CONTENTS

Contributors vii
Preface ix

1. Environmental Pollution and Restoration:
a Role for Bioremediation
Jim C. Philp, Selina M. Bamforth, I. Singleton, and Ronald M. Atlas
1

2. Suspicions to Solutions: Characterizing Contaminated Land
Lewis R. Barlow and Jim C. Philp
49

3. Legal and Regulatory Frameworks for Bioremediation
Barry Hartman, Mark Mustian, and Colin Cunningham
86

4. Modeling Bioremediation of Contaminated Groundwater
Henning Prommer and D. Andrew Barry
108

5. Bioremediation of Contaminated Soils and Aquifers
Jim C. Philp and Ronald M. Atlas
139

6. Monitoring Bioremediation
Jim C. Philp, Andrew S. Whiteley, Lena Ciric, and Mark J. Bailey
237

7. Bioremediation of Marine Oil Spills
Roger Prince and Ronald M. Atlas
269
8. Bioremediation of Metals and Radionuclides
Jonathan R. Lloyd, Robert T. Anderson, and Lynne E. Macaskie
293

Mike Griffiths and Ronald M. Atlas
318

Index
357
CONTRIBUTORS

Robert T. Anderson
Department of Microbiology, University of Massachusetts, Amherst, MA 01003

Ronald M. Atlas
Graduate School, University of Louisville, Louisville, KY 40292

Mark J. Bailey
NERC Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, United Kingdom

Selina M. Bamforth
School of Civil Engineering and Geosciences, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE1 7RU, United Kingdom

Lewis R. Barlow
Carl Bro Group, Spectrum House, Edinburgh EH7 4GB, Scotland, United Kingdom

D. Andrew Barry
Contaminated Land Assessment and Remediation Research Centre, Institute for Infrastructure and Environment, School of Civil Engineering and Electronics, The University of Edinburgh, Edinburgh EH9 3JL, Scotland, United Kingdom

Lena Ciric
NERC Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, United Kingdom

Colin J. Cunningham
Contaminated Land Assessment and Remediation Research Centre, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
CONTRIBUTORS

Mike Griffiths
Mike Griffiths Associates, St. Non, Pleasant Valley, Stepaside, Narberth, Pembrokeshire
SA67 8NY, United Kingdom

Barry M. Hartman
Kirkpatrick & Lockhart LLP, 1800 Massachusetts Avenue, N.W.,
Washington, DC 20036–1800

Jonathan R. Lloyd
The Williamson Research Centre for Molecular Environmental Studies, The Department of Earth Sciences, The University of Manchester, Manchester M13 9PL,
United Kingdom

Lynne E. Macaskie
School of Biosciences, The University of Birmingham, Birmingham B15 2TT,
United Kingdom

Mark Mustian
Kirkpatrick & Lockhart LLP, 1800 Massachusetts Avenue, N.W.,
Washington, DC 20036–1800

Jim C. Philp
Department of Biological Sciences, Napier University, Merchiston Campus, 10 Colinton Road, Edinburgh EH10 5DT, Scotland, United Kingdom

Roger C. Prince
ExxonMobil Research and Engineering Co., 1545 Route 22 East, Annandale, NJ 08801

Henning Prommer
Department of Earth Sciences, Faculty of Geosciences, University of Utrecht, P.O. Box 80021, 3508 TA Utrecht, The Netherlands and CSIRO Land and Water, Private Bag No. 5, Wembley WA 6913, Australia

Ian Singleton
School of Biology, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE1 7RU, United Kingdom

Andrew S. Whiteley
NERC Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR,
United Kingdom
Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup, as the title implies, describes the environmental applications of microorganisms to remediate contaminated soils and waters. Written for both academics and practitioners, the book provides detailed knowledge of bioremediation research and real-world applicability of that knowledge. The book makes much use of “how to” information, covering how to bioremediate from site assessment to project closure. It provides a truly international perspective, balancing American (United States) and European (largely United Kingdom) coverage and showing the challenges facing bioremediation under differing regulatory frameworks and against differing histories of environmental awareness and public demands for remediation. It provides contemporary examples of the application of bioremediation and establishes the needs for future research and development efforts.

Bioremediation, as defined by the U.S. Office of Management and Budget, involves techniques using biological processes to treat contaminated soil or groundwater. It is a field that combines basic microbiology, advanced biotechnology, and environmental engineering and does so within the context of public demands for clean waters and soils, evolving risk-based regulatory frameworks that govern performance criteria, and public concerns about microorganisms—especially the deliberate release of genetically modified microorganisms into the environment. Thus, bioremediation still is a developing field, one that will be driven by scientific and technological developments, as well as public policy developments.

Although still considered an innovative technique by the U.S. Environmental Protection Agency, bioremediation is increasingly being used to treat contaminated soils and waters. As it is an innovative technology, there is great interest in research and development as well as actual applications. This volume describes both the bioremediation technologies being applied and those being developed. Thus, it is relevant to industrial engineers and managers who must
apply technologies today to remove pollutants from contaminated soils and waters and to academic researchers whose efforts will develop future bioremediation technologies that can be applied for cost-effective cleanup efforts.

Bioremediation begins by defining the role of bioremediation in solving environmental contamination problems—providing an overview of the scientific underpinnings of bioremediation, as well as the practical considerations for applying bioremediation to the real-world problem of environmental contamination. Here, the biodegradative capacities of microorganisms upon which the success of bioremediation rests are highlighted.

The next chapters cover the more practical challenges of bioremediation, from risk-based design criteria, to the legal/regulatory frameworks that are the drivers of environmental remediation, to the engineering approaches for modeling bioremediation projects. The breadth of scientific and engineering principles presented reflects the complexities of applying biotechnological solutions for environmental problems. Risk assessment and risk reduction are critical considerations in establishing the need for remediation and the applicability of bioremediation. Awareness of the interactions between the legal, scientific, and engineering communities is essential for the successful use of bioremediation. We draw attention to the differences in regulatory frameworks between the United States and the United Kingdom since the regulatory requirements serve as drivers for the technological needs of remediation projects.

A knowledge of the basic principles of the legal requirements is essential for understanding how and when bioremediation can be applied for the restoration of contaminated soils and waters. When contaminated sites undergo remediation, there is a clear requirement to protect the environment while ensuring that risks to human health and the environment are minimized. Modeling provides a way of assessing the critical parameters that impact bioremediation and predicting the likelihood of successfully meeting established performance criteria. Effective design of a bioremediation project necessitates the integration of interdisciplinary knowledge developed by microbiologists, geochemists, hydrogeologists, mathematicians, and engineers.

Once the real-world needs and scientific, legal, and engineering challenges for bioremediation have been established, the actual applications of bioremediation are explored. Through extensive use of practical examples where bioremediation has been applied, a balanced international perspective on the applicability of bioremediation is provided. The varied approaches to bioremediation are described: in situ or ex situ methods and ones which may involve biostimulation, i.e., stimulating microbial activities by optimizing environmental conditions, e.g., by adding nutrients or oxygen to increase the rates of biodegradation; bioaugmentation, i.e., adding microorganisms to increase the diversity of microorganisms capable of biodegrading the contaminants; or natural monitored attenuation, i.e., monitoring the natural biodegradative activities to see that removal of the contaminants occurs at rates needed to meet targets set to reduce risk to human health and the environment. Perspectives for each approach are included, highlighting achievements and discussing limitations that establish the needs for future research and development efforts. The book covers the range of environmental contamination problems for which bioremediation can be and has been applied—from organic contamination of soil and groundwater
with a myriad of compounds ranging from chlorinated solvents to plastics, to marine oil spills, to soils contaminated with metals and radionuclides.

A wide range of examples of successful employment of bioremediation are presented. The importance of monitoring is established, and a number of methods for monitoring the chemical disappearance of contaminants and the activities of microorganisms in bioremediation are described. The monitoring tools needed to manage and to design more effective bioremediation technologies are explained. Finally, the applications of biotechnology for clean environmental products and processes, effectively defining the field of preemptive bioremediation, are depicted. In this context, biotechnology holds great promise for future environmental applications. As highlighted throughout this book, to be successful, bioremediation must be economically and technically competitive with other physical and chemical remediation technologies. Establishing competitive costs for environmental managers, efficacy for regulators, and predictability for engineers will be key in the ability of bioremediation to become more significant in the highly competitive remediation industry. Bioremediation is still very much an evolving technology; there is a need for more research and development to identify and overcome the limitations and a real need to establish a critical dialogue among scientists, engineers, and environmental managers to ensure that discoveries in the laboratory can be successfully applied in the field. As the real-world applications of bioremediation continue to expand, so will the examples of specific successful approaches and the value of our work.

