Microbial Diversity and Bioprospecting
Microbial Diversity and Bioprospecting

EDITED BY Alan T. Bull
CONTENTS

Contributors • ix
Foreword Arnold L. Demain • xiii
Preface • xv
Acknowledgments • xix

I. Introduction: the Rationale

1. Biotechnology, the Art of Exploiting Biology • 3
 Alan T. Bull

II. Microbial Diversity: the Resource

Preamble • 13
 Alan T. Bull

2. An Overview of Biodiversity—Estimating the Scale • 15
 Alan T. Bull and James E. M. Stach

3. Defining Microbial Diversity—the Species Concept for Prokaryotic and Eukaryotic Microorganisms • 29
 Ramon Rosselló-Mora and Peter Kämpfer

4. Speciation and Bacterial Phylospecies • 40
 James T. Staley

5. Approaches to Identification • 49
 Fergus G. Priest

6. Eukaryotic Diversity—a Synoptic View • 57
 Laura A. Katz

III. Microbial Ecology: the Key to Discovery

Preamble • 69
 Alan T. Bull

7. How To Look, Where To Look • 71
 Alan T. Bull

8. Culture-Dependent Microbiology • 80
 John C. Fry

9. Culture-Independent Microbiology • 88
 Kornelia Smalla

10. Resuscitation of “Uncultured” Microorganisms • 100
 Douglas B. Kell, Galya V. Mukamolova, Christopher L. Finan, Hongjuan Zhao, Royston Goodacre, Arseny S. Kaprelyants, and Michael Young

11. Soils—the Metagenomics Approach • 109
 Jo Handelsman

12. Deep Biospheres • 120
 R. John Parkes and Pete Wellsbury

13. Earth’s Icy Biosphere • 130
 John C. Priscu and Brent C. Christner

14. Extremophiles: pH, Temperature, and Salinity • 146
 Constantinos E. Vorgias and Garabed Antranikian

15. Extremophiles: Pressure • 154
 Fumiyoshi Abe, Chiaki Kato, and Koki Horikoshi
vi CONTENTS

16. Life in Extremely Dilute Environments: the Major Role of Oligobacteria • 160
 D. K. Button

17. Anaerobes: the Sulfate-Reducing Bacteria as an Example of Metabolic Diversity • 169
 Giry Fauque and Bernard Ollivier

18. Microbes from Marine Sponges: a Treasure Trove of Biodiversity for Natural Products Discovery • 177
 Russell T. Hill

19. Invertebrates—Insects • 191
 John A. Breznak

20. Microbial Symbioses with Plants • 204
 Peter Jeffries

IV. Biogeography and Mapping Microbial Diversity

Preamble • 213
 Alan T. Bull

21. Ubiquitous Dispersal of Free-Living Microorganisms • 216
 Bland J. Finlay and Genoveva F. Esteban

22. Microbial Endemism and Biogeography • 225
 Brian P. Hedlund and James T. Staley

23. Mapping Microbial Biodiversity Case Study: the Yellowstone National Park Microbial Database and Map Server • 232
 Daphne L. Stoner, Randy Lee, Luke White, and Ron Rope

V. The Paradigm Shift: Bioinformatics

Preamble • 239
 Alan T. Bull

24. The Paradigm Shift in Microbial Prospecting • 241
 Alan T. Bull

25. Genomics • 250
 Karen E. Nelson

26. Bacterial Proteomics • 260
 Phillip Cash

27. Phenomics • 280
 Jennifer L. Reed, Stephen S. Fong, and Bernhard Ø. Palsson

28. Phylogeny and Functionality: Taxonomy as a Roadmap to Genes • 288
 Alan C. Ward and Michael Goodfellow

VI. Prospecting: the Targets

Preamble • 317
 Alan T. Bull

29. Sectors and Markets • 319
 Alan T. Bull

30. Screening for Bioactivity • 324
 Hans-Peter Fiedler

31. Antimicrobials • 336
 William R. Strohl

32. Pharmacologically Active Agents of Microbial Origin • 356
 Stephen K. Wrigley

33. Bioprospecting for Industrial Enzymes: Importance of Integrated Technology Platforms for Successful Biocatalyst Development • 375
 Thomas Schäfer and Torben Vedel Borchert

34. Plant Growth-Promoting Agents • 391
 James M. Lynch

35. Biotreatment • 397
 Linda Louise Blackall and Christine Yeates

36. Bioprospecting Novel Antifoulants and Anti-Biofilm Agents from Microbes • 405
 Carola Holmström, Peter Steinberg, and Staffan Kjelleberg

VII. Conservation of Microbial Gene Pools

Preamble • 415
 Alan T. Bull

37. Extinction and the Loss of Evolutionary History • 417
 Alan T. Bull
38. What Is the Evidence for the Loss of Microbial Diversity? • 421
James Borneman

