Petroleum Microbiology
Petroleum Microbiology

EDITED BY
Bernard Ollivier
Laboratoire de Microbiologie
Institut de Recherche pour le Développement
Universités de Provence et de la Méditerranée
Marseille, France

AND
Michel Magot
Laboratoire d’Écologie Moléculaire
Université de Pau et des Pays de l’Adour
Pau, France

ASM PRESS
Washington, D.C.
CONTENTS

Contributors vii
Foreword ix

I. MICROBIOLOGY OF OIL FIELDS / 1

1. Oil Reservoirs and Oil Production / 3
 Marie Planckaert

2. Indigenous Microbial Communities in Oil Fields / 21
 Michel Magot

3. Sulfate–Reducing Bacteria and Archaea / 35
 Nils-Kåre Birkeland

4. Hyperthermophilic and Methanogenic Archaea in Oil Fields / 55
 Christian Jeanthon, Olivier Nercessian, Erwan Corre, and Agnès Grabowski-Lux

5. The Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms / 71
 Bernard Ollivier and Jean-Luc Cayol

II. PERNICIOUS EFFECTS OF BACTERIAL ACTIVITY / 89

 Haiping Huang and Steve Larter

7. Reservoir Souring: Mechanisms and Prevention / 123
 Ian Vance and David R. Thrasher
CONTENTS

8. Microbial Corrosion in the Oil Industry:
a Corrosionist’s View / 143
Jean-Louis Crolet

9. Biofouling in the Oil Industry / 171
Peter F. Sanders and Paul J. Sturman

III. BIOTECHNOLOGY AND OIL PRODUCTION / 199

10. Microbial Control of Hydrogen Sulfide Production in
Oil Reservoirs / 201
Egil Sunde and Terje Torsvik

11. Microbially Enhanced Oil Recovery: Past, Present,
and Future / 215
Michael J. McInerney, David P. Nagle, and Roy M. Knapp

12. Biotechnological Upgrading of Petroleum / 239
John J. Kilbane II

IV. BIOREMEDIATION OF HYDROCARBON-
CONTAMINATED ENVIRONMENTS / 257

13. Diversity, Function, and Biocatalytic Applications of
Alkane Oxygenases / 259
Jan B. van Beilen and Bernard Witholt

14. Biodegradation of Hydrocarbons under
Anoxic Conditions / 277
Ralf Rabus

15. Biodegradation of Fuel Ethers / 301
Françoise Fayolle and Frédéric Monot

16. The Microbiology of Marine Oil Spill Bioremediation / 317
Roger C. Prince

17. Metabolic Indicators of Anaerobic Hydrocarbon
Biodegradation in Petroleum-Laden Environments / 337
Lisa M. Gieg and Joseph M. Suflita

Index / 357
CONTRIBUTORS

Nils-Kåre Birkeland
Department of Biology, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway

Jean-Luc Cayol
Laboratoire de Microbiologie, IRD, UR-101, case 925, Universités de Provence et de la Méditerranée, 13288 Marseille Cedex 9, France

Erwan Corre
Station Biologique, 29680 Roscoff, France

Jean-Louis Crolet
36 Chemin Mirassou, 64140 Lons, France

Françoise Fayolle
Department of Biotechnology and Biomass Chemistry, Institut Français du Pétrole, 92852 Rueil-Malmaison Cedex, France

Lisa M. Gieg
Department of Botany and Microbiology and Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019-0245

Agnès Grabowski-Lux
Institut Français du Pétreole, 92852 Rueil-Malmaison Cedex, France

Haiping Huang
Petroleum Reservoir Group, Department of Geology and Geophysics, University of Calgary, Calgary, Alberta, Canada, and Department of Petroleum Geology, China University of Geosciences, Beijing 100083, People’s Republic of China

Christian Jeantonn
Laboratoire de Microbiologie des Environnements Extrêmes, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, 29280 Plouzané, France

John J. Kilbane II
Gas Technology Institute, 1700 S. Mt. Prospect Rd., Des Plaines, IL 60018

Roy M. Knapp
School of Petroleum and Geological Engineering, University of Oklahoma, Norman, OK 73019

Steve Larter
Petroleum Reservoir Group, Department of Geology and Geophysics, University of Calgary, Calgary, Alberta, Canada
Michel Magot
IBEAS—Laboratoire d’Ecologie Moléculaire, EA3525, Université de Pau et des Pays de l’Adour, Avenue de l’Université, BP1155, F-64013 Pau, France

Michael J. McInerney
Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019-2045

Frédéric Monot
Department of Biotechnology and Biomass Chemistry, Institut Français du Pétrole, 92852 Rueil-Malmaison Cedex, France

David P. Nagle
Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019-2045

Olivier Nercessian
Department of Chemical Engineering, University of Washington, Seattle, WA 98195

Bernard Ollivier
Laboratoire de Microbiologie, IRD, UR-101, case 925, Universités de Provence et de la Méditerranée, 13288 Marseille Cedex 9, France

Marie Planckaert
Total S.A., CSTJF, Avenue Larribau, 64018 Pau Cedex, France

Roger C. Prince
ExxonMobil Research and Engineering Co., 1545 Route 22E, Annandale, NJ 08801

Ralf Rabus
Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany

Peter F. Sanders
Petroleum Microbiology Unit, Research and Development Center, Saudi Arabian Oil Company, Box 62, Dhahran 31311, Kingdom of Saudi Arabia

Paul J. Sturman
Center for Biofilm Engineering, P.O. Box 173890, Montana State University, Bozeman, MT 59717-3980

Joseph M. Suflita
Department of Botany and Microbiology and Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019-0245

Egil Sunde
Statoil ASA, N-4035 Stavanger, Norway

David R. Thrasher
BP plc, Chertsey Rd., Sunbury on Thames, Middlesex TW16 7LN, United Kingdom

Terje Torsvik
Department of Biology, University of Bergen, Jahnebakken 5, N-5020 Bergen, Norway

Jan B. van Beilen
Institute of Biotechnology, ETH Zürich, Wolfgang Pauli Strasse 16, ETH Hönggerberg HPT, CH-8093 Zürich, Switzerland

Ian Vance
Centromere Limited, The Hollies, Dungells Ln., Yateley, Hampshire GU46 6EY, United Kingdom

Bernard Witholt
Institute of Biotechnology, ETH Zürich, Wolfgang Pauli Strasse 16, ETH Hönggerberg HPT, CH-8093 Zürich, Switzerland
FOREWORD

There does not exist a category of science to which one can give the name applied science. There are science and the applications of science, bound together as the fruit and the tree that bears it.

Louis Pasteur, 1871

*P*asteur succinctly summarizes the iterative nature of scientific investigation. Intellectual curiosity leads to the understanding of natural phenomena, and with this understanding comes the ability to manipulate these phenomena for human benefit. Problems encountered with the application of science lead to new scientific discoveries. This iterative process is operative in petroleum exploitation. For example, the increased understanding of the physics of fluid flow in porous matrices led to more efficient petroleum extraction, resulting in petroleum’s becoming the dominant energy source for most industrialized countries. The use of petroleum as an energy source has had a profound effect on the economies and standards of living of industrialized societies. However, the quality and availability of petroleum resources have steadily declined, making it essential that the remaining resource be used wisely. The central theme of this book is to illustrate the pivotal role that microorganisms play in determining the quality and effective use of petroleum resources. The problems encountered with petroleum exploitation should be viewed with microorganisms in mind.

Research in the last 20 years has shown that petroleum reservoirs contain active and diverse microbial communities that influence the quality and quantity of petroleum that can be recovered. Microbial activity can be beneficial or detrimental to petroleum exploitation. It is critical that professionals in the petroleum industry understand the factors that regulate microbial activity in order to enhance the beneficial activities and limit the detrimental ones. This book provides a comprehensive overview of the role of microorganisms in petroleum production and use in order to make the reader aware of how current practices can be altered or controlled for the benefit rather than
the detriment of oil production and use. The complex problems involved in petroleum exploitation require the integration of information from many disciplines, including microbiology, geochemistry, and engineering. This book serves as an important resource to accomplish this goal. Microbiologists will find an up-to-date treatment of an important area of microbiology in which they may choose to study. Professionals from other disciplines such as materials science, geoscience, and petroleum engineering will find a concise but comprehensive presentation of how microbes live and guidelines for their manipulation.

One aim of this book is to change the perception in the industry that petroleum reservoirs are sterile environments inaccessible to microorganisms. In fact, we now know that dynamic and complex microbial communities exist in petroleum reservoirs. The physical, chemical, and microbiological processes that govern the activity of these communities must be understood for optimal and economic exploitation. Section I of the book provides a comprehensive overview of the microbial ecology of petroleum reservoirs and surface facilities. The physiology and ecology of several important groups, such as sulfate-reducing bacteria, methanogenic bacteria, hyperthermophiles, and fermentative and chemolithotrophic bacteria, are discussed to illustrate the diverse and dynamic nature of the resident microorganisms. These chapters provide the reader with insight on how microorganisms act in their natural environment.

