Sampling for Biological Agents in the Environment
Sampling for Biological Agents in the Environment

EDITED BY
Peter Emanuel
Edgewood Chemical Biological Center
Aberdeen Proving Ground, Maryland

Jason W. Roos
Critical Reagents Program
Aberdeen Proving Ground, Maryland

Kakoli Niyogi
Booz Allen Hamilton, Inc.
Aberdeen, Maryland

ASM PRESS
Washington, D.C.
This book is dedicated to those who lost their lives on September 11, 2001
Contents

About the Editors ix
Contributors xi
Preface xiii
Important Notice xvii

1 Missteps and Mistakes: Lessons Learned from Real-World Incidents 1
 Peter Emanuel

2 Getting Started: Planning the Sampling Mission 25
 Mark Durno, Myles Bartos, and Jack Kelly

3 Sampling Teams 51
 Daniel Martin and Anthony Intrepido

4 The Role of Sampling in the Phases of a Biological Event: Fact and Fiction in an Airport Scenario 73
 Matt Gillen

5 Surface Sampling 95
 Anne Busher, Judith Noble-Wang, and Laura Rose

6 Indoor and Outdoor Air Sampling 133
 Kristin Omberg and Linda Stetzenbach

7 Environmental Samples as Evidence: Labeling and Documentation at a Crime Scene 165
 Steven Drielak
Contents

8 Sample Packaging and Transport: Biosafety from Cradle to Grave 189
Nick Cirino and David Cook

9 Laboratory Resources 207
Jason W. Roos and Christina Egan

10 Environmental Sampling Today: Advances since the 2001 Anthrax Attacks 243
Dorothy Canter

 Background Information for Selected Biological Agents 259

Glossary 275
Index 285
About the Editors

Peter Emanuel
As the biodefense team leader at the Edgewood Chemical Biological Center, Peter Emanuel is responsible for directing a multidisciplinary research team. His group is responsible for all of the biosafety level 3 high-containment laboratory operations on the Edgewood campus as well as efforts such as enzyme decontamination of chemical weapons and fundamental studies on biological pathogens.

Previously he served as the program manager for the Critical Reagents Program in the Joint Program Executive Office for Chemical and Biological Defense, where he was responsible for managing a network of secure repositories and the commercial production of millions of handheld immunoassays, freeze-dried immunoassays, PCR assays, and other products in support of the biological defense community. He also served as a scientific advisor at the Edgewood Chemical Biological Center, where he was part of a team that developed and patented a novel biological sampling device, developed over 100 highly specific and sensitive PCR assays for pathogen detection, isolated recombinant antibodies using combinatorial phage display, and oversaw bacterial fermentation production and tissue culture production of antibodies. With over 50 papers and presentations to his credit, Dr. Emanuel is currently focused on characterizing virulence factors in bacterial populations, validation of detection devices to national standards, developing systems to measure antigenic variability, and more effective biological sampling technologies.

Jason W. Roos
Jason W. Roos is the current director of the Critical Reagents Program in the Joint Program Executive Office for Chemical and Biological Defense.

ix
As director, Dr. Roos is responsible for coordinating and managing a network of government laboratories, repositories, and commercial vendors to research, develop, and manufacture standardized biological reagents and assays of the highest quality for use by the Department of Defense’s testing, fielding, and operational communities. Dr. Roos, together with the scientists, testers, and members of the armed forces in his network, determines current issues facing the United States, such as emerging biological threats, and develops novel techniques for their detection. He also coordinates with other government agencies to work towards multiagency consensuses and agreements on biological agent policies and procedures. In addition, he collaborates with international groups to coordinate and share ideas and resources for threats around the globe.

Previously, Dr. Roos served as a science advisor in the biological sciences for the chemical, biological, radiological, nuclear, and explosives team at Booz Allen Hamilton, Inc. He applied his technical expertise in molecular biology, biochemistry, cell biology, and virology to support several projects in the homeland defense arena for U.S. government clients. For these clients, Dr. Roos conducted chemical and biological detection technology evaluations, reviewed and developed procedures for homeland defense operations, prepared intelligence assessments, contributed to standardization efforts for chemical and biological sensors and environmental sampling for biological threats, and prepared research and development test plans.

Kakoli Niyogi

Kakoli Niyogi is a biosciences advisor in Booz Allen Hamilton’s chemical, biological, radiological, nuclear, and explosives team. She uses her technical knowledge and skills in the areas of biochemistry, cellular and molecular biology, and virology to support a variety of projects in the homeland defense arena for the U.S. government. Projects she has supported include chemical and biological detection technology evaluations, subject matter expertise for threat assessments, and writing and reviewing of technology test plans, reports, and manuscripts for peer-reviewed journals.

