MICROBIAL BIOFILMS
MICROBIAL BIOFILMS

Edited by

Mahmoud Ghannoum
Center for Medical Mycology and
Department of Dermatology
Case Western Reserve University School of Medicine
University Hospitals of Cleveland
Cleveland, Ohio

and

George A. O’Toole
Department of Microbiology and Immunology
Dartmouth Medical School
Hanover, New Hampshire
CONTENTS

Contributors ix
Preface xiii

Introduction to Biofilms: Conceptual Themes
George A. O’Toole and Mahmoud Ghannoum
1

1. A Short History of the Development of the Biofilm Concept
J. William Costerton
4

2. Multicellularity and Biofilms
Steven S. Branda and Roberto Kolter
20

3. Fungal Biofilms
Jyotsna Chandra and Mahmoud A. Ghannoum
30

4. Molecular Basis of Biofilm Development by Pseudomonads
Christine M. Toutain, Nicky C. Caiazza, and George A. O’Toole
43

5. Biofilm Development in Staphylococcus
Sarah E. Cramton and Friedrich Götz
64

6. Human Oral Bacterial Biofilms
Paul E. Kolenbrander and Robert J. Palmer, Jr.
85

7. Quorum Sensing in Biofilms: Gossip in Slime City
Morten Hentzer, Michael Givskov, and Leo Eberl
118
8. Bacterial Biofilms on Plants: Relevance and Phenotypic Aspects
 Guido V. Bloemberg and Ben J. J. Lugtenberg
 141

9. Biofilm Structure, Behavior, and Hydrodynamics
 L. B. Purevdorj-Gage and P. Stoodley
 160

10. A Sticky Business: the Extracellular Polymeric Substance Matrix of Bacterial Biofilms
 Melissa Starkey, Kimberly A. Gray, Sung Il Chang, and Matthew R. Parsek
 174

11. Genetic Exchange in Biofilms
 Dennis G. Cvitkovitch
 192

12. Microbial Interactions in Mixed-Species Biofilms
 Søren Molin, Tim Tolker-Nielsen, and Susse Kirkelund Hansen
 206

13. Modeling Biofilms
 Daniel R. Noguera, Gonzalo E. Pizarro, and John M. Regan
 222

14. Biofilm Antimicrobial Resistance
 Philip S. Stewart, Pranab K. Mukherjee, and Mahmoud A. Ghannoum
 250

15. Biofilms and Implant Infections
 John G. Thomas, Gordon Ramage, and Jose L. Lopez-Ribot
 269

16. Biofilms and Hospital-Acquired Infections
 Richard Ebrey, M. Shea Hamilton, Gillian Cairns, and Hilary M. Lappin-Scott
 294

17. Biofilms as Reservoirs for Disease
 John R. Flanders and Fitnat H. Yildiz
 314

18. Role for Biofilms in Infectious Disease
 Garth D. Ehrlich, Fen Z. Hu, and J. Christopher Post
 332

19. Biofilms in the Water Industry
 Bruce E. Rittmann
 359
20. Methods of Studying Biofilms
Robert J. C. McLean, Christa L. Bates, Mary B. Barnes, Christopher L. McGowin, and Gary M. Aron
379

21. Concluding Remarks and Future Directions
Roberto Kolter
414
CONTRIBUTORS

Gary M. Aron
Department of Biology, Texas State University—San Marcos, San Marcos, TX 78666

Mary B. Barnes
Department of Biology, Texas State University—San Marcos, San Marcos, TX 78666

Christa L. Bates
Department of Biology, Texas State University—San Marcos, San Marcos, TX 78666

Guido V. Bloemberg
Institute of Biology, Leiden University, 2333 AL Leiden, The Netherlands

Steven S. Branda
Department of Microbiology and Molecular Genetics, Harvard Medical School,
Boston, MA 02115

Nicky C. Caiazza
Department of Microbiology and Immunology, Dartmouth Medical School,
Hanover, NH 03755

Gillian Cairns
Hatherly Laboratories, Department of Biological Sciences, University of Exeter,
Exeter EX4 4PS, United Kingdom

Jyotsna Chandra
Center for Medical Mycology, Department of Dermatology, University Hospitals of
Cleveland and Case Western Reserve University, Cleveland, OH 44106-5028

Sung Il Chang
Department of Civil and Environmental Engineering, Northwestern University,
Evanston, IL 60208

J. William Costerton
Center for Biofilm Engineering, Montana State University—Bozeman,
Bozeman, MT 59717-3980
CONTRIBUTORS

Sarah E. Cramton
Mikrobielle Genetik, Auf der Morgenstelle 28, D-72076 Tubingen, Germany

Dennis G. Cvitkovitch
Dental Research Institute and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1G6, Canada

Leo Eberl
Department of Microbiology, Institute of Plant Biology, University of Zürich, Zürich, Switzerland

Richard Ebrey
Hatherly Laboratories, Department of Biological Sciences, University of Exeter, Exeter EX4 4PS, United Kingdom

Garth D. Ehrlich
Center for Genomic Sciences, Allegheny Singer Research Institute, Pittsburgh, PA 15212

John R. Flanders
Department of Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064

Mahmoud Ghannoum
Center for Medical Mycology and Department of Dermatology, Case Western Reserve University School of Medicine, University Hospitals of Cleveland, Cleveland, Ohio 44106

Michael Givskov
Center for Biomedical Microbiology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark

Friedrich Götz
Mikrobielle Genetik, Auf der Morgenstelle 28, D-72076 Tubingen, Germany

Kimberly A. Gray
Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208

M. Shea Hamilton
Hatherly Laboratories, Department of Biological Sciences, University of Exeter, Exeter EX4 4PS, United Kingdom

Susse Kirkelund Hansen
Molecular Microbial Ecology Group, BioCentrum-DTU, Building 301, Technical University of Denmark, 2800 Lyngby, Denmark

Morten Hentzer
Center for Biomedical Microbiology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark

Fen Z. Hu
Center for Genomic Sciences, Allegheny Singer Research Institute, Pittsburgh, PA 15212

Paul E. Kolenbrander
Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
CONTRIBUTORS

Roberto Kolter
Department of Microbiology and Molecular Genetics, Harvard Medical School,
Boston, MA 02115

