REVENGE OF THE MICROBES
REVENGE OF THE MICROBES

How Bacterial Resistance Is Undermining the Antibiotic Miracle

Abigail A. Salyers and Dixie D. Whitt
University of Illinois at Urbana-Champaign
Urbana, Illinois

ASM PRESS
Washington, D.C.
For Jeff and Greg
Contents

Preface ix

1 Magic Bullets, Miracle Drugs 1

2 A Brief Look at the History of Antibiotics 17

3 Bacteria Reveal Their Adaptability, Threatening the Brief Reign of Antibiotics 26

4 Antibiotic-Resistant Bacteria in the News 36

5 Antibiotics That Inhibit Bacterial Cell Wall Synthesis 50

6 Antibiotics That Inhibit the Synthesis of Bacterial Proteins 66

7 Fluoroquinolones, Sulfur Drugs, and Antituberculosis Drugs 83

8 Bacterial Promiscuity: How Bacterial Sex Contributes to Development of Resistance 98

9 The Looming Crisis in Antibiotic Availability 116

10 Antiseptics and Disinfectants 130

11 Antiviral, Antifungal, and Antiprotozoal Compounds 137

Appendix 1 Structures of Antimicrobial Agents Mentioned in the Text 150

Appendix 2 How Clinical Laboratories Measure Resistance 169

Suggested Reading 176

Index 179
Preface

Most people have a love-hate relationship with antibiotics. They love the fact that antibiotics still work most of the time and work quickly with few side effects. Anyone who has experienced therapy that only suppresses the symptoms of a disease, such as arthritis medications, or has endured therapy that is debilitating, such as cancer chemotherapy, has to appreciate the swift, effective action of antibiotics. But people also hate things about antibiotics. They hate the fact that more and more physicians are refusing to prescribe antibiotics for flu and that patients are being blamed for demanding antibiotics when they shouldn’t. They are also coming to hate the dire warnings about increasingly resistant bacteria whose advance may send us back to the preantibiotic era.

Many people, including some scientists, are also confused about antibiotics. Why can’t I have antibiotics when I have a bad case of the flu? I’m sick, aren’t I? Why do research scientists and public health officials tell me that I should be worried about bacteria that have become resistant to antibiotics while many physicians still deny that bacterial resistance to antibiotics is a significant clinical problem? What are antibiotics, anyway? And what does antibiotic resistance mean? Does it mean that I become resistant to antibiotics or that the bacteria do? Should I worry about the use of antibiotics in agriculture or should I listen to the spokespeople for the farmers’ organizations who reassure me that all is well?

It was this ambivalence and confusion that motivated us to come out of our comfortable niche as writers of textbooks and attempt to write a book for the general public about antibiotics and resistance to them. In undertaking this challenge, we began to realize some things that surprised us. First, college students receive virtually no information about antibiotics or other antimicrobial compounds. Even medical students in most medical schools get precious little instruction until they take pharmacol-
ogy in their later years. We have a whole generation of physicians, now in their 50s, whose education in microbiology may have consisted of only two or three weeks of lectures, with antimicrobial compounds taking up only a small slice of that time period. Perhaps even more surprising, most graduate students in biology receive little or no education in the field of antibiotics and antibiotic resistance. In fact, the one thing most of them learn about antibiotics and antibiotic resistance is that these are old-fashioned topics that no one is interested in anymore.

The second thing that surprised us is the extent to which average people are interested in the topic. We had never underestimated the intelligence of people in general, once their attention has been engaged, but we had doubts about the level of their interest. That doubt changed during the period after the anthrax attacks in October 2001, when we and some of our colleagues spent hours talking to postal workers, university staff members, and undergraduates in introductory classes. They wanted to know more than the answer to the question, what options do I have? They wanted to know what bacteria are, how antibiotics work, and why government and media workers were getting one antibiotic while postal workers were getting another. These questions did not end once the anthrax panic had subsided. They had already shown up in concerns about the safety of genetically modified plants, which contain bacterial antibiotic resistance genes, or, more recently, about the consequences of the use of antibiotics in agriculture. Granted, those who were most immediately affected by the anthrax attack or by the debate over the agricultural use of antibiotics had a strong vested interest in paying attention. But the interest went beyond that. People want to know what is going on with their health and with the health of the community.