Before joining Booz Allen Hamilton, Dr. Niyogi was a technical specialist in the Intellectual Property Department of Human Genome Sciences, Inc. She assisted in writing patents and patent prosecution documents for the company’s genomic inventions.
Contributors

Myles Bartos
U.S. Environmental Protection Agency Region 3 (3HS31), 1650 Arch St., Philadelphia, PA 19103

Anne Busher
Dynamac Corporation, Rocky River, OH 44116

Dorothy Canter
Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20783-6099

Nick Cirino
New York Biodefense Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12208

David Cook
1202-9809-110 Street NW, Edmonton, AB TSK 2J9, Canada

Steven Drielak
Environmental Protection Agency, Washington, DC 20460

Mark Durno
U.S. Environmental Protection Agency Region 5, 25089 Center Ridge Rd., Westlake, OH 44145

Christina Egan
Wadsworth Center, New York State Department of Health, Albany, NY 12208

Peter Emanuel
Division of BioSciences, Research and Technology Directorate, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010
Contributors

Matt Gillen
Office of the Director, National Institute for Occupational Safety and Health
(NIOSH/CDC), Washington, DC 20201

Anthony Intrepido
Department of Defense/Center for Health Promotion and Preventive Medicine,
Lawrence Livermore National Laboratory, Livermore, CA 94550

Jack Kelly
U.S. Environmental Protection Agency Region 3 (3HS31), 1650 Arch St.,
Philadelphia, PA 19103

Daniel Martin
Life Sciences Division, U.S. Army Dugway Proving Ground, Department
of Defense, Dugway, UT 84022

Judith Noble-Wang
Centers for Disease Control and Prevention, Atlanta, GA 30333

Kristin Omberg
Systems Engineering & Integration Group, Decision Applications Division,
Los Alamos National Laboratory, Los Alamos, NM 87545

Jason W. Roos
Critical Reagents Program, Aberdeen Proving Ground, MD 21010

Laura Rose
Centers for Disease Control and Prevention, Atlanta, GA 30333

Linda Stetzenbach
Environmental and Occupational Health, School of Public Health, University
of Nevada Las Vegas, Las Vegas, NV 89154-4009
The need for this book was realized in 2001 during the aftermath of the intentional *Bacillus anthracis* contamination of the U.S. postal system. This need was not new, reaching back to the years before that event, when testing water supplies, determining levels of mold contamination, and everything in between were critical. The events of 2001, when the sampling community conquered sampling in the environment on a grander scale than ever before, allowed for the generation of a great deal of momentum and knowledge in the field and also illuminated the gaps that remained to be filled.

In January 2005, top scientists from around the United States and abroad gathered in Baltimore, Maryland, to attend the First National Conference on Environmental Sampling for Bio-Threat Agents and bring forward the many lessons learned from their extensive sampling experience. This book was born during that first gathering and gained momentum when scientists and first responders gathered again almost 2 years later in New York City at the Second National Conference on Environmental Sampling and Detection for Bio-Threat Agents. Scientists from almost every federal agency as well as state and local first responders reinforced the need to capture the knowledge we have learned, to determine future areas of study, and to pass the science of sampling to those in the field who keep us safe.

This book was intended to be different from other books on the subject. The authors and editors sought to create a format in which the current best practices could be presented in a straightforward manner for use by both the first responder community and the scientific community, with the understanding that the current best practices would be evolving with technology, policy, and world affairs. Technical discussions are accompanied by
text boxes which define terms or provide additional sources of information which can provide more detail on individual topics of interest. When contentious topics were encountered, the authors tried to present all sides of an argument so that readers can see that in science, there are no absolutes—only a hypothesis and data.

There is a common joke that when you place three scientists in a room, they will come out with four opinions. During the years since the *B. anthracis* attacks, there have been many interagency meetings which sought to achieve consensus on technical issues in the area of biological sampling. If those working groups have taught us anything, it is that three scientists are more likely to come out of a room with five opinions, not four. The science of sampling in the environment evolves as our understanding of the problems grows and as we develop tools and technologies to respond to multiple challenges. In the face of such change, seeking consensus when multiple opinions arise is advantageous for all involved. This book is part of the evolving body of sampling knowledge, and we hope it provides a useful tool.

Acknowledgments

We gratefully thank those who reviewed the manuscripts: Charles Burrus (Metropolitan Transportation Authority/New York City Transit), Andrew Cannons (USF Center for Biological Defense), Leslie Custer (Booz Allen Hamilton, Inc.), Pam Diberardino (Booz Allen Hamilton), David Dziewulski (New York State Department of Health), Cheryl Gauthier (Massachusetts Department of Public Health), Barbara Gerzonich (New York State Department of Health), Karen Heroux (Environmental Biomonitoring Laboratory, Edgewood Chemical Biological Center), Meg Holahan (Booz Allen Hamilton), Ed Horn (New York State Department of Health), Julia A. Kiehlbauch (Public Health Microbiology Division, Maryland Department of Health and Mental Hygiene), David Ladd (Hazmat Response, Massachusetts Department of Fire Services), Erik Lewis (9th Civil Support Team [WMD]), Vincent Liddiard (U.S. Army Dugway Proving Ground), Donald MacQueen (Lawrence Livermore National Laboratory), Carlos J. Maldonado (Air Force Institute for Operational Health Applied Technology Center), Joe Martinez (9th Civil Support Team [WMD]), Naomi McMillan (Air Force Institute for Operational Health Applied Technology Center), Mark Munson (Naval Medical Research Center), Kristin M. Omerber (Los Alamos National Laboratory), Eugene O’Neill (New Jersey State Police), Nicholas Pavelchak (Center for Environmental Health, New York State Department of Health), Steven Preston (Woonsocket Fire Department), Gregg Recer (New York State Department of Health), Robin Schumacher (Booz Allen Hamilton), John Skovran (Booz Allen Hamilton), Ricardo Soto-Acevedo (20th Support Command, Aberdeen Proving Ground), Adam Swagger (51st Civil Support), Donald Vesley (Division of Environmental Health Sciences,
University of Minnesota), Daniel Walsh (New York City Department of Hazardous Materials), and Donn Zuroski (U.S. Environmental Protection Agency). We also thank Michael Phillips, Maya Munk, Brian Judd, and Justin Ritmiller (Visual Communications Team, Booz Allen Hamilton), who reviewed, created, and/or edited all of the graphics in this book, including the image on the cover.