RONALD M. ATLAS, Louisville, Kentucky
JIM C. PHILP, Edinburgh, Scotland
SUBJECT INDEX

ABSs, 34–35
Acinetobacter calcoaceticus, 218
Acinetobacter, 261, 301
Acrylamide, biological production of, 336
Agricultural industries, organic contamination and, 5
Agrobacterium radiobacter, 36
Air, oxygen diffusion in, 205–206
Air movement, convective, oxygen and, 204–205
Air sparging, biosparging as mode of, 176–177
in situ, 176
Airflow systems, for biosparging, 178
Alcaligenes eutrophus, 326
Algal biofilms, 311
Alkane metabolism, in Pseudomonas oleovorans, 22, 23
influence of biosurfactants on, 217–219
Alkane-oxidizing enzymes, 22
Alkylbenzyl sulfonate, 34–35
ALLU bucket, 151, 152, 154
Alternative electron acceptors, 215
Alternative electron donors, cometabolism and, 213–215
to change redox conditions, 213
Altus Biologies Inc. Crystalomics, 341
Ames test, 8–9
Ammonium acrylate, 336
Ammonium phosphate, for biodegradation, 41
Aquifers, bioremediation of, approaches to, 139
contaminated, and soils, bioremediation of, 139–236
remote sensing in, 262
MTBE-contaminated, employing bioaugmentation, 192
TCE-contaminated, in situ bioremediation of,
cometabolism for, 214–215
vulnerability to groundwater contamination, 140
Arabidopsis thaliana, 326
Archea, 275, 337, 342
Arthrobacter, 199, 262, 305
Atomic absorption spectroscopy, 239
Atrazine, in bioremediation, 209
Bacillus subtilis, 218
Bacillus thermoleovorans, 275
Bacteria, 275
Bacteria, groups of, in contaminated groundwater, 117–120
Bacterial bioluminescence, 8, 257
Bacterial extracellular signaling, 260
BASF, 326, 335, 340, 341, 347
Beach(es), oil on, 278–280
residual oil on, change due to biodegradation, 283–284
Benzene, 39
Bioaugmentation, 277
adaptation of strains for, 198
and immobilization by sorption, 202
approaches to, 191–193
description of, 191
MTBE-contaminated aquifers employing, 192
novel delivery systems for, 202, 203
number of microorganisms for, 198–199
percolating filter and, 195
plant-associated strain selection and delivery for, 198
predatory interaction of, 195
selection of traits for, 197–198
serial enrichment procedure for, 193
solvent efflux pump schematic of, 197
strain selection for, 195–197
successes and failures of, 195–202
uncertainty in, 194–195
with genetically modified organisms, 200
Bioavailability, 9–16
 enhancement of, 215–220
 measurement of, 10–12
 pollutant partitioning and, 12–19
 solubility in water and, 10
Bioavailable compounds, biosensors for toxicity and detection of, 257–262
Biocatalysts, 333–335
 process development of, 338–339
 research and development of, 342
Biochemical engineering, 333
Biodegradation, change in residual oil on beach due to, 283–284
 modeling geochemical changes during, 120–121
Biodesulfurization, of gasoline, 337–338
Biodiesel, 330
Bioethanol, 328–329
 production of, 352–353
Biodeleaching, of copper, 337
 of pulp, 336
Biological techniques, direct, to measure bioavailability, 11
Bioluminescence, bacterial, 8, 257
 bioluminescence-based biosensors, 259
 bioluminescent bioreporter integrated circuit (BBIC), 262
Biomagnification, 16–17
Biomineralization, of metals and radionuclides via microbially generated ligands, 300–304
Biopile(s), aeration system of, 145–148
 base of, 145, 146
 calculation of volume of, 143, 144
 centrifugal blower for, 146–147, 148
 components of, 144–149
 covers of, 148–149
 formation of, 149–153
 mixing prior to, 150
 irrigation systems of, 149
 shape of, 143
 size of, 143
 space requirements of, 143–144
 treatment of oil-contaminated soils, 142
 width and length of, factors determining, 143
 windrow composting and, 151–153
Biopol, 326
Bioprocess plants, 340
Bioprocesses, 319–320
Bioprocessing, 332–343
Bioreceptor systems, 262
Bioreduction, in situ bioremediation of uranium through, 306–308
Biorefineries, 323
Bioremediation, advantages of, 1–2
 biochemical and molecular aspects of, 38–39
 construction completion list, 89
 definition of, 1
 economics of, 3
 enhanced, modeling of, in contaminated groundwater, 132–134
 estimated growth of, 2
 evolution of, 3–4
 factors affecting, 39–43
 for reduction of toxicity, 6
 legal and regulatory requirements for, 86
 initial evaluation for, 86–87
 limitations of, for treating PCB-contaminated Hudson River sediments, 190–191
 monitoring of. See Monitoring need for, 4–6
 of coal tar-contaminated soil, 81–82
 of contaminated soils and aquifers, 139–236
 of marine oil spills, 269–292
 of metals and radionuclides, 293
 of salt marshes, 210, 211
 operating permits for, 87–88
 oxygen requirements for, 207–208
 preemptive, 318–356
 preliminary assessment for, 88
 regulatory and liability concerns associated with, 97
 regulatory drivers and barriers to, in United Kingdom, 97–105
 remedial action for, 89
 remedial design for, 89
 site inspection for, 88
 state regulations impacting, 96–97
 U.S. environmental regulatory process for, 87–88
Bioremediation decision tree, 76, 77
Bioremediation technologies, biopiles and windrow composting. See Biopile(s); Windrow(s)
 ex situ, 141–165
 in situ, 165–190
 advantages of, 167
 disadvantages of, 167
Biosensor systems, 262
 Biosensors, bioluminescence-based, 259
 contaminant-specific, 260–262
 toxicity, for contaminated soils, 262
 in contaminated-site mapping, 258
Biolsurping, 181–184
 advantages of, 183
 dual drop tube in, 181, 185
 equipment for, 181–183, 185
 evolution of, 181
Biosorption, of metals and radionuclides, 294–296
Biosparging, 175–179
 airflow systems for, 178
 as mode of air sparging, 176–177
 contaminants treated by, 177
 design of, 177–179
 nutrient delivery for, 179
 schematic of, 176
 well design for, 178, 179
 wells for, design and construction for, 179
 number and spacing of, 179
Biostimulation, 202–220, 276
 alternate electron acceptors in, 208–213
 applications of, 202–203
 of oil-contaminated groundwater, 202–203
 of oil-contaminated soils, 202–203, 204
 oxygen and, 203–208
Biostoning, 352
Biosurfactants, advantages of, 216
 field tests of, 219
 influence on alkane metabolism, 217–219
 potential role for, 216–220
 types of, 216–217
Biotechnology, future for, 346
 industrial, advantages of, 331–332
 current uses of, 335
 process assessment and sustainable development in, 346–347
 process profile analysis in, 347
 sustainability of, 320–321, 339
 “white,” 318
Biotechnology Industry Organization, 319, 320
Biotic reactive processes, modeling of, 109–121
Biotransformations, enzymatically catalyzed, of metals and radionuclides, 297–300
Bioventing, 168–175
 air injection and extraction for, 174
 airflow requirements for, 172
 aerobic, 175
 and soil remediation technologies, 174–175
 and soil vapor extraction, compared, 168–169
 contaminant distribution in, 171
 contaminants biodegraded by, 170
 design of, 170–174
 gas and vapor transfer in, 171
 in extraction mode, with treatment of off-gases, 175
 injection well design for, 174
 ozonation and, 175
 radius of influence of oxygen in, 172
 schematic of, 170
Bleach cleanup, of textiles, 351–352
Blower sizing, in bioventing, 173
Brownfields Program, 90–91
BTEX compounds, 22, 23
Burkholderia, 251
Cable percussion boreholes, 60
Candida lipolytica, 218
Candida tropicalis, 218
Carbon and hydrogen isotope analysis, 242
Carbon-based stable isotope analysis, 241
Carbon dioxide, monitoring by infrared spectrometry, 249
 plants and, 321
 production of, in aerobic bioremediation, 242
 measurement of, 248–249
Carbon dioxide respirometry, 248–249
Carboxydothermus, 332
Cargill Dow, 323, 327
1-Carnitine, by chemical and biochemical routes, 353
Carver, George Washington, 318–319
Catabolic genes, specific, detection and quantification of, 257
Catechol, 31, 33, 248
Celanese, 339
Cellulase enzymes, 331
Chemical analysis, 238–242
Chemicals, from plants, 321–325
ChemSystems, 324
Chevron Research and Technology, 339–340
Chloroaromatic biocides, 28
Chlorophenols, 26, 28
Chromatography, high-performance liquid, 241
Citrobacter, 301, 304
“Clay-oil flocculation,” 274
Clean Air Act, 95
Clean Water Act, 87, 89–90
Closed batch system, toluene mineralization in, 120–121
Coal tar-contaminated soil, bioremediation of, 81–82
Cold climate cleanup, of fuel and oil spills, 142
Cold vapor, 240
Colorimetric tests and field test kits, 238–239
Cometabolism, and alternative electron donors, 214–215
 definition of, 213
 for in situ bioremediation of TCE-contaminated aquifers, 214–215
 in transformation product mineralization, 213
Community profiling methods, 249
Compost bioreactors, 311
Composting, in-vessel, 155
Comprehensive Environmental Response Compensation and Recovery Act, 87, 88, 90, 92
 and Resource Conservation and Recovery Act, 93–94
Conductivity surveys, 58–59
Cone penetration techniques, 60
Contaminants, metals and radionuclides as, 296–297
Contaminated Land Exposure Assessment (CLEA) model, 67–69, 99–100
Contaminated land regimen, 98–100
Contamination source, in contaminated groundwater, 124–126
 Convective air movement, oxygen and, 204–205
 Copper, bioleaching of, 337
 Copper-resistant bacteria, 42
 Corn syrup, high-fructose, 335
 Cotton fiber, scouring of, 353
 Council for Chemical Research Vision 2020, 342
 Cross-linked enzyme crystal (CLEC), 341
 conductivity, 58–59
 cone penetration techniques, 60
 contaminants, metals and radionuclides as, 296–297
 contaminated land exposure assessment (CLEA) model, 67–69, 99–100
 contaminated land regimen, 98–100
 contamination source, in contaminated groundwater, 124–126
 convective air movement, oxygen and, 204–205
 copper, bioleaching of, 337
 copper-resistant bacteria, 42
 corn syrup, high-fructose, 335
 cotton fiber, scouring of, 353
 council for chemical research vision 2020, 342
 cross-linked enzyme crystal (CLEC), 341
 conductivity, 58–59
 cone penetration techniques, 60
 contaminants, metals and radionuclides as, 296–297
 contaminated land exposure assessment (CLEA) model, 67–69, 99–100
 contaminated land regimen, 98–100
 contamination source, in contaminated groundwater, 124–126
 convective air movement, oxygen and, 204–205
 copper, bioleaching of, 337
 copper-resistant bacteria, 42
 corn syrup, high-fructose, 335
 cotton fiber, scouring of, 353
 council for chemical research vision 2020, 342
 cross-linked enzyme crystal (CLEC), 341
Crude oil(s), 20
and refined products, 270–272
classification of, 272
composition of, 270
hydrocarbon-oxidizing microorganisms and,
244–245
hydrocarbons in, 20–21, 271
resin and polar components of, 272
Crude oil spills, marine, 280
Cyclodextrins, 219–220
Cytochrome P450, 273
DDT, 41
Dead-end elimination theorem, 343–344
Degraders, 243
Deinococcus geothermalis, 200
Denaturing gradient gel, 251
Denaturing gradient gel electrophoresis, 250–252
Deoxygenation, 17
desulfuricans, 300
Detection stick, 259
Deuterium, 241
Dibenzo-\(p\)-dioxin, 31, 33
Dibenzofurans, reductive dechlorination of, 31
Dichlorodiphenyltrichloroethane, 41
Dichlorophenol, aerobic mineralization of, 207
Dioxin(s), 30–34
metabolism of, gene organization for, 34
Dioxygenases, 23–24, 248
Dispersants, 277–278
Dispersive mixing, in contaminated groundwater,
127–128
Diversa, 340, 345–346
DNA, melting domains of, 250
16S ribosomal, PCR amplification of, 249–250
stable isotope-labeled, 255
DNA microarrays, 254
DNA shuffling, 345
DNA stable isotope probing (DNA-SIP), 255
Dose-response curve, cumulative, in lethality test, 6
Dow AgroSciences, 340
Driven-tube/window samplers, 60
DuPont, 323, 324
Eastman Chemical, 324
Ecoefficiency analysis, 347
Ecotoxicology, 9
Electrical resistivity surveys, 59
Electron-accepting processes, 110
Enantiopure 2-chloro- and 2-bromopropionic acids,
335
Environmental contaminants, 7
Environmental medications, for bioremediation, 140
Environmental pollutants, biodegradability of, 19–38
Environmental pollution, and restoration, 1–48
Environmental Protection Agency, 88
Environmental regulatory process, U.S., for
bioremediation, 87–88
Enzymatic degumming, of vegetable oil, 337
Enzyme(s), activities of, screening strains for, 248
commercial use in organic solvents, 335
genes encoding, 345
in aqueous reaction media, 334
in bioprocessing, 332–333
lyophilization, 335
novel approaches to, 343
Enzyme screens, for enzyme activities, 248
Escherichia coli, 210, 259, 261, 294, 324, 326, 335, 343, 346
Ethanol production, 352
Eubacteria, 342
Eukarya, 275
Extraction procedures, for organic pollutants, 240
Extremozymes, 345–346
Fertilizer(s), ammonium, 279
for biostimulation, 276
for landfarms, 162
in degradation of oil, 41
oleophilic, 209–210, 278, 279, 280
penetration of oilied zone and, 281
to stimulate microbial activity, 281–282
Field-scale application, in contaminated groundwater,
128–130
Filter, percolating, bioaugmentation and, 195
Filter pad method for growing hydrocarbon-oxidizing
bacteria, 245
Flame atomic absorption spectrometry, 239
Flavobacterium, 199
Flow and physical transport, modeling of, in
contaminated groundwater, 122
Fluorescent in situ hybridization (FISH), 251
and secondary ion mass spectrometry, 255–256
of whole cells, 254–255
Ford, Henry, 319
Fuel(s), renewable, 328–331
Fuel distillates, 20
Fuel spills, 272
cold-climate cleanup of, 142
Fuel storage tank, leaking underground, model of, 56
source-pathway receptor for, 57–58
\(\beta\)-Galactosidase, 259
Gas characterization, in contaminated land, 65–66
Gas chromatography, 240–241
and mass spectrometry, 240–241
headspace, 241
Gas industry, town, organic contamination and, 4–5
Gas respirometry, 242
metabolic, 248
Gasoline, biodesulfurization of, 337–338
Gene shuffling, 345
Genencor, 324, 325, 331, 347
Genes, catabolicspecific, detection and quantification of, 257
reporter, 259–260
Genes encoding enzymes, 345
Genetically engineered microorganisms. See
Genetically modified organisms (GMOs)
Genetically modified organisms (GMOs),
bioaugmentation with, 199–202
construction of, problems in, 200
efficacy of, field trials to test, 201
for heavy metal–contaminated soils, 200
under construction, to degrade resistant
compounds, 200
Genome probing, reverse sample, 254
Geobacteraceae, 306–308
Ground-penetrating radar, 59
Groundwater, contaminated, as hidden problem, 140
contamination source in, 130–131
coupled physical transport and reactive processes
in, 123–124
field-scale application, 128–130
microbial growth and decay in, 112–116
modeling bioremediation of, 108–138
modeling flow and physical transport in, 122
modeling of contamination source in, 124–126
modeling of enhanced bioremediation in,
132–134
modeling of natural attenuation processes in,
124–128
multiple bacterial groups and growth inhibition
in, 117–120
nonreactive single-species transport in, 122–123,
128–129
nutrient limitation in, 116–117
reactive multicomponent transport in, 129–130
reactive single-species transport in, 123
remediation of, scale of problem, 141
role of dispersive mixing, 127–128
steady-state versus transient simulations, 130,
131–132
vulnerability of aquifer to, 140
diffuse source contamination of, 63–64
oil-contaminated, biostimulation of, 202–203
oxygen delivery to, 206–207
Groundwater monitoring well, 64
Gypsum reduction in zinc refining, 336–337
Haloalkanes, 25–26
Haloalkenes, 25–26
Haloaromatics, 26–29
Hand augering, 60
Hazard ranking system, 88
Hazardous waste management, 91–92
Headspace gas chromatography, 241
Heavy metal resistance, 42
Heavy metals, 36–38
microbially enhanced chemisorption of, 304
Henry’s law constant, 13
Hopanes, 283–284
Hydride generation, 240
Hydrocarbon-degrading microorganisms, 275–276
Hydrocarbon-degrading pseudomonad, 199–200
Hydrocarbon-oxidizing bacteria, enumeration of, 244
problems associated with, 244
filter pad method for growing, 245
in environment, 243
isolation of, requirements for, 244
monitoring of, 242–248
Hydrocarbon-oxidizing microorganisms, growth on
non soluble solid hydrocarbons, 245–246
Hydrocarbons, 39, 242–243
anaerobic biodegradation of, 273
as insoluble in water, 273–274, 277
bacterial metabolism of, 38
biodegradation of, 272–275, 277
in bacteria, nutritional requirements of, 243
in crude oils, 271
non soluble solid, growth of hydrocarbon-oxidizing
microorganisms on, 245–246
polycyclic aromatic, 273
in hydrocarbon-degrading organisms and in
animals, 273, 274
production of, 39
Hydrogen peroxide, for oxygen delivery, 207
Hydrogeology, contaminant, 63
Hydrolases, 334
Hydrolysis reactions, 333
Hydrophobic pollutants, in soil, fate of, 15–16
Hydrophobicity, influencing partitioning and
bioavailability, 13
Hydroquinone, 273
Hydroxypropyl-β-cyclodextrin (HPCD), 12, 219
In-vessel composting, 155
Inductively coupled plasma optical emission
spectrometry, 239–240
Industrial land use, category of contamination and, 2
Industrial pollutants, 5
Industrial products, analysis techniques for, 349
Industrial products and processes, clean,
bio technology for, 318–356
Infrared photography, 60
Infrared spectrometry, carbon dioxide monitoring by,
249
Inoculation of oiled sediment, 280
Iogen, 331
Isotherm(s), Brunauer-Emmett-Teller, 296
Langmuir and Freundlich, 296
Isotope analysis, carbon-based stable, 241
Isotopic shift, monitored natural attenuation and,
241–242
Kuhn Knight Reel Auggie, 150, 151