Microbial activity can be a double-edged sword in regard to petroleum exploitation. Microbial activity is most often thought of in detrimental terms in relation to the role that microorganisms play in corrosion of piping and surface facilities, plugging of injection wells, biofouling of surface equipment, and souring (hydrogen sulfide production) of reservoirs. Section II provides an in-depth analysis of the mechanisms by which microorganisms detrimentally affect petroleum exploitation and possible solutions for the control of these activities. Section III discusses the other edge of the microbial sword, the beneficial activities of microorganisms. Understanding the factors that govern microbial activities such as sulfate reduction has led to novel approaches such as nitrate or nitrite amendments to control souring. In addition, understanding the mechanisms involved in microbial hydrocarbon metabolism has led to the development of microbial processes to control paraffin deposition and to upgrade the quality of fossil fuels. Manipulation of the ecology and physiology of microbial populations in the reservoir, most often by nutrient amendment, can result in the stimulation of microbial activities that lead to increased oil production.

Section IV provides an up-to-date overview of the biodegradation of petroleum hydrocarbons and refined petroleum products and approaches to manipulate hydrocarbon degradation activity for environmental clean up. Diversity is the theme here. It is clear that the variety and numbers of hydrocarbon-degrading microbial species are very large, as is the variety of chemical structures that microbes metabolize. Within the last 15 years, it has been discovered that the ability to degrade diverse hydrocarbons extends to anaerobic microorganisms. Here, novel reactions such as carboxylation and fumarate addition are used to activate the hydrocarbons for anaerobic decay. The plethora of aerobic and anaerobic hydrocarbon-degrading activities offers
diverse options for remediation. Active intervention by the addition of limiting nutrients and/or oxygen can be used to remediate petroleum spills in environmentally sensitive areas such as beaches, estuaries, or drinking water aquifers. Alternatively, if the risk to the environment and human health is low, natural attenuation can be used to degrade the hydrocarbon. Again, understanding the ecological factors that limit microbial activity (e.g., hydrocarbon metabolism) at the site in question, such as the lack of a suitable electron acceptor or of required nutrients for growth or the presence of the required microbial activity, is fundamental to the success of the remediation endeavor.

This book differs from previous books on petroleum microbiology in one significant way. Earlier books focused almost exclusively on hydrocarbon metabolism and bioremediation of petroleum spills. This book covers these important topics but also provides an up-to-date overview of the ecology of petroleum reservoirs. The realization that petroleum reservoirs are climax microbial communities that respond to change in predictable ways offers the practitioner approaches to control microbial activity. Most practitioners realize that microbes catalyze detrimental activities such as corrosion or souring, but they do not understand the factors that govern these activities or how best to control them. This book shows how microorganisms act, so that steps can be taken to control their activities. This book will be an important resource for microbiologists and other professionals interested in petroleum microbiology.