Hilary M. Lappin-Scott
Hatherly Laboratories, Department of Biological Sciences, University of Exeter,
Exeter EX4 4PS, United Kingdom

Jose L. Lopez-Ribot
Department of Medicine, Division of Infectious Diseases, The University of Texas Health
Science Center at San Antonio, San Antonio, TX 78245

Ben J. J. Lugtenberg
Institute of Biology, Leiden University, 2333AL Leiden, The Netherlands

Christopher L. McGowin
Department of Biology, Texas State University—San Marcos, San Marcos, TX 78666

Robert J. C. McLean
Department of Biology, Texas State University—San Marcos, San Marcos, TX 78666

Søren Molin
Molecular Microbial Ecology Group, BioCentrum-DTU, Technical University of
Denmark, 2800 Lyngby, Denmark

Pranab K. Mukherjee
Center for Medical Mycology and Department of Dermatology, Case Western
Reserve University School of Medicine, University Hospitals of Cleveland,
Cleveland, Ohio 44106

Daniel R. Noguera
Department of Civil and Environmental Engineering, University of Wisconsin—Madison,
Madison, WI 53706

George O’Toole
Department of Microbiology and Immunology, Dartmouth Medical School,
Hanover, NH 03755

Robert J. Palmer, Jr.
Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial
Research, National Institutes of Health, Department of Health and Human Services,
Bethesda, MD 20892

Matthew R. Parsek
Department of Microbiology, University of Iowa, Iowa City, IA 52246

Gonzalo E. Pizarro
Department of Hydraulics and Environmental Engineering, Pontificia Universidad
Católica de Chile, Santiago, Chile

J. Christopher Post
Center for Genomic Sciences, Allegheny Singer Research Institute, Pittsburgh, PA 15212

L. B. Purevdorj-Gage
Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
CONTRIBUTORS

Gordon Ramage
Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland

John M. Regan
Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802

Bruce E. Rittman
Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208-3109

Melissa Starkey
Department of Microbiology, University of Iowa, Iowa City, IA 52246

Philip S. Stewart
Center for Biofilm Engineering, Montana State University—Bozeman, Bozeman, MT 59717-3980

P. Stoodley
Center for Genomic Sciences, Allegheny-Singer Research Center, Pittsburgh, PA

John G. Thomas
Department of Pathology, West Virginia University School of Medicine, Morgantown, WV 26508-9203

Tim Tolker-Nielsen
Molecular Microbial Ecology Group, BioCentrum-DTU, Technical University of Denmark, 2800 Lyngby, Denmark

Christine M. Toutain
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755

Fitnat H. Yildiz
Department of Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064
The study of biofilm biology has exploded in the past 5 years. However, there is no single source that covers the basic information underlying the research in this field. *Microbial Biofilms* was written to do just that; the book covers broad topics in biofilm biology, including development, antibiotic resistance, architecture, and the role of these communities in disease and industry. Biofilms are an important and growing area of research, and *Microbial Biofilms* was written to be a single text serving as an introduction to this field. Its scope includes both bacteria and fungi, so it will be of general appeal to microbial biologists. This volume would also serve as an excellent primer to the field for nonexperts interested in learning about biofilms, as a possible textbook for courses on biofilm biology, or as a helpful source for graduate students writing qualifying exams in this area.

This is the first book to comprehensively cover a broad variety of aspects of microbial biofilms. It is written at a time when the field is rapidly expanding, and it will serve as an excellent historical marker and snapshot of the start of a new and important field of microbial research. We have also included a historical perspective of the field written by Dr. William Costerton, one of the pioneers in this field, and a chapter on future perspectives of biofilm research has been contributed by Roberto Kolter, one of the key players who kicked off the molecular genetic revolution in biofilm research. *Microbial Biofilms* thus combines cutting edge research with a historical perspective of the field.

We thank all the authors who contributed their time, effort, and expertise to this project.

MAHMOUD GHANNOUM
GEORGE O’TOOLE

November 2003
INTRODUCTION TO BIOFILMS: CONCEPTUAL THEMES

George A. O’Toole and Mahmoud Ghannoum

It is a wonderful time to work on microbial biofilms. There has been an explosion of studies examining the molecular genetic basis of biofilm formation by bacteria and fungi. The wealth of recent genetic, biochemical, and microscopic data makes this an ideal time to step back and reflect on themes in this rapidly growing field. One of the prime motivations for this book is to summarize where we stand today (the fall of 2003) in terms of our understanding of the molecular genetic basis of microbial biofilm development and biofilm-associated properties. This book is by no means an all-inclusive work—to make it so would require reviewing a literature going back at least 70 years or more (Henrici, 1933). Many scientists have contributed to laying the foundation for the work presented in this volume, and to these pioneers we are grateful.

The earliest studies of biofilms were observations of environmental microbes adhering to a wide range of surfaces. These surfaces included everything from river rocks to medical devices to hulls of ships (reviewed in Costerton et al., 1987, 1995). Microbial ecologists and engineers used a variety of approaches to examine adhered bacteria and model their behavior. The physical properties of the surfaces to which bacteria adhere, including roughness, hydrophobicity and hydrophilicity, and conditioning films, were an early important focus of study in the field, and they defined the experimental approaches utilized. As electron microscopic techniques advanced and were applied, a picture of microbial biofilms and their structure began to emerge. The field was revolutionized by the application of confocal scanning laser microscopy, coupled with fluorescent markers, which allowed visualization of the live, hydrated biofilm (Lawrence et al., 1991). The confocal scanning laser microscopy studies gave us the first three-dimensional view of an undisturbed biofilm, and this methodology remains key to this day.

Despite the advances in understanding the formation and properties of biofilms, a very simple question still plagues the field: What is a biofilm? Biofilms can be broadly defined as communities of microbes associated with a surface, typically encased in an extracellular

George A. O’Toole Department of Microbiology and Immunology, Room 202, Vail Building, Dartmouth Medical School, Hanover, New Hampshire 03755. Mahmoud A. Ghannoum Center for Medical Mycology and Mycology Reference Laboratory, University Hospitals of Cleveland, Department of Dermatology, Case Western Reserve University, 11100 Euclid Avenue, LKS 5028, Cleveland, Ohio 44106.