VIII. Convention on Biological Diversity: Implications for Microbial Prospecting

Preamble • 429
Alan T. Bull

39. The Convention on Biological Diversity and Benefit Sharing • 431
Kerry ten Kate

40. The Historical Context of Present Bioprospecting—Four Cases • 440
Hanne Svarstad

41. Biodiversity Prospecting: the INBio Experience • 445
Giselle Tamayo, Lorena Guevara, and Rodrigo Gámez

42. Contracts for Bioprospecting: the Yellowstone National Park Experience • 450
Holly Doremus

43. Natural Products Research Partnerships with Multiple Objectives in Global Biodiversity Hot Spots: Nine Years of the International Cooperative Biodiversity Groups Program • 458
Joshua P. Rosenthal and Flora N. Katz

IX. Conclusion

44. The Value of Biodiversity • 469
David W. Pearce

Index • 477
CONTRIBUTORS

F. Abe
The DEEPSTAR Group, Japan Marine Science and Technology Center (JAMSTEC), 2-15
Natsushima-cho, Yokosuka 237-0061, Japan

G. Antranikian
Technical University of Hamburg-Harburg,
Biotechnology/Technical Microbiology,
Kasernenstrasse 12, D-21071 Hamburg, Germany

Linda L. Blackall
Advanced Wastewater Management Centre,
Department of Microbiology and Parasitology,
The University of Queensland, Brisbane,
4072 Queensland, Australia

Torben Vedel Borchert
Novozenymes A/S, Krogshøjvej 36, 2880 Bagsværd,
Denmark

James Borneman
Department of Plant Pathology, Boyce Hall 3489,
University of California, Riverside, Riverside, CA 92521

John A. Breznak
Department of Microbiology and Molecular Genetics,
6190 Biomedical and Physical Sciences, Michigan
State University, East Lansing, MI 48824-4320

Alan T. Bull
Research School of Biosciences, University of Kent,
Canterbury, Kent CT2 7NJ, United Kingdom

D. K. Button
Institute of Marine Science, University of Alaska,
Fairbanks, AK 99775

Phillip Cash
Department of Medical Microbiology, University of
Aberdeen, Foresterhill, Aberdeen AB25 2ZD,
United Kingdom

Brent C. Christner
Department of Land Resources and Environmental
Sciences, 304 Leon Johnson Hall, Montana State
University, Bozeman, MT 59717

Arnold L. Demain
Charles A. Dana Research Institute (R.I.S.E.),
HS-330 Drew University, Madison, NJ 07940

Holly Doremus
University of California at Davis, School of Law,
400 Mrak Hall Drive, Davis, CA 95616

Genoveva F. Esteban
Center for Ecology and Hydrology, Dorset, Winfrith
Technology Centre, Winfrith Newburgh,
Dorchester, Dorset DT2 8ZD, United Kingdom

Guy Fauque
UR 101 Extrêmophiles, Institut de Recherche pour
le Développement IFR-BAIM, Universités de
Provence et de la Méditerranée, ESIL, Case 925, 163
avenue de Luminy, F-13288 Marseille Cedex 09,
France

Hans-Peter Fiedler
Mikrobiologisches Institut, Universität Tübingen,
Auf der Morgenstelle 28, D-72076 Tübingen,
Germany

Bland J. Finlay
Center for Ecology and Hydrology, Dorset, Winfrith
Technology Centre, Winfrith Newburgh,
Dorchester, Dorset DT2 8ZD, United Kingdom
CONTRIBUTORS

Christopher L. Finan
Institute of Biological Sciences, University of Wales,
Aberystwyth, Aberystwyth SY23 3DD,
United Kingdom

Stephen S. Fong
Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive,
La Jolla, CA 92037-0419

John C. Fry
Cardiff School of Biosciences, Main Building,
Cardiff University, Park Place, Cardiff CF10 3TL,
United Kingdom

Rodrigo Gámez
Instituto Nacional de Biodiversidad, 3100
Santo Domingo, Heredia, Costa Rica

Royston Goodacre
Institute of Biological Sciences, University of Wales,
Aberystwyth, Aberystwyth SY23 3DD,
United Kingdom

Michael Goodfellow
School of Biology, University of Newcastle,
Claremont Road, Newcastle upon Tyne NE1 7RU,
United Kingdom

Lorena Guevara
National Institute of Biodiversity (INBio), 3100
Santo Domingo, Heredia, Costa Rica

Jo Handelsman
Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706

B. P. Hedlund
Department of Biological Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway,
Las Vegas, NV 89154-4004

Russell T. Hill
Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Columbus Center
Suite 236, 701 East Pratt Street, Baltimore, MD 21202-4031

Carola Holmström
Department of Microbiology and Immunology,
School of Biotechnology and Biomolecular Sciences,
University of New South Wales, Sydney,
NSW 2052, Australia

Koki Horikoshi
The DEEPSTAR Group, Japan Marine Science and Technology Center (JAMSTEC), Yokosuka
237-0061, Japan

Peter Jeffries
Department of Biosciences, University of Kent,
Canterbury, Kent CT2 7NJ, United Kingdom