PETER EMMANUEL
JASON W. ROOS
KAKOLI NIYOGI
Important Notice

The field of sampling is constantly changing with every new method and technology that emerges. The editors and authors of this book believe that the procedures and guidelines suggested in this book are from reliable sources and are in line with the practices accepted at the time of publishing. Neither the editors, the authors, the publisher, nor any party who has been involved in the preparation of this work can guarantee that information contained herein is in every aspect accurate, complete, or current, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Furthermore, neither the editors, the authors, the publisher, nor any party who has been involved in the preparation of this text endorses any specific brands of products. The book is intended to serve not as an instructional manual but rather as a compilation of best practices; therefore, readers should confirm the information contained herein with other sources.
Index

A
Academic laboratories, 214
Accuracy, 117
Active sampling, aerosol sampling, 134–141
Adherence properties, microorganisms, 101
Aerosol sampling, 133–164
active sampling, 134–141
background collection, 157–158
collection efficiency, 143
collection methods, 134–142
collection time, 144
deployment of sampling systems, 145–157
electrostatic precipitation, 141–142
false-positive and false-negative results, 151
filtration methods, 139–141, 144
goals, 145, 151
identifying appropriate sampling systems, 149–152
impaction methods, 135–138, 143
information recorded, 157
liquid impingement, 136–140, 143–144
macrositing, see Macrositing
micrositing, see Micrositing
number of samples, 144
passive sampling, 141–142
safety, security, power, and access requirements, 152–153
sampler calibration, 144
sampler performance, 142–144
characteristics of biological material, 143–144
physical components of sampler, 142
sample-to-result time, 151–152
sensitivity and specificity, 151
subway system, 146, 148, 161–163
time resolution capability, 151–152
Aerosolization, 77, 85, 133
Agar contact plate sampling, 104, 109–110
Air sampling, 82, 133–164, see also Aerosol sampling
aggressive, 91–92, 247
B. anthracis detection, 247, 250–251, 254, 256
verification sampling, 32
Air transport, commercial, 202–203
Airflow pattern, 80–81, 85
crime scene, 177–178
subway system, 161–163
Airflow tracking device, 178
Airport scenario, 73–94
biological event
characterization phase, 85–90
clearance phase, 90–93
coordination during response, 73
initial assessment phase, 74–85
ALOHA, 50
Amplified fragment length polymorphism, 233
Analytical techniques, see Laboratory, sample analysis
Anthrax
cutaneous, 77, 244
inhalation, 77, 244
Anthrax attacks (2001), 56, 243–258
background, 243–246
environmental sampling, 246–250
Anthrax attacks (2001) (continued)
 characterization sampling, 246, 249
 clearance sampling, 246, 254–256
 initial screening, 246, 248–249
 validation sampling, 253–254
 lessons learned from, 256–257
 locations of contaminated facilities, 244–245
 remediation efforts, 244–246, 251–252, 254–256
 resuspension of spores, 251
 sample analysis, 249–250
 number of samples analyzed, 246–247
 sampling methods, 248–249
 timeline, 244
Antibody sandwich assay, 235
Antibody-based detection, 234–239
API 20 strips, 240
Appeasement sampling, 32–33, 36
Area guidelines, surface sampling, 98
Aseptic technique, 4, 55, 64, 96
 training, 3–4, 55, 64
Assessment sampling, 33–34
Autoclave, 169
Automated Biological Agent Testing System (ABATS), 230
Automated mail-sorting machines, 79–81, 248,
 250–251
Autonomous detection system, B. anthracis, 253

B Bacillus anthracis, 12, see also Anthrax; Anthrax attacks (2001)
 weaponized, 33
Bacteria
 adherence properties, 101
 select agents, 100
 survival on environmental surfaces, 101
Baggage handling, 80, 84–86, 89, 127–128
Bar code labels, 18
Bar code reader, 47
Below Ground Model (CB-EMIS), 147
 “Beyond a reasonable doubt” standard, 166
Biased sampling, 92
Biohazard detection system, U.S. Postal Service,
 252–253
Biological event, see also White-powder incident
 airport scenario, 73–94
 anthrax attacks, 243–258, see also Anthrax attacks (2001)
 characterization phase, 73, 85–90
 coordination and handoff from initial assessment, 86–87
 environmental sampling objectives, 87
 remediation options after, 87–88
 sampling strategy, 88–90
 surface sampling, 97–98
 clearance phase, 73, 90–93
 coordination issues, 90–91
 environmental sampling objectives, 91–93
 reporting results, 93
 surface sampling, 97–100
 communication among participants, see
 Communication controlling the scene, 10–11
 coordination during response, 73
 discovery scenario, 74
 initial assessment phase, 73–85
 coordination issues, 75–77
 development of sampling strategy, 77–82
 evaluation of results, 82–85
 surface sampling, 97–98
 weather conditions, 5
Biological indicators, 99, 254–255
Biosurety regulations, 230
Biothreat agents
 reaerosolized, 13, 33, 64
 training sampling team members, 52–53
BioWatch Alert, 30
BioWatch Program, 57, 74, 146–147, 162–164,
 252–253
BioWatch Sensor Siting Tool, 146
BiSKit, 116
Bleach-based decontamination solution, 16–18
Boilerplate sampling plan, 44
Bomb disposal team, 6
Booby traps, at site being sampled, 5–6, 102
BSL certification, laboratory, 218
Bucket organizer, 23
Building Restoration Operations Optimization Model (BROOM), 84
Bulk material sampling, 97–98, 105, 111, 115,
 118
 white-powder incident, 128–131

