgun, 14–15
Pseudalteromonas tunicata, 84, 346
Pseudohyphae, 100, 119, 123
Pseudomonas. See also Pseudomonas aeruginosa
cellulose, 236–237
P. fluorescens, 61
contact-dependent growth inhibition (CDI), 327
dispersal from biofilm, 349
in experimental evolution study, 334
interspecies biofilms, 258
Lap adhesin, 174, 306
P. knackmussii, 53–54
P. putida, 53, 55–56, 61, 328, 334
dispersal from biofilm, 349–350
Lap adhesin proteins, 174–175, 177
P. syringae, levan production by, 232
P. tunicata, 350–352
pyocins, 327
Pseudomonas aeruginosa
adaptive responses governing formation, 59–60
antimicrobial resistance, 157, 231
antimicrobial tolerance in biofilms, 270–271, 274, 276, 278
Aspergillosis fumigatus coinfection in cystic fibrosis, 158
Aspergillus fumigatus inhibition by, 289
biofilm dispersal molecules produced by, 331
Burkholderia intereaction, 325
Candida albicans mixed biofilm, 124
Candida inhibition by, 381
CdrA, 52, 179, 208–209, 309–310, 367
cell diversification, 323
cell lysis, 80
diguanylate cyclase (DGCC), 302, 305–310, 312
dispersal, 344, 346, 348–356
dispersal cells, phenotype of, 350–352
dispersal of microcolonies, 84–85
division of labor, 80–82
eDNA, 237, 307–308
Escherichia coli mixed biofilm, 329
Flp (fimbrial-low-molecular weight protein) pilus, 165, 172
formation of biofilms
as cyclical process, 303
dispersal, 310–312
irreversible attachment, 304–308
macrocolony formation, 310
maturation, 308–310
microcolony formation, 308–310
pathways of, 56
as programmed process, 59–60
reversible attachment, 303–304
hollowing of colonies, 84
host defenses against biofilms, 291, 293–294
HU protein, 216
imaging biofilms, 18–19
lapF gene, 175
life cycle, 86–87
matrix proteins, 207–209
CdrA, 208–209
LecA and LecB, 207–208
matrix proteome, 209
microcolonies, 80–85, 308–310
motility-based interference competition, 331
motility of bacteria, 55
capsular polysaccharide adhesins, 180
PP7 bacteriophage, 354
prophage-associated cell lysis, 346, 353
quinolone signal (PQS)-based quorum-sensing system, 57–58, 82–83
quorum sensing, 57, 60, 82–82, 291, 365–366
quorum-sensing inhibition, 329
sharing of common goods, 83–84
signaling during microcolony formation, 82–83
s-RNA-mediated regulation, 52–53
structure development dependent on nutritional conditions, 53–54
subpopulation interaction, 58
tight adherence (Tad) pili, 165, 172
type IVA pili, 164, 165, 169–171
type IV pili, 55, 56, 60, 304–306, 308, 350
versatility of, 301
Pseudoxanthomonas, 325
colony phenotype, 226
role in biofilm biology, 229
significance, structure, and regulation, 228–229
PSMs (phenol-soluble modulins), 289
Public goods, 322, 325
Putisolvins, 349
2-pyridones, 256