MICHAEL J. McINERNEY
University of Oklahoma
Norman, Oklahoma
INDEX

Acetate, 29, 44
Acidity, in crude oil, 94
Acidophiles, 72
Acinetobacter, 223, 261, 265, 266, 267, 326
Acrolein, 164, 165
Adenosine-5'-phosphate (APS), 40, 42
Alcanivorax borkumensis, 326–327
Algae, alkane degradation by, 262
Alicyclic hydrocarbons, degradation of, 287
Aliphatic hydrocarbons
 biodegradation, 98–104, 259–271
 alkane hydroxylase (AH) gene detection in the environment, 267
 alkane hydroxylase (AH) systems, 263–266
 applications of oxygenases, 267–270
 organisms involved, 260–262
 pathways, 262–263
 life cycle of compounds, 259
Alkane, biodegradation, 9, 94, 96–97, 100, 259–271, 347. See also Aliphatic hydrocarbons
 organisms involved, 260–262
 pathways, 262–263
Alkane hydroxylase (AH)
 applications in industrial chemistry, 267–270
 detection of genes in the environment, 267
 organisms having, 260
 systems
 cytochrome P450 AHs, 266
 integral membrane AHs, 263–265, 268, 270
 n-Alkanes, degradation of, 286, 340–341, 346
 Alkylbenzenes, 9, 343–344, 346
 Alkylbenzothiophenes, biodegradation effects on, 107
 Alkynaphthalenes, biodegradation effects on, 105–106
 Alkylphenanthenes, biodegradation effects on, 106
 Alkylphenols, biodegradation effects on, 110
American Petroleum Institute (API) scale, 11
Ammonium bisulfite, 136
Anaerobacterium thermoterrenum, 80
Anaerobic hydrocarbon degradation, 277–292.
 See also Biodegradation
denitrifying bacteria, 278–280, 282, 292
diversity of degrading bacteria, 278–282
examples of degradation
 alicyclic hydrocarbons, 287
 ethylbenzene, 284, 286–287, 289–291, 340, 341, 346
 hexane, 284, 286, 347
 methyltetralin, 286, 346–347
 n-alkanes, 286, 340–341, 347
 propylbenzene, 287
toluene, 284, 285–286, 288–289, 339, 343, 346, 349
 xylene, 286, 343, 345, 346, 349
genetics and regulation, 288–291
mechanisms, 282–288
 anaerobic methane activation, 288
carboxylation, 288, 341
dehydration, 287
fumarate-dependent formation of arylsuccinates and alkylsuccinates, 283–287
hydration, 288
methylation, 288
metabolic indicators, 337–351
 in situ concentrations of metabolites, 348
 in situ rates of biodegradation, 348–349
 metabolites as indicators of in situ biodegradation, 342–348
metabolites in reservoirs, 350–351
 practical considerations, 349–350
overview, 339–342
sulfate-reducing bacteria, 280–281, 291
Anaerobic methane activation, 288
Anaerobic respiration, by sulfate-reducing bacteria, 35, 40
Anthraquinone, for SRB control, 192
Anticline, 5, 6
API (American Petroleum Institute) scale, 11
APS (adenosine-5′-phosphate), 40, 42
Aquabacterium, 26
Archaebacterium, 55–65
hyperthermic fermentative, 80
hyperthermophilic sulfur and sulfate reducers, 56–58
methanogens, 58–60
molecular detection in reservoirs, 60–64
high-temperature, 60–63
low-temperature, 64
overview, 65
phylogeny, 55–56, 62
Archaeglobus, 28, 35, 37, 44, 48–49, 56, 58
fulgidus, 26, 36, 39, 45, 48, 57–58
lihotrophe, 48, 57–58
profundus, 39, 48, 57–58
veneficus, 39, 58
Aromatic hydrocarbons, 9, 104–108
Artificial lift, 12
Asphaltenes, 9
Bacillus, 220–222, 223, 230, 320, 326
Bactericide
bactericide demand, 189
emulsion-based deployment, 193–194
inadequate testing and monitoring, 190
inappropriate dose regimens, 188–189
pulse treatment, 193
system conditions and, 189–190
tolerance and resistance, 189
underdosing, 188
Barophiles, 72
Benzene, degradation of, 342
Biocides
for biofilm control, 182
biofilm control, failure of bactericide demand, 189
inadequate testing and monitoring, 190
inappropriate dose regimens, 188–189
system conditions, 189–190
tolerance and resistance, 189
underdosing, 188
to control microbiological reservoir souring, 136, 137
for corrosion prevention, 164–166
biocide categories, 164–165
consequences, 165–166
treatment categories, 165
emulsion-based deployment, 193–194
pulse treatment, 193
Biodegradation
aliphatic hydrocarbons, effects on, 98–104, 259–271
n-alkanes and isoprenoids, 100
pentacyclic terpanes, 102–103
sesquiterpanes, 100–101
steranes, 103–104
tricyclic and tetracyclic terpanes, 101
aromatic hydrocarbons, effects on, 104–108
alkyl dibenzothiophenes, 107
alkylnaphthalenes, 105–106
alkylphenanthrenes, 106
aromatic steroid hydrocarbons, 106–107
degree of alkylation and, 107
overall distribution, 104–105
tetracyclic aromatic hydrocarbons, 106
average degradation fluxes, 116
causes, 93
effect of temperature on, 72
of fuel ethers, 301–313
gaseous hydrocarbons, effects on, 94–96
impact on bulk composition, 94
by indigenous bacteria, 29–30
isotopic variation during, 97–98
light hydrocarbons, effects on, 96–97
net reaction characteristics, 111–115
biodegradation conceptual model, 112–113
mass balance calculation, 113–115
nutrients, 112
oil property prediction, 115
oxidants, 111–112
nonhydrocarbons, effects on, 108–111
alkylphenols, 110
carbazole compounds, 109–110
carboxylic acids, 110–111
pressure effect on, 91
in reservoirs, 91–116
reservoirs as bioreactors, 91–93
reservoir temperature and, 27
salinity effect on, 91
temperature effect on, 91, 93, 112
time scale, 92
Biodenitrogenation, 249–250
Biodesulfurization, 241–249
development of process for diesel and crude oil, 247–249
 genetic modifications to increase, 245–247
overview, 241
role in nature, 243–244
substrate range, 241–242
Bioemulsifiers, 223
Biofilms, 171–194
bacterial interactions in, 176–178
cell signaling, 173, 177–178
competition and mutualism, 176–177
gene exchange, 177
cell signaling, 173, 177–178
control, 187–194
anthraquinone, 192
bactericide, 188–190, 193–194
dispersant technology, 192–193
immunoglobulin treatment, 193
molybdate, 191–192
nitrate, 191
nitrite, 191
sulfate removal, 192
formation steps
step 1: initial attachment, 173–174
step 2: biofilm initiation and EPS production, 174
step 3: biofilm structural development, 174–176
step 4: biofilm maturation and detachment, 176
indigenous bacteria, 22
monitoring, 178–181
field assessment, 179–181
laboratory studies, 178–179
overview, 171–193
practical implications, 181–187
souring and, 203–205
Biofouling, 171–194. See also Biofilms
control measures, 187–194
MEOR (microbially enhanced oil recovery), 172, 187
monitoring, 178–181
Biopolymers and permeability modifications, 223–225
Bioremediation of hydrocarbon-contaminated environments
biocatalytic applications of alkane oxygenases, 259–271
biodegradation of fuel ethers, 301–313
biodegradation of hydrocarbons under anoxic conditions, 277–292
marine oil spills, 317–328
metabolic indicators, 337–351
Biosphere, crude oil in, 317–321
Biostat theory, 201–202
Biosurfactant-enhanced waterflooding, 228–229
Biosurfactants, 220–222, 230
Biotechnology and oil production
microbial control of H2S production, 201–211
microbially enhanced oil recovery, 215–231
upgrading of petroleum, 239–251
Blastochloris sulfoviridis, 279, 282
Butane, degradation of, 94, 266
Caldimicrobacter subtenusans, 79
Caldidivis, 35, 39–40
Campylobacter, 205
Capillary number, 217
Capillary pressure, 8
Cap rock, 5
Carbazole, 109–110, 240, 249–250
Carbon dioxide (CO₂)
CO₂ injection, 15
oil enhancement by production of, 219–220
reduction to methane, 95
Carbon monoxide dehydrogenase (CODH) pathway, 44, 45
Carboxylation, 288, 341
Carboxylic acids, biodegradation effects on, 110–111
Catagenesis, 3–4
Cathodic depolarization, myth of, 153–154