Something we relearned, because in a way we already knew it, is that a book about antibiotics and antibiotic resistance has to go beyond the scientific facts and try to deal with the social, economic, and political aspects of the topic. Scientists like us are not used to writing about such things. It’s a little like explaining to your grandmother, who has asked about condoms, how condoms give partial protection against sexually transmitted diseases. You feel a little embarrassed, not just because of the intimate nature of the topic but because you are not sure you are competent to convey all the subtleties of the topic. Scientists are not trained formally to speak about such things as social, economic, and political aspects of scientific advances. We received this training in a different milieu. In a sense, we both have earned second Ph.D.s in dealing with
these subjects in the school of hard knocks: teaching, testifying before regulatory agencies, talking to reporters, and talking to community groups. Of course we didn’t get it right every time, but we didn’t flunk either.

A different kind of challenge we faced with this book was to decide who the audience was. Every other book on antibiotics and antibiotic resistance that has stressed the scientific aspects of the topic has had scientists with advanced degrees as its audience. We wanted to reach a wider audience, but we didn’t want to exclude scientists, especially those who work in areas in which information about antibiotics might not have been part of their training.

Accordingly, we made some compromises. For example, we decided that we wanted to show the chemical structures of antibiotics because some people would be interested in seeing them. However, they tended to break up the narrative flow of the text and are somewhat off-putting to those who are not used to seeing them, so we did what all scholarly types do when faced with such a dilemma: we put them in an appendix. We also decided not to list references to scientific papers at the ends of the chapters. We put those in an appendix too. Do you begin to detect a pattern here? We are so pathetically predictable.

We also did something else that is usually not seen in books like this one. We end each chapter with some questions labeled “issues to ponder.” Normally, we are only too happy to ram our opinions down the throats of those who can’t run faster than we can. (Fortunately, our advancing age has made this less of a threat than it once was.) However, we wanted to convey the very important message that people, whether they have scientific credentials or not, should be able to have and express opinions about controversies in the areas covered in the different chapters. We realize that this device labels us as a couple of unreconstructed fusty old pedants, but it was the best thing we could come up with.

Finally, we did not want to follow the example of others who have written about this issue and forecast gloom and doom or spread blame and pain, because we want readers to enjoy this book. Admittedly, it is a book about a serious subject, but there are light as well as dark sides to the subjects it covers. There are three things we hope readers will take away from this book. First, there is plenty of hope. There is still time to avert what is constantly being portrayed as the impending disaster of a return to the preantibiotic world. Second, everyone should and can have a say in what is done about saving the antibiotics we already have and
battling antibiotic-resistant bacteria. However, to be part of the solution, you need to have information. We hope this book provides this information in a relatively painless way. Third (and this is probably a wildly unrealistic expectation), we hope that this book leaves people who have not thought much about bacteria with an appreciation for these indomitable little critters. This may sound like an odd goal, attached as it is to a book about the damage bacteria can do, but the important message we hope this book brings is that these tiny parasites are not consciously malevolent. They were here long before we appeared, and in a very real sense, they gave us the possibility of life. When they cause us problems, remember that they’re just trying to make a living. And they’re not even making minimum wage.