C CAMEO, 49
Carry-on luggage, 80
CDC, 211–212
Cell phone, 46
Chain of custody, 31–32, 66, 103, 113, 186–187
 laboratory, 218–219, 222, 224–225
 missteps and mistakes, 18–19
Chain-of-custody form, 103
Characterization sampling, 33–34, 40, 84–90
 B. anthracis detection, 246, 249
 surface sampling, 98
Chlorine dioxide, 99
Chlorine gas, from decontamination solution, 17–18
Clean persons, 6, 65, 96
Clean zone, 38
Clean-man/dirty-man system, 6, 65, 96
Cleanup operations, 10, 86, see also Remediation
Clearance, 40–41
Clearance sampling, 90–93
B. anthracis detection, 246, 254–256
biased sampling, 93
finding positive sample, 93
focused sampling, 92
grid/random sampling, 92
surface sampling, 98–100
Cleveland airport, white-powder incident, 127–128
Cold zone, 12–13
Colony morphology, 239
Communication
between agencies, 7–8, 14
compatibility of gear from different sources, 8
between laboratory and sampling team, 9–10, 37–38, 62, 216, 219–221
missteps and mistakes, 6–10, 13
between neighboring jurisdictions, 8
with news outlets, 13–14
while wearing protective gear, 6–7, 63
Composite sampling, 81–82, 99, 182
CONTAM tool, 146
Contamination
boundaries, 88
determining spread, 86
disposal of contaminated items, 89, 172–173
extent, 32, 34, 85–90
Contamination pathways, 34, 42, 66–67, 76–77, 87
air movement pathways, 80–81, 85
contaminated individual, 13
crime scene investigation, 172–173
foot traffic pathway, 80, 85
gloves, 16
identification, 79–81
item disposal, 89, 172–173
maintenance pathways, 81
minimizing, 130
process pathways, 79–80
reaerosolization of spores, 12, 33
Control blanks, 184
Cowpox virus, surface sampling, 125–127
Crawl-walk-run approach, training of sampling team, 55
Crime scene investigation
documentation, 165–188
airflow patterns, 177–178
crime scene investigation team, 170–171
crime scene photography, 175–176
crime scene sketch, 173–174
equipment inventory, 172
establishing sampling team, 181
field tests, 178–179
footprints and fingerprints, 176–177
growth media, 170
health and safety plan, 181
importance, 165–167
personal protective equipment, 170
personnel decontamination, 179–180
personnel records, 167–168
postsearch briefing, 180–187
preentry briefing, 171–172
sample collection process, 186–187
sampling equipment preparation, 168–170
sampling plan, 181–186
search for traditional evidence, 173–180
site entry, 172–173
preservation of crime scene, 103
sample types, 165–167
Crime scene investigation team, 170–171, 179–180
Crime scene photography, 175–176
Crime scene sketch, 173–174
Criminal samples, see Crime scene investigation
Cross-contamination, crime scene investigation, 172
Cross-reactivity, antibody-based detection systems, 235
Culture
B. anthracis, 249, 251, 256
microbiological, 239
Curseen-Morris Processing and Distribution Center, see Anthrax attacks (2001)

D
Dangerous-goods form, 192–193
Data-tracking system, 35
Decision support system, computer-aided, 49–50
Decontamination, 67
crime scene investigation team, 179–180
doors, 16
of documents, 186
effectiveness, 41
Decontamination solution, 16–17, 58
bleach-based, 16–18
off-gassing, 17
vinegar in, 17
Delivery Bar Code Sorter (DBCS), see Automated mail-sorting machines
Department of Defense (DoD)
biosurety regulations, 230
Department of Defense (DoD) (continued)
Critical Reagents Program, 215
laboratories, 208–211, 214–215
confirmatory, 214–215
deployable, 214–215
routine screening, 214–215
Department of Homeland Security (DHS)
First Responder Initiative, 56
training for sampling team, 56
Department of Transportation (DoT), packaging
and shipping guidelines, 190, 192, 199, 202
Digital camera, 46–47
Digital compass, 47
Dirty persons, 6, 65, 96
Disease symptoms, 79, 82
Disinfectants
neutralizing agents, 99
residual, 99
DNA, 232
DNA fingerprints, 234
Documentation, 31–32, 35–36
aerosol sampling, 157
crime scene investigation, 165–188, see also
Crime scene investigation
decomposition of documents, 186
location of sampling points, 48–49
sample shipment, 198
by sampling team, 65–67
surface sampling, 103, 113
Dosimeter, personal, 35
Drop test, packages, 192
Dry ice, transport of samples in, 194, 196–201
Duct tape, 170, 206
Duplicate samples, 182