Cell signaling, 173, 177–178
Chlorine, 164, 188
Citric acid cycle, modified, 44
CODH (carbon monoxide dehydrogenase) pathway, 44, 45
Combustion, in situ, 14
Composition of petroleum, 240
Continuous stirred-tank reactor (CSTR), 179
Corrosion, 143–166
biofilms and, 182, 183, 185–187
as electrochemical process, 144–146
heterogeneous electrodes and, 151–153
local, 151–153, 159–162
mechanisms of microbial, 158–162
localized corrosion, 159–162
uniform corrosion, 158–159
monitoring
consequences of, 162
field techniques, 163–164
purpose, 162–163
myth of cathode depolarization, 153–154
overview, 143–144
parametric sensitivity, 146–149
pitting, 152–153, 159–162
prevention of microbial corrosion, 164–166
biocide categories, 164–165
consequences, 165–166
treatment categories, 165
protectiveness of corrosion layers, 149
sulfidogenic bacteria, 143–144, 155–158
ecology, 156–157
metabolism and physiology, 157–158
CSTR, (continuous stirred-tank reactor), 179
Cyanobacteria, hydrocarbon degradation by, 321
Cycloalkanes, 9
Cyclobacterium, 326–327
Cyclohexane, 9
Cyclopentane, 9
Cytochrome P450 alkane hydroxylases, 266
Darcy’s law, 7
Dechloromonas, 280, 282, 342
Deferribacter thermophilus, 81, 82
Dehydration, 287
Dehydrogenation, 287
Denitrifying bacteria, anaerobic hydrocarbon degradation and, 278–280, 282, 292
Denitrivibrio acetiphilus, 82, 83
Density, oil, 11
Desulfitococcus, 37
Desulfobulbus, 37, 38, 47
Desulfocapsa, 38
Desulfoguillainia, 39–40
Desulfosporosinus, 38
Desulfomonile, 37
Desulfonema, 37
Desulfosarcina, 37
Desulfosporosinus, 38
Desulfomonile, 38
Desulfotomaculum, 37, 38, 48–49, 126, 281, 282, 291
acetoxidans, 45
acetoxidans, 45
acetoxidans, 45
gutteoidum, 38
halophilum, 24, 47, 48
kaznetovii, 48
nigrificans, 48
thermocystenum, 24, 48
Desulfovibrio, 36, 37, 38, 43–44, 47, 157, 205
bastini, 24, 47
capillatus, 47
desulfuricans, 125, 139
fructosovorans, 161
gabonensis, 47
gracilis, 24, 47
longus, 24, 47
vietnamensis, 47
vulgaris, 36, 42, 44
Desulfurization. See Biodesulfurization
Dethiosulfovibrio peptidovorans, 73, 75, 157
Diagenesis, 3, 4
Diagraph, 8
Dibenzothiophene (DBT), 240–242
Dispersants, 321
Dispersion of biofilms, 192–193
Dissimilatory sulfate reduction, 35, 39, 43
Dissimilatory sulfite reductase (Dsr), 36–37, 42
Dome, 5, 6
Drilling, of wells, 15–16
Efficiency of oil recovery, 217
Electrochemical nature of corrosion, 144–146
Electrochemical noise (EN), 152
Enhanced oil recovery (EOR). See also Microbially enhanced oil recovery (MEOR)
distinction from IOP (improved oil production), 216
economic potential of, 215–216
engineering perspectives, 216–218
standard methods, 13–15
Ethers. See Fuel ethers
Ethylbenzene, degradation of, 284, 286–287, 289–291, 340, 341, 346
Ethyl tert-butyl ether (ETBE), 301–303, 310–312
Exploration, 6–7
Extracellular polymeric substances (EPS), biofilm, 174, 175–176
Fatty acid degradation, 64
Fermentative microorganisms, 71–84
Archaean, 80
halophiles, 72–75
iron-reducing, 81, 82
mesophiles, 72–75
for microbially enhanced waterflooding processes, 227
nitrate-reducing, 81–83
oil enhancement by activities of, 219–220
overview, 71–72, 83–84
thermophiles, 73, 75–81
Fertilizers, marine oil spill bioremediation and, 324–325, 327
Fluid catalytic cracking (FCC), 241
Fuel ethers, 301–313
biodegradation of ETBE, 310–312
biodegradation of MTBE, 304–310
aerobic, 304–308
anaerobic, 308–309
by cometabolism, 304–305, 306
ex situ bioremediation treatments, 309
in situ bioremediation treatments, 309–310
limitations to, 308
natural attenuation of MTBE, 309
pathway, 307
utilization as growth substrate, 305, 308
environmental impact, 302–303
human health impact, 303
industrial production, 302
properties, 301, 302
regulation of, 303–304
role in gasoline, 301
structure, 302
Fumarate addition reactions, 339–341, 343–344, 348
Fumarate-reduction-dependent formation of arylsuccinates and alkylsuccinates, 283–287
Fungi, alkane degradation by, 261–262
Fusibacter paucivorans, 72, 73, 75
Galvanic coupling, 151–152
Garciaella nitratireducens, 78, 82, 83
Gas chromatography-mass spectrometry (GC-MS), 344, 350
Gas-to-oil ratio (GOR), 10–11
Gettiv exchange, in biofilms, 177
Geobacillus, 82, 83
Geobacter, 280, 285, 288
Geotoga, 73, 76–78
Glutaraldoxyaldehyde, 164, 165, 166, 188
Gordonia, 242, 266, 270
H2S. See Hydrogen sulfide (H2S)
Halanaerobium, 73, 74, 75
Halophiles, 72–75
SRBs, 47
temperature and, 27
Halothermothrix orenii, 27
Heterogeneous electrodes, localized corrosion and, 151–153
Hexane, degradation of, 284, 286, 347
Hopanes, 9, 102–104
Hydration, 288
Hydrocarbon degradation. See also Biodegradation
aliphatic hydrocarbons biodegradation, 98–104, 259–271
anaerobic, 277–292
alicyclic hydrocarbons, 287
n-alkanes, 286, 340–341, 347
denitrifying bacteria, 278–280, 282, 292
diversity of degrading bacteria, 278–282
ethylbenzene, 284, 286–287, 289–291, 340, 341, 346
genetics and regulation, 288–291
hexane, 284, 286, 347
mechanism, 282–288
metabolic indicators, 337–351
methyl-naphthalene, 286, 346–347
overview, 339–342
propylbenzene, 287
sulfate-reducing bacteria, 280–281, 291
toluene, 284, 285–286, 288–289, 339, 343, 346, 349
xylenes, 286, 343, 345, 346, 349
genera involved, tables of
algae and diatoms, 324
Bacteria, 318–319
cyanobacteria, 321
fungi, 322–323
by indigenous bacteria, 30
Hydrocarbon metabolism, MEOR and, 219
Hydrocarbons
occurrence, 278
properties, 277–278
Hydrogenases, 43, 157
Hydrogen/carbon (H/C) ratio, 4
Hydrogen index-oxygen index (HI/OI) diagram, 3
Hydrogenotrophic bacteria, 75
Hydrogenotrophs, 81–82
Hydrogen oxidizers, 81
Hydrogen sulfide (H₂S)
corrosion and, 149–150, 153, 156–158, 161, 165–166, 182, 183
nitrate-reducing bacteria for control of, 205–211
partitioning, 130–131
production and biofilms, 203–204
reservoir souring and, 123–140
scavenging in the reservoir, 129–130, 136
souring and, 201–211
as weak acid, 149, 150
Hyperthermophiles
Archaea, 27–28
exogenous origin, 28
fermentative, 80
iron-reducing, 81–83
SRB, 39, 45, 48
sulfate reducers, 57, 58
sulfur reducers, 56–58
Hypochlorite, 164, 188
Immunoglobulin treatment, biofilm inhibition by, 193
Improved oil production (IOP), 216
Improved oil recovery (IOR), 13
Indigenous microbial communities, 21–31
evaluation of indigenous origin, 23–26
metabolic processes, 29–30
nutrient availability, 28–30
population density, 28
reservoir temperature and, 26–28
sample collection, 22–23
Injection, 12, 13, 14, 15, 202–203
In situ combustion, 14
Iron
corrosion and, 149–153, 159, 161–162
FeS precipitation, 149–151, 161–162
H₂S scavenging by, 129, 136
iron-reducing microorganisms, 81, 82, 280 reduction, 29
Isoalkanes, 9
Isoprenoids, 9, 100
Kerogen, 3–4
Lactate, oxidation of, 44
Leuconostoc, 223
Liquid chromatography-tandem MS, 350
Mahella australiensis, 79
Manganese-oxidizing bacteria in biofilms, 182
Marine oil spill bioremediation, 317–328
genera capable of hydrocarbon degradation,
318–319, 321–324
microbial responses, 325–328
overview, 317–321
protocols
dispersants, 321
fertilizer use, 324–325, 327
shoreline, 321, 324–325
Marinobacter aquaeoli, 82, 83
MBC (minimum bactericidal concentration), 164
MEOR. See Microbially enhanced oil recovery (MEOR)
Mesophiles, fermentative, 72–75
Metagenesis, 4
Metals, in oil, 239, 240, 250
Methane, 9
Methanomarina, 84
Methanobacterium, 22, 57, 59