Abigail Salyers
Dixie Whitt
January 2005
Abscess, 30
Acinetobacter, 120
Acne, 14, 66, 75, 105
Acyclovir, 141–143, 160
Agricultural antibiotic use, 40–42, 45–48, 64
avoparcin and vancomycin resistance, 45–46, 64, 110
enrofloxacin in chickens, 84–85
for growth promotion, 45, 47–48, 75, 101–102
macrolides, 77
oxtetracycline on fruit trees, 75
prophylaxis, 46–48, 101–102
resistance gene transfer and, 101–106
streptogramins, 79
veterinary medicine, 47
Alcohols, as antiseptics/disinfectants, 131, 135
Alkaloids, 104–105
Alkylation agents, 131
Amantadine, 139–140, 160
Amikacin, 67, 70, 150
Amikin, see Amikacin
Aminoglycosides, 70–72
administration of, 72
animal use, 46
enzymes that modify, 71
mechanism of action of, 67
resistance to, 70–71
toxic effects of, 71–72
uptake by bacteria, 71
Amoxicillin, 31, 59
Amphotericin B, 143, 163
Ampicillin, 112, 150
Amprenavir, 160
Anaerobic bacteria, 77–78
Anthrax, 41–44, 75, 83–87
Antibacterial(s), 2
“Antibacterial” products, 133
Antibiogram, 169–170
Antibiotic(s)
broad-spectrum, 60
compared to disinfectants and vaccines, 2–3
definition of, 2
discovery/development of new drugs, 17, 116–129
new generations of antibiotics, 30–32
history of, 4–14, 17–25
impact on medical practice, 4–14
loss of, public confidence in health care and, 39–40
mechanism of action of cell wall synthesis inhibitors, 50–65
protein synthesis inhibitors, 66–82
misuse/overuse of, 1
selective toxicity of, 2, 19
semisynthetic, 2
stimulation of transfer of resistance genes, 107–108
structure of, 150–159
Antibiotic(s) (Continued)
synthetic, 2
testing for safety and efficacy, 22–24
Antibiotic availability, 116–129
Antibiotic prophylaxis, 3
in animals, 46–48, 101–102
Antibiotic resistance, see also
Resistance genes; specific drugs
in antibiotic-producing bacteria, 33–34
bacteria in food chain, 41
inevitability of, 26–28
measurement in clinical laboratory, 169–174
mechanisms of, 83
inactivation of drug, 28
modification of drug target, 28–29
pumping drug from cell, 28
panresistant strains, 120
press coverage of, 36–49
prevention of, 31
selection pressure for, 1, 33–34
vision of future, 38–39
Antibodies, 139
Antifungal drugs, 143–144, 163–164
Anti-HIV drugs, 140
Antimalarial drugs, 145
resistance to, 135, 145
Antimicrobial susceptibility testing, 169–174
Antiprotozoal drugs, 145–147, 165–167
Antiseptics
abuse of, 132–133
compared to antibiotics, 3
definition of, 3, 130
in human health, 130
mechanism of action of, 130–132
new uses of, 135–136
resistance to, 133–135
structures of, 167–168
vision of future, 38–39
Antitrypanosomal drugs, 147
Antituberculosis drugs, 7, 84, 89–93
resistance to, 93–95
Antiviral drugs, 137–143, 160–162
Arsenic derivatives, for syphilis, 5–6
Arsphenamine, 20
Asthma, 133
Atabrin, see Quinacrine
Augmentin, 31, 59
Autolysins, 57
Avoparcin, 45–46, 64, 110, 113, 151
Azidothymidine, see AZT
Azithromycin, 67, 76–77, 151
Azoles, 143
AZT, 23–24, 140, 160
Bacillus, 106
Bacillus anthracis, 41–44
Bacillus brevis, 18
Bacitracin, 51, 53, 152
Bacteria, evolution of, 26–28
Bacterial pathogenesis, 127–128
Bacterial pneumonia, 46
history of treatment of, 9–11
Bacterial promiscuity, 98–115
Bacterial resistance, see Antibiotic resistance
Bacterial sex, 98–115
Bacteriocins, 39
Bacteriologists, training of, 127–128
Bacteriophage, 39
Bacteroides, 74, 78, 103–106
Bactoban, see Mupirocin
Bactoprenol, 53
Bactrim, 87–89
Benzalkonium bromide, 131
Benzalkonium chloride, 167
Beta-lactam antibiotics
animal use, 46
resistance to, 57–58
structure of, 54–55
β-Lactamase, 57–58, 112
combating with modified penicillins, 58–59
extended-spectrum, 59
inhibitors of, 59, 112
periplasmic, 57
Bioterrorism, 42–44
Blood-brain barrier, 30
Broad-spectrum antibiotics, 60
Index