E
Edgewood Chemical Biological Center (ECBC), 211
Electrochemiluminescence assay, 236–238
Electrostatic sampler, 141–142
Elevated testing, 228
ELISA (enzyme-linked immunosorbent assay), 235–238
Emotional stress, sampling team, 15
Empty packaging, reuse, 199
Endemic disease, 157–158
Envelope, suspicious, 129–130
Environmental clearance committee (ECC), 40–41, 90, 93, 252
Environmental Laboratory Response Network, EPA, 208–211
Environmental Protection Agency (EPA), remediation oversight, 86–87
Environmental sampling
advances since 2001, 243–258
anthrax attacks, 243–258
early-warning systems, 74, 252–253
Environmental sampling surveillance system, 74, see also BioWatch Program
Enviroware, 149
Equipment, see Personal protective equipment;
Sampling equipment
Equipment blanks, 184–186
Evacuation, high-rise buildings, 8–9, 80
Exit strategy, 28–29
“Extent of contamination” study, 32

F
Federal Bureau of Investigation (FBI), first responders, 75–76
Fenced property, sampling site, 5
Field data, electronic acquisition, 45–48
paper-based, 45
paperless, 45
Field tests, 30, 130–131, 227
crime scene, 178–179
Field vest, 118
Filtration sampler, aerosol sampling, 139–141, 144
Fingerprints
crime scene investigation, 176–177
fingerprint powder, 176–177
fingerprint-lifting tape, 176
First responders, 75
footprints made by, 176
First Response (ASASHI), 50
Flash cards, training tool, 4
Focused sampling, 92
Food Emergency Response Network (FERN), 208–209
Foot traffic contamination pathway, 80, 85
Footprints, crime scene investigation, 176–177
Forensic process, 76, 165–188
Formaldehyde, 99
Full remediation, 87–88, 92
Full-inspection sampling, 83, 88
Fumigation, 90
B. anthracis-contaminated sites, 245–246, 252, 254–255
fumigant distribution, 33
Fungi, select agents, 100

G
Gaussian plume model, 147
Gauze pad/sponge, sample collection, 16, 106
Geographic information system (GIS), 35–37
Global Positioning System (GPS), 46–47, 157
Global-positioning satellite software, 5
Glo-Germ powder, 3–4
Glove(s), 58
changing between each sample, 16, 172–173
selection and documentation, 170
Glove box, 19
Glutaraldehyde, 99
Gram stain, 226, 240
Grid sampling, 92
Ground transport, commercial, 202
Growth media, documentation, 170

H
Handheld assay, 30, 46–48, 236–237, 251
initial screening, 75–76
Handling of samples, 38–39
Hands-on training, sampling team, 54
Hart Senate Office building, see Anthrax attacks (2001)
Hazard Prediction and Assessment Capability (HPAC) software, 146
Hazardous material, 191
Category A, 191–192
Category B, 191–192
HazMat ID (handheld identification device), 30
Hazmat team, 127
HAZWOPER training, 53, 58
Health and safety plans (HASP), 57–58, 181
Heat stress injury, 49
Helicopter, sample and personnel transport, 22
HEPA filter, 17, 58
HEPA vacuum collection sock, 104, 109, 111–112, 116, 118
B. anthracis detection, 248, 250
High-rise building, evacuation, 8–9, 80
Hospital laboratories, 213–214
Hot zone, 7, 13, 38
Humvee, sample and personnel transport, 22
HVAC system, 63
aerosol sampling, 147–148, 153–155
contamination pathways, 80–81, 85
crime scene, 177
public health investigation, 78
subway cars, 162
Hydrogen peroxide, 99

I
IATA (International Air Transportation Association)
packaging and shipping guidelines, 190–192, 199, 201–203
special provision A140, 194–198
ICAO (International Civil Aviation Organization), packaging and shipping guidelines, 190–192, 202–203
Identification badges and procedures, 11–12, 153
Immunodetection, 226, 234–239
Immunoprophylaxis program, 59
Impaction sampler, 135–138, 143
cascade impactor, 135–136
slot sampler, 136
Improvised explosive devices, 6
Incident Command System (ICS), 53–54
Incident commander, 25, 40–41
Indoor macrositing, 147–148
Indoor micrositing, 153–155
Initial response
anthrax attacks, 246, 248–249
coordination issues, 75–77
first responders, 75
law enforcement, 75–76
public health personnel, 76–77
Integrated Consortium of Laboratory Networks (ICLN), 209–210
Iodine, 99
Item disposal, 89
crime scene investigation, 172–173

J
Joint information center (JIC), 42
Judgmental sampling, 77

L
Labeling of packages, 191–201
Labeling of samples
crime scene investigation, 165–188
missteps and mistakes, 18–19
Laboratory, 207–241
BSL certification, 218
chain-of-custody issues, 218–219, 222, 224–225
communication with sampling team, 9–10, 37–38, 62, 216, 219–221
future trends, 229–230
postanalysis activities, 228–229, 231
presampling activities, 215–220, 231
sample analysis, 38, 215–216, 221–228, 231
analytical capabilities of lab, 38, 217–218
B. anthracis, 249–250
capacity, 246–247
confirmatory testing, 223, 226–227
cost, 218, 230
data analysis, 222, 227
detection limits, 38
immunodetection, 226, 234–239
interfering substances, 226
Laboratory, (continued)
 microbiological analysis, 239–241
 molecular methods, 232–234
 preliminary results, 226
 presumptive characterization, 223
 rapid testing, 226
 reporting results, 219, 222, 227–228
 sample delivery, 222
 sample login, 222–223
 sample preparation, 222–223, 230
 sample testing, 222–227
 sample-processing capabilities, 217
 turnaround time, 38, 216–217
 sample drop-off, 218
 sampling event communication, 220–221
 security clearances of personnel, 219–220
 Laboratory information management system (LIMS), 45, 222
 Laboratory networks, 208–215
 Laboratory report, 219, 222, 227–228
 Laboratory Response Network (LRN), 45, 76, 103, 205, 208–213
 anthrax attacks, 246
 geographic distribution of laboratories, 213
 national laboratories, 211–212
 reference laboratories, 210–213
 sentinel laboratories, 211–213, 220
 Laboratory results data sheet, 39
 LANL sampling device, 46–48
 Lanthanide chelates, 238
 Lateral-flow immunoassay, 235–238
 Law enforcement
 controlling the scene, 10–11
 crime scene investigation, 103, 165–188
 first responders, 75–76
 Letter, suspicious, 129–130
 Limit of detection, 117
 Limit of quantification, 117
 Linearity, 117
 Liquid impinger, 136–140, 143–144
 List of Dangerous Goods (IATA 4.2), 192, 194
 Locations of sampling points, 36
 booby-trapped sites, 5–6, 102
 maps, see Map(s)
 placards marking, 171, 186
 public health sampling strategy, 77–82
 security issues, 10–12, 21–22, 152–153
 Logbook, see Sample logbook
 Luggage, see also Baggage handling carry-on, 80