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Sat, 22 Jun 2019 01:29:01
Methanogenesis, 29, 94–96
Methanogens, 57, 58–60, 61, 63–65
Methanohalophilus euhalobius, 57, 59
Methanoplanus petrolearius, 57, 59
Methanosarcina, 57, 59, 60
Methanothermobacter thermoautotrophicus, 57, 60
Methanothermococcus thermolithotrophicus, 57, 60
Methanotrophs, 94
Methylation, 288
Methylnaphthalene, degradation of, 286, 346–347
Methyl tert-butyl ether (MTBE), 301–310, 312–313
biodegradation, 304–310
 - aerobic, 304–308
 - anaerobic, 308–309
 - by cometabolism, 304–305, 306
 - ex situ bioremediation treatments, 309
 - in situ bioremediation treatments, 309–310
 - limitations to, 308
 - natural attenuation of MTBE, 309
 - pathway, 307
 - utilization as growth substrate, 305, 308
 - in gasoline, 301
 - impact, health and environmental, 302–303
 - properties, 301, 302
 - regulation, 303–304
 - structure, 302
Microbially enhanced oil recovery (MEOR), 172, 187, 215–231
 - acid, gas, and solvent production, 219
 - bioemulsifiers, 223
 - biopolymers and permeability changes, 223–225
 - biosurfactants, 220–222, 228–230
 - categories of processes
 - waterflooding processes, 226–229
 - well bore cleanup processes, 225–226
 - well stimulation technologies, 226
 - engineering perspectives, 216–218
 - hydrocarbon metabolism, 219
Mineral weathering, 112
Minimum bactericidal concentration (MBC), 164
Miscible gas injection, 15
Mixing, oil, 92–93, 112–113
Mobility ratio, 14
Molybdate, for SRB control, 191–192
Myobacterium phlei, 241, 244–245
Myocobacterium sp., 270
Naphthalenes, degradation of, 286, 341, 344, 346–347
Nickel, in oil, 239, 240, 250
Nitrate
 - to control souring, 139–140
 - for SRB control, 140, 165, 191
Nitrate-reducing bacteria (NRB), 81–83
 - for control of H₂S generation, 205–211
 - distribution of, 140
 - H₂S oxidation by, 140
Nitrate-utilizing bacteria (NUB), 191
Nitrite
 - as H₂S scavenger, 136
 - for SRB control, 191, 206
Nitrogen
 - biodenitrogenation, 249–250
 - denitrifying bacteria and anaerobic hydrocarbon degradation, 278–280, 282, 292
 - fertilizers for marine oil spill bioremediation, 324–325, 327
 - in oil, 239, 240, 249–250
 - Nocardia astreoides, 244, 247
 - Nocardia sp., 266
Nutrient availability, 28–30
Oil biodegradation. See also Biodegradation
effect of temperature on, 72
reservoir temperature and, 27
Oil mixing, 92–93, 112–113
Oil production
 - drilling, 15–16
 - mechanisms
 - enhanced recovery, 13–15
 - primary recovery, 11–12
 - secondary recovery, 12–13
 - tertiary recovery, 13
 - surface facilities, 16
 - water treatment, 16–19
Oil reservoirs
 - anaerobic hydrocarbon metabolites in, 350–351
 - as bioreactors, 91–93
 - charging, 92, 93, 113–115
 - discovery, 6–7
 - elements, 3–5
 - cap rock, 5
 - reservoir rock, 4–5
 - source rock, 3–4
 - fluid classification, 11
 - fluid composition, 9–10, 11
 - methanogenesis and, 64, 65
 - oil mixing, 92–93, 112–113
 - permeability, 218, 223–225, 227–228
 - pressure, 8–9, 11
 - properties, 7–8
 - reinjection of water into, 17–18
 - temperature, 8, 9, 11, 26–28
 - topology, 92
 - trapping, 5–6
Oil saturation, 5, 7, 11, 14, 15
Oil spills. See Marine oil spill bioremediation
Organic acids, 29, 45
Overburden pressure, 9
Oxidizing biocides, 164
Ozone, 164
Paenibacillus sp., 243
Paleopasteurization model, 91–92
Paraffins, 9
Permeability, 223–225
profile modification, 227–228
reservoir rock, 4–5, 7
variation in reservoir, 218
Permeability curves, 7–8, 15
Petrobacter succinatimandens, 82, 83
Petroleum fluids
classification, 11
composition, 9–10, 11
properties, 10–11
Petrotoga, 73, 76–78
PFL (pyruvate formate lyase), 283, 285
Phosphorus, as rate-limiting nutrient, 28
Phylogenetics, of sulfate-reducing bacteria, 36–40, 41, 42
Pitting corrosion, 152–153, 159–162
Pore plugging, 223–225
Porosity, reservoir rock, 4
Porphyriins, 9
Pressure
effect on biodegradation in reservoirs, 91
fluid, 9
measurement, 8
normal distribution from surface through reservoir, 10
oil saturation and, 11
overburden, 9
Produced water reinjection (PWRI) lines, souring and, 126, 127–128
Propane, biodegradation of, 94
Propylbenzene, degradation of, 287
Pseudomonas, 220–221, 244, 249, 326
alkane degradation, 261, 264–265, 266–268, 270
Psychromonas, 320
PWRI (produced water reinjection) lines, souring and, 126, 127–128
Pyrococcus, 56, 80
Pyruvate formate lyase (PFL), 283, 285
Quaternary ammonium salts, 164, 165
Quinoline degradation, 249
Quorum sensing, 173, 177–178, 327
Reconstructed ion chromatograms (RICs), 98–99
Recovery
enhanced oil recovery (EOR), 13–15
distinction from IOP (improved oil production), 216
economic potential of, 215–216
engineering perspectives, 216–218
standard methods, 13–15
microbially enhanced oil recovery (MEOR), 172, 187, 215–231
acid, gas, and solvent production, 219
bioemulsifiers, 223
biopolymers and permeability changes, 223–225
biosurfactants, 220–222, 228–230
engineering perspectives, 216–218
hydrocarbon metabolism, 219
waterflooding processes, 226–229
well bore cleanup processes, 225–226
well stimulation technologies, 226
primary, 11–12
secondary, 12–13
tertiary, 13
Reservoir rock, 4–5
Reservoirs. See Oil reservoirs
Reservoir souring, 123–140
biofilms and, 203–205
biostat theory, 201–202
control, 135–140
masking symptoms, 135–136
microbial control of hydrogen sulfide production, 201–211
nitrate, 191
nitrate-reducing bacteria, 205–211
nitrite, 191
partial cures, 136–137
prophylaxis, 137–140
diagnosis, 131
economic impact, 124–125
field example, 132–135
H2S partitioning, 130–131
H2S scavenging, 129–130, 136
limitation of sulfate reduction, 128–129
mechanisms, 125
prediction, 131–132
prevention, 165
PWRI (produced water reinjection) and, 126, 127–128
SRB (sulfate-reducing bacteria) and, 125–129, 131–132, 136–140
symptoms, 123–124
water injection and, 202–203
water movement and, 130
Resins, 9
Rhodococcus, 241, 243–248, 270, 326
RICs (reconstructed ion chromatograms), 98–99
Salinity, 72. See also Halophiles
effect on biodegradation in reservoirs, 91
effect on H2S production, 139
Scavengers, H2S, 129, 130, 136
Separator, 10
Sesquiterpanes, biodegradation effects on, 100–101
Shevanella putrefaciens, 81, 82
Shoreline bioremediation, 321, 324–325
16S rRNA sequences, of Archaea, 60–64
Source rock, 3–4
Souring. See Reservoir souring
Specific gravity, 11
Sphingomonas sp., 249, 270, 326
Spinichneta smaragdinae, 73, 75
SRB. See Sulfate–reducing bacteria and archaea (SRB)
Steam injection, 14
Steranes, 9, 103–104
Substrate-level phosphorylation, 72
Sulfate
reduction, limitation of, 128–129
removal for SRB control, 192
removal from injection water, 137–138
Sulfate–reducing bacteria and archaea (SRB), 35–49, 71
anaerobic hydrocarbon degradation, 280–281, 291
biofilms and, 182, 183, 185–186, 203
biological sensors for, 163
competition with nitrate-reducing bacteria, 81
control measures, 137–140
anthraquinone, 192
biocides, 136, 137, 164
molybdate, 191–192
nitrate, 191
by nitrate-reducing bacteria, 205–210
nitrite, 191, 206
sulfate removal, 192
corrosion and, 153–154, 156–166, 182
culture-independent detection of, 48–49
H₂S production, 125–129, 131–132, 136–140, 182, 183, 185
isolation of, 24
metabolism and physiology, 157–158
overview, 35–36
physiology, 126–127
physiology and biochemistry, 40–44
radioactive material, concentration of, 186
recovery from subsurface oil field waters, 45–48
reservoir souring, 125–129, 131–132, 136–140
table of novel, 25
taxonomy and phylogenetics, 36–40, 41, 42
test kits for, 163
Sulfide-oxidizing microorganisms, 81–82
Sulfidogenic bacteria, corrosion of, 143–144, 155–158
Sulfur
biodesulfurization, 241–249
content of oil, 240
pollution and, 239
reduction, 80
Sulfur–reducing bacteria, 75
TAN (total acid number), 94
Temperature. See also Hyperthermophiles; Thermophiles
effect on biodegradation in reservoirs, 91, 93, 112
indigenous microbial communities and, 26–28
measurement, 8
Terpanes
pentacyclic, 102–103
sesquiterpanes, 100–101
tricyclic and tetracyclic, 101
tert-amyl methyl ether (TAME), 301, 302
tert-butyl alcohol, 301, 302
Tetrakishydroxymethyl phosphonium sulfate, 164, 165, 188
Thermacetogenium, 38
Thermal cracking, 3, 4
Thermoanaerobacter, 26, 78–79, 84
Thermoanaerobacterium, 26, 78–79
Thermococcus, 28, 56–58, 80, 84
Thermodesulfobacterium, 24, 35, 37, 38, 48
Thermodesulfobium, 35, 38
Thermodesulfohalobus, 38, 47, 49
Thermodesulfovibrio, 35, 38
Thermophiles. See also Hyperthermophiles
fermentative microorganisms, 75
iron-reducing, 81–83
methanogens, 60
SRB, 47, 128, 132, 137
Thermosipho, 76–78
Thermotoga
efii, 26, 73, 76–78, 84
hypogea, 73, 77
naphthophila, 73, 77
petrophila, 73, 77
subterranea, 26, 73, 77, 84
Thermus, 320
Thiobacillus denitrificans, 205
Thiomicrospira, 205
Thiosulfate
detection of, 156
reduction of, 75, 77, 80–81
Thiosulfate-reducing bacteria (TRB)
biofilm treatments, 164
corrosion and, 157–161, 163–164, 166
test kit, 163
Toluene, degradation of, 284, 285–286, 288–289, 339, 343, 346, 349
Total acid number (TAN), 94
Trapping, 5–6
TRB. See Thiosulfate-reducing bacteria (TRB)
Triaromatic steroid hydrocarbons (TAS), 104–108
Trimethylsilyl (TMS) esters, 344–345
Upgrading of petroleum, 239–251
biodenitrogenation, 249–250
biodesulfurization, 241–249
development of process for diesel and crude oil, 247–249
genetic modifications to increase, 245–247
overview, 241
role in nature, 243–244
substrate range, 241–242
future research priorities, 250–251
metal removal, 250
need for, 240–241
overview, 239