Microbial Biofilms, Edited by M. Ghannoum and G. A. O’Toole
©2004 ASM Press, Washington, D.C.
matrix (Costerton et al., 1987, 1994). This definition has been expanded to include surfaces as far ranging as steel pipes, soils, medical implants, and epithelial cells. A definition that once generally applied to a solid-liquid interface has grown to include air-water interfaces, or no obvious interface at all, as in bacterial aggregates in suspension. At this point, however, it is not clear to what extent biofilms at these different interfaces share metabolic or physiological traits. For example, is a macro-colony of *Pseudomonas aeruginosa* on a glass slide substantially similar to or different from a colony of this same organism attached to an epithelial cell or residing in a mucus plug in the lung of a patient with cystic fibrosis? Currently, there is no answer to such a question. The definition of a biofilm can be based on a set of descriptive properties (structure, presence of a matrix, etc.) or be functionally defined (the ability to form a ring in a microtiter plate or display increased antimicrobial resistance). Even for a given organism in a defined model system, such as *P. aeruginosa* growing in a flow cell, recent studies have shown that flow rate of the medium or the carbon source provided can drastically alter the structure and function of these communities (Stoodley et al., 1999, 2001; Klausen et al., 2003), and genetic studies indicate that some organisms may have multiple genetic pathways that are utilized to form a biofilm (O’Toole and Kolter, 1998). The properties of the surface to which these organisms adhere can profoundly impact the structure and composition of the community, as in *Candida albicans* biofilms (Chandra et al., 2001). Throughout this book, different definitions will be presented to define a biofilm, but as of today there is no “right” answer to this question, and we are not sure there ever will (or should) be. Despite the difficulties in defining a biofilm, and the diversity of pathways utilized to make a biofilm documented for bacteria and fungi, the past decade has revealed common phenotypes (developmental stages, antibiotic and biocide resistance, etc.) conserved among biofilms formed by organisms spanning the three domains of life (Davey and O’Toole, 2000; O’Toole et al., 2000; Chandra et al., 2001; Reysenbach and Shock, 2002; Mukherjee et al., 2003). Thus, examination of the commonalities among very different biofilms will likely teach us much.

The roots of biofilm research are firmly anchored in the realm of addressing and trying to overcome practical problems, that is, of understanding which bacteria adhere to what surfaces, why these bacteria adhere, and how they resist elimination by treatment with a variety of antimicrobial agents. This theme of practicality continues today—we are simply using a new set of tools to address these questions. A common thread holding together much of the work contained in this volume is the melding of basic and applied research. Questions that began as practical problems became the subject of basic studies in hopes of better understanding the observed phenomena. Current work in the field strives to understand community physiology, metabolism and ecology, structure/function relationships, the role of genetic exchange, and mechanisms of biofilm development and resistance. The results of this ongoing basic research will no doubt serve as the foundation for the next push to develop strategies to eliminate, modulate, and stimulate biofilm development.

The oral microbes served as one of the first well-defined and well-studied biofilm model systems that were subjected to molecular analysis. This model system nicely exemplifies how the study of biofilms (such as dental plaque) can translate into research with applications in human health. From studies by Kolenbrander, Palmer, and many others emerged the idea that microbes in biofilms are able to physically interact and to do so in very specific ways (Kolenbrander et al., 2002). Later work by several groups studying quorum-sensing systems provided evidence that microbes in a biofilm communicate with extracellular molecules and may behave as a coordinated group (Parsek and Greenberg, 2000; Kolenbrander et al., 2002). These themes of cell-to-cell contact and communication are still the
core of a great deal of work [and controversy (Kjelleberg and Molin, 2002)] presented in the following chapters.

We hope this book will serve as a mile marker for a field that still is quite new in terms of applying molecular genetic approaches. Many avenues remain ripe for exploration. The ideas represented in the chapters of this book are ones that currently serve to drive the field forward. However, we do hope we are around to do this again in 15 to 20 years and to look back to see what we’ve learned and reflect on how far we have come in our understanding of biofilms.

REFERENCES

INDEX

Accessory gene regulator (agr), 74–75
Accumulation-associated protein (AAP),
Staphylococcus, 72–73
Accumulation factors, in Staphylococcus biofilms,
69–73
accumulation-associated protein (AAP), 72–73
biofilm-associated protein (Bap), 73
intercellular adhesion locus (ica), 71–72
polysaccharide intracellular adhesion (PIA), 69–70,
76
PS/A, 70–71
slime-associated antigen, 69
teichoic acids, 73
Actinobacteria, 279–280
in mixed-species biofilms, 211–217
transformation, 194, 198–199
Actinobacillus, 89, 95, 97, 105, 107, 167
Actinomyces, 87–88, 91–92, 98, 100
Aeromonas
biofilm-forming capacity, 317
characteristics of organism, 316
environmental prevalence, 316–317
quorum sensing, 123
Aggregation, 86–89
Agrobacterium tumefaciens, conjugation in, 199
AHLs (acyl homoserine lactones), 143, 146–150
Alginate biosynthesis, 177–178, 186
Animal models, for biofilm study, 389–390
Antibiotic coating, of medical devices, 288, 302–303
Antimicrobial locks, 287–288
Antimicrobial resistance, 250–265, 336–339
antimicrobial agents shown to exhibit reduced efficacy in biofilms, 252
EPS and, 184–185
factors influencing susceptibility, 254–257
fungal biofilms, 282–283
antifungal susceptibilities, 253–254, 255
drug efflux pumps, role of, 258–259
extracellular matrix, role of, 257–258
sterol composition, role of, 259–260
microorganisms shown to exhibit resistance in biofilms, 251
protective mechanisms, 260–265
altered microenvironmental and slow growth,
262–263
antimicrobial depletion, 260–261
multicellular nature of, 264–265
persisters, 263–264
slow penetration of antimicrobial agents,
261–262
stress responses, 263
Staphylococcus, 77–78
Antimicrobials
for indwelling medical devices, 286–288
antimicrobial bonded catheters, 288
systemic therapy, 287–288
techniques for testing, 390–391
Attachment factors
EPS, 181–182
Pseudomonas aeruginosa
chaperone/usher system, 51
chemical nature of surface, 48–49
environment properties, 47–48
reversible to irreversible attachment, 49–50
Staphylococcus, 66–69
autolysin, 67–68
capsular polysaccharide adhesion, 67
MSCRAMMs (microbial surface components recognizing adhesive matrix molecules),
68–69
staphylococcal surface proteins (SSPs), 67
teichoic acids, 68