Labeled substrates, to probe for organisms, 255–256

Land, contaminated, attitudes toward, within
European Union, 50
bioremediation techniques in, compared, 76
case studies of, 79–82
chemical treatment systems in, 77
defining of, 49–54
exposure scenarios, 69–70
field tests of, 75–76, 77
fluidized bed incinerators in, 78
gas characterization in, 65–66
generic screening guidelines for, 66–67
incineration in, 78
investigation design of, 61
investigation of, legislative drivers of, 49–50
physical treatment systems in, 76–77
quantification of problem of, 66–71
remedial design in, risk-based, 74–76
remedial planning in, 71–82
remedial technologies in, economics of, 71–74
technology briefs of, 76–79
remedial treatments for, data on, 75
risk assessment of, 50–53
risks to human health, 69–70
site characterization in, 54–66
conceptual site modeling in, 55–58
investigative techniques in, 58–61
site-specific risk assessment of, CLEA model and,
67–69
soil characterization in, 61–63
soil vapor extraction in, 77–78
solidification treatment systems in, 77, 79
Superfund sites and, 50
thermal desorption in, 78–79
thermal treatment systems in, 77
uncertainty of risk of, dealing with, 70–71
water characterization in, 63–65

Landfarming, 142, 155–162
and biopiles, oil–contaminated Kuwait soils in,
164–165

Landfarming, aeration of, 162, 163
applications of, 157–158
base of, 159
biopiles and windrows, differences between, 155
design of, 158–161
experimental plots, 160–161
irrigation of, 161–162
nutrient addition to, 162
operation of, 161–162
perimeter dike of, 159
stockpile area of, 159
Landfill Directive (99/31/EC), 101–102
Leachate collection system, 159
Length heterogeneity–polymerase chain reaction (LH-PCR), 252

Lethality test, cumulative dose-response curve in, 6
Life cycle analysis (LCA), 348–353
assessment in practice, 351–353
boundaries, 351
description of, 348–349
environmental impact of product and, 349
of riboflavin manufacture, 350
techniques of, 350–351
uses of, 349

Lignin, 39, 322
Liquid chromatography, high-performance, 241
Lysine feed additive, 322