Cancer, 121–122
Cancer chemotherapy, 11–14, 39
Candidiasis, 143–144
Carbapenems, 54–55, 152
Catalase-peroxidase, 91
Catheter, indwelling, 135
CDC, in antibiotic discovery/development, 126
Cell membrane, disruption of, 131
Cell wall, bacterial antibiotics that inhibit construction of, 50–65
gram negative, 50–54
gram positive, 50–54
mycobacterial, 90–93
Cephalosporins, 54–55, 152
Cetrimide, 131
Chancre, 5
Chickens, enrofloxacin use in, 84–85
Chlamydia pneumoniae, 76
Chlamydia trachomatis, 38
Chloramphenicol, analog use in animals, 46
Chlorine, 131
Chloroquine, 145, 165
Chronic disease, 121–122
Cipro, see Ciprofloxacin
Ciprofloxacin, 41–44, 83–87, 152
Clarithromycin, 76, 153
Clavulanic acid, 59
Cleocin, see Clindamycin
Clindamycin, 14, 66–67, 76–78, 153
Clinical trials, 117–118, 125
Clostridium difficile, 78
Codon, 67–68
Cofatrim, 87–89
Cold sores, 140
Community-acquired infections, 124
Conjugation, bacterial, transfer of resistance genes, 99–106
Conjugative transposon, 104–107
Consumption, see Tuberculosis
Cradle cap, 143
Cryptosporidium parvum, 146
Dalfopristin, 67, 78–79, 154
Davies, Julian, 33, 105
Declomycin, see Demeclocycline
Demeclocycline, 67, 72–75, 154
Dermatophyte infections, 143
Diarrhea
protozoal, 145–147
traveler’s, 14
Diflucan, 143, 163
7,8-Dihydrofolate, 88
Disinfectants
abuse of, 132–133
compared to antibiotics, 2–3
definition of, 3, 130
in human health, 130
mechanism of action of, 130–132
new uses of, 135–136
resistance to, 113–114, 133–135
structures of, 167–168
vision of future, 38–39
Disk diffusion test, antimicrobial susceptibility testing, 171–174
DNA gyrase, 87
DNA replication, 86–87
DOTS (directly observed therapy short course), 94–95
Doxycycline, 42–44, 67, 72–75, 154
Drug combinations, 31, 59, 78, 87–90
Drug prices, 118–119
Drug resistance, see Antibiotic resistance
Drug testing, ethical issues in, 22–24
Dubos, Rene, 17–18

Economic issues, in drug discovery/development, 116–129
Efflux pump, 28, 72–73, 81, 134–135
Elongation factor G, 73–74
Enrofloxacin, 154
use in chickens, 84–85
Enterococcus, fluoroquinolone-resistant, 85
Enterococcus faecium, 79
vancomycin-resistant, 108–110
Eperezolid, 80, 155
Ergosterol, 142–144

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Tue, 11 Dec 2018 21:10:45

erm genes, 79, 107–108

Erythrocin, see Erythromycin

Erythromycin, 67, 75–77
 analog use in animals, 46
 resistance to, 77, 106, 113
 structure of, 155

Escherichia coli, 74

E-test, 174

Ethambutol, 90, 92–93, 155

Ethanol, 167

Ethics, of drug testing, 22–24

Ethylene oxide, 131

Evolution, of bacteria, 26–28

Extended-spectrum β-lactamase, 59

FDA, see Food and Drug Administration

Fire blight, 75

Fleming, Sir Alexander, 11, 19–21

Florey, Howard, 21–22

Flucytosine, 143–144, 163

Fluoroquinolones, 83–87
 agricultural use of, 46, 84–85
 development of, 86
 mechanism of action of, 86–87
 resistance to, 84–87