M
 Machinery contamination pathways, 79–80
 Macrositing, 134–149
 indoor, 147–148
 models for, 146–147
 outdoor, 148–149
 Maintenance contamination pathways, 81
 Map(s), 48–49, 57
 blueprints or architectural, 63
 3-D mapping device, 48–49
 used by sampling team, 5
 Mapping system, 36
 MARPLOT, 50
 Medium blanks, 184
 Methamphetamine laboratories, 6
 Microbiological analysis, 239–241
 Microbiological principles, training sampling team members, 52–53
 Microlog Microbial Identification System, 240
 Micrositing, 153–157
 aerosol sampling, 162–163
 indoor, 153–155
 outdoor, 155–157
 Microvacuum sampling, 105, 110–112, 114
 Military sampling, 6, 21–22
 Miniature-golf training event, wearing personal protective equipment, 2–3
 Molecular analysis, 232–234
 Monkeypox virus, surface sampling, 125–127
 Morgan Processing and Distribution Center, see Anthrax attacks (2001)
 Motility test, 239–240

N
 National Animal Health Laboratory Network (NAHLN), 208–210
 National Domestic Preparedness Consortium (NDPC), 56
 National laboratories (LRN), 211–212
 National Plant Diagnostic Network (NPDN), 208–210
 National Response Team, 41
 Naval Medical Research Center (NMRC), 211–212, 215
 “Need to know now” event, 30
 “Negative” result, 228
 Network Coordinating Group, 209–210
 Neutralizing agents, 99
 News media, 10, 14–15, 86
 “Nonnegative” result, 228
Index 291

O
Off-gassing, 17
Off-site concerns, 89–90
On-scene coordinator, 10–11, 15
Orthopoxvirus, surface sampling, 125–127
Osmoprotectants, 144
Outdoor macro-siting, 148–149
Outdoor micro-siting, 155–157
Outreach, to workers and stakeholders, 42–43

P
Package, 191
 suspicious, 129–130
Packaging materials, 198–199
Packaging of samples, 38–39, 96, 189–206
 ambient temperature, 195–197
 Category A material, 195–201
 damaged packages, 199
 definition of packing, packaging, package, 190–191
 dry ice, 194, 196–201
 empty packaging, reuse of, 199
 labeling of package, 191–201
 limits on volume per package, 194
 missteps and mistakes, 19–22
Packing, 190
Paint can, sample packaging in, 21–22
Paperless sample collector, 45
Personal data assistant (PDA)
 field-ruggedized, 46–48
 hand-held, 18
Personal dosimeter, 35
Personal protective equipment (PPE), 58–59, 64, 97
 communication while wearing, 6–7, 63
 decontamination, 67
 documentation for crime scene investigation, 170
 heat stress injuries, 49
 level A suit, 69–71
 level B suit, 70
 level C suit, 70–71
 limitations on movement, 176
 training in, 2–4, 54–55
 miniature-golf event, 2–3
Personal Sample Pump, 113
Personnel records, confirming competency in criminal trial, 167–168
Phenolics, 99
Phenotypic testing, 239–240
Photographic log, 175
Photography, crime scene, 175–176
Piston flow, 161
Placards, sampling point, 171, 186
Planning for sampling event, 25–50, 61–62
 analytical considerations, 37–38
 automated format, 183
 basic questions, 27–28
 coordination with affected parties, 42–43
 crime scene investigation, 181–186
 exit strategy, 28–29
 handling, packaging, and transport of samples, 38–39
 interpretation of results, 39–41
 length of time for sampling, 62
 missteps and mistakes, 4–5
 public health investigation, 81–82
 roadmap development, 28–29
 sampling approach, 33–35
 sampling objectives, 29–33
 sampling tactics, 35–37
 setting goals and objectives, 62
 sizing up situation, 29
 surface sampling, 102–103
 written plan, 43–44
Postal workers, anthrax attacks, 243–258
Postsearch briefing, crime scene, 180–187
Power supply, aerosol sampling, 153
Poxvirus, surface sampling, 125–127
Precision, 117
Preentry briefing, 57
 crime scene investigation, 171–172
 “Preliminary positive” result, 228
 “Presumptive positive” result, 228
 Private property, sampling site, 5
 Probabilistic sampling, 83–84, 88–89, 92–93
 Process contamination pathways, 79–80
 Prophylaxis, 59, 77, 85
 Psychology of sampling, 15, 68
 Public, information released to, 14
 Public health investigation
 development of sampling plan, 81–82
 first responders, 76–77
 identification of contamination pathways, 79–81
 inspection of affected area, 78
 interviews with persons on scene, 78–79
 sampling objectives, 87
 sampling strategy, 77–82
Index