Peter Kämpfer
Institut für Angewandte Mikrobiologie, Justus-Liebig Universität Giessen, Heinrich-Buff-Ring
26-32, D-35392 Giessen, Germany

Arseny S. Kaprelyants
Bakh Institute of Biochemistry, Leninskyi Prospect
33, 117071 Moscow, Russia

Chihaki Kato
Department of Marine Ecosystems Research, Japan
Marine Science and Technology Center (JAMSTEC), Yokosuka 237-0061, Japan

Flora N. Katz
Fogarty International Center, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892-2220

Laura A. Katz
Department of Biological Sciences, Smith College,
Northampton, MA 01063

Douglas B. Kell
Department of Chemistry, Faraday Building,
Sackville Street, UMIST, P.O. Box 88, Manchester
M60 1QD, United Kingdom

Staffan Kjelleberg
Department of Microbiology and Immunology,
School of Biotechnology and Biomolecular Sciences,
University of New South Wales, Sydney,
NSW 2052, Australia

Randy Lee
Ecological and Cultural Resources, Idaho National Engineering and Environmental Laboratory,
Idaho Falls, ID 83415-2213

James M. Lynch
Forest Research, Alice Holt Lodge, Farnham, Surrey
GU10 4LH, United Kingdom
Galya V. Mukamolova
Institute of Biological Sciences, University of Wales, Aberystwyth, Aberystwyth SY23 3DD, United Kingdom

Karen E. Nelson
Institute of Genome Research TIGR, 9712 Medical Center Drive, Rockville, MD 20850

Bernard Ollivier
Directeur UR101 Extrêmophiles, Institut de Recherche pour le Développement, IFR-BAIM, Universités de Provence et de la Méditerranée, ESII, Case 925, 163 avenue de Luminy, F-13288 Marseille Cedex 09, France

Bernhard O. Palsson
Department of Bioengineering, University of California, San Diego, 950 Gilman Drive, La Jolla, CA 92093-0419

R. J. Parkes
Department of Earth Sciences, University of Cardiff, Main Building, P.O. Box 914, Cardiff CF10 3YE, United Kingdom

David W. Pearce
Department of Economics, University College London, Gower Street, London WC1E 6BT, United Kingdom

Fergus G. Priest
School of Life Sciences, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom

John C. Priscu
Department of Land Resources and Environmental Sciences, 309 Leon Johnson Hall, Montana State University, Bozeman, MT 59717

Jennifer L. Reed
Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0419

Ron Rope
Ecological and Cultural Resources, Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID 83415-2213

Joshua P. Rosenthal
Fogarty International Center, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892-2220

Ramon Rosselló-Mora
Group d'Oceanografia Interdisciplinar, Institut Mediterrani d'Estudis Avancats (CSIC-UIB), Miquel Marques 21, E-07190 Esporles (Illes Balears), Spain

Thomas Schäfer
Novozymes A/S, Krogshøjvej 36, 2880 Bagsvaerd, Denmark

Kornelia Smalla
Federal Biological Research Centre for Agriculture and Forestry, Institute for Plant Virology, Microbiology and Biosafety, Messeweg 11-12, D-38104 Braunschweig, Germany

James E. M. Stach
Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom

James T. Staley
Department of Microbiology, University of Washington, Seattle, WA 98195

Peter Steinberg
Centre for Marine Biofouling and Bio-Innovation, School of Biological Science, University of New South Wales, Sydney, NSW 2052, Australia

Daphne L. Stoner
Biotechnology Department, Idaho National Engineering and Environmental Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-2203

William R. Strohl
Department of Biologics Research, Merck Research Laboratories, P.O. Box 2000, Mail drop RY80Y-215, Rahway, N.J. 07065

Hanne Svarstad
NINA, P.O. Box 736 Sentrum, 0105 Oslo, Norway

Giselle Tamayo
National Institute of Biodiversity (INBio), 3100 Santo Domingo, Heredia, Costa Rica
Kerry ten Kate
Insight Investment, 33 Old Broad Street, London
EC2N 1HZ, United Kingdom

Constantinos E. Vorgias
National and Kapodistrian University of Athens,
Faculty of Biology, Department of Biochemistry-Molecular Biology, Panepistimiopolis-Zographou,
15701 Athens, Greece

Alan C. Ward
School of Biology, University of Newcastle,
Claremont Road, Newcastle upon Tyne NE1 7RU,
United Kingdom

Pete Wellsbury
Department of Earth Sciences, University of Bristol,
Bristol BS8 1RJ, United Kingdom

Luke White
Programmatic Software Development, Idaho
National Engineering and Environmental Laboratory, Idaho Falls, ID 83415-3419

Stephen K. Wrigley
Cubist Pharmaceuticals (UK) Ltd., 545 Ipswich Road, Slough, Berkshire SL1 4EQ,
United Kingdom

Christine Yeates
Advanced Wastewater Management Centre,
The University of Queensland, St. Lucia,
Queensland 4072, Australia