417
Attenuated total internal reflectance spectroscopy (ATIR), 401–402
Autolysin, Staphylococcus, 67–68
Azorobacter, 177, 178, 180

Bacillus cereus, biocontrol by, 146
Bacillus subtilis
conjugation, 201
multicellular behaviors, 24, 26
transformation, 194–195
Bacteremia, hospital-acquired, 298
Bacterial plurality, 335
Bacteriophages, 201–203
Batch culture growth techniques, 396–398
Bifidobacterium, 100
Biofertilizers, 141–142
Biofilm-associated protein (Bap), Staphylococcus, 73
Biofilm Disk Reactor System, 285
Biofilms
architecture, 272–273
characteristics, 270, 273
definition of, 1–2
introduction to, 1–3
Bioreactors, rotating-disk, 397–398
BODC (biodegradable dissolved organic carbon), 359, 366, 369, 376
Bottle effect, 6
Breast prostheses, 340
Burkholderia, 25, 48, 123, 209, 352

Calgary Biofilm Device, 285, 390, 391
Campylobacter, 95, 97, 99, 321–322
Candida albicans, 30–40, 276, 278, 280, 283, 340, 350
Candida biofilms, 30–40
antimicrobial resistance, 282–283
antifungals susceptibilities, 253–254, 255
drug efflux pumps, role of, 258–259
extracellular matrix, role of, 257–258
sterol composition, role of, 259–260
central venous catheters, 277, 301
clinical relevance of, 30–32
catheter-associated, 30–31
denture stomatitis, 31
voice prostheses, 31–32, 350
correlation with pathogenicity, 39
dentures, 279
endophthalmitis, 347
endotracheal tubes, 279–280
intracardiac prosthetic devices, 278
intratracheal devices, 276
mixed with bacteria, 39–40
neurosurgical shunts, 279
peritoneal dialysis catheters, 278
prosthetic joints, 278
schematic representation of development, 35
urinary catheters, 276
visualization of, 38–39
in vitro studies on formation of, 32–38
optimal growing conditions, 34–38
substrate influence on, 32–34
voice prostheses, 280
Candida dubliniensis, 39
Candida glabrata, 31, 39, 276, 278
Candida krusei, 39
Candida parapsilosis, 39, 278
Candida pseudotropicalis, 39
Candida tropicalis, 31, 350
Case mix index, 271
Catabolic repression control (Crc) protein, 52
Catheters. See also Indwelling medical devices
antimicrobial bonded, 288
central venous catheter (CVC), 31, 276–278, 299–301, 341–342, 346
peritoneal dialysis catheters, 278, 347
urinary, 9–10, 275–276, 295, 301, 352–354
vascular, 341–342
Cellular automata, approach to modeling biofilms, 232–247
CA rules, 234–239
components, 233–234
time, examples, 239–247
flowchart of algorithm, 241
functionally and structurally heterogeneous biofilm, 244–247
functionally homogeneous, structurally heterogeneous biofilm, 239–244
microbial decay and detachment, 237
microbial distribution within the biofilm, 237–239
microbial growth, 237
parameter calculation, 240
substrate diffusion, 234–236
substrate utilization, 236–237
Central venous catheter (CVC), 31, 276–278, 299–301, 341–342, 346
Chronic obstructive pulmonary disease (COPD), 352
Coaggregation mediators, oral bacteria, 86–89
Colonization, initial in Pseudomonas aeruginosa, 44–47
flagellum-dependent swimming motility, 45–47
nature of environment, 44–45
phosphate, role of, 45
Commensal interactions, 209–218
Competition, 194–199
Competition in biofilms, 211–218
Complexity, in biofilms, 16–17
COMSTAT, 169
Confocal scanning laser microscopy (CSLM)
Candida biofilms, 38–39
flow cells, 401
introduction into biofilm research, 12
mixed-species biofilms, 207, 208
overview of methods, 400–401
rhizosphere biofilms, 142
Conjugation, 199–201
Continuous ambulatory peritoneal dialysis (CAPD), 347
Continuous culture techniques, 398
CupA (chaperone/usher protein), 51
Cyanobacteria, multicellular behaviors, 23
Cystic fibrosis, 10–12, 186, 294, 295, 305, 352

Definition, of biofilm, 1–2
Delisea pulchra, 134–135
Dentures, 31, 279
Dermal infections, 342
Detachment and dispersal mechanisms, 56–58, 166–167
Device-related infections, 299–302. See also Catheters; Indwelling medical devices
antibiotic coating of devices, 302–303 central venous catheters (CVC), 299–301
history of research, 9–10 orthopedic devices, 302 prosthetic heart valves, 295, 301–302 study methods of device colonization, 390–391
urinary catheters, 295, 301
Disinfectants, techniques for testing, 390
Distributed-genome hypothesis, 335–336
Drinking water distribution pipes, biofilms on, 374–376 as pathogen source, 314
Drug efflux pumps, role in antimicrobial resistance in fungal biofilms, 258–259

Eikenella corrodens, 97
Electron acceptors, anoxic reduction of, 370–372
Electron donors, aerobic treatment of inorganic, 369–370
Electron microscopy. See specific methods
Endocarditis, 340–341 native valve, 341
prosthetic valve, 341
Endophthalmitis, 347–348
Endoscopy, 344
Endotracheal tubes, 279–280, 349–350
Enterobacter agglomerans, 203
Enterococcus
conjugation in, 199–200, 201 hospital-acquired infections, 297–298, 304
Environmental scanning electron microscopy (ESEM), 400
EPS. See Extracellular polymeric substances
Erwinia amylovora, 185–186
Erwinia carotovora, 141, 148–149
Erwinia crysanthemi, 180
Escherichia coli
continuous culture techniques, 398–399 horizontal gene transfer, 193, 199–200, 202–203
scours, 5, 8, 9
Eubacterium, 98, 99
Evolution in biofilms, 214–218
Exopolysaccharides, 175–178
Experiments. See Studying biofilms
Extracellular matrix (ECM), 257–258
Extracellular polymeric substances (EPS), 174–187, 361, 364, 379
chemistry, 164