Magnetic profiling, 59
Marine ecosystems, oil-contaminated, bioremediation of,
276–280
Marine oil spills, bioremediation of, 269–292
concerns in bioremediation for, 284–285
efficacy of bioremediation for, 280–284
Marshes and mangroves, oil in, 280
Mass spectrometry, gas chromatography and, 241
Mathematical modeling, of contaminated groundwater, 108–138
role of, in bioremediation processes, 109
Maxygen, 340, 345
Mercuric reductase (MerA), 260–261
Mercury, 240
central nervous system and, 36
Mercury detoxification system, 260, 261
Mercury-resistant bacteria, to treat wastewater,
298–299
Mesorhizobium huakuii, 200–201
Metabolic biomarkers, 294–296
Metabolic Explorer, 343
Metabolic gas respirometry, 248
Metabolism–dependent bioaccumulation, of metals and radionuclides, 296–297
Metabolix, 326
Metal(s). See also Heavy metals
and radionuclides, as contaminants, 294
biomineralization via microbially generated
ligands, 300–304
bioremediation of, 293
biosorption of, 294–296
genetically catalyzed biotransformations of,
297–300
metabolism–dependent bioaccumulation of,
296–297
contamination by, cost of cleanup of, 293
in situ versus ex situ remediation of, 305–308
energy–dependent uptake of, 296
ex situ bioremediation of, using sulfate–reducing bacteria, 302–303
extraction procedures for, 239–240
remediation of, biodegradation of organic compounds and, 304–305
uses of, 293
Metal analysis, 239–240
Metal-microbe interactions, 294–304
Metal oxide semiconductor technology, 262
Methanoseta, 253–254
Methyl tertiary-butyl ether, 25
Microbes, to degrade organic contaminants, 1
Microbial activity, fertilizers to stimulate, 281–282
Microbial growth and decay, in contaminated groundwater, 112–116
Microbial methods, for monitoring, 242–248
Microbial oxygen consumption, monitoring of, 242
Microbially enhanced chemisorption of heavy metals (MECHM), 304
Microemulsions, 210
Microorganisms, genetically modified, environmental releases of, oversight of, 104–105
hydrocarbon-degrading, 275–276
number of, for bioaugmentation, 198–199
oil-degrading, 275
taxonomy of, 275
Microtiter plate-based techniques, most-probable-number, 246–248
Microtox acute test, 259
Microtox assay, 8
Microtox chronic test, 259
Millennium Dome Remediation Project, 80
Minamata disease, 36–37
Mineral fines, 274
Mitsubishi Plastics, 327
Molecular biology tools, for bioremediation monitoring, 249–257
Molecular probes, in community analysis, 254
Monitored natural attenuation (MNA), 140, 168, 237–242
as inexpensive but time-consuming, 189
barrier-controlled, 190
caveats to use of, 189
criteria for, 187–188
decision support flowchart, 188
definition of, 184
feasibility of, assessment of, 188–189
isotopic shift and, 241–242
limitations of, 190–191
loss of contaminants from site of, 187–188
microbial monitoring methods and, 242
of BTEX-contaminated aquifers, 185–187
risk-based, 189
Monitoring, microbial methods for, 242–248
molecular biology tools for, 249–257
of hydrocarbon-oxidizing bacteria, 242–248
to support bioremediation, 237–268
Monte Carlo analysis, 70, 71
Mortality, human and animal toxicity and, 6–9
Most-probable-number (MPN), microtiter plate-based techniques, 246–248
Mutatox genotoxicity test, 259
Naphthalene, 23, 24, 39
 bacterial metabolism of, 24–25
 for detection, 261
Naphthenes, 271
National Contingency Plan, 95
National Priorities List, 88–89
Natural attenuation processes, 276
 modeling of, in contaminated groundwater, 124–128
Nitroaromatics, 30
Nitrogen, bioavailable, as limiting nutrient, 278–279
 in bioremediation, 208–209
Nitrosomonas europaea, for direct soil contact bioassay, 11
Non-aqueous-phase liquids, volatile, 64–65
Novartis, 340
Novozymes, 331, 353
Nutrients, addition to landfarms, 162
 application of, calculation of, 210–212
 rate of, 212–213
commercial mixed, disadvantages of, 211
fertilizer, penetration of oiled zone and, 281
for biodegradation, 41
for biostimulation, failures of, 210
in bioremediation, 279, 281
inorganic, disadvantages of, 208
formulations of, for biostimulation, 208–209
limitation of, in contaminated groundwater, 112–116
Octanol-water partition coefficient, 13–14
Oil. See also Crude oil(s)
 biodegraders of, 243
 in marshes and mangroves, 280
 on shorelines, 278–280
 on water, 277–278
 residual, on beach, change due to biodegradation, 283–284
 saturated, air sparging of, 175
Oil-contaminated groundwater, biostimulation of, 202–203
Oil-contaminated marine ecosystems, bioremediation of, 276–280
Oil-contaminated soils, biostimulation of, 202–203, 204
 in Kuwait, landfarming and biopiles of, 164–165
Oil contamination, Russian, 21
Oil-degrading microorganisms, 275
 “Oil-mineral fines interactions,” 274
Oil Pollution Act of 1990, 95
Oil slicks, “seeding” of, 278
Oil spills, cold-climate cleanup of, 142
marine, bioremediation of, 269–292
Oligonucleotides, fluorescently labeled, 254
Organic contaminant(s), analysis of, 240–242
Organic contamination, agricultural industries and, 5
 petroleum industry and, 4
town gas industry and, 4–5
Organic pollutants, extraction procedures for, 240
Organization for Economic Cooperation and Development, 104–105
Organophosphates, 35–36
Oxidizable organic contaminants, biodegradation reactions for, 110–112
Oxygen, availability and transport of, 204
biostimulation and, 203–208
collection of, decrease due to biodegradation of pollutant, 17–19
convective air movement and, 204–205
delivery of, hydrogen peroxide for, 207
delivery to groundwater, 206–207
diffusion of, in air, 205–206
in soils, 206
molecular, 40
radius of influence in bioventing, 172
requirements for, in bioremediation projects, 207–208
solubility of, in water, 17
Oxygen consumption, measurement of, 248–249
Oxygen demand, theoretical, 207–208
Oxygen respirometry, 248–249
Oxygenases, 22
Ozonation, and bioventing, 175

PAHs, fused-ring, 22–23, 24
Paques BV, 338
Paraffins, 271
Parathion, 35
Passive treatment walls. See PRB(s)
“Pavements,” 273–274, 278
PBET (physiologically based extraction test), 12
PCBs, 29–30
structure of, 29
PCDDs, reductive dechlorination of, 31, 32
PCP, 28, 199
Pentachlorophenol (PCP), 28
bioremediation of, 199
Percolating filter, bioaugmentation and, 195
Petroleum, modern use of, and seepage into ocean, 270
seepage of, 270
tanker spills of, 269, 270, 278
well blowouts, 270
Petroleum hydrocarbons, 19
Petroleum industry, organic contamination and, 4
Petroleum polar compounds, 271–272
Phaeolus schweinitzii, 305
Phenanthrene(s), 24, 39
alkylated, 284
biotransformation with, 246
Phenol, 26
Phosphate, in nutrient formulations, 209
Phosphodiesterases, 36
Phosphomonooesterases, 36
Phosphorus, in bioremediation, 209
Phosphotriesterases, 36
Photobacterium luminescens, 260
luxCDABE genes, 260
Photosynthesis, 321
Physical transport and reactive processes, in contaminated groundwater, 123–124
Phytane, 271
Phytotoxic metals, 36
Plants, chemicals from, 321–325
PLAs, 326–327
Plastics, and polymers, 35
biodegradable, 325–328
PLFA-based stable isotope probing (PLFA-SIP), 255
Polar lipid-derived fatty acids (PLFAs), 255
Pollutant partitioning, bioavailability and, 12–19
Pollutants, priority, 5
toxic responses to, 7
Pollution, effects of, and things affected by, 5
environmental, and restoration, 1–48
reduction of, demand for, 1
Pollution Prevention and Control regimen, 103
Polybetahydroxyalkanoates, 325–326
Polyhydroxybutyric acid, 347
Polyhydroxybutyrate, 326
Polymerase chain reaction, in amplification of 16S ribosomal DNA, 249–250
length heterogeneity (LH-PCR), 252
to detect phenol hydroxylase gene, 254
PRB(s), advantages of, 180
and biobarriers, 181
as passive treatment walls, 179–180
design of, 181, 182–183
microorganisms in, role of, 180
schematic of, 179
site and design drawings of, 182
Prime West Energy, Inc., 338
Pristane, 271, 283
Prodigene, 325
Protein engineering, 343, 344
Pseudomonas, 200, 209, 218, 261
Pseudomonas aeruginosa, 217, 218, 219, 305
Pseudomonas fluorescens, 201, 261, 275–276
Pseudomonas oleovorans, alkane metabolism in, 22, 23
Pseudomonas putida, 259, 261, 305
isopropylbenzene catabolism operon, 262
Pseudosolubilization, 217
Pulp, biobleaching of, 336
Pump-and-treat technologies, 167, 293
PVA immobilization gel, 202, 203
Quorum sensing, 260
Radar, ground-penetrating, 59
Radioactive wastes, in situ bioremediation of, 200
Radionuclides, 36. See also Metal(s), and radionuclides
Radiorespirometry, 281–282, 283
Subject Index