Quantitation methods, 289–290
Quorum sensing, 56–58, 288
 Candida albicans, 109
 chemical biology strategies targeting, 364–366
dispersal from biofilms, 347
 in fungal biofilms, 375
interference with, 328–329
modulation for control of biofilms, 380–381
overview, 363
 Pseudomonas aeruginosa, 57, 60, 82–83, 291, 365–366
sRNA control of, 364, 366
Quorum sensing inhibitors, 364–366
Quorum sensing inhibitor selector (QSIS) systems, 364–366
Radioimmunotherapy, for *Cryptococcus neoformans*
 biofilms, 142–143
Raman spectrometry, 3, 16, 20
RbdA, *Pseudomonas aeruginosa*, 311
RbmA (rugosity and biofilm structure modulator A), 202–204
RbmC (rugosity and biofilm structure modulator C), 204–205
Rbt1 adhesin, 105
Reaction norms, 69–70
Red dry and rough (rdar) biofilms, 253
Resistance
 biofilm subpopulations and, 251
to colonization, 332
 Reynolds number, 8
Rhamnolipids, 57, 288, 294
Rhizobiales, polar surface polysaccharide from, 185–186
Rhizobium spp.
 CUP (chaperone-usher pili), 164
 R. leguminosarum polysaccharide adhesins, 185–186
Rhl quorum-sensing system, 82
Rhodobacter sphaeroides, 257, 347
Riboswitch, 254, 366
Rifampin, in catheter lock therapy, 377
RNAseq, 12
RoeA, *Pseudomonas aeruginosa*, 307, 310
ROS-inducing antimicrobial agents, 158
RT-qPCR, 12–13
Rugose biofilms, 253, 259
Rugosity and biofilm structure modulator A (RbmA), 202–204
Rugosity and biofilm structure modulator C (RbmC), 204–205
Saccharomyces cerevisiae, 104–105, 108
SadA trimeric autotransporter adhesin, 178
Salmonella
 antimicrobial tolerance in biofilms, 270
curli, 173, 255
extracellular matrix, 257–259
rugose biofilms, 253
 S. enterica c-di-GMP, 254
cellulose, 236
 S. enterica serovar *Enteritidis* BapA, 213
 S. enterica serovar *Typhimurium* c-di-GMP, 254, 259
cellulose production, 237
colanic acid production, 234
 S. enteritidis cellulose production, 237
trimeric autotransporter adhesins, 178
SarA, 227
Secretion systems
 type III secretion in *Pseudomonas aeruginosa*, 354
type 1 secretion system (T1SS), 173–177
type 5 secretion system (T5SS), 174, 176, 177–179
type 6 secretion system (T6SS), 328, 332
type VII secretion system, 255
Selection
 frequency-dependent, 323
group, 352
 kin, 352
Serratia marcescens, 123, 347, 351–352
Shearinines, 380
Shewanella woodyi, 348
SiaD, *Pseudomonas aeruginosa*, 310
Siderophores, 325
Signaling pathways regulating bacterial biofilm formation, 363–364
Silver-coated catheters, 377
Single-cell genomics, 11
SinR protein, *Bacillus subtilis*, 77
Slime, 186–187
Sloughing, 344
SkrR protein, *Bacillus subtilis*, 77
SM21, 378
Small RNAs (sRNAs), 52, 364, 366
Sodium hypochlorite, for *Candida* biofilms, 126
Sodium nitroprusside, 311
SOS response, colicin expression regulated by, 327
Spatial segregation, 68
Specialization in biofilms, 70–71
Spo0A protein, 77, 79
Sporulation, in *Myxococcus xanthus*, 75
SpxB pyruvate oxidase, 327
Spx protein, *Staphylococcus aureus*, 227
Staphylococcus. See also *Staphylococcus aureus*;
 Staphylococcus epidermidis host defenses against biofilms, 291, 292–293
 S. lugdunensis, 271
INDEX

403

S. saprophyticus, 332

Staphylococcus aureus
antimicrobial tolerance in biofilms, 270–271, 275
Bap, 173, 175, 213
Candida albicans coaggregation symbiosis, 289
dispersal from biofilm, 347, 349
host defenses against biofilms, 291, 292–293
matrix degradation by Staphylococcus epidermidis
enzymes, 330
MSCRAMMs (microbial surface components
recognizing adhesive matrix molecules), 288
polysaccharide adhesins, 180
polysaccharide intercellular adhesion (PIA), 224,
227–228
Staphylococcus epidermidis
antimicrobial tolerance in biofilms, 271
Bap, 213
Candida biofilm cohabitant, 123
host defenses against biofilms, 291, 292–293
imaging biofilms, 18
microfluidics, 9
MSCRAMMs (microbial surface components
recognizing adhesive matrix molecules), 288
polysaccharide adhesins, 180
polysaccharide intercellular adhesion (PIA), 224,
227–228
Staphylococcus aureus matrix degradation by, 330
Static biofilms, cultivation and study of, 3–6
Calgary device, 4, 5
colony biofilm, 4, 5–6
microtiter plates, 3–5
Stigmatella aurantiaca, 75
Stochastic optical reconstruction microscopy
(STORM), 15
Stomatitis, denture, 39–40

Streptococcus

S. gordonii
Candida biofilm cohabitant, 123–124
hydrogen peroxide production, 327
Streptococcus mutans inhibition by, 329
S. infantis, 332
S. intermedius, 330
S. mitis, Streptococcus mutans inhibition by, 329
S. mutans
Candida biofilm cohabitant, 124
Candida inhibition by, 381
competence-stimulating peptide (CSP), 329
competition against, 327, 329–330
dispersal cells, 350
group effects, 320
inhibition by hydrogen peroxide, 327
levan production by, 232
mutacin I, 327
S. oralis, Streptococcus mutans inhibition by, 329
S. pneumoniae
capsular polysaccharide (CPS), 225, 231–232
gene expression profiles, 323
hydrogen peroxide production, 326
S. salivarius, Streptococcus mutans inhibition by,
329
S. sanguinis
hydrogen peroxide production, 327, 332
Streptococcus mutans inhibition by, 329