Fibronectin, 36
Fick’s laws, 223
Fimbriae, 90
FISH (fluorescence in situ hybridization), 207
Flagellum-dependent swimming motility, 45–47
Flow cells, 207–209, 401
Flowing conditions, community establishment in, 89–92
Food-borne diseases, biofilms as reservoirs for, 321–324
Campylobacter, 321–322
Listeria monocytogenes, 322–323
Salmonella, 323–324
Fourier transform infrared spectroscopy (FTIR), 401–402
Functional genomics, 124–128
Fungi. See also Candida biofilms
bacterium-fungus interactions in the rhizosphere, 149–150
biofilms, 30–40, 339–340
Furanone inhibitors, 135–136
Fusobacterium nucleatum, 89, 97, 106, 306, 307

GacAS two-component regulatory system, 53
Gallstones, 306, 343
Gastrointestinal infections, 342–345
Gene expression in biofilms, 15–16
Genetic exchange, 192–203
conjugation, 199–201 horizontal gene transfer, overview of, 194 transduction, 201–203 transformation, 194–199
Genomics, 124–133
Gynecologic infections, 345

Haemophilus aphrophilus, 104
Haemophilus influenzae endotracheal tube biofilm, 279
genome plasticity, 336
otitis media, 350–351
respiratory infections, 351–352
transformation, 198, 336
Heart valves, prosthetic
endocarditis, 340–341
hospital-acquired infections, 295, 301–302
Helicobacter pylori, 324, 343
Hemodialysis, 346–347
Heterocyst, 23
Heterogeneous biofilms, modeling of, 230–232
functionally and structurally heterogeneous biofilm, 244–247
functionally homogeneous, structurally heterogeneous biofilm, 239–244
History, of biofilm concept, 4–17, 162
aquatic ecosystems, nutrient-deprived, 6–9
bottle effect, 6
bovine rumen ecosystem, 4–5
complexity of organization in biofilms, 16–17
device-related biofilms, 9–10
infections, 9–12
modern era, 12–16
biofilm phenotype, 15–16
metabolic heterogeneity, 13–14
physical properties, 12–13
signal control of biofilms, 14–15
structural heterogeneity, 12
universality of biofilms, 6–8
Homeostasis, 161
Homogeneous biofilms, modeling of, 223–228
characteristic reaction times, 226–228
functionally heterogeneous, structurally homogeneous biofilm, 228–230
pseudoanalytical solution of steady-state, 228
schematic representation of, 225
Horizontal gene transfer, 192–203
conjugation, 199–201
overview of, 194
transduction, 201–203
transformation, 194–199
Hospital-acquired infections, 294–308
device-related infections, 299–302
antibiotic coating of devices, 302–303
central venous catheters (CVC), 299–301
orthopedic devices, 302
prosthetic heart valves, 295, 301–302
urinary catheters, 295, 301
diagnosis of infection, 302–303
factors affecting biofilm formation, 304–308
host response, 305–306
nutrients, 304–305
pH, 306
surface chemistry and conditioning, 306–308
organisms, 296–298
enterococci, 297–298
staphylococci, 296–297
pathogenesis of attachment, 303–304
sites of infection, 298–299
bacteremia, 298
pneumonia, 299
surgical wound infections, 299
UTI, 298–299
Host response, effect on biofilm formation, 305–306
Hydraulic retention time (HRT), 362
Hydrodynamics, 162–165
Hyphomonas, 181–182
IBET (in biofilm expression technology), 54
Imaging, 400–402. See also specific imaging methods
electron microscopy, 400
infrared spectroscopy, 401–402
quantification of biofilm structure, 168–169
COMSTAT, 169
ISA (image structural analysis), 168
SCLM, 400–401
techniques, table of, 395
Implantable cardiofibrillators (ICDs), 270
Indwelling medical devices, 269–288. See also
Catheters; Device-related infections
biofilm architecture, 272–273
challenges, 269
clinical chemistry and, 272
cost associated with, 285–286
devices
central venous catheters, 276–278
dentures, 279
endotracheal tubes, 279–280
intracardiac prosthetic devices, 278
intrauterine devices, 276
neurosurgical shunts, 278–279
peritoneal dialysis catheters, 278
prosthetic joints, 278
urinary catheters, 275–276
voice prostheses, 280
diversity of, 271
increase use, 270–271
infection statistics, 274
laboratory detection
history, 281–283
laboratory assessment, 283
in site assessment, 283–284
management and control of infection, 286–288
antimicrobial bonded catheters, 288
systemic antibiotic treatment, 287–288
organisms commonly forming biofilms, 275
susceptibility testing, 284–285
Infections, 332–355
antibiotic resistance, 336–339
breast prostheses, 340
chronic, 333–336
dermatology, 342
device-related, 9–10, 295, 299–302
endocarditis, 340–341
fungal and mixed-kingdom biofilms, 339–340
gastroenterology, 342–345
gynecology, 345
hospital-acquired, 294–308
medical and human cost of treating biofilms, 334
nephrology, 345–347
hemodialysis, 346–347
peritoneal dialysis catheters, 347
neurosurgery, 345
ophthalmology, 347–348
orthopedics, 348–349
otorhinolaryngology, 349–351
endotracheal tubes, 349–350
otitis media, 350–351
voice prosthesis, 339, 350
phenotypic characteristics of biofilms, 336–339
probiotics, 339
pulmonary and respiratory, 351–352
chronic obstructive pulmonary disease (COPD), 352
cystic fibrosis, 10–12, 294, 295, 305, 352
theoretical modeling, 334–336
bacterial plurality, 335
distributed-genome hypothesis, 335–336
urinary
animal models, 389–390
catheter-associated, 9–10, 295, 301, 353–354
hospital-acquired, 298–299
prostheses, 354–355
vascular catheters, 341–342
Infrared spectroscopy, 401–402
Intercellular adhesion locus (ica), Staphylococcus, 71–74
Intracardiac prosthetic devices, 278
Intrauterine devices, 276
In vitro models, for biofilm study, 390
In vivo models, for biofilm study, 388–389
ISA (image structural analysis), 168