Fluphenicol, 46

Food
 antibiotic-resistant bacteria in, 41
 genetically modified, 111–113

Food and Drug Administration (FDA), approval of new drugs, 43, 118, 125–126

Formaldehyde, 3, 8, 131, 167

Fosfomycin, 51, 53, 155

Fruit trees, oxytetracycline use on, 75

Fungal diseases, 143–144

Gastric ulcers, 14, 76, 122

Gene sharing
 bacteria in different environments, 107–108
 by conjugation, 99–106
 transfer of resistance genes between intestinal bacteria, 98–115

by transformation, 111–113
 by transposition, 104–107

Genetically modified foods, 111–113

Genetically modified plants, antibiotic resistance genes in, 41–42

Genital herpes, 141

Gentamicin, 156

Giardia intestinalis, 145–147

Giardiasis, 145–147

Glycosomes, 147

Glycyl-glycyl tetracyclines, 74

Gram, Hans Christian, 51

Gram stain procedure, 51

Gramicidin, 18

Gram-negative bacteria, 50–54, 134

Gram-positive bacteria, 50–54, 61, 62–63, 126, 134

Griseofulvin, 143, 163

Growth promoters, antibiotic use in animals, 45, 47–48, 75, 101–102

HAART therapy, 140

Halides, as antiseptics/disinfectants, 131

Hand soap, antibacterial, 132

Health care costs, 118–119

Heart disease, 76

Heavy metals, as antiseptics/disinfectants, 131

Helicobacter pylori, 14, 122

Herpes simplex virus, anti-herpes drug, 140–143

Hexachlorophene, see Phisohex

History of antibiotics, 4–14, 17–25

HIV infection
 anti-HIV drugs, 23–24, 140
 tuberculosis and, 9, 89, 94

Horizontal gene transfer, resistance gene movement between bacteria, 98–115

Hospital administrators, 122

Hospital-acquired infections, 116, 122–123

lawsuits/legal issues and, 123

Household bleach, 3, 131, 135, 168

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Tue, 11 Dec 2018 21:10:45
Humatin, see Paromomycin
Hydrogen peroxide, 131
Hygienic practices, 123
Hypochlorous acid, 135, 168

Indinavir, 161
Infectious disease
 prevention/control of, 38–39, 116, 123
 significance in 21st century, 120
Infectious disease control specialists, 116, 123
Influenza virus, 139–140
INH, see Isoniazid
Integron, 113–114
Intercalating agents, 145
Intestinal bacteria, 44, 46, 78
 transfer of resistance genes among, 98–115
 transformation of, 111–113
 vancomycin-resistant Enterococcus, 108–110
Iodine compounds, 130–131
Isoniazid (INH), 90–92, 156
Isopropanol, 131

Kanamycin, 70, 156
Ketoconazole, 143, 164
Kinetoplast, 147
Kirby-Bauer test, 171–174
Kress, Nancy, 40

Laboratory safety, 21
Lactobacillus, 63
Lawsuits, hospital-acquired infections and, 123
Leishmaniasis, 147
Less-invasive surgery, 39
Lincosamides, 67, 76–78
Linezolid, 67, 80, 156
Lipoarabinomannan, 93
Lipopoly saccharide, 52–53, 134
Lipoteichoic acid, 52
Lung infections, 46
Lyme disease, 75

Macrolides, 75–77
 agricultural uses of, 46, 77
 for heart disease prevention, 76
 mechanism of action of, 67
 resistance to, 77
 side effects of, 76
“The Magic bullet,” 2
The Magic Mountain (Mann), 8
Malaria, 145
MBC test, 174
Medical community, attitude toward bacterial infections, 121
Medical plastic devices, 135
Mercurochrome, 3
Mercury derivatives, 3
 for syphilis, 5
Messenger RNA, 67–68, 99, 140
Methicillin-resistant Staphylococcus aureus (MRSA), 119, 123–125, 135
Metronidazole, 147, 165
Microbroth dilution minimal inhibitory concentration (MIC) test, 171–174
Microtubules, 143
Miller, Anne Sheafe, 10–11
Minimum bactericidal concentration (MBC) test, 174
Minocin, see Minocycline
Minocycline, 67, 74, 156
Misdiagnosis of infection, 29–30
MLS resistance, 79, 81
Monobactams, 54–55, 156
Monodox, see Doxycycline
MRSA, see Methicillin-resistant Staphylococcus aureus
Mupirocin, 67–68, 157
Mutation, 98
Mycobacterium tuberculosis, 6–9, 89–93
W strain, 95
Mycolic acid, 90–91