Michael Young
Institute of Biological Sciences, University of Wales,
Aberystwyth, Aberystwyth SY23 3DD,
United Kingdom

Hongjuan Zhao
Institute of Biological Science, University of Wales,
Aberystwyth, Aberystwyth SY23 3DD,
United Kingdom
This is an exciting time for those involved in bioprospecting, especially in the pharmaceutical area; indeed this field is at a crossroads in its development. Whereas ingenuity, innovation, and product introduction have been deaccelerated by the mega mergers of the pharmaceutical industry, the new opportunities now available for the development of new drugs are staggering. Indeed, the high cost of these novel opportunities to “big pharma” has in part contributed to the downgrading of natural product research and development. The loss of interest in this most important aspect of new drug innovation is of course only temporary because its replacement by combinatorial chemistry, genomics, and high-throughput screening has not been productive. This opinion is not a conclusion arrived at by biologists; rather, it has been stated publicly by prominent medicinal chemists. So what is to be done? The answer is a synergistic combination of the traditional and the new, i.e., combining intelligent bioprospecting of nature’s diversity with the novel techniques of genomics, proteomics, metabolomics, metagenomics, combinatorial chemistry, combinatorial biosynthesis, high-throughput screening, and bioinformatics. We are fortunate that, during this period of downgrading of natural products by the major drug companies, a number of smaller biotechnology companies have picked up the slack by entering the arena of natural product discovery. They are using some of the newer techniques in their efforts as well as expanding the search to relatively ignored environments such as the ocean.

When one speaks about natural products, included are biopharmaceutical (i.e., erythropoietin) primary metabolites such as amino acids and vitamins, secondary metabolites (penicillin G), products discovered in nature but made by chemical synthesis (thienamycin), and chemical derivatives of natural products (clarithromycin). Successful applications have included antibiotics, antitumor agents, enzyme inhibitors, antiparasitic agents, bioherbicides, algicides, and bioinsecticides. Of great importance for pharmaceutical discovery are new targets such as receptor-ligand binding, reporter genes, adhesion, proteosome action, signal transduction, and cell-to-cell communication. For antitumor agents, recent targets have included protein kinase C, farnesyl protein transferase, P53-related targets, proteosomes, and telomerase.

Many of the new developments in industrial microbiology derive from the birth of molecular biology in the 1950s and of recombinant biotechnology in the 1970s. Of special interest is the area of industrial enzymes that has made major strides because of cloning and the complementary techniques of protein engineering and directed molecular evolution. These enzymes have great use in food processing, detergents, cleaning of contact lenses, biosensors, and molecular biology (DNA polymerase for the polymerase chain reaction, and restriction enzymes). Enzymes and cellular bioconversions have been applied in the preparation of chiral drugs that are currently desired by industry and health authorities. Many industrial enzymes are derived from thermophilic, alkaliphilic, or psychrophilic microbes (“extremophiles”) from areas of high biodiversity interest. Environments of interest for bioprospecting are soil, the marine environment including the deep biosphere, the icy biosphere, marine sponges, and insects. Plants harbor many microbial symbionts that are a good source of alkaloids and other drugs, biocontrol agents, plant growth stimulators, agents protecting plants from abiotic stress, and for ecosystem restoration. Other current or potential benefits of exploring microbial diversity include (i) the economical and environmentally important replacement of chemical processes by biological procedures in the manufacture of riboflavin, acrylamide, 7-aminoccephalosporanic acid, and 7-aminoacetoxycephalosporanic acid; (ii) control of agricultural pollution by the use of feed enzymes such as...
phytase; (iii) replacement of petroleum, plastics, and other materials by bioprocessing of renewable raw materials; (iv) bioremediation and biodegradation of polluting materials; (v) discovery of new plant growth promoting microbes; and (vi) novel antifoulants and antibiofilm agents. In relation to the antifoulants, it was surprising for me to read in the present book that biofouling, i.e., the colonization of surfaces in aqueous environments by living organisms, costs the shipping industry over five billion dollars per year!

There is no doubt that biodiversity is being lost throughout the world. This is unfortunate because we need biodiversity to provide novel microbes and novel products. We are told that only 0.5 to 1% of living bacterial species and 5% of living fungal species have been cultured. Of great interest are new methods that allow isolation of previously uncultured microbes, e.g., low-nutrient media, long incubation times, dilution to extinction, ecosystem mimicry, syntrophy, and cell-to-cell communication. Of use in these efforts have been micromanipulation, optical tweezers, atomic force microscopy, and density gradient centrifugation. The newly cultured species may not do very well in industrial fermentors, but cloning of their production and regulatory genes into industrial bacteria and fungi would allow scale-up and industrial production. The metagenomics approach is a complementary development that allows expression of environmental DNA and mRNA. This very exciting area has already yielded known antibiotic products such as violacein, indirubin, and fatty dienic alcohols and new antibiotics such as acyltyrosines, terragine, and turbomycin. In addition to these secondary metabolites, new enzymes, antiporter and antibiotic resistance determinants, have been isolated from environmental nucleic acids.