Joints, prostheses for, 278, 348–349

Klebsiella, 261, 279–280

Laboratory techniques, for studying biofilms, 393–400
batch culture growth techniques, 396–398
continuous culture techniques, 398
maximizing biofilm formation, 398–400
microtiter assay, 396–397
planktonic cell culture techniques, adaptations of, 396
rotating-disk bioreactors, 397–398

table of common, 394
Lactobacillus, 100, 339, 345, 350
lap (large adhesive protein), 50
Lectins, 179
Legionella pneumophila, 324–325
biofilm-forming capacity, 318–319
characteristics of organism, 317
environmental prevalence, 318

Listeria monocytogenes
biofilm-forming capacity, 323
characteristics of organism, 322
environmental prevalence, 322

transduction, 203
London–van der Waals interactions, 181
Lyases, 179–180

Maki technique, 283
Mathematical description of biofilms. See Modeling
biofilms
Mating. See Conjugation
Medical devices. See Device-related infections; Indwelling medical devices
Medically important biofilms, studying, 387–391
animal models, 389–390
case studies, 389
device colonization, 390–391
techniques, table of, 387–391
testing antibiotics and disinfectants, 390–391
in vitro models, 390
in vivo models, 388–389
Methane, anaerobic conversion of BOD to, 372–374
Microtiter assay for biofilm formation, 396–397
Mixed-species biofilms, 206–219, 383–384
characteristics, 207
commensal interactions, 209–218
competition in biofilms, 211–218
evolution in biofilms, 214–218
investigation tools, 207–209
programmed development, 219

Modeling biofilms, 222–247
balancing complexity with goals, 232

cellular automata approach, 232–247
CA rules, 234–239
components, 233–234
examples, 239–247
flowchart of algorithm, 241
functionally and structurally heterogeneous
biofilm, 244–247
functionally homogeneous, structurally heterogeneous
biofilm, 239–244
microbial decay and detachment, 237
microbial distribution within the biofilm, 237–239
microbial growth, 237
parameter calculation, 240
substrate diffusion, 234–236
substrate utilization, 236–237

chronic disease, theoretical modeling of, 334–336
bacterial plurality, 335
distributed-genome hypothesis, 335–336
heterogeneous biofilm, 230–232
functionally and structurally heterogeneous
biofilm, 244–247
functionally homogeneous, structurally heterogeneous
biofilm, 239–244
homogeneous biofilm, 223–228
characteristic reaction times, 226–228
functionally heterogeneous, structurally homogeneous
biofilm, 228–230
pseudoanalytical solution of steady-state, 228
Modeling biofilms (continued)
 schematic representation of, 225
Modified Robbins device (MRD), 392–393
Monoculture studies, studying biofilms in, 381–383
Moraxella catarrhalis, 350
Motility
 flagellum-dependent swimming, 45–47
 pseudomonad, 45–47, 51–52
 role in biofilm formation and structure, 167–168
 swarming, 119, 120
 twitching, 51–52, 167
MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), 68–69, 303
Multicellularity, 20–27
 of biofilms, 23–27
 characteristics of, 21–23
 coordination of cell activities, 22–23
 intercellular interactions, 21–22
 terminal differentiation, 26
Mycobacterium
 biofilm-forming capacity, 319–320
 characteristics of organism, 319
 environmental prevalence, 319
Mycoplasma xanthus, multicellular behaviors, 21–22
Natural environment, growth of biofilms in, 385–387
Neisseria, 104, 106, 198
Nephrology, 345–347
 hemodialysis, 346–347
 peritoneal dialysis catheters, 347
Neurosurgery, infections associated with, 345
Neurosurgical shunts, 278–279
Nucleic acids, in EPS, 180–181
Nutrients, effect on biofilm formation, 304–305
Ophthalmic infections, 347–348
Oral bacterial biofilms, 85–109
 coaggregation mediators, 86–89
 community establishment, 89–92
 future directions, 108–109
 models, abiotic surface
 monospecies biofilms, 101–105
 multispecies biofilms, 105–108
 overview, 85–86
 spatial arrangement, 92–97
 subgingival plaque, 94–97
 supragingival plaque, 92–94
 species composition
 molecular approaches, 97–101
 subgingival, 94–95
 supragingival, 92–94
Organization, in biofilms, 16–17
Orthopedic infections, 302, 348–349
Otitis media, 350–351
Otolaryngology, infections, 349–351
 endotracheal tubes, 349–350
 otitis media, 350–351
 voice prosthesis, 350
Oxygen concentration measurements, 337–339
PCR (polymerase chain reaction), 402–403
Peptostreptococcus, 99
Peritoneal dialysis catheters, 278, 347
pH, effect on biofilm formation, 306
Phagocytosis, frustrated, 184
Phase variation, in Pseudomonas, 53–54
Phenotypic characteristics of biofilms, 336–339
Phenotypic variation, in Staphylococcus, 75–76
Phosphate, role in pseudomonad biofilm development, 45
PIA (polysaccharide intracellular adhesin), 69–70, 176–177
Pili, 51–52, 145–146
Planktonic cells
 culture techniques, adaptations of, 396
 sessile cells compared to, 8, 9
Plants, biofilms on, 141–152
 autofluorescent marker proteins as reporters for biofilm visualization, 142–144
 bacterium-fungus interactions, 149–150
 competence and biofilm formation, 144–146
 future perspectives, 151–152
 genome analyses of plant-associated microorganisms, 150–151
 quorum sensing in biofilms, 146–149
 rhizosphere flora, 141
Plaque
 subgingival, 94–97
 supragingival, 92–94
Plasmids
 conjugation, 199–201
 transformation, 195–196
Pneumonia, hospital-acquired, 294–295, 299
Pollutants
 aerobic treatment of inorganic electron donors, 369–370
 aerobic treatment of organic pollutants, 365–369
 anaerobic conversion of BOD to methane, 372–374
 anoxic reduction of electron acceptors, 370–372
 as biofilm substrates, 359–360
Polysaccharases, 179–180
Polysaccharide intracellular adhesin (PIA), 69–70, 176–177
Porphyromonas gingivalis, 25, 95, 97, 99, 106–107
Prevotella, 87, 95, 99
Probiotics, 339
Programmed development, 219
Proline-rich proteins (PRPs), 90
Prostheses
 biliary tract, 343
 breast, 340
 heart valves, 295, 301–302, 340–341
 joints, 278, 348–349
 lens, 348
INDEX 423