RALSTONIA EUTROPHA, 201, 202, 254, 261, 296, 326

Record of Decision, 89

Reed beds, artificial, 310

Remedial enhanced natural attenuation, 204

Remedial investigation/feasibility study, 89

Remediation activities, control of, 103–104

Remote sensing, in contaminated aquifers, 262

Reporter genes, 259–260

Resource Conservation and Recovery Act, 91

bioremediation and, 93–94

Comprehensive Environmental Response Compensation and Recovery Act and, 93–94

solid waste program, 92

Subtitle C, 91–92

Subtitle D, 92

Subtitle I, 92–95

underground storage tank regulation and, 92–95

Respirometry, 248–249

gas, 242

O₂ and CO₂, 248–249

Reverse sample genome probing, 254

Rhodococcus chlorophenolicus, 199

Rhodococcus erythropolis, 218

Rhodococcus ruber, 217

Riboflavin, manufacture of, life cycle analysis of, 350

Risk assessment, 52

environmental, assessment technique for, general statements in, 53

qualitative, 53

quantitative, 53–54

exposure assessment for, 51

hazard identification for, 51

principles of, 51–53

risk characterization for, 51–52

toxicity assessment for, 51

RNA stable isotope probing (RNA-SIP), 255, 256

Rock, pores and fractures in, water movement and, 139–140

Saccharomyces cerevisiae, 295

Safe Drinking Water Act, 89, 90

Salt marshes, bioremediation of, 210, 211

Scouring of cotton fiber, 353

Seismic refraction, 59–60

Serratia odorifera, 301

Shallow rock filters, 311

Shell Global Solutions International, 338

Sinorhizobium meliloti, 200

Site characterization, in contaminated land, 54–66

Site investigation, intrusive, 60

Slurry bioreactors, 142

Soil(s), bioremediation of, approaches to, 139

coal tar–contaminated, bioremediation of, 81–82

contaminated, and aquifers, bioremediation of, 139–236

approaches to, 140

microbial mobility and, 219

toxicity biosensors for, 262

hydraulic conductivities of, values of, 166

intrinsic permeability of, and biosparging, 177

marsh, nutrient biostimulation in, 210

oil-contaminated, biostimulation of, 202–203, 204

landfarming and biopiles of, 164–165

treatment of, biopiles for, 142

oxygen diffusion in, 206

permeability, water movement and, 139–140

Soil bioventing, 167

Soil characterization, in contaminated land, 61–63

Soil contact bioassay, direct, 11

Soil samples, labeling of, 63

scheduling of, 62

Soil slurry reactor(s), 162–165

Soil vapor extraction, 77–78, 168–169

and bioventing, compared, 168–169

Soy, 321–322, 324–325

Spectrometry, flame atomic absorption, 239

inductively coupled plasma optical emission, 239–240

infrared, carbon dioxide monitoring by, 249

mass, gas chromatography and, 241

Spectroscopy, atomic absorption, 239

Spent mushroom compost, 153

Spike holes, 60–61

State regulations, impacting bioremediation, 96–97

Statoil, 340

Stonewashing of jeans, 352

Streeter–Phelps model, 17

Subtilisin, 334

Sucrose, 321, 327

Sulfate-reducing bacteria (SRB), 255

ex situ bioremediation of metals using, 302–303

Sulfide precipitation, 301

Sulfobacillus, 337

Sulfur aromatic heterocycles, 271

Superfund sites, source control projects at, 167, 168, 169

Surface-active-cosolvent flushing, 216

Surfactant foams, 216

Surfactants, nondispersing, 278

synthetic, and bioremediation, 215–216

to release hydrophobic pollutants, 216

Syntheses, and cofactors, 334

Syntrophus, 253–254

Tar balls, 273–274

TCDD, 30, 31

Temperature, for bioremediation, 41

Terminal restriction fragment length polymorphism (T-RFLP), 252, 253–254

2,3,7,8-Tetrachlorodibenzo-p-dioxin, 30, 31

Tetrachloroethylene, 29

Textiles, bleach cleanup of, 351–352

Thauera, 255

Thiobacillus caldus, 337

Thioredoxin, 344
TNT, 30
Toluene mineralization, enhanced remediation by oxygenated water, 133–134
in closed batch system, 120–121
Toxicity, animal, mortality and, 6–9
chronic, 7–8
human, mortality and, 6–9
Toxicity biosensors, 258, 262
Toxicological tests, standardized, 8
Toxic Substances Control Act, 96
Experimental Release Application of, 96
Toxmap, for contaminated-site mapping, 258
Toyota Motor Corporation, 327
Triazole fungicide, 29
Trichloroethylene, 26
biodegradation pathways for, 27
structure of, 26
Trichloroethylene, aquifer contamination by, cometabolism and, 214–215
Trichlorophenol, 28
Trinitrotoluene, 30
Uranium, in situ bioremediation through bioreduction, 306–308
Vapor pressure, 13
Vegetable oil, enzymatic degumming of, 337
Vent well(s), design and construction of, 173–174
number of, for bioventing, 174
Vibrio fischeri, 259, 260
Vibrio harveyi, 260
Volatile organic compounds, 65–66
Water, at mine, active versus passive treatment of, 309–311
characterization of, in contaminated land, 63–65
oil on, 277–278
oxygenated, enhanced remediation of toluene mineralization by, 133–134
Water solubility, size and shape of molecule and, 10
Wells, monitoring of, 64
Windrow(s), at Newcastle-upon-Tyne, 156–159
calculation of volume of, 153
components of, 153–154
composting using, 151–155
forming and turning of, 154–158
Windrow turner, 154, 155
Xencor, 344
Xylanases, 336
Zeneca, 326
Zinc refining, gypsum reduction in, 336–337
SUBJECT INDEX

ABSs, 34–35
Acinetobacter calcoaceticus, 218
Acinetobacter, 261, 301
Acrylamide, biological production of, 336
Agricultural industries, organic contamination and, 5
Agrobacterium radiobacter, 36
Air, oxygen diffusion in, 205–206
Air movement, convective, oxygen and, 204–205
Air sparging, biosparging as mode of, 176–177
in situ, 176
Airflow systems, for biosparging, 178
Alcaligenes eutrophus, 326
Algal biofilms, 311
Alkane metabolism, in Pseudomonas oleovorans, 22, 23
fluence of biosurfactants on, 217–219
Alkane-oxidizing enzymes, 22
Alkylbenzyl sulfonate, 34–35
ALLU bucket, 151, 152, 154
Alternative electron acceptors, 215
Alternative electron donors, cometabolism and, 213–215
to change redox conditions, 213
Altus Biologies Inc. Crystalomics, 341
Ames test, 8–9
Ammonium acrylate, 336
Ammonium phosphate, for biodegradation, 41
Aquifers, bioremediation of, approaches to, 139
contaminated, and soils, bioremediation of, 139–236
remote sensing in, 262
MTBE-contaminated, employing bioaugmentation, 192
TCE-contaminated, in situ bioremediation of, cometabolism for, 214–215
vulnerability to groundwater contamination, 140
Arabidopsis thaliana, 326
Archea, 275, 337, 342
Arthrobacter, 199, 262, 305
Atomic absorption spectroscopy, 239
Atrazine, in bioremediation, 209
Bacillus subtilis, 218
Bacillus thermoleovorans, 275
Bacteria, 275
Bacteria, groups of, in contaminated groundwater, 117–120
Bacterial bioluminescence, 8, 257
Bacterial extracellular signaling, 260
BASF, 326, 335, 340, 341, 347
Beach(es), oil on, 278–280
residual oil on, change due to biodegradation, 283–284
Benzene, 39
Bioaugmentation, 277
adaptation of strains for, 198
and immobilization by sorption, 202
approaches to, 191–193
description of, 191
MTBE-contaminated aquifers employing, 192
novel delivery systems for, 202, 203
number of microorganisms for, 198–199
percolating filter and, 195
plant-associated strain selection and delivery for, 198
predatory interaction of, 195
selection of traits for, 197–198
serial enrichment procedure for, 193
solvent efflux pump schematic of, 197
strain selection for, 195–197
successes and failures of, 195–202
uncertainty in, 194–195
with genetically modified organisms, 200
SUBJECT INDEX