It is clear that the large pharmaceutical companies will soon adapt their genomic, combinatorial chemistry, and high-throughput screening efforts to new natural product scaffolds. Such novel structures are sorely needed and will be provided by the proper utilization of biological diversity. It is extremely fortunate for the field that this book has been assembled at this time with contributions from the desks of the world's best minds of microbial diversity and bioprospecting. Of course, microbes are not the only source of remarkable drugs, but inclusion of plants and other life forms would have required much greater time and effort and would have delayed publication of this useful compilation, which is needed Now!

Arnold L. Demain
Madison, New Jersey
PREFACE

ORIGINS

This book is born out of a lifetime’s fascination for microorganisms, a fascination that has been nurtured by many people and many experiences and, not the least, by undergraduate courses in systematic biology, an increasingly rare feature of degree curricula. Serendipity, I freely confess, has played a major role in sustaining this fervor for microbiology, and a significant turning point came in the 1970s when I joined the then Panel on Applied Microbiology of the United Nations Environment Programme and the United Nations Educational, Scientific, and Cultural Organization. This U.N. involvement enabled me to work with a group of extraordinarily committed humanitarian and knowledgeable microbiologists from the world over. The effect of working with Martin Alexander, Goran Heden, Roger Porter, David Pramer, Maurits la Riviere, Jacques Senez, and H. Taguchi, and others too numerous to name, was electrifying and permanent in so many ways but especially in revealing how microbiology can be developed for the common good. The panel experience had a variety of consequences for me, among them an entrée into international science and opportunities to see first hand a wide range of microbial technology being exploited in developing countries for both traditional and innovative processes. Years later this amalgam of experience led to two particular opportunities to bring microbial diversity and bioprospecting together in quite dramatic fashion—one in Indonesia that was relatively low tech and the other in Japan that was decidedly high tech.

Alfred Russel Wallace, “one of the neglected giants of the history of science and ideas,” has long been one of my heroes, for, as Peter Raby concludes in his splendid biography of Wallace (P. Raby, Alfred Russel Wallace: A Life, Princeton University Press, 2001), “There is, finally something heroic about a man who independently constructs a theory of natural selection . . . and spends the rest of his life proclaiming the ideals of co-operation and altruism as the way to hasten the perfecting of the human.” Consequently the chance to retrace a few of Wallace’s steps in the Malay Archipelago intermittently over a period of 15 years, but collecting microorganisms rather than insects or birds of paradise, came as a piece of tremendous good fortune. Results of the ensuing biotechnology training and research program, which included mycorrhizal inoculant technology, bioremediation, biopesticides, and applied microbial taxonomy, are summarized elsewhere (Indones. J. Biotechnol., Special Issue, June 2000), but the enduring memory is of the spectacular biodiversity of that remarkable archipelago. At the westernmost peninsula of Java, facing the Sunda Strait, lies Ujung Kulon, an area that was inundated by 10- to 15-m tidal waves in 1883 following the eruption of Krakatau. Ujung Kulon now is a national park devoid of human inhabitants and notable for containing the remaining (very small) population of Javan rhino. It was here some years ago that I witnessed a glittering display of bioluminescence. Our camp, where evenings were shared with an assortment of macaques, deer, monitor lizards, geckos, and bats, was close to the shore which, on one occasion, was intensely illuminated as teeming populations of microinvertebrates were oxygenated in the breaking tide. However, a few years later even this microbiological display was eclipsed by the coral reef communities off the north coast of North Sulawesi. These reefs are one of the most spectacular in the whole Indo-Pacific region, and the realization that a very high proportion of their invertebrate biomass comprised microorganisms about which so little was known was a forceful reminder of how fragmented and incomplete was our knowledge of microbial diversity. The English naturalist Sidney Hickson, following his observations of these ecosystems, wrote “A coral reef cannot be properly described. It must be seen to be thoroughly appreciated” (Hickson, A Naturalist in North Celebes,
Murray, 1889); how right he was! Readers will not be surprised to find marine invertebrates and their microbial symbionts featured in this book. Geothermal and other extreme environmental locations also are common in many parts of the archipelago and have provided further insights to the diversity of the microbial world. However, the opportunity to prospect microorganisms of truly extreme habitats was presented when Koki Horikoshi invited us to collaborate with the DeepStar program of the Japan Marine Science and Technology Agency (http://www.jamstec.go.jp). Our interest has been on the actinomycete diversity in very deep-sea sediments including those below the seafloor, where the extent of taxonomic diversity again is remarkably high. The exploration of these newly discovered biospheres is exciting and promising for bioprospecting, and various aspects of this novel field are contained in this book.

Edward Wilson probably has done more than any other individual to awaken the interest of both scientists and the public in biodiversity and why it should be promoted to a front page issue. His writings are rich in knowledge, challenging questions, and memorable imagery, and provide an especially pervading sense of wonder. Wonder, that emotion excited by what surpasses expectation and the desire to know, is something I very much hope that readers will encounter throughout the course of this book, for, as Francis Bacon declared, “For all knowledge and wonder (which is the seed of knowledge) is an impression of pleasure in itself” (F. Bacon, Proficience and Advancement of Learning Book I, 3, 1605).