urinary, 354–355
voice, 31–32, 280, 339, 350
Prosthetic joints, 278
Proteins, in EPS, 178–180
Proteus, 120, 276, 279–280, 295, 301, 353
Pseudomonas aeruginosa
alginate biosynthesis, 177–178, 186
attachment
chaperone/ usher system, 51
chemical nature of surface, 48–49
environment properties, 47–48
reversible to irreversible attachment, 49–50
Candida biofilms, 40
catheter-associated UTI, 10
colonization, initial, 44–47
flagellum-dependent swimming motility, 45–47
nature of environment, 44–45
phosphate, role of, 45
cystic fibrosis, 10–12, 186, 294, 295, 305, 351–352
detachment, 56–58
biological factors, 57
physical mechanics, 57–58
DNA extrusion by, 180–181, 336
EPS, 177–186
gene expression in biofilms, 16
genomics, 124–133
hollow microcolonies, 167
lectins, 179
lyase activity, 180
macrolinities, growth from microcolonies, 54–55
maintenance of mature biofilms, 55
monoculture studies of, 381–383
multicellular behaviors, 24–26
otorrhea, 351
phase variation, 53
quorum sensing, 55, 120–123, 124–136
rhamnolipids, 56
in the rhizosphere, 141, 145, 147–148
RpoS, 55–56
surface migration, aggregation, and microcolony formation
catabolic repression control (Crc) protein, 52
GacAS two-component regulatory system, 53
IBET (in biofilm expression technology), 54
pili and twitching motility, 51–52
small colony variants, 53–54
virulence factor regulator (Vfr), 52
transduction, 202–203
water channels in biofilms, 12, 13
Pseudomonas aerofaciens, 147–148
Pseudomonas chlororaphis, 143, 147
Pseudomonas fluorescens
biofilm development, 45–51, 56–57
lyase, 180
phase variation, 53
in the rhizosphere, 142–147, 149–150
swarming motility, 120
Pseudomonas oryzihabitans, 47
Pseudomonas putida
antimicrobial resistance, 256
biofilm development, 45–46, 50–51
conjugation in, 201
hollow microcolonies, 166–167
in mixed-species biofilms, 211–217
quorum sensing, 123, 165–166
in the rhizosphere, 143–144, 146, 148–150
Pseudomonas syringae, 57, 180, 185
PSTC proteins (pilus/secreton/twitching motility/competence), 198
Pulmonary and respiratory infections, 351–352
chronic obstructive pulmonary disease (COPD), 352
cystic fibrosis, 10–12, 294, 295, 305, 351–352
Quorum sensing, 118–136
accessory gene regulator (agr), Staphylococcus, 74–75
bacterial surface translocation, 119–120
biofilm structure and, 165–166
conjugation, 199
functional genomics, 124–128
furanone inhibitors, 135–136
gram-negative coinhabitants, 274
gram-positive oral bacteria, 104
history of, 15
identification of QS-controlled genes, 128–133
inhibitors of, 133–136
involvement in biofilm formation, 120–123
in natural biofilms, 123–124
overview, 118–119
Pseudomonas aeruginosa, 55
in rhizosphere biofilms, 146–149
RpoS effect on, 55
swarming motility, 119, 120
transformation and, 194–196
Ralstonia solanacearum, 141, 145, 147, 186
Recombination, 195
Regulation of biofilm formation, in Staphylococcus, 73–75
accessory gene regulator (agr), 74–75
alternative sigma factor B (sigB), 74
autolysis-related locus, 75
intercellular adhesion regulator (IcaR), 73–74
Renal disease, end-stage (ESRD), 345–346
Research. See History; Studying biofilms
Reservoirs for disease, 314–326
food-borne diseases, 321–324
Campylobacter, 321–322
Listeria monocytogenes, 322–323
Salmonella, 323–324
overview, 314–316
water-borne diseases, 316–321
Aeromonas, 316–317
Legionella pneumophila, 317–319
Reservoirs for disease (continued)
Mycobacterium, 319–320
Vibrio cholerae, 320–321
Rhamnolipids, 56
Rhizobium spp., 142–143, 147
Rhizosphere
bacterium-fungus interactions, 149–150
competence and biofilm formation, 144–146
flora, 141
quorum sensing in biofilms, 146–149
Robbins device, 392–393
Rotating-disk bioreactors, 397–398
Rothia dentocariosa, 32, 350
RpoS, 55–56
Saccharomyces cerevisiae, 39
SadARS system, 55
Salmoneella
antimicrobial resistance, 254
biofilm-forming capacity, 323–324
biofilms on gallstones, 306
characteristics, 323
environmental prevalence, 323
Scanning electron microscopy (SEM)
Candida biofilms, 33, 38
catheter-associated biofilm, 10
overview of methods, 400
plaque, 93, 95
rhizosphere biofilms, 142
ventricular-peritoneal shunts, 345
Scanning transmission electron microscopy (STEM), 400
SCLM (scanning confocal laser microscopy).
See Confocal scanning laser microscopy (CSLM)
Serratia biofilms, 12, 119–120, 123
Sigma factor B (sigB), 74
Signal autoinducer 2, 25
Signal control of biofilms, 14–15
Silicone breast prostheses, 340
Slime-associated antigen, 69
Small colony variants, in Pseudomonas, 53–54
Solids retention time (SRT), 362, 370
Staphylococcus
accumulation factors, 69–73
accumulation-associated protein (AAP), 72–73
biofilm-associated protein (Bap), 73
intercellular adhesion locus (ica), 71–72
polysaccharide intracellular adhesin (PIA), 69–70, 76
PS/A, 70–71
slime-associated antigen, 69
tetchoic acids, 73
biofilm development, 64–78
CoNS (coagulase-negative staphylococci), 277, 296, 298, 300, 303, 342, 345, 348
environmental conditions, 76–78
antibiotics, 77–78
ethanol, 77
iron, 77
magnesium, 77
osmotic stress, 77
oxygen, 76–77
hospital-acquired infections, 295–304, 306–307
phenotypic variation, 75–76
primary attachment factors, 66–69
autolysin, 67–68
capsular polysaccharide adhesin, 67
MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), 68–69
staphylococcal surface proteins (SPS), 67
teichoic acids, 68
regulation of biofilm formation, 73–75
accessory gene regulator (agr), 74–75
alternative sigma factor B (sigB), 74
autolysis-related locus, 75
intercellular adhesion regulator (IcaR), 73–74
in vivo models, 78
Staphylococcus aureus
antimicrobial resistance, 262
artificial joint infections, 349
biofilm development
accumulation factors, 70–72
environmental conditions, 76–77
phase variation, 76
primary attachment factors, 66, 68–69
regulation, 74–75
study of, 65–66
in vivo models, 78
central venous catheter, 277
dermal infections, 342
endotracheal tube biofilm, 279
gynecologic infections, 345
methylene resistant (MRSA), 295, 296–299, 301–302
urinary catheter-associated infection, 295
intracardiac prosthetic devices, 278
peritoneal dialysis catheters, 278
peritonitis, 345
polysaccharide intracellular adhesin (PIA), 176
transduction, 202
Staphylococcus caprae, 68, 71
Staphylococcus canus, 71, 176
Staphylococcus epidermidis
antimicrobial resistance, 256
artificial joint infections, 349
biofilm development, 64–78
accumulation factors, 69–73
environmental conditions, 76–78
phenotypic variation, 75–76
primary attachment factors, 66–69
regulation, 73–75
study of, 65–66
INDEX