Bioavailability, 9–16
 enhancement of, 215–220
 measurement of, 10–12
 pollutant partitioning and, 12–19
 solubility in water and, 10
Bioavailable compounds, biosensors for toxicity and detection of, 257–262
Biocatalysts, 333–335
 process development of, 338–339
 research and development of, 342
Biochemical engineering, 333
Biodegradation, change in residual oil on beach due to, 283–284
 modeling geochemical changes during, 120–121
Biodesulfurization, of gasoline, 337–338
Biodiesel, 330
Bioethanol, 328–329
 production of, 352–353
Bioteaching, of copper, 337
 of pulp, 336
Biological techniques, direct, to measure bioavailability, 11
Bioluminescence, bacterial, 8, 257
Bioluminescence-based biosensors, 259
Bioluminescent bioreporter integrated circuit (BBIC), 262
Biomagnification, 16–17
Biomineralization, of metals and radionuclides via microbially generated ligands, 300–304
Biopile(s), aeration system of, 145–148
 base of, 145, 146
 calculation of volume of, 143, 144
 centrifugal blower for, 146–147, 148
 components of, 144–149
 covers of, 148–149
 formation of, 149–153
 mixing prior to, 150
 irrigation systems of, 149
 shape of, 143
 size of, 143
 space requirements of, 143–144
 treatment of oil-contaminated soils, 142
 width and length of, factors determining, 143
 windrow composting and, 151–153
Biopol, 326
Bioprocess plants, 340
Bioprocesses, 319–320
Bioprocessing, 332–343
Bioreceptor systems, 262
Bioreduction, in situ bioremediation of uranium through, 306–308
Biorefineries, 323
Bioremediation, advantages of, 1–2
 biochemical and molecular aspects of, 38–39
 construction completion list, 89
 definition of, 1
 economics of, 3
 enhanced, modeling of, in contaminated groundwater, 132–134
 estimated growth of, 2
 evolution of, 3–4
 factors affecting, 39–43
 for reduction of toxicity, 6
 legal and regulatory requirements for, 86
 initial evaluation for, 86–87
 limitations of, for treating PCB-contaminated Hudson River sediments, 190–191
 monitoring of. See Monitoring
 need for, 4–6
 of coal tar-contaminated soil, 81–82
 of contaminated soils and aquifers, 139–236
 of marine oil spills, 269–292
 of metals and radionuclides, 293
 of salt marshes, 210, 211
 operating permits for, 87–88
 oxygen requirements for, 207–208
 preemptive, 318–356
 preliminary assessment for, 88
 regulatory and liability concerns associated with, 97
 regulatory drivers and barriers to, in United Kingdom, 97–105
 remedial action for, 89
 remedial design for, 89
 site inspection for, 88
 state regulations impacting, 96–97
 U.S. environmental regulatory process for, 87–88
 Bioremediation decision tree, 76, 77
 Bioremediation technologies, biopiles and windrow composting. See Biopile(s); Windrow(s)
 ex situ, 141–165
 in situ, 165–190
 advantages of, 167
 disadvantages of, 167
Biosensor systems, 262
 Biosensors, bioluminescence-based, 259
 contaminant-specific, 260–262
 toxicity, for contaminated soils, 262
 in contaminated-site mapping, 258
Bioslurping, 181–184
 advantages of, 183
 dual drop tube in, 181, 185
 equipment for, 181–183, 185
 evolution of, 181
Biosorption, of metals and radionuclides, 294–296
Biosparging, 175–179
 airflow systems for, 178
 as mode of air sparging, 176–177
 contaminants treated by, 177
 design of, 177–179
 nutrient delivery for, 179
 schematic of, 176
 well design for, 178, 179
 wells for, design and construction for, 179
 number and spacing of, 179
Biostimulation, 202–220, 276
 alternate electron acceptors in, 208–213
 applications of, 202–203
 of oil-contaminated groundwater, 202–203
 of oil-contaminated soils, 202–203, 204
 oxygen and, 203–208
Biostoning, 352
Biosurfactants, advantages of, 216
 field tests of, 219
 influence on alkane metabolism, 217–219
 potential role for, 216–220
 types of, 216–217
Biotechnology, future for, 346
 industrial, advantages of, 331–332
 current uses of, 335
 process assessment and sustainable development in, 346–347
 process profile analysis in, 347
 sustainability of, 320–321, 339
 “white,” 318
Biotechnology Industry Organization, 319, 320
Biotic reactive processes, modeling of, 109–121
Biotransformations, enzymatically catalyzed, of metals and radionuclides, 297–300
Bioventing, 168–175
 air injection and extraction for, 174
 airflow requirements for, 172
 airflow systems in, 171–172
 anaerobic, 175
 and soil remediation technologies, 174–175
 and soil vapor extraction, compared, 168–169
 contaminant distribution in, 171
 contaminants biodegraded by, 170
 design of, 170–174
 gas and vapor transfer in, 171
 in extraction mode, with treatment of off-gases, 175
 injection well design for, 174
 ozonation and, 175
 radius of influence of oxygen in, 172
 schematic of, 170
Bleach cleanup, of textiles, 351–352
Blower sizing, in bioventing, 173
Brownfields Program, 90–91
BTEX compounds, 22, 23
Burkholderia, 251
Cable percussion boreholes, 60
Candida lipolytica, 218
Candida tropicalis, 218
Carbon and hydrogen isotope analysis, 242
Carbon-based stable isotope analysis, 241
Carbon dioxide, monitoring by infrared spectrometry, 249
 plants and, 321
 production of, in aerobic bioremediation, 242
 measurement of, 248–249
Carbon dioxide respirometry, 248–249
Carboxydothermus, 332
Cargill Dow, 323, 327
l-Carnitine, by chemical and biochemical routes, 353
Carver, George Washington, 318–319
Catabolic genes, specific, detection and quantification of, 257
Catechol, 31, 33, 248
Celanese, 339
Cellulase enzymes, 331
Chemical analysis, 238–242
Chemicals, from plants, 321–325
ChemSystems, 324
Chevron Research and Technology, 339–340
Chloraromatic biocides, 28
Chlorophenols, 26, 28
Chromatography, high-performance liquid, 241
Citrobacter, 301, 304
“Clay–oil flocculation,” 274
Clean Air Act, 95
Clean Water Act, 87, 89–90
Closed batch system, toluene mineralization in, 120–121
Coal tar-contaminated soil, bioremediation of, 81–82
Cold-climate cleanup, of fuel and oil spills, 142
Cold vapor, 240
Colorimetric tests and field test kits, 238–239
Cometabolism, and alternative electron donors, 214–215
 definition of, 213
 for in situ bioremediation of TCE-contaminated aquifers, 214–215
 in transformation product mineralization, 213
 Community profiling methods, 249
 Compost bioreactors, 311
 Composting, in-vessel, 155
 Comprehensive Environmental Response Compensation and Recovery Act, 87, 88, 90, 92
 and Resource Conservation and Recovery Act, 93–94
Conductivity surveys, 58–59
Cone penetration techniques, 60
Contaminants, metals and radionuclides as, 296–297
Contaminated Land Exposure Assessment (CLEA) model, 67–69, 99–100
Contaminated land regimen, 98–100
Contamination source, in contaminated groundwater, 124–126
Convecitive air movement, oxygen and, 204–205
Copper, bioleaching of, 337
Copper-resistant bacteria, 42
Corn syrup, high-fructose, 335
Cotton fiber, scouring of, 353
Council for Chemical Research Vision 2020, 342
Cross-linked enzyme crystal (CLEC), 341
Crude oil(s), 20
and refined products, 270–272
classification of, 272
composition of, 270
hydrocarbon-oxidizing microorganisms and, 244–245
hydrocarbons in, 20–21, 271
resin and polar components of, 272
Crude oil spills, marine, 280
Cyclodextrins, 219–220
Cytochrome P450, 273
DDT, 41
Dead-end elimination theorem, 343–344
Degraders, 243
Deinococcus geothermalis, 200
Denaturing gradient gel, 251
Denaturing gradient gel electrophoresis, 250–252
Deoxygenation, 17
Desulfovibrio desulfuricans, 300
Detection stick, 259
Deuterium, 241
Dibenzo-p-dioxin, 31, 33
Dibenzofurans, reductive dechlorination of, 31
Dichlorodiphenyltrichloroethane, 41
Dichlorophenol, aerobic mineralization of, 207
Dioxin(s), 30–34
metabolism of, gene organization for, 34
Dioxygenases, 23–24, 248
Dispersants, 277–278
Dispersive mixing, in contaminated groundwater, 127–128
Diversa, 340, 345–346
DNA, melting domains of, 250
16S ribosomal, PCR amplification of, 249–250
stable isotope-labeled, 255
DNA microarrays, 254
DNA shuffling, 345
DNA stable isotope probing (DNA-SIP), 255
Dose-response curve, cumulative, in lethality test, 6
Dow AgroSciences, 340
Driven-tube/“window” samplers, 60
DuPont, 323, 324
Eastman Chemical, 324
Ecoefficiency analysis, 347
Ecotoxicology, 9
Electrical resistivity surveys, 59
Electron-accepting processes, 110
Enantiopure 2-chloro- and 2-bromopropionic acids, 335
Environmental contaminants, 7
Environmental medications, for bioremediation, 140
Environmental pollutants, biodegradability of, 19–38
Environmental pollution, and restoration, 1–48
Environmental Protection Agency, 88
Environmental regulatory process, U.S., for bioremediation, 87–88
Enzymatic degumming, of vegetable oil, 337
Enzyme(s), activities of, screening strains for, 248
commercial use in organic solvents, 335
genes encoding, 345
in aqueous reaction media, 334
in bioprocessing, 332–333
lyophilization, 335
novel approaches to, 343
Enzyme screens, for enzyme activities, 248
Escherichia coli, 210, 259, 261, 294, 324, 326, 335, 343, 346
Ethanol production, 352
Eubacteria, 342
Eukarya, 275
Extraction procedures, for organic pollutants, 240
Extremozymes, 345–346
Fertilizer(s), ammonium, 279
for biostimulation, 276
for landfarms, 162
in degradation of oil, 41
oleophilic, 209–210, 278, 279, 280
penetration of oil zone and, 281
to stimulate microbial activity, 281–282
Field-scale application, in contaminated groundwater, 128–130
Filter, percolating, bioaugmentation and, 195
Filter pad method for growing hydrocarbon-oxidizing bacteria, 245
Flame atomic absorption spectrometry, 239
Flavobacterium, 199
Flow and physical transport, modeling of, in contaminated groundwater, 122
Fluorescent in situ hybridization (FISH), 251
and secondary ion mass spectrometry, 255–256
of whole cells, 254–255
Ford, Henry, 319
Fuel(s), renewable, 328–331
Fuel distillates, 20
Fuel spills, 272
cold-climate cleanup of, 142
Fuel storage tank, leaking underground, model of, 56
source-pathway receptor for, 57–58
β-Galactosidase, 259
Gas characterization, in contaminated land, 65–66
Gas chromatography, 240–241
and mass spectrometry, 240–241
headspace, 241
Gas industry, town, organic contamination and, 4–5
Gas respirometry, 242
metabolic, 248
Gasoline, biosulfurization of, 337–338
Gene shuffling, 345
Genencor, 324, 325, 331, 347
Genes, catabolic specific, detection and quantification of, 257
reporter, 259–260
Genes encoding enzymes, 345
Genetically engineered microorganisms. See Genetically modified organisms (GMOs)
Genetically modified organisms (GMOs), bioaugmentation with, 199–202
construction of, problems in, 200
efficacy of, field trials to test, 201
for heavy metal-contaminated soils, 200
under construction, to degrade resistant compounds, 200
Genome probing, reverse sample, 254
Geobacteraceae, 306–308
Ground-penetrating radar, 59
Groundwater, contaminated, as hidden problem, 140
contamination source in, 130–131
coupled physical transport and reactive processes in, 123–124
field-scale application, 128–130
microbial growth and decay in, 112–116
modeling bioremediation of, 108–138
modeling flow and physical transport in, 122
modeling of contamination source in, 124–126
modeling of enhanced bioremediation in, 132–134
modeling of natural attenuation processes in, 124–128
multiple bacterial groups and growth inhibition in, 117–120
nonreactive single-species transport in, 122–123, 128–129
nutrient limitation in, 116–117
reactive multicomponent transport in, 129–130
reactive single-species transport in, 123
remediation of, scale of problem, 141
role of dispersive mixing, 127–128
steady-state versus transient simulations, 130, 131–132
vulnerability of aquifer to, 140
diffuse source contamination of, 63–64
oil-contaminated, biostimulation of, 202–203
oxygen delivery to, 206–207
Groundwater monitoring well, 64
Gypsum reduction in zinc refining, 336–337
Haloalkanes, 25–26
Haloalkenes, 25–26
Haloaromatics, 26–29
Hand augering, 60
Hazard ranking system, 88
Hazardous waste management, 91–92
Headspace gas chromatography, 241
Heavy metal resistance, 42
Heavy metals, 36–38
microbially enhanced chemisorption of, 304
Henry's law constant, 13
Hopanes, 283–284
Hydride generation, 240
Hydrocarbon-degrading microorganisms, 275–276
Hydrocarbon-degrading pseudomonad, 199–200
Hydrocarbon-oxidizing bacteria, enumeration of, 244
problems associated with, 244
filter pad method for growing, 245
in environment, 243
isolation of, requirements for, 244
monitoring of, 242–248
Hydrocarbon-oxidizing microorganisms, growth on nonsoluble solid hydrocarbons, 245–246
Hydrocarbons, 39, 242–243
anaerobic biodegradation of, 273
as insoluble in water, 273–274, 277
bacterial metabolism of, 38
biodegradation of, 272–275, 277
in bacteria, nutritional requirements of, 243
in crude oils, 271
nonsoluble solid, growth of hydrocarbon-oxidizing microorganisms on, 245–246
polycyclic aromatic, 273
in hydrocarbon-degrading organisms and in animals, 273, 274
production of, 39
Hydrogen peroxide, for oxygen delivery, 207
Hydrogeology, contaminant, 63
Hydrolases, 334
Hydrolysis reactions, 333
Hydrophobic pollutants, in soil, fate of, 15–16
Hydrophobicity, influencing partitioning and bioavailability, 13
Hydroquinone, 273
Hydroxypropyl-β-cyclodextrin (HPCD), 12, 219
In-vessel composting, 155
Inductively coupled plasma optical emission spectrometry, 239–240
Industrial land use, category of contamination and, 2
Industrial pollutants, 5
Industrial products, analysis techniques for, 349
Industrial products and processes, clean, biotechnology for, 318–356
Infrared photography, 60
Infrared spectrometry, carbon dioxide monitoring by, 249
Inoculation of oiled sediment, 280
Iogen, 331
Isotherm(s), Brunauer-Emmett-Teller, 296
Langmuir and Freundlich, 296
Isotope analysis, carbon-based stable, 241
Isotopic shift, monitored natural attenuation and, 241–242