Vanadium, in oil, 239, 240, 250
Van Krevelen diagram, 4, 5
Viscosity, oil, 217

Waterflooding processes, microbially enhanced, 226–229
Water injection, souring and, 202–203
Water saturation, 7–8
Water treatment, 16–19
Well, drilling, 15–16
Well bore cleanup processes, 225–226
Well stimulation processes, 226
Wettability, 7, 8, 14

Xylenes, degradation of, 286, 343, 345, 346, 349
Yeasts, alkane degradation by, 261–262
INDEX

Acetate, 29, 44
Acidity, in crude oil, 94
Acidophiles, 72
Acinetobacter, 223, 261, 265, 266, 267, 326
Acrolein, 164, 165
Adenosine-5'-phosphate (APS), 40, 42
Alcanivorax borkumensis, 326–327
Algae, alkane degradation by, 262
Alicyclic hydrocarbons, degradation of, 287
Aliphatic hydrocarbons
 biodegradation, 98–104, 259–271
 alkane hydroxylase (AH) gene detection in the environment, 267
 alkane hydroxylase (AH) systems, 263–266
 applications of oxygenases, 267–270
 organisms involved, 260–262
 pathways, 262–263
 life cycle of compounds, 259
Alkane, biodegradation, 9, 94, 96–97, 100, 259–271, 347. See also Aliphatic hydrocarbons
 organisms involved, 260–262
 pathways, 262–263
Alkane hydroxylase (AH)
 applications in industrial chemistry, 267–270
 detection of genes in the environment, 267
 organisms having, 260
 systems
cytochrome P450 AHs, 266
 integral membrane AHs, 263–265, 268, 270
n-Alkanes, degradation of, 286, 340–341, 346
Alkylbenzenes, 9, 343–344, 346
Alkyldibenzothiophenes, biodegradation effects on, 107
Alkynaphthalenes, biodegradation effects on, 105–106
Alkylphenanthrenes, biodegradation effects on, 106
Alkylphenols, biodegradation effects on, 110
American Petroleum Institute (API) scale, 11
Ammonium bisulfite, 136
Anaerobaculum thermotolerans, 80
Anaerobic hydrocarbon degradation, 277–292.
 See also Biodegradation
denitrifying bacteria, 278–280, 282, 292
diversity of degrading bacteria, 278–282
elements of degradation
 alicyclic hydrocarbons, 287
 ethylbenzene, 284, 286–287, 289–291, 340, 341, 346
 hexane, 284, 286, 347
 methylnaphthalene, 286, 346–347
 n-alkanes, 286, 340–341, 347
 propylbenzene, 287
toluene, 284, 285–286, 288–289, 339, 343, 346, 349
 xylenes, 286, 343, 345, 346, 349
genetics and regulation, 288–291
mechanisms, 282–288
 anaerobic methane activation, 288
 carboxylation, 288, 341
dehydration, 287
 fumarate-dependent formation of arylsuccinates and alkylsuccinates, 283–287
 hydration, 288
 methylation, 288
metabolic indicators, 337–351
 in situ concentrations of metabolites, 348
 in situ rates of biodegradation, 348–349
metabolites as indicators of in situ biodegradation, 342–348
metabolites in reservoirs, 350–351
practical considerations, 349–350
overview, 339–342
sulfate-reducing bacteria, 280–281, 291
Anaerobic methane activation, 288
Anaerobic respiration, by sulfate-reducing bacteria, 35, 40
Anthraquinone, for SRB control, 192
Anticline, 5, 6
API (American Petroleum Institute) scale, 11
APS (adenosine-5’-phosphate), 40, 42
Aquabacterium, 26
Archaea, 55–65
hyperthermic fermentative, 80
hyperthermophilic sulfur and sulfate reducers, 56–58
methanogens, 58–60
molecular detection in reservoirs, 60–64
high-temperature, 60–63
low-temperature, 64
overview, 65
phylogeny, 55–56, 62
Archaeoglobus, 28, 35, 37, 44, 48–49, 56, 58
fulgidus, 26, 36, 39, 45, 48, 57–58
lithotrophicus, 48, 57–58
profundus, 39, 48, 57–58
veneficus, 39, 58
Aromatic hydrocarbons, 9, 104–108
Artificial lift, 12
Asphaltenes, 9
Bacillus, 220–222, 223, 230, 320, 326
Bactericide
bactericide demand, 189
emulsion-based deployment, 193–194
inadequate testing and monitoring, 190
inappropriate dose regimens, 188–189
pulse treatment, 193
system conditions and, 189–190
tolerance and resistance, 189
underdosing, 188
Barophiles, 72
Benzene, degradation of, 342
Biocides
for biofilm control, 182
biofilm control, failure of bactericide demand, 189
inadequate testing and monitoring, 190
inappropriate dose regimens, 188–189
system conditions, 189–190
tolerance and resistance, 189
underdosing, 188
to control microbiological reservoir souring, 136, 137
for corrosion prevention, 164–166
biocide categories, 164–165
consequences, 165–166
treatment categories, 165
emulsion-based deployment, 193–194
pulse treatment, 193
Biodegradation
aliphatic hydrocarbons, effects on, 98–104, 259–271
n-alkanes and isoprenoids, 100
pentacyclic terpanes, 102–103
sesquiterpanes, 100–101
steranes, 103–104
tricyclic and tetracyclic terpanes, 101
aromatic hydrocarbons, effects on, 104–108
alkyldibenzothiophenes, 107
alkynaphthalenes, 105–106
alkylphenanthrenes, 106
aromatic steroid hydrocarbons, 106–107
degree of alkylation and, 107
overall distribution, 104–105
tetracyclic aromatic hydrocarbons, 106
average degradation fluxes, 116
causes, 93
effect of temperature on, 72
of fuel ethers, 301–313
gaseous hydrocarbons, effects on, 94–96
impact on bulk composition, 94
by indigenous bacteria, 29–30
isotopic variation during, 97–98
light hydrocarbons, effects on, 96–97
net reaction characteristics, 111–115
biodegradation conceptual model, 112–113
mass balance calculation, 113–115
nutrients, 112
oil property prediction, 115
oxidants, 111–112
nonhydrocarbons, effects on, 108–111
alkylphenols, 110
carbazole compounds, 109–110
carboxylic acids, 110–111
pressure effect on, 91
in reservoirs, 91–116
reservoirs as bioreactors, 91–93
reservoir temperature and, 27
salinity effect on, 91
temperature effect on, 91, 93, 112
time scale, 92
Biodenitrogenation, 249–250
Biodesulfurization, 241–249
development of process for diesel and crude oil, 247–249
 genetic modifications to increase, 245–247
overview, 241
role in nature, 243–244
substrate range, 241–242
Bioemulsifiers, 223
Biofilms, 171–194
bacterial interactions in, 176–178
cell signaling, 173, 177–178
competition and mutualism, 176–177
geneic exchange, 177
cell signaling, 173, 177–178
Blastochloris sulfoviridis, 279, 282
Blastocidin S, 179
Butane, degradation of, 94, 266

Cytochrome P450 alkane hydroxylases, 266

Density, oil, 11
Darcy’s law, 7
Dechloromonas, 280, 282, 342
Defferrribacter thermophilus, 81, 82
Dehydration, 287
Dehydrogenation, 287
Denitrifying bacteria, anaerobic hydrocarbon
degradation and, 278–280, 282, 292
Denitrovibrio acetophilus, 82, 83
Butane, degradation of, 94, 266

Caldanaerobacter subtenaneus, 79
Caldovis, 35, 39–40
Campylobacter, 205
Capillary number, 217
Capillary pressure, 8
Cap rock, 5
Carbazole, 109–110, 240, 249–250
Carbon dioxide (CO₂)
CO₂ injection, 15

INDEX ■ 359
Desulfacinum, 24, 38, 47
Desulfobacter, 37, 44, 47, 125, 127, 157
Desulfobacterium, 37, 47–48
Desulfobulbus, 37, 38, 47
Desulfocapsa, 38
Desulfococcus, 37
Desulfomicrobium, 37, 38, 47
Desulfomonile, 37
Desulfonema, 37
Desulfosporosinus, 38
Desulfofustis, 38
Desulfotomaculum, 37, 38, 48–49, 126, 281, 282, 291
acetoxidans, 45
guttoidaum, 38
halophilum, 24, 47, 48
kacznetovii, 48
nigrificans, 48
thermocistanterum, 24, 48
Desulfovibrio, 36, 37, 38, 43–44, 47, 157, 205
bastini, 24, 47
capillatus, 47
desulfuricans, 125, 139
fructosovorans, 161
gabonensis, 47
gracilis, 24, 47
longus, 24, 47
vietnamensis, 47
vulgatis, 36, 42, 44
Desulfurization. See Biodesulfurization
Dethiosulfovibrio peptidovorans, 73, 75, 157
Diagenesis, 3, 4
Diagraph, 8
Dibenzothiophene (DBT), 240–242
Dispersants, 321
Dispersion of biofilms, 192–193
Dissimilatory sulfate reduction, 35, 39, 43
Dissimilatory sulfite reductase (Dsr), 36–37, 42
Dome, 5, 6
Drilling, of wells, 15–16
Efficiency of oil recovery, 217
Electrochemical nature of corrosion, 144–146
Electrochemical noise (EN), 152
Enhanced oil recovery (EOR). See also Microbially enhanced oil recovery (MEOR)
distinction from IOP (improved oil production), 216
economic potential of, 215–216
engineering perspectives, 216–218
standard methods, 13–15
Ethers. See Fuel ethers
Ethylbenzene, degradation of, 284, 286–287, 289–291, 340, 341, 346
Ethyl tert-butyl ether (ETBE), 301–303, 310–312
Exploration, 6–7

Extracellular polymeric substances (EPS), biofilm, 174, 175–176
Fatty acid degradation, 64
Fermentative microorganisms, 71–84
Archaæa, 80
halophiles, 72–75
iron-reducing, 81, 82
mesophiles, 72–75
for microbially enhanced waterflooding processes, 227
nitrate-reducing, 81–83
oil enhancement by activities of, 219–220
overview, 71–72, 83–84
thermophiles, 73, 75–81
Fertilizers, marine oil spill bioremediation and, 324–325, 327
Fluid catalytic cracking (FCC), 241
Fuel ethers, 301–313
biodegradation of ETBE, 310–312
biodegradation of MTBE, 304–310
aerobic, 304–308
anaerobic, 308–309
by cometabolism, 304–305, 306
ex situ bioremediation treatments, 309
in situ bioremediation treatments, 309–310
limitations to, 308
natural attenuation of MTBE, 309
pathway, 307
utilization as growth substrate, 305, 308
environmental impact, 302–303
human health impact, 303
industrial production, 302
properties, 301, 302
regulation of, 303–304
role in gasoline, 301
structure, 302
Fumarate addition reactions, 339–341, 343–344, 348
Fumarate-dependent formation of arylsuccinates and alkylsuccinates, 283–287
Fungi, alkane degradation by, 261–262
Fusibacter paucivorans, 72, 73, 75
Galvanic coupling, 151–152
Garciella nitratireducens, 78, 82, 83
Gas chromatography-mass spectrometry (GC-MS), 344, 350
Gas-to-oil ratio (GOR), 10–11
Genetic exchange, in biofilms, 177
Geobacillus, 82, 83
Geobacter, 280, 285, 288
Geotoga, 73, 76–78
Glutaraldehyde, 164, 165, 166, 188
Gordonia, 242, 266, 270
H₂S. See Hydrogen sulfide (H₂S)
Halanaerobium, 73, 74, 75