REVOLUTION

During the lifetime of my generation there has occurred an unprecedented change in which biological systems—from cell to biome—are viewed and investigated. As I attempt to show in chapter 24, this has been a revolution of genuinely Kuhnian proportions. Within the span of 50 years we have progressed from speculative debates about the organization of DNA in bacteria (see, for example, E.T.C. Spooner and B.A.D. Stocker [eds.], Bacterial Anatomy, Cambridge University Press, 1956) to a position in which students can manipulate, with facility and rationality, the DNA within and between species, and even domains! The introduction and adoption of the techniques of molecular biology have occurred with unbelievable rapidity and ease such that they now permeate the whole spectrum of biological research. Questions can now be posed, and answered, that were inconceivable and/or had minimal expectation of being resolved prior to the molecular biology era. The impact on our approach to and understanding of phylogeny and evolution, biodiversity and ecology, infection and therapy has been immense; the impact on the ways in which we exploit genetic resources in the context of biotechnology is no less impressive. In short we are of a generation that has seen the emergence of a new and powerful discipline, albeit with ill-defined boundaries, called bioinformatics. A word of caution is necessary here: bioinformatics, powerful though it is, is not the sole technoscientific driver of biotechnology; innovative developments in chemistry, chemical and biochemical engineering, computer science, and nanotechnology, for example, all have engaged with biology in transforming the search for novel drugs, chemicals, materials, and so on. Nevertheless, there has been a demonstrable paradigm shift in the way in which we do, or can do, search and discovery in biotechnology, that is, the shift from traditional biology based on specimen collection, observation, and experimentation to bioinformatics based on data collection, storage, and mining. One of the questions emerging from this paradigm shift is whether bioinformatics, in concert with approaches such as combinatorial chemistry, will displace the traditional biological approach or will exist in synergy with it. Present evidence strongly suggests that a synergy will become established.

The extent to which we are able to integrate diverse technical and analytical capabilities will be critical for the future of microbiology and biotechnology. The multidisciplinary approach has long and widely been appreciated as an essential underpin for successful biotechnology, but a comparable recognition in microbiology and among microbiologists has been slower to emerge. Recently this point was made very clear by Ed DeLong, who concluded that, “The challenge to future microbial biologists is that they must become as conversant in Earth science as nanotechnology, as familiar with systems ecology as genomes, and as well versed in global information systems as bioinformatics” (E. F. DeLong, Towards microbial systems science: integrating microbial perspective, from genomes to biomes. *Environ. Microbiol.* 4:9–10, 2002). Just as integrated technology approaches are seen as increasingly necessary for addressing the big questions in microbiology, there is a growing sense that severe reductionist science, epitomized by molecular biology, has deflected attention away from an understanding of the complexities of biological system properties. I am pleased, therefore, that many of the contributions in this book directly confront or elude to these issues of technology integration and the holistic perspective.
MICROBIAL DIVERSITY AND
BIOPROSPECTING

Although this book has had a long gestation, now seems to be the appropriate time to bring together its principal themes and ideas. Equipped with a formidable set of new tools based on molecular biology, chemometrics, computing, statistics, and so on, and firmly fixed in the postgenomics era, we can begin to evaluate the effects that developments made possible by these tools are having on the way we go about exploring microbial diversity and searching for exploitable biology. The scope of this book is broad so that, in addition to those topics that might be anticipated, the reader will find other topics that are rarely considered in the context of microbial search and discovery, among them questions of biogeography, extinction, and the value of biodiversity. We also consider the implications of the Convention on Biological Diversity for microbial prospecting activities.

The book is organized in nine sections that deliberate on biotechnology and the case for natural product discovery; the resource that the microbial world presents for biotechnology; why it is important to take an ecological perspective when engaging in search and discovery; the distribution of microorganisms at the global scale and early attempts at microbial biocartography; the paradigm shift embodied in bioinformatics; some illustrations of microbial prospecting activities and their results in a range of high and not so high-added-value industries; the loss of evolutionary history and the conservation of microbial gene pools; microbiology, biotechnology innovations, and the Convention on Biological Diversity; and, finally, what we perceive as the value of biodiversity and how valuations might be made. Such a book is very unlikely to be exhaustive in its coverage; this one naturally reflects a personal survey of the landscape, and I would be pleased to have readers' thoughts on omissions and amendments that might be made. Readers also will be aware of the problems that often beset multiauthored books. Consequently, with the exception of the first and last sections, I have attempted to set the scene and provide continuity within and between the sections by way of short preambles. A few topics and authors have been lost along the way, but overall it has been possible to keep to the original plan and content.

QUAERENDO INVENIETIS!