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Thu, 20 Jun 2019 03:01:05
Kuhn Knight Reel Auggie, 150, 151
Labeled substrates, to probe for organisms, 255–256
Land, contaminated, attitudes toward, within European Union, 50
bioremediation techniques in, compared, 76
case studies of, 79–82
chemical treatment systems in, 77
defining of, 49–54
exposure scenarios, 69–70
field tests of, 75–76, 77
fluidized bed incinerators in, 78
gas characterization in, 65–66
generic screening guidelines for, 66–67
incineration in, 78
investigation design of, 61
investigation of, legislative drivers of, 49–50
physical treatment systems in, 76–77
quantification of problem of, 66–71
remedial design in, risk-based, 74–76
remedial planning in, 71–82
remedial technologies in, economics of, 71–74
technology briefs of, 76–79
remedial treatments for, data on, 75
risk assessment of, 50–53
risks to human health, 69–70
site characterization in, 54–66
conceptual site modeling in, 55–58
investigative techniques in, 58–61
site-specific risk assessment of, CLEA model and,
67–69
soil characterization in, 61–63
soil vapor extraction in, 77–78
solidification treatment systems in, 77, 79
Superfund sites and, 50
thermal desorption in, 78–79
thermal treatment systems in, 77
uncertainty of risk of, dealing with, 70–71
water characterization in, 63–65
Landfarming, 142, 155–162
and biopiles, oil-contaminated Kuwait soils in,
164–165
Landfarming, (s), aeration of, 162, 163
applications of, 157–158
base of, 159
biopiles and windrows, differences between, 155
design of, 158–161
experimental plots, 160–161
irrigation of, 161–162
nutrient addition to, 162
operation of, 161–162
perimeter dike of, 159
stockpile area of, 159
Landfill Directive (99/31/EC), 101–102
Leachate collection system, 159
Length heterogeneity-polymerase chain reaction (LH-PCR), 252
Lethality test, cumulative dose-response curve in, 6
Life cycle analysis (LCA), 348–353
assessment in practice, 351–353
boundaries, 351
description of, 348–349
environmental impact of product and, 349
of riboflavin manufacture, 350
techniques of, 350–351
uses of, 349
Lignin, 39, 322
Liquid chromatography, high-performance, 241
Lysine feed additive, 322
Magnetic profiling, 59
Marine ecosystems, oil-contaminated, bioremediation of, 276–280
Marine oil spills, bioremediation of, 269–292
concerns in bioremediation for, 284–285
efficacy of bioremediation for, 280–284
Marshes and mangroves, oil in, 280
Mass spectrometry, gas chromatography and, 241
Mathematical modeling, of contaminated groundwater, 108–138
role of, in bioremediation processes, 109
Maxygen, 340, 345
Mercuric reductase (MerA), 260–261
Mercury, 240
central nervous system and, 36
Mercury detoxification system, 260, 261
Mercury-resistant bacteria, to treat wastewater, 298–299
Mesorhizobium huakuii, 200–201
Metabolic biomarkers, 256–257
Metabolic Explorer, 343
Metabolic gas respirometry, 248
Metabolism-dependent bioaccumulation, of metals and radionuclides, 296–297
Metabolix, 326
Metal(s). See also Heavy metals and radionuclides, as contaminants, 294
biomineralization via microbially generated ligands, 300–304
bioremediation of, 293
biosorption of, 294–296
enzymatically catalyzed biotransformations of, 297–300
metabolism-dependent bioaccumulation of, 296–297
contamination by, cost of cleanup of, 293
in situ versus ex situ remediation of, 305–308
energy-dependent uptake of, 296
ex situ bioremediation of, using sulfate-reducing bacteria, 302–303
extraction procedures for, 239–240
rehabilitation, 343
remediation of, biodegradation of organic compounds and, 304–305
uses of, 293
Metal analysis, 239–240
Metal-microbe interactions, 294–304
Metal oxide semiconductor technology, 262
Metanosaeta, 253–254
Methyl tertiary-butyl ether, 25
Microbes, to degrade organic contaminants, 1
Microbial activity, fertilizers to stimulate, 281–282
Microbial growth and decay, in contaminated groundwater, 112–116
Microbial methods, for monitoring, 242–248
Microbial oxygen consumption, monitoring of, 242
Microbially enhanced chemisorption of heavy metals (MECHM), 304
Microemulsions, 210
Microorganisms, genetically modified, environmental releases of, oversight of, 104–105
hydrocarbon-degrading, 275–276
number of, for bioaugmentation, 198–199
oil-degrading, 275
taxonomy of, 275
Microtiter plate-based techniques, most-probable-number, 246–248
Microtox acute test, 259
Microtox assay, 8
Microtox chronic test, 259
Millennium Dome Remediation Project, 80
Minamata disease, 36–37
Mineral fines, 274
Mitsubishi Plastics, 327
Molecular biology tools, for bioremediation monitoring, 249–257
Molecular probes, in community analysis, 254
Monitored natural attenuation (MNA), 140, 168, 237–242
as inexpensive but time-consuming, 189
barrier-controlled, 190
caveats to use of, 189
criteria for, 187–188
decision support flowchart, 188
definition of, 184
feasibility of, assessment of, 188–189
isotopic shift and, 241–242
limitations of, 190–191
loss of contaminants from site of, 187–188
microbial monitoring methods and, 242
of BTEX-contaminated aquifers, 185–187
risk-based, 189
Monitoring, microbial methods for, 242–248
molecular biology tools for, 249–257
of hydrocarbon-oxidizing bacteria, 242–248
to support bioremediation, 237–268
Monte Carlo analysis, 70, 71
Mortality, human and animal toxicity and, 6–9
Most-probable-number (MPN), microtiter plate-based techniques, 246–248
Mutatox genotoxicity test, 259
Naphthalene, 23, 24, 39
bacterial metabolism of, 24–25
for detection, 261
Naphthenes, 271
National Contingency Plan, 95
National Priorities List, 88–89
Natural attenuation processes, 276
modeling of, in contaminated groundwater, 124–128
Nitroaromatics, 30
Nitrogen, bioavailable, as limiting nutrient, 278–279
in bioremediation, 208–209
Nitrosomonas europaea, for direct soil contact bioassay, 11
Non-aqueous-phase liquids, volatile, 64–65
Novartis, 340
Novozymes, 331, 353
Nutrients, addition to landfarms, 162
application of, calculation of, 210–212
rate of, 212–213
commercial mixed, disadvantages of, 211
fertilizer, penetration of oiled zone and, 281
for biodegradation, 41
for biostimulation, failures of, 210
in bioremediation, 279, 281
inorganic, disadvantages of, 208
formulations of, for biostimulation, 208–209
limitation of, in contaminated groundwater, 112–116
Octanol-water partition coefficient, 13–14
Oil. See also Crude oil(s)
biodegraders of, 243
in marshes and mangroves, 280
on shorelines, 278–280
on water, 277–278
residual, on beach, change due to biodegradation, 283–284
saturated, air sparging of, 175
Oil-contaminated groundwater, biostimulation of, 202–203
Oil-contaminated marine ecosystems, bioremediation of, 276–280
Oil-contaminated soils, biostimulation of, 202–203, 204
in Kuwait, landfarming and biopiles of, 164–165
Oil contamination, Russian, 21
Oil-degrading microorganisms, 275
“Oil-mineral fines interactions,” 274
Oil Pollution Act of 1990, 95
Oil slicks, “seeding” of, 278
Oil spills, cold-climate cleanup of, 142
marine, bioremediation of, 269–292
Oligonucleotides, fluorescently labeled, 254
Organic contaminant(s), analysis of, 240–242
Organic contamination, agricultural industries and, 5
petroleum industry and, 4
town gas industry and, 4–5
Organic pollutants, extraction procedures for, 240
Organization for Economic Cooperation and Development, 104–105
Organophosphates, 35–36
Oxidizable organic contaminants, biodegradation reactions for, 110–112
Oxygen, availability and transport of, 204
biostimulation and, 203–208
concentration of, decrease due to biodegradation of pollutant, 17–19
convective air movement and, 204–205
delivery of, hydrogen peroxide for, 207
delivery to groundwater, 206–207
diffusion of, in air, 205–206
in soils, 206
molecular, 40
radius of influence in bioventing, 172
requirements for, in bioremediation projects, 207–208
solubility of, in water, 17
Oxygen consumption, measurement of, 248–249
Oxygen demand, theoretical, 207–208
Oxygen respirometry, 248–249
Oxynases, 22
Ozonation, and bioventing, 175
PAHs, fused-ring, 22–23, 24
Paques BV, 338
Paraffins, 271
Parathion, 35
Passivetreatmentwalls. See PRB(s)
“Pavements,” 273–274, 278
PBET (physiologically based extraction test), 12
PCBs, 29–30
structure of, 29
PCDDs, reductive dechlorination of, 31, 32
PCP, 28, 199
Pentachlorophenol (PCP), 28
bioremediation of, 199
Percolating filter, bioaugmentation and, 195
Petroleum, modern use of, and seepage into ocean, 270
seepage of, 270
tanker spills of, 269, 270, 278
well blowouts, 270
Petroleum hydrocarbons, 19
Petroleum industry, organic contamination and, 4
Petroleum polar compounds, 271–272
Phaeolusschweinitzii, 305
Phenanthrene(s), 24, 39
alkylated, 284
biotransformation with, 246
Phenol, 26
Phosphate, in nutrient formulations, 209
Phosphodiesterases, 36
Phosphomonoesterases, 36
Phosphorus, in bioremediation, 209
Phosphotriesterases, 36
Photobaudus luminescens, 260
luxCDABE genes, 260
Photosynthesis, 321
Physical transport and reactive processes, in contaminated groundwater, 123–124
Phytane, 271
Phytotoxict metals, 36
Plants, chemicals from, 321–325
PLAs, 326–327
Plastics, and polymers, 35
biodegradable, 325–328
PLFA-based stable isotope probing (PLFA-SIP), 255
Polar lipid-derived fatty acids (PLFAs), 255
Pollutant partitioning, bioavailability and, 12–19
Pollutants, priority, 5
toxic responses to, 7
Pollution, effects of, and things affected by, 5
environmental, and restoration, 1–48
reduction of, demand for, 1
Pollution Prevention and Control regimen, 103
Polybetahydroxyalkanoates, 325–326
Polyhydroxybutanoic acid, 347
Polyhydroxybutyrate, 326
Polymerase chain reaction, in amplification of 16S ribosomal DNA, 249–250
length heterogeneity (LH-PCR), 252
to detect phenol hydroxylase gene, 254
PRB(s), advantages of, 180
and biobarriers, 181
as passive treatment walls, 179–180
design of, 181, 182–183
microorganisms in, role of, 180
schematic of, 179
site and design drawings of, 182
Prime West Energy, Inc., 338
Pristane, 271, 283
Prodigene, 325
Protein engineering, 343, 344
Pseudomonas, 200, 209, 218, 261
Pseudomonas aeruginosa, 217, 218, 219, 305
Pseudomonas fluorescens, 201, 261, 275–276
Pseudomonas oleovorans, alkane metabolism in, 22, 23
Pseudomonas putida, 259, 261, 305
isopropylbenzene catabolism operon, 262
Pseudosolubilization, 217
Pulp, biobleaching of, 336
Pump-and-treat technologies, 167, 293
PVA immobilization gel, 202, 203
Quorum sensing, 260
Radar, ground-penetrating, 59
Radioactive wastes, in situ bioremediation of, 200
Radionuclides, 36. See also Metal(s), and radionuclides
Radiorespirometry, 281–282, 283
SUBJECT INDEX