Nail infections, fungal, 143
Nalidixic acid, 86, 157
National Institutes of Health (NIH),
in antibiotic discovery/
development, 126
Nelfinavir, 161
Neomycin, 67, 70, 72, 157
Neosporin, see Neomycin
Net present value, 117, 125
Normal microbiota, see Intestinal bacteria
Nystatin, 143, 164
Obligate anaerobes, 77–78
Orphan drugs, 127
Oxazolidones, 67, 80
Oxidants, 131
Oxytetracycline, 67, 72–75, 157
on fruit trees, 75
Para-aminobenzoic acid, 19, 88
Paromomycin, 146, 165
Patent protection, 119, 127
Patient compliance, 30, 76
with anti-TB regimen, 94–95
Penicillin
allergy to, 54–55
animal use, 46
for bacterial pneumonia, 10–11
discovery of, 11, 19–22
large scale production of, 22
mechanism of action of, 51, 53, 55–57
modified to combat β-lactamase, 58–59
resistance to, 57–58
structure of, 54–55, 157
for syphilis, 5–6, 23
for wound infections, 12–13
Penicillin-binding proteins, 56–57
mutant, 60
Penicillin-resistant Streptococcus
pneumoniae, 120
Penicillium notatum, 20–22
Pentamidine, 144, 147, 166
Peptidoglycan, 50–53, 62
penicillin and, 55–57
Peptidyltransferase, 69
Periplasmic space, 52, 54, 58
Peroxide, 3, 168
Pharmaceutical companies
discovery/development of new
antibiotics, 116–129
profitability calculations, 117–119,
125
Pharmacokinetics, 30
Phenol, 131
Phisohex, 131–132, 167
Physicians
attitude toward bacterial infections, 121
prescribing practices, 1, 116
Pig manure, 107–108
Plants, genetically modified, 41–42
Plasmid, 101
Plasmodium, 145
Pneumocystis pneumonia, 144
Pneumonia
bacterial, 46
history of treatment of, 9–11
Pneumocystis, 144
Pollution, antibiotics in water supply, 41, 48–49
Polyenes, 143–144
Porins, 54, 58, 134
Postsurgical infections, see Surgical wound infections
Preantibiotic era, 4–14
danger of returning to, 37
Prescribing practices, 1, 116
Press coverage, of antibiotic-resistant bacteria, 36–49
Primaquine, 145, 166
Primsol, 87–89
Probiotics, 62–63
Profitability of drugs, 117–119, 125
Promoter, 99
Prontosil, 18–19
Prophylaxis, see Antibiotic prophylaxis
Protease inhibitors, 140, 160–162
resistance to, 140
Protein denaturation, 131
Protein synthesis
 antibiotics that inhibit, 66–82
 mechanics of, 66–68
Protozoal diarrhea, 145–147
Protozoal disease, 145–147
Pseudomembranous colitis, 78
Pseudomonas aeruginosa, panresistant strains of, 120
Public confidence, in health care system, 39–40
Pyrazinamide, 90, 92, 157
PZase, 92

Quaternary ammonium compounds (QAC), 130–131, 167
resistance to, 114, 134
Quinacrine, 145, 166
Quinupristin, 67, 78–79, 158

Resistance genes
 agricultural antibiotic use and, 101–106
 gene sharing between intestinal bacteria, 98–115
 genetically linked, 113
 in genetically modified plants, 41–42, 111–113
 origin of resistance genes, 32–34
 germ warfare hypothesis, 32–33
 signaling hypothesis, 33, 105
 transfer by conjugation, 99–106
Reverse transcriptase, 140
Ribosomal proteins, 70–71
Ribosomal RNA, 77, 79
Ribosome
 antibiotics that bind to, 66–82, 146
 in protein synthesis, 67–68
 structure of, 68
Ribosome protection-type tetracycline resistance, 73–74
Rifampin, 93, 158
Rifamycins, 93
Ritonavir, 162
RNA polymerase, 93
Rosacea, 14, 75, 105