Streptococcus constellatus, 100
Streptococcus gordonii
oral biofilms, 86–88, 90–91, 93, 101, 103, 105
signal autoinducer 2, 25
transformation, 194–195, 197, 201
Streptococcus mitis, 86, 88, 94, 104
Streptococcus mutans
Candida biofilms, 40
oral biofilms, 100, 102–104, 106
polysaccharase, 180
transformation, 194–197, 199
Streptococcus oralis, 86–88, 91, 94, 106
Streptococcus parasanguinis, 100, 104
Streptococcus pneumoniae
antimicrobial resistance, 256
otitis media, 350–351
transformation, 194–198
Streptococcus salivarius, 100, 104
Streptococcus sanguinis
fluorescent staining of biofilm, 306, 307
oral biofilms, 86, 88, 94, 106
Streptococcus thermophilus, 350
Streptomyces coelicolor, multicellular behaviors, 23
Structure, biofilm, 160–169
detachment and dispersal mechanisms, 166–167
EPS (extracellular polymeric substance), 164
factors relating to, 162–164
historical aspects, 162
hollow microcolonies, 166–167
motility, role in biofilm formation and structure, 167–168
quantification of, 168–169
COMSTAT, 169
ISA (image structural analysis), 168
quorum sensing, 165–166
Studying biofilms, 379–403
choice of microorganisms, 380–384
effects, 381
mixed cultures, 383–384
monoculture studies, 381–383
future directions, 414–416
genetics, 396, 402–403
growth of biofilms, 383–400
Industrial applications, 391–393
laboratory techniques, common, 393–400
medically important biofilms, 387–391
in natural environment, 385–387
techniques, table of examples, 386
imaging, 400–402
electron microscopy, 400
infrared spectroscopy, 401–402
SCLM, 400–401
techniques, table of, 395
industrial applications, 391–393
Robbins device, 392–393
table of, 392
medically important biofilms, 387–391
animal models, 389–390
case studies, 389
device colonization, 390–391
techniques, table of, 387–391
testing antibiotics and disinfectants, 390–391
in vitro models, 390
in vivo models, 388–389
Surface chemistry and conditioning, effect on biofilm formation, 306–308
Surface translocation, 119–120
Surgical wound infections, hospital-acquired, 299
Susceptibility testing, 284–285
Swarming motility, 119, 120
Tannerella forsythensis, 99
Teichoic acids, 68, 73
Total joint replacement prostheses, 348–349
Total Kjeldahl Nitrogen (TKN), 369–370
Transduction, 201–203
Transformation, 194–199
Transmission electron microscopy (TEM)
cystic fibrosis pneumonia, 11
doE. coli scours, 5, 7, 8
overview of methods, 400
of rumen contents, 4–6
supragingival plaque, 92
surgical staple-associated biofilm, 12
Transposon, conjugative, 201
Treponema, 95, 98, 99, 107
Twitching motility, 51–52, 167
Type IV pili (Tfp), 51–52
Urinary catheters
biofilms, 9–10, 275–276, 353–354
hospital-acquired infections, 295, 301
Urinary prostheses, 354–355
Urinary tract infection (UTI)
 animal models, 389–390
catheter-associated, 9–10, 276, 295, 301, 352–354
 hospital-acquired, 298–299

Vascular grafts, 341–342
*V*eil*onella*, 98, 100
Ventilator-associated pneumonia, 279–280, 286
Ventricular-peritoneal shunts, 344–345
*V*ibrio, conjugation in, 200
Vibrio cholerae, 325
 biofilm-forming capacity, 320–321
 characteristics of organism, 320
 environmental prevalence, 320, 344
 EPS, 181, 183–184
 outbreaks, 344
Vibrio harveyi, 15, 102, 107
Virulence factor regulator (Vfr), 52
Voice prostheses, 31–32, 280, 339, 350

Water-borne diseases, biofilms as reservoirs for,
 316–321
Aeromonas, 316–317
Legionella pneumophila, 317–319

Mycobacterium, 319–320
Vibrio cholerae, 320–321
Water channels in biofilms, 12, 13
Water industry, biofilms in, 359–376
 fundamental characteristics of systems, 359–365
 concentration gradients, 362–363
 fixed architecture, 364–365
 physical structure of biofilm, 361
 pollutants as substrates, 359–360
 retention time of large solids, 362
 substrate flux, 363–364
 substratum features, 360–361
 unwanted biofilms, 374–376
 drinking-water distribution, 374–376
 industrial process waters, 376
 water treatment processes, 365–374
 aerobic treatment of inorganic electron donors, 369–370
 aerobic treatment of organic pollutants, 365–369
 anaerobic conversion of BOD to methane, 372–374
 anoxic reduction of electron acceptors, 370–372

Yersinia pestis, 343