If the reader will indulge me briefly, I wish to switch, finally and hopefully to some purpose, from microorganisms to music and in particular to Johann Sebastian Bach. A significant part of Bach's life overlapped with those of van Leeuwenhoek and Linnaeus, but this narrative concerns Frederick the Great rather than either of these notable biologists. Bach enthusiasts will recall that Frederick and Bach eventually met at Potsdam in 1747 and how the king invited Bach to improvise on a "royal theme," the result being one of the grandest and most complex inventions in the history of music—*The Musical Offering*. This composition of two fugues, ten canons, and a trio sonata was inscribed *Regis Jussu Cantio Et Reliqua Canonica Arte Resoluta* (at the king's command, the song and the remainder resolved with canonic art). The acrostic of Bach's dedication reveals "ricercar," the term for an earlier composition in the style of a fugue incorporating the most extreme devices of counterpoint, but also an adroit message in Italian—to seek out, with an implication of effort required in the search. The second ricercar of *The Musical Offering* is an astonishing six-part fugue, astonishing to the extent that Douglas Hofstadter likened it to "the playing of sixty simultaneous blindfold games of chess, and winning them" (D. Hofstadter, *Gödel, Escher, Bach*, Vintage Books, 1980). Moreover, among the canons, which were presented to the king as uncompleted musical puzzles, is one marked *quaerendo invenietis*—by seeking, you will discover. I like to think of the totality of this musical composition as the apt metaphor for biodiversity, biocomplexity, and bioprospecting, the more so because Bach and many of his contemporaries regarded music as a science; indeed Bach became a member of Lorenz Mizler's Society for Musical Sciences at the time of the *Offering's* composition. This exhortation is emphasized by Bill Strohl in the epilogue to his chapter and this, in essence, is the theme of this book.
ACKNOWLEDGMENTS

The immediate precursor of this book was an article invited by Roy Doi for Microbiology and Molecular Biology Reviews (A. T. Bull, A. C. Ward, and M. Goodfellow, search and discovery strategies for biotechnology: the paradigm shift, 64:573–606). My first thanks, therefore, to Roy for his encouragement and to Alan Ward and Mike Goodfellow for many years of stimulating and eclectic discussion and productive collaboration. As mentioned in the preface, I have incubated the contents and ideas contained in these pages for several years, and in consequence many people either wittingly or unwittingly have contributed to my thinking and to keeping fun firmly on our agenda. So many thanks to the generations of graduate students and postdocs and colleagues in various organizations and places who have helped to keep me enthused and enlightened on microorganisms.

I thank Frank Bisby for his kind gift of the Catalogue of Life 2002 annual checklist; and Iain Prance and Dan Simberloff, my editors for Biodiversity and Conservation, for helping to sustain my commitment to biological diversity in the wider context and for their staunch support of the journal since its foundation. David Wynn-Williams of the British Antarctic Survey, a generous friend and fine microbiologist, was killed during the preparation of this book (see Extremophiles 6:265–266, 2002); I am especially pleased, therefore, that the book contains an excellent account of the “icy biosphere” with which David’s career was so closely concerned.

The enthusiastic interactions that I have enjoyed with the contributors to this book have been marvelous, and I am greatly indebted to them for preparing such thoughtful and timely accounts of their specialist subjects—my warmest thanks to you all. It is a pleasure to acknowledge the support for my own research into microbial diversity and biotechnology, some of which is mentioned in this book, from the Biotechnology and Biological Sciences Research Council and the Natural Environment Research Council (U.K.), The British Council, the Department for International Development (U.K.), the International Institute for Biotechnology, and the Japan Marine Science and Technology Center.

Greg Payne has been the ideal editor with whom to work—ever solicitous, patient, and enthusiastic; to him and the production team at the ASM Press I wish to convey very special thanks and appreciation for all their efforts in bringing this book to fruition.

Finally, I want to dedicate this book to my wife Jenny for her steadfast support over the years and not the least during the preparation of this book.