Salmonella enterica serovar
 Typhimurium, 84–85
Sanitaria for tuberculosis patients, 7–8
Saquinavir, 162
Second generation antibiotics, 31
Selection pressure, for antibiotic resistance, 1, 33–34
Selective toxicity, 2, 19
Semisynthetic antibiotics, 2
Septra, 87–89
Sex, bacterial, 98–115
Sex pilus, 99, 101
Sexually transmitted disease, 76–77, 141
Signaling molecules, 33, 105
Silver, colloidal, 131, 134
Skin infections, fungal, 143
Sleeping sickness, 144, 147
Soil microbes, antibacterial activities of, 17–18, 33, 104
Staphylococcus, 79, 106
Staphylococcus aureus, 11–12, 19–21, 62, 68
 methicillin-resistant, 119, 123–125, 135
 vancomycin-resistant, 62, 79, 108–110, 119, 125
Staphylococcus epidermidis, 79
Stewart, William, 121
Streptococcus, 79, 106
Streptococcus pneumoniae, 9–11, 17, 63, 119
 penicillin-resistant, 120
Streptococcus pyogenes, 12, 38
Streptogramins, 67, 76–79
 in agriculture, 79
Streptomyces pristinaaspiralis, 79
Streptomycin, 67, 70–72, 89–91, 158
Sulfa drugs
 discovery of, 18–19
 mechanism of action of, 19
Sulfanilamide, 19, 88, 158
Sulfonamides
 animal use, 46
 resistance to, 88–89
 with trimethoprim, 87–89, 144
Suramin, 147, 167
Surgery, less-invasive, 39
Synercid, 46, 63, 67, 78–79
Synthetic antibiotics, 2
Syphilis
 history of treatment of, 4–6
 Tuskegee study, 22–24

TB, see Tuberculosis
Teicoplanin, 60
Terramycin, see Oxytetracycline
\textit{tet}Q gene, 103–105
Tetracyclines, 14, 41, 66, 72–75, 159
 animal use, 46
 enzymes that inactivate, 74
 glycyl-glycyl, 74
 mechanism of action of, 67
 resistance to, 72–75, 103–105, 113
 side effects of, 75
Tetrahydrofolic acid, 88
Thimerosal, 131
Third-generation antibiotics, 31
Thrush, 143
Thymidine kinase, 141–142
Thymidylate synthase, 144
Tolnaftate, 143, 164
Topoisomerase IV, 87
Transfer RNA, 67–69, 72
Transformation, 111–113
Translation, antibiotics that inhibit, 66–82
Transposon, conjugative, 104–107
Traveler’s diarrhea, 14
Treatment failures, 29–30
 misdiagnosis of infection, 29–30
 patient noncompliance and, 30
 pharmacokinetics and, 30
\textit{Treponema pallidum}, 4–6, 38
Triclosan, 3, 133–135, 168
Trimethoprim, 87–89, 144, 159
Triparental matings, 101
tRNA synthetase, 67–68
\textit{Trypanosoma}, 147

Tuberculosis (TB), see also
 Antituberculosis drugs
 DOTS, 94–95
 HIV infection and, 9, 89, 94
 history of treatment of, 6–9
 patient compliance with drug regimen, 30
 reactivation TB, 95
 Tuskegee study, 22–24
Tylosin, 46, 77, 159

Ulcers, gastric, 14, 76, 122
Urinary tract infections, 29–30

Vaccines, 2–3, 39, 138–139
Vampire theory, of tuberculosis, 8–9
Vancomycin, 125–126
 analog use in animals, 45–46, 110
 mechanism of action of, 51, 53, 61–64
 rediscovery of, 60–61
 resistance to, 61–64, 79, 108–110
 structure of, 159
Vancomycin-resistant \textit{Enterococcus faecium}, 108–110
Veterinary medicine, 46–47
Vibramycin, see Doxycycline
Viral diseases, 1, 137–143
Virginiamycin, 79–81
Virus, life cycle of, 138–139

Water supply, antibiotics in, 41, 48–49
Waxman, Selman, 70
“Wild card exclusivity,” 127
World War II, 12–13
Wound infections, 11–14, 19–20, 39, 108

Zephriran, 131
Zithromax, see Azithromycin
Zyvox, see Linezolid