Ralstonia eutropha, 201, 202, 254, 261, 296, 326

Record of Decision, 89

Reed beds, artificial, 310

Remedial enhanced natural attenuation, 204

Remedial investigation/feasibility study, 89

Remediation activities, control of, 103–104

Remote sensing, in contaminated aquifers, 262

Reporter genes, 259–260

Resource Conservation and Recovery Act, 91

 - bioremediation and, 93–94
 - Comprehensive Environmental Response
 - Compensation and Recovery Act and, 93–94
 - solid waste program, 92

Subtitle C, 91–92

Subtitle D, 92

Subtitle I, 92–95

underground storage tank regulation and, 92–95

Respirometry, 248–249

 - gas, 242
 - O$_2$ and CO$_2$, 248–249

Reverse sample genome probing, 254

Rhodococcus dechlorophenolicus, 199

Rhodococcus erythropolis, 218

Rhodococcus ruber, 217

Riboflavin, manufacture of, life cycle analysis of, 350

Risk assessment, 52

 - environmental, assessment technique for, general statements in, 53
 - qualitative, 53
 - quantitative, 53–54
 - exposure assessment for, 51
 - hazard identification for, 51
 - principles of, 51–53
 - risk characterization for, 51–52
 - toxicity assessment for, 51

RNA stable isotope probing (RNA-SIP), 255, 256

Rock, pores and fractures in, water movement and, 139–140

Saccharomyces cerevisiae, 295

Safe Drinking Water Act, 89, 90

Salt marshes, bioremediation of, 210, 211

Scouring of cotton fiber, 353

Seismic refraction, 59–60

Seratia odorifera, 301

Shallow rock filters, 311

Shell Global Solutions International, 338

Sinorhizobium meliloti, 200

Site characterization, in contaminated land, 54–66

 - intrusive, 60

Slurry bioreactors, 142

Soil(s), bioremediation of, approaches to, 139

 - coal tar-contaminated, bioremediation of, 81–82
 - contaminated, and aquifers, bioremediation of, 139–236
 - approaches to, 140
 - microbial mobility and, 219
 - toxicity biosensors for, 262

 - hydraulic conductivities of, values of, 166
 - intrinsic permeability of, and biosparging, 177
 - marsh, nutrient biostimulation in, 210
 - oil-contaminated, biostimulation of, 202–203, 204
 - landfarming and biopiles of, 164–165
 - treatment of, biopiles for, 142
 - oxygen diffusion in, 206
 - permeability, water movement and, 139–140

Soil biventing, 167

Soil characterization, in contaminated land, 61–63

Soil contact bioassay, direct, 11

Soil samples, labeling of, 63

 - scheduling of, 62

Soil slurry reactor(s), 162–165

Soil vapor extraction, 77–78, 168–169

 - and bioventing, compared, 168–169

Soy, 321–322, 324–325

 - Spectrometry, flame atomic absorption, 239
 - inductively coupled plasma optical emission, 239–240
 - infrared, carbon dioxide monitoring by, 249
 - mass, gas chromatography and, 241

Spectroscopy, atomic absorption, 239

 - Sulfate-reducing bacteria (SRB), 255
 - ex situ bioremediation of metals using, 302–303
 - Sulfide precipitation, 301
 - *Sulfobacillus*., 337

Sulfuraromatic heterocycles, 271

Superfund sites, source control projects at, 167, 168, 169

Surfactant-cosolvent flushing, 216

 - Surfactant foams, 216
 - Surfactants, nondispersing, 278
 - synthetic, and bioremediation, 215–216
 - to release hydrophobic pollutants, 216

Syntheses, and cofactors, 334

Syntrophus, 253–254

Tar balls, 273–274

TCDD, 30, 31

Temperature, for bioremediation, 41

Terminal restriction fragment length polymorphism (T RFLP), 252, 253–254

2,3,7,8-Tetrachlorodibenzop-**p**-dioxin, 30, 31

Tetrachloroethylene, 29

Textiles, bleach cleanup of, 351–352

Thauma, 255

Thiobacillus caldus, 337

Thioredoxin, 344
TNT, 30
Toluene mineralization, enhanced remediation by oxygenated water, 133–134
in closed batch system, 120–121
Toxicity, animal, mortality and, 6–9
chronic, 7–8
human, mortality and, 6–9
Toxicity biosensors, 258, 262
Toxicological tests, standardized, 8
Toxic Substances Control Act, 96
Experimental Release Application of, 96
Toxmap, for contaminated-site mapping, 258
Toyota Motor Corporation, 327
Triazole fungicide, 29
Trichloroethylene, 26
biodegradation pathways for, 27
structure of, 26
Trichloroethylene, aquifer contamination by, cometabolism and, 214–215
Trichlorophenol, 28
Trinitrotoluene, 30
Uranium, in situ bioremediation through bioreduction, 306–308
Vapor pressure, 13
Vegetable oil, enzymatic degumming of, 337
Vent well(s), design and construction of, 173–174
number of, for bioventing, 174
Vibrio fischeri, 259, 260
Vibrio harveyi, 260
Volatile organic compounds, 65–66
Water, at mine, active versus passive treatment of, 309–311
characterization of, in contaminated land, 63–65
oil on, 277–278
oxygenated, enhanced remediation of toluene mineralization by, 133–134
Wells, monitoring of, 64
Windrow(s), at Newcastle-upon-Tyne, 156–159
calculation of volume of, 153
components of, 153–154
composting using, 151–155
forming and turning of, 154–158
Windrow turner, 154, 155
Xencor, 344
Xylanases, 336
Zeneca, 326
Zinc refining, gypsum reduction in, 336–337