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Sat, 22 Jun 2019 01:29:01
Halophiles, 72–75
SRBs, 47
temperature and, 27
Halothermothrix orenii, 27
Heterogeneous electrodes, localized corrosion and, 151–153
Hexane, degradation of, 284, 286, 347
Hopanes, 9, 102–104
Hydration, 288
Hydrocarbon degradation. *See also* Biodegradation
aliphatic hydrocarbons biodegradation, 98–104, 259–271
anaerobic, 277–292
alicyclic hydrocarbons, 287
n-alkanes, 286, 340–341, 347
denitrifying bacteria, 278–280, 282, 292
diversity of degrading bacteria, 278–282
ethylbenzene, 284, 286–287, 289–291, 340, 341, 346
generics and regulation, 288–291
hexane, 284, 286, 347
mechanism, 282–288
metabolic indicators, 337–351
methyl-naphthalene, 286, 346–347
overview, 339–342
propylbenzene, 287
sulfate-reducing bacteria, 280–281, 291
toluene, 284, 285–286, 288–289, 339, 343, 346, 349
xylenes, 286, 343, 345, 346, 349
genera involved, tables of
algae and diatoms, 324
Bacteria, 318–319
cyanobacteria, 321
fungi, 322–323
by indigenous bacteria, 30
Hydrocarbon metabolism, MEOR and, 219
Hydrocarbons
occurrence, 278
properties, 277–278
Hydrogenases, 43, 157
Hydrogen/carbon (H/C) ratio, 4
Hydrogen index-oxygen index (HI/OI) diagram, 3
Hydrogenotrophic bacteria, 75
Hydrogenotrophs, 81–82
Hydrogen oxidizers, 81
Hydrogen sulfide (H$_2$S)
corrosion and, 149–150, 153, 156–158, 161, 165–166, 182, 183
nitrate-reducing bacteria for control of, 205–211
partitioning, 130–131
production and biofilms, 203–204
reservoir souring and, 123–140
scavenging in the reservoir, 129–130, 136
souring and, 201–211
as weak acid, 149, 150
Hyperthermophiles
Archaea, 27–28
exogenous origin, 28
fermentative, 80
iron-reducing, 81–83
SRB, 39, 45, 48
sulfate reducers, 57, 58
sulfur reducers, 56–58
Hypochlorite, 164, 188
Immunoglobulin treatment, biofilm inhibition by, 193
Improved oil production (IOP), 216
Improved oil recovery (IOR), 13
Indigenous microbial communities, 21–31
evaluation of indigenous origin, 23–26
metabolic processes, 29–30
nutrient availability, 28–30
population density, 28
reservoir temperature and, 26–28
sample collection, 22–23
Injection, 12, 13, 14, 15, 202–203
In situ combustion, 14
Iron
corrosion and, 149–153, 159, 161–162
FeS precipitation, 149–151, 161–162
H$_2$S scavenging by, 129, 136
iron-reducing microorganisms, 81, 82, 280
reduction, 29
Isoalkanes, 9
Isoprenoids, 9, 100
Kerogen, 3–4
Lactate, oxidation of, 44
Leuconostoc, 223
Liquid chromatography-tandem MS, 350
Mahella australiensis, 79
Manganese-oxidizing bacteria in biofilms, 182
Marine oil spill bioremediation, 317–328
genera capable of hydrocarbon degradation, 318–319, 321–324
microbial responses, 325–328
overview, 317–321
protocols
dispersants, 321
fertilizer use, 324–325, 327
shoreline, 321, 324–325
Marinobacter aquaeoli, 82, 83
MBC (minimum bactericidal concentration), 164
MEOR. *See* Microbially enhanced oil recovery (MEOR)
Mesophiles, fermentative, 72–75
Metagenesis, 4
Metals, in oil, 239, 240, 250
Methane, 9
Methanoarchaeum, 84
Methanobacterium, 22, 57, 59
Methanogenesis, 29, 94–96
Methanogens, 57, 58–60, 61, 63–65
Methanohalophilus euhalobius, 57, 59
Methanoplanus petrolearius, 57, 59
Methanosarcina, 57, 59, 60
Methanothermobacter thermoautotrophicus, 57, 60
Methanothermococcus thermolithotrophicus, 57, 60
Methanotrophs, 94
Methylation, 288
Methylnaphthalene, degradation of, 286, 346–347
Methyl tert-butyl ether (MTBE), 301–310, 312–313
 biodegradation, 304–310
 aerobic, 304–308
 anaerobic, 308–309
 by cometabolism, 304–305, 306
 ex situ bioremediation treatments, 309
 in situ bioremediation treatments, 309–310
 limitations to, 308
 natural attenuation of MTBE, 309
 pathway, 307
 utilization as growth substrate, 305, 308
 in gasoline, 301
 impact, health and environmental, 302–303
 properties, 301, 302
 regulation, 303–304
 structure, 302
Microbially enhanced oil recovery (MEOR), 172, 187, 215–231
 acid, gas, and solvent production, 219
 bioemulsifiers, 223
 biopolymers and permeability changes, 223–225
 biosurfactants, 220–222, 228–230
 categories of processes
 2. waterflooding processes, 226–229
 3. well bore cleanup processes, 225–226
 4. well stimulation technologies, 226
 engineering perspectives, 216–218
 hydrocarbon metabolism, 219
Mineral weathering, 112
Minimum bactericidal concentration (MBC), 164
Miscible gas injection, 15
Mixing, oil, 92–93, 112–113
Mobility ratio, 14
Molybdate, for SRB control, 191–192
Myxobacterium phlei, 241, 244–245
Myxobacterium sp., 270
Naphthalenes, degradation of, 286, 341, 344, 346–347
Nickel, in oil, 239, 240, 250
Nitrate
 to control souring, 139–140
 for SRB control, 140, 165, 191
Nitrate-reducing bacteria (NRB), 81–83
 for control of H2S generation, 205–211
 distribution of, 140
 H2S oxidation by, 140
Nitrate-utilizing bacteria (NUB), 191
Nitrite
 as H2S scavenger, 136
 for SRB control, 191, 206
Nitrogen
 biodesulfurization, 249–250
 denitrifying bacteria and anaerobic hydrocarbon
deradation, 278–280, 282, 292
 fertilizers for marine oil spill bioremediation, 324–325, 327
 in oil, 239, 240, 249–250
 Nocardia asterae, 244, 247
 Nocardia sp., 266
Nutrient availability, 28–30
Oil biodegradation. See also Biodegradation
effect of temperature on, 72
 reservoir temperature and, 27
Oil mixing, 92–93, 112–113
Oil production
 drilling, 15–16
 mechanisms
 1. enhanced recovery, 13–15
 2. primary recovery, 11–12
 3. secondary recovery, 12–13
 4. tertiary recovery, 13
 surface facilities, 16
 water treatment, 16–19
Oil reservoirs
 anaerobic hydrocarbon metabolites in, 350–351
 as bioreactors, 91–93
 charging, 92, 93, 113–115
 discovery, 6–7
 elements, 3–5
 1. cap rock, 5
 2. reservoir rock, 4–5
 3. source rock, 3–4
 fluid classification, 11
 fluid composition, 9–10, 11
 methanogenesis and, 64, 65
 oil mixing, 92–93, 112–113
 permeability, 218, 223–225, 227–228
 pressure, 8–9, 11
 properties, 7–8
 reinjection of water into, 17–18
 temperature, 8, 9, 11, 26–28
 topology, 92
 trapping, 5–6
Oil saturation, 5, 7, 11, 14, 15
Oil spills. See Marine oil spill bioremediation
 Organic acids, 29, 45
 Overburden pressure, 9
 Oxidizing biocides, 164
 Ozone, 164
 Paenibacillus sp., 243
PAHs (polycyclic aromatic hydrocarbons), biodegra-
Paleopasteurization model, 91–92
Paraffins, 9
Permeability, 223–225
profile modification, 227–228
reservoir rock, 4–5, 7
variation in reservoir, 218
Permeability curves, 7–8, 15
Petrobacter succinatinandiens, 82, 83
Petroleum fluids
classification, 11
composition, 9–10, 11
properties, 10–11
Petrotoga, 73, 76–78
PFL (pyruvate formate lyase), 283, 285
Phosphorus, as rate-limiting nutrient, 28
Phylogenetics, of sulfate-reducing bacteria, 36–40, 41, 42
Pitting corrosion, 152–153, 159–162
Pore plugging, 223–225
Porosity, reservoir rock, 4
Porphyrsins, 9
Pressure
effect on biodegradation in reservoirs, 91
fluid, 9
measurement, 8
normal distribution from surface through reservoir, 10
oil saturation and, 11
overburden, 9
Produced water reinjection (PWRI) lines, souring and, 126, 127–128
Propane, biodegradation of, 94
Propylbenzene, degradation of, 287
Pseudomonas, 220–221, 244, 249, 326
alkane degradation, 261, 264–265, 266–268, 270
Psychromonas, 320
PWRI (produced water reinjection) lines, souring and, 126, 127–128
Pyrococcus, 56, 80
Pyruvate formate lyase (PFL), 283, 285
Quaternary ammonium salts, 164, 165
Quinoline degradation, 249
Quorum sensing, 173, 177–178, 327
Reconstructed ion chromatograms (RICs), 98–99
Recovery
enhanced oil recovery (EOR), 13–15
distinction from IOP (improved oil production), 216
economic potential of, 215–216
engineering perspectives, 216–218
standard methods, 13–15
microbially enhanced oil recovery (MEOR), 172, 187, 215–231
acid, gas, and solvent production, 219
bioemulsifiers, 223
biopolymers and permeability changes, 223–225
biosurfactants, 220–222, 228–230
engineering perspectives, 216–218
hydrocarbon metabolism, 219
waterflooding processes, 226–229
well bore cleanup processes, 225–226
well stimulation technologies, 226
primary, 11–12
secondary, 12–13
tertiary, 13
Reservoir rock, 4–5
Reservoirs. See Oil reservoirs
Reservoir souring, 123–140
biofilms and, 203–205
biostat theory, 201–202
control, 135–140
masking symptoms, 135–136
microbial control of hydrogen sulfide production, 201–211
nitrate, 191
nitrate-reducing bacteria, 205–211
nitrite, 191
partial cures, 136–137
prophylaxis, 137–140
diagnosis, 131
economic impact, 124–125
field example, 132–135
H2S partitioning, 130–131
H2S scavenging, 129–130, 136
limitation of sulfate reduction, 128–129
mechanisms, 125
prediction, 131–132
prevention, 165
PWRI (produced water reinjection) and, 126, 127–128
SRB (sulfate-reducing bacteria) and, 125–129, 131–132, 136–140
symptoms, 123–124
water injection and, 202–203
water movement and, 130
Resins, 9
Rhodococcus, 241, 243–248, 270, 326
RICs (reconstructed ion chromatograms), 98–99
Salinity, 72. See also Halophiles
effect on biodegradation in reservoirs, 91
effect on H2S production, 139
Scavengers, H2S, 129, 130, 136
Separator, 10
Sesquiterpanes, biodegradation effects on, 100–101
Shewanella putrefaciens, 81, 82
Shoreline bioremediation, 321, 324–325
16S rRNA sequences, of Archaea, 60–64
INDEX
Toluene, degradation of, 284, 285–286, 288–289, 339, 343, 346, 349
Total acid number (TAN), 94
Trapping, 5–6
TRB. See Thiosulfate-reducing bacteria (TRB)
Triaromatic steroid hydrocarbons (TAS), 104–108
Trimethylsilyl (TMS) esters, 344–345
Upgrading of petroleum, 239–251
biodenitrogenation, 249–250
biodesulfurization, 241–249
devlopment of process for diesel and crude oil, 247–249