Streptomyces, 75
antibiotic production, 328
S. coelicolor, 73–74, 87
Subcutaneous implant model, of fungal biofilm,
41–42
Substrate, Candida albicans biofilms and, 121
Sulfadiazine-pyrimethamine, for Cryptococcus
neoformans biofilms, 143
Sulfamethoxazole-trimethoprim, for Cryptococcus
neoformans biofilms, 143
Superoxide dismutase (SOD) gene family, 110
Surface-active compounds, modification of
adhesion by, 329–330
Surfaces
antimicrobial coatings, 376–377
modified to prevent biofilm formation, 376–377
Surfactin, 76–77, 80, 86
Swarming motility, 86, 304–305, 308
TAAs (trimeric autotransporter adhesins), 176, 178
TasA, 214
TCP (toxin coregulated pilus), of Vibrio cholerae,
165, 171
Technologies for studying biofilms, 1–20
continuous flow biofilms
CDC reactor, 4, 6, 7
drip-flow reactor, 4, 6–7
imaging flow cells, 4, 7
genomics and metagenomics, 10–11
imaging, 3, 15–20
miniaturization approaches, 7–10
proteomics and metabolomics, 13–15
static biofilms, 3–6
Calgary device, 4, 5, 118, 123
colony biofilm, 4, 5–6
microtiter plates, 3–5
traditional methods for growth under laboratory
conditions, 3–7
continuous flow biofilms, 4, 6–7
static biofilms, 3–6
transcriptomics, 2–3, 12–13
Terminal differentiation, 71
Tetrazolium assay, 121
Theoretical modeling of species’ competitive inter-
actions, 333–334
TibA, 178
Tight adherence (Tad) pili, 164, 165, 172
Tobramycin tolerance, in Pseudomonas aeruginosa
biofilms, 56
Tolerance factor, 270–273, 275, 277
Toll-like receptors (TLRs), 290, 293
Tor1 kinase, 106
Toxic metabolic byproducts, 326–327
Toxin coregulated pilus (TCP), of *Vibrio cholerae*, 165, 171
Toxin-induced cell lysis, 80
TPS (two-partners secretion system), 179
Transcriptomes, of biofilm versus planktonic cells, 323
Transcriptomics, 2–3, 12–13
Transglutaminases, 105
Trimeric autotransporter adhesins (TAAs), 176, 178
T1SS (type 1 secretion system) adhesins, 173–177, 179–181
hemagglutinin-like adhesins, 176, 179
monomeric autotransporter adhesins (MAAs), 176, 177–178
trimeric autotransporter adhesins (TAAs), 176, 178
T5SS (type 5 secretion system) adhesins, 174, 176, 177–179
hemagglutinin-like adhesins, 176, 179
monomeric autotransporter adhesins (MAAs), 176, 177–178
trimeric autotransporter adhesins (TAAs), 176, 178
two-partners secretion system (TPS), 179
Twitching motility, 304–306, 308
Two-dimensional differential gel electrophoresis (2D DIGE), 14
Two-partners secretion system (TPS), 179
Tye5 transcription factor, 108–109
Type III secretion in *Pseudomonas aeruginosa*, 354
Type I pili, 165, 167
Escherichia coli, 250, 251, 258
inhibition by 2-pyridone, 256
UPEC, 250
Type IV pili, 165, 168–171, 328
components, 170
Pseudomonas aeruginosa, 304–306, 308, 350
twitching motility, 304–306, 308
type IVa, 165, 169–171
type IVb, 165, 170, 171
Type 6 secretion system (T6SS), 328, 332
Type VII secretion system, 255
Tyrosol, 380
Unipolar polysaccharide (UPP), 185–186
UpaG trimeric autotransporter adhesin, 178
Urinary catheter model, of fungal biofilm, 42
Vascular catheter model, of fungal biofilm, 37–39
Ventriculointerstitial shunt catheters, Cryptococcus *neoformans* biofilms on, 136
Vibrio. See also *Vibrio cholerae*
dispersal from biofilm, 347
V. fischeri, 216
V. parahaemolyticus, type IVa pili of, 165, 171
V. vulnificans, 232
Vibrio cholerae
c-di-GMP, 234, 367
dispersal from biofilm, 347
inhibition by *Bacillus cereus*, 329
matrix proteins, 202–207
Bap1, 204–205, 215
GbpA, 205–206
matrix proteome, 206–207
OMVs, 215
RhmA, 202–204
RbmC, 204–205
microfluidics, 10
toxin coregulated pilus (TCP), 165, 171
type IVa pili, 165, 171
type IVb pili, 165, 171
Vibrio polysaccharide (VPS), 224, 226, 233, 234
Vibrio-Colwellia-Bradyrhizobium-Shewanella repeat (VCBS), 204
Vibrio polysaccharide (VPS), 202–205, 224, 226, 233, 234
colony phenotype, 226
role in biofilm biology, 235
significance, structure, and regulation, 234–235
Vitamin D receptor, 296
Voriconazole
for *Candida albicans* biofilms, 295
resistance
in *Aspergillus fumigatus* biofilms, 157
Candida biofilms, 125
Cryptococcus neoformans, 140
surface coating with, 377
Water channels, in *Cryptococcus neoformans* biofilms, 137
Wet-SEEC (wet-surface enhanced ellipsometry contrast microscopy), 187
Wzx/Wzy-dependent pathway, 180–181
Xanthomonas
cell-cell signaling, 347
filamentous hemagglutininin, 179
X. campestris, 331, 347, 354
XCMS, 15
Xylella fastidiosa
CUP (chaperone-usher pili), 164
dispersal, 347
filamentous hemagglutininin, 179
YcgR protein, 304–305
Yersinia
Y. *pestis* pesticins, 327
Y. *pseudotuberculosis* YadA trimeric autotransporter adhesin, 178
YfIN, 257
Ywp1, *Candida albicans*, 105
ZapI, 107–108
Zosteric acid, for *Candida* biofilms, 126