Q
- Qualitative sampling, 97
- Quantitative sampling, 97
- Quarantine, 126
- Quaternary ammonium compounds, 99
- Quick Urban and Industrial Complex (QUIC) model, 149

R
- Random sampling, 92
- Range (validation criteria), 117
- Reaerosolization, 13, 33, 64, 77, 82, 133, 251
- Real-time monitoring, 30
- Reconnaissance team, 58, 62–63, 67
- Reference laboratories (LRN), 210–213
- Regret level, 151
- Rehearsals, training of sampling team, 54
- Remediation, 86–87, 90–93
 - B. anthracis-contaminated sites, 245–246, 251–252, 254–256
 - effectiveness, 32, 35, 98–100, 255–256
 - EPA oversight, 86–87
 - full, 87–88, 92
 - remedial action plan, 87
 - targeted, 87–88, 91
 - verification sampling, 34–35
- Respirators, 58–59
 - communication while wearing, 63
- Ricin toxin, 12–13
- Risk communication, to workers and stakeholders, 42–43
- Rit Whitener & Brightener dye, 4
- RNA, 232
- Roadmap, planning a sampling mission, 28–29
- Robustness, 117
- RODAC plates, 2, 106, 109–110
- rRNA sequencing, 168, 233
- Ruggedness, 117

S
- SAFECOM, 8
- Saf-T-Pak, 199
- Sample data sheet, 182–183, 186
- Sample logbook, 183–186
 - waterproof, 186
- Sample size, 19
- Sample storage, 185
 - postanalysis, 229
- Sampling approach, 33–35
 - assessment/characterization sampling, 33–34
 - verification sampling, 32, 34–35
- Sampling equipment, 35
 - contaminated, 168–170
 - crime scene investigation, 182
 - documentation, 168–170
 - inventory, 172
 - emerging techniques, 45–50
 - malfunctions, 15–18
 - preparation protocol, 168–170
 - sealing in airtight bags/containers, 169–170
 - selection process, 182
 - sterility, 96, 168–169
 - storage, 23
- Sampling event, see also Biological event; White-powder incident
 - missteps and mistakes, 2–4
 - postsampling, 18–19
- Sampling kit, 22–23, 35–36
 - bucket organizer, 23
 - surface sampling, 118–122
 - supplies, 119–122
 - utility belt, 23
- Sampling locations, see Locations of sampling points
- Sampling objectives, 29–33
 - documentation, 31–32
 - effectiveness of remediation, 32
 - extent of contamination study, 32
 - fumigant distribution during remediation, 33
 - “need to know now” event, 30
 - preliminary sampling, 30–31
- Sampling plan, see Planning for sampling event
- Sampling team, 51–69
 - assembling, 52–59
 - crime scene investigation, 181
 - communication with laboratory, 9–10, 37–38, 62, 216, 219–221
 - communication with outside support personnel, 63
 - decontamination, see Decontamination division of labor in sampling, 65
 - documentation, 65–67
 - health and safety plan, 57–58, 181, see also
 - Personal protective equipment (PPE)
 - hazard assessment, 58
 - prophylaxis, 59
 - individual responsibilities, 60–61
 - individual skills and knowledge, 60
 - personnel records, 167–168
 - psychological issues, 15, 68
 - record keeping, 65–67
 - safety officer, 61
 - samplers, 61, 96, 181
 - staff rotations, 15
 - support person, 96
 - team leader, 60–61
- Sampling team, 51–69
 - assembling, 52–59
 - crime scene investigation, 181
 - communication with laboratory, 9–10, 37–38, 62, 216, 219–221
 - communication with outside support personnel, 63
 - decontamination, see Decontamination division of labor in sampling, 65
 - documentation, 65–67
 - health and safety plan, 57–58, 181, see also
 - Personal protective equipment (PPE)
 - hazard assessment, 58
 - prophylaxis, 59
 - individual responsibilities, 60–61
 - individual skills and knowledge, 60
 - personnel records, 167–168
 - psychological issues, 15, 68
 - record keeping, 65–67
 - safety officer, 61
 - samplers, 61, 96, 181
 - staff rotations, 15
 - support person, 96
 - team leader, 60–61
- Sampling team, 51–69
 - assembling, 52–59
 - crime scene investigation, 181
 - communication with laboratory, 9–10, 37–38, 62, 216, 219–221
 - communication with outside support personnel, 63
 - decontamination, see Decontamination division of labor in sampling, 65
 - documentation, 65–67
 - health and safety plan, 57–58, 181, see also
 - Personal protective equipment (PPE)
 - hazard assessment, 58
 - prophylaxis, 59
 - individual responsibilities, 60–61
 - individual skills and knowledge, 60
 - personnel records, 167–168
 - psychological issues, 15, 68
 - record keeping, 65–67
 - safety officer, 61
 - samplers, 61, 96, 181
 - staff rotations, 15
 - support person, 96
 - team leader, 60–61
team sampling functions, 63–65
training, see Training of sampling team
variation in collecting techniques, 2
work shifts, 11–12, 15
SCRIBE, 18
Sealing procedure, equipment in airtight bags, 169–170
Security at sampling site
aerosol sampling, 152–153
missteps and mistakes, 10–12
war zone, 21–22
Security clearances, laboratory personnel, 219–220
Select agent(s), 100
Select Agent Rule, 229–230
Semiquantitative results, 89
Sentinel laboratories (LRN), 211–213, 220
Sharps, accidental puncture, 59
Sherlock Microbial Identification System, 240
Shipper’s Declaration for Dangerous Goods, 193, 197, 200
Shipping of samples, 189–206, see also Transport of samples
ambient temperature, 195–197
dry ice, 194, 196–201
shipping regulations, 39
Signature detection instrument, portable, 49
Site access, aerosol sampling, 153
Site entry, 102
crime scene investigation, 172–173
Situation report, 67
Smallpox, surface sampling, 125–127
Smart device, 46–48
Smart-Tickets, 30
Sock collector, 16
Sodium hypochlorite, 99
Soil sampling, frozen ground, 5
Southern Connecticut Processing and Distribution Center, see Anthrax attacks (2001)
Specificity (validation criteria), 117
Spore(s)
aeroseiled, 13, 33
survival on environmental surfaces, 101
Spore strips, 33, 99, 254–255
Staff rotation, 15
Stakeholders, sharing sampling information/results with, 42–43
Standard operating procedures, 35, 173
Sterility, sampling equipment, 96, 168–169
Subway Environment Simulation Model, 146
Subway system, aerosol sampling, 146, 148, 161–163
Surface sampling, 95–125
adherence properties of microorganisms, 101
agents sampled for, 100–101
approaches, 96–113
area guidelines, 98
B. anthracis detection, 248, 250–251, 254, 256
colorization phase, 98
clearance and postremediation phase, 98–100
collection efficiency, 116
documentation, 103, 113
eerging technology, 47
factors affecting, 101–102
initial screening phase, 97–98
interfering materials, 101
interpretation of results, 113–117
methods, 103–113
nonporous surfaces, 103–109, 115
orthopoxviruses, 125–127
planning event, 102–103
porous surfaces, 103, 109–113, 115
sample kit, 118–122
supplies, 119–122
verification sampling, 32
white-powder incident, 128–131
Survey team, see Reconnaissance team
Swab sampling, 104, 106–109, 116, 118, 182
B. anthracis detection, 248, 250–251, 253–254
T
Targeted remediation, 87–88, 91
Targeted sampling, 77, 82–84, 130
augmented, 83
Tear gas, 6
Technical advisory group, 14
Technical Assistance Document for Anthrax Response (TAD), 29
Technical working group (TWG), 39–41
Time-resolved fluorescence assay, 236, 238
Tire track castings, 176
Toxins, 101, 241
identification, 241
select agents, 100
Tracking techniques, 45–50
Training, shipper of hazardous materials, 203
Training certification courses, 53–54
Training of sampling team
aseptic technique, 3–4, 55, 64
exercises, rehearsals, and hands-on training, 54–56
microbiology and biothreat agents, 52–53
missteps and mistakes, 2
personal protective equipment, 2–4
personnel records, 167–168
Index