Alan T. Bull
Canterbury, January 2003
SUBJECT INDEX

A
Abscisic acid, 392
Acarbose, 370–371
ACC deaminase, 395
Access and Benefit Sharing partnerships, 436–438
Access regulation, 432–433, 462–463
Accretion ice, 139
Acellular slime molds, 63
Acetobacter diazotrophicus, 206
Acetogens, 124
N-Acetylneuraminate lyase, 298
Acid precipitation, 422
Acidianus, 146–147
Acidianus in femus, 147
Acidithiobacillus ferrooxidans, 246
Acidobacterium, 21, 82–83, 132–133
Acidophiles, 146–147
Acidovorax, 205
Acinetobacter, 137, 338, 401
Aclacinomycin, 330
Aclarubicin, 349
Acremonium chrysogenum, 326, 337
Acrylamide, 5–6
Actinobacteria, 20, 132–133
Actinoleukin, 329
Actinomadura carminata, 349
Actinomadura madurae, 349
Actinomyces, 7, 74–76
antimicrobial production, 325–326, 340–342
chemotaxonomy, 291–292
deep-sea sediments, 25–26
diversity of natural products, 344, 347, 351
spore-associated, 180–182, 185
Actinozymcin, 325, 341, 363
Actinoplanes, 330, 370–371
Actinoplanic acid, 366
Actinohodin gene cluster, 304, Color Plate 9
Activated sludge, 400–402
Acyl tyrosines, 115–117
Adenyl sulfate, 170
Adriamycin, 330
Aeropyrum pernix, 149, 296
Aerotonia, 183
African violet, see Saintpaulia
Agar plate diffusion assay
antibacterial, 324–325
based on spheroplast formation, 327
compounds detected, 325–327
narrow-spectrum screening concept, 327
screen against permeation barrier, 327–328
antifungal, 328
Agriculture, 319–320, 421, 474
Agrobacterium, 394
Agrobacterium tumefaciens, 392
Air pollution, 422
Airborne microbes, 137
Akkadix-INBio RCA, 447–448
Algae, 61, 133–136, 341, 346
Algidic, 407
assays, 332
Algorithm sampling plan, 73
Alicyclobacillus acidocaldarius, 147
Alkaliphiles, 147, 151
All Species Foundation, 16
Allopatric speciation, 41, 219
Allozymes, 205
α-Divis, 73, see also Species richness
Alternaria, 345
Alteromonas, 346, 407
Alteromonas haloplanctis, 148
Altohyrtins, 183
Alveolates, 59–61
Amanita, 207
Ambrosia beetles, 198–199
Ambrosiella, 199
Ambruticin, 349
Amebae, 219, 227
Aminoglycosides, 341
Ammonia monooxygenase, 296–297
Ammonium-oxidizing bacteria, 76, 94
amoA gene, 90
Amphimedon, 183, 185
Amphimedon viridis, 178
Amphotericin B, 328, 336–337, 339, 341, 348
Amycolatopsis mediterranei, 296, 326
Amylases, 378, 382–383
Anaerobes, sulfate-reducing bacteria, 69, 169–176
Anaerobranca gottschalkii, 147
ANAEROBRANCA HORIZONIS, 147
Andrimid, 182
Andridum, 340
Animal(s)
speciation, 40–41
transport of microbes, 221
Animal feed, 6
Annotation, 251–252
Ant(s), fungus-cultivating, 198
Antarctic lake ice, 132–135
Anthracines, 344
Anthropogenic activities, 424
causing increase in microbial diversity, 422
causing reduction in microbial diversity, 421–422
with no effect on microbial diversity, 422
Antibacterials, 336, 338–340
antifoulants, 407
assays, 324–328
pediatric, 339
searching for new drugs, 246
sources for future drugs, 347-348
synergism between, 348
targets, 350
Anti-biofilm agents, 405-412
Antibiosis, 71
Antibiotics, 7
resistance, see Drug resistance
semisynthetic, 6
soil metagenomic libraries, 115-117
Antifungals, 336, 338-340
antifoulants, 407
assays
agar plate diffusion assay, 328
for inhibition of cell wall synthesis, 329
for morphological changes of hyphae, 328
sources for future antibiotics, 348-349
Antimicrobials, 317-318, 336-355
assessing DNA diversity, 346-347
bacterial diversity in production, 342-345
chemical versus biological diversity, 340-342
fungal diversity, 345-346
marine microbes, 346
need for new natural product antibiotics, 338-340
world sales, 338-339
Antiparasitic assays
in vitro, 331
in vivo, 331
Antitumor agents, 182, 336, 340, 346, 351, 356, 363-368
assays
in vitro, 329-330
in vivo, 330
sources for future drugs, 349-350
Aphids, 195-196
API20E system, 54
Apicomplexans, 59-61, 245
Aplysina aerophoba, 179, 182
Aplysina fistularis, 178
APS reductase, 169-171
Arbuscular mycorrhizal fungi, 74, 204, 207
Arbutoid mycorrhiza, 207
Arbutus, 207
Archaea, 20, 22
insect-associated, 194
sponge-associated, 181
Archaeal-like genes, 254-255
Archaeoglobus, 148-149, 228, 297
Archaeoglobus fulgidus, 149, 170, 293
Archeoglobus lithotrophicus, 149
Arenastatin A, 184
Armillaria mellea, 207
Arsenic, reduction by sulfate-reducing bacteria, 173
Arsenic contamination, 422
Arsenophonus nasoniae, 195
Arsenophonus triatominarum, 196-197
Arthrobacter, 137, 141
Arthrobacter agilis, 141
Arthrobacter glacialis, 148
Arthropod diversity, 17-18, 21, 73
Arthrospira, 217-218
Ascomycetes, 62-63
Ascomycin, 300
Aspergillus, 6, 208, 341, 345, 378
Aspergillus aculeatus, 369
Aspergillus alliaceus, 357
Aspergillus fumigatus, 339-340, 364-365, 369-370
Aspergillus terreus, 331, 356, 368-369
Asperlicin, 357