Thermophilic effect on biodegradation in reservoirs, 91, 93, 112
indigenous microbial communities and, 26–28
measurement, 8
Terpanes
pentacyclic, 102–103
sesquiterpanes, 100–101
tricyclic and tetracyclic, 101
tetra- amyl methyl ether (TAME), 301, 302
tetra-butyl alcohol, 301, 302
Tetrakishydroxymethyl phosphonium sulfate, 164, 165, 188
Thermacetogenium, 38
Thermal cracking, 3, 4
Thermoanaerobacter, 26, 78–79, 84
Thermoanaerobacterium, 26, 78–79
Thermococcus, 28, 56–58, 80, 84
Thermodesulfobacterium, 24, 35, 37, 38, 48
Thermodesulfobium, 35, 38
Thermodesulfohabdas, 38, 47, 49
Thermodesulfovibrio, 35, 38
Thermophiles. See also Hyperthermophiles
fermentative microorganisms, 75
iron-reducing, 81–83
methanogens, 60
SRB, 47, 128, 132, 137
Thermosipho, 76–78
Thermotoga
effii, 26, 73, 76–78, 84
hypogea, 73, 77
naphthophila, 73, 77
petrophila, 73, 77
subterranca, 26, 73, 77, 84
Thermus, 320
Thiobacillus denitrificans, 205
Thiomicrospira, 205
Thiosulfate
detection of, 156
reduction of, 75, 77, 80–81
Thiosulfate-reducing bacteria (TRB)
bioicide treatments, 164
corrosion and, 157–161, 163–164, 166
test kit, 163
Toluene, degradation of, 284, 285–286, 288–289, 339, 343, 346, 349
Total acid number (TAN), 94
Trapping, 5–6
TRB. See Thiosulfate-reducing bacteria (TRB)
Triaromatic steroid hydrocarbons (TAS), 104–108
Trimethylsilyl (TMS) esters, 344–345
Upgrading of petroleum, 239–251
biodenitrogenation, 249–250
biodesulfurization, 241–249
devlopment of process for diesel and crude oil, 247–249

Thermophilic effect on biodegradation in reservoirs, 91, 93, 112
indigenous microbial communities and, 26–28
measurement, 8
Terpanes
pentacyclic, 102–103
sesquiterpanes, 100–101
tricyclic and tetracyclic, 101
tetra- amyl methyl ether (TAME), 301, 302
tetra-butyl alcohol, 301, 302
Tetrakishydroxymethyl phosphonium sulfate, 164, 165, 188
Thermacetogenium, 38
Thermal cracking, 3, 4
Thermoanaerobacter, 26, 78–79, 84
Thermoanaerobacterium, 26, 78–79
Thermococcus, 28, 56–58, 80, 84
Thermodesulfobacterium, 24, 35, 37, 38, 48
Thermodesulfobium, 35, 38
Thermodesulfohabdas, 38, 47, 49
Thermodesulfovibrio, 35, 38
Thermophiles. See also Hyperthermophiles
fermentative microorganisms, 75
iron-reducing, 81–83
methanogens, 60
SRB, 47, 128, 132, 137
Thermosipho, 76–78
Thermotoga
effii, 26, 73, 76–78, 84
hypogea, 73, 77
naphthophila, 73, 77
petrophila, 73, 77
subterranca, 26, 73, 77, 84
Thermus, 320
Thio-

Sulfur
biodesulfurization, 241–249
cost of oil, 240
pollution and, 239
reduction, 80
Sulfur-reducing bacteria, 75
TAN (total acid number), 94
Temperature. See also Hyperthermophiles; Thermophiles

Thermophilic effect on biodegradation in reservoirs, 91, 93, 112
indigenous microbial communities and, 26–28
measurement, 8
Terpanes
pentacyclic, 102–103
sesquiterpanes, 100–101
tricyclic and tetracyclic, 101
tetra- amyl methyl ether (TAME), 301, 302
tetra-butyl alcohol, 301, 302
Tetrakishydroxymethyl phosphonium sulfate, 164, 165, 188
Thermacetogenium, 38
Thermal cracking, 3, 4
Thermoanaerobacter, 26, 78–79, 84
Thermoanaerobacterium, 26, 78–79
Thermococcus, 28, 56–58, 80, 84
Thermodesulfobacterium, 24, 35, 37, 38, 48
Thermodesulfobium, 35, 38
Thermodesulfohabdas, 38, 47, 49
Thermodesulfovibrio, 35, 38
Thermophiles. See also Hyperthermophiles
fermentative microorganisms, 75
iron-reducing, 81–83
methanogens, 60
SRB, 47, 128, 132, 137
Thermosipho, 76–78
Thermotoga
effii, 26, 73, 76–78, 84
hypogea, 73, 77
naphthophila, 73, 77
petrophila, 73, 77
subterranca, 26, 73, 77, 84
Thermus, 320
Thio-
genetic modifications to increase, 245–247
over view, 241
role in nature, 243–244
substrate range, 241–242
future research priorities, 250–251
metal removal, 250
need for, 240–241
overview, 239

Vanadium, in oil, 239, 240, 250
Van Krevelen diagram, 4, 5
Viscosity, oil, 217

Waterflooding processes, microbially enhanced, 226–229
Water injection, souring and, 202–203
Water saturation, 7–8
Water treatment, 16–19
Well, drilling, 15–16
Well bore cleanup processes, 225–226
Well stimulation processes, 226
Wettability, 7, 8, 14

Xylenes, degradation of, 286, 343, 345, 346, 349
Yeasts, alkane degradation by, 261–262