Training of sampling team (continued)
 training certification courses, 53–54
 training sources and support programs, 56–57
Transition sampling, 35
Transport of samples, 38–39, 189–206
 commercial air transport, 202–203
 commercial ground transport, 202
 damaged packages, 199
 missteps and mistakes, 19–21
 noncommercial transport, 199–201
 regulation by federal agencies, 39
Trenton Processing and Distribution Center, see Anthrax attacks (2001)
Trip blanks, 184, 186
Triple-bagged packages, 182, 192–194, 205–206
Turnaround time, laboratory, 38, 216–217

U
UN specification mark, 202
United States Army Medical Research Institute for Infectious Diseases (USAMRIID), 211–212, 215, 230
Urban canyon effect, 149–150
Urease test, 239–240
U.S. Postal Service (USPS)
 anthrax attacks, 243–258
 biohazard detection system, 252–253
Utility belt, 23

V
Vaccine, 59
 investigation new drugs, 59
Vaccinia virus, surface sampling, 125–127
Vacuum cleaners, contaminated, 81
Vacuum-based collection device, 16
 malfunction, 16
Validation parameters, 117
Validation sampling, 40
 B. anthracis, 253–254
Variola virus, surface sampling, 125–127
Verification sampling, 32, 34–35
Vinegar, decontamination solution, 17
Viruses, select agents, 100
Visual Sample Plan, 84
Vitek system, 240

W
Waste materials, contaminated, 172–173
Weapons of Mass Destruction Operations Unit (FBI), 75
Weather conditions, 5
White-powder incident, 12–13, see also
 Biological event
 airport scenario, 75–94
 Cleveland airport, 127–128
 seriousness, 30–31
 surface/bulk sampling, 128–131
 threat assessment, 128–131
Wind rose, 148–149
Wind Rose (software), 149
Wire sampling, 104, 106–107, 118, 182
 B. anthracis detection, 250–251
Wireless communication interface, 46–47
Work shifts, sampling team, 11–12, 15
Workers, sharing sampling information/results with, 42–43
Workplace sampling, 42
World Health Organization (WHO), categories of hazardous materials, 191
Written equipment inventory, 172
Written plan, 43–44
Written report, 84
WRPLOT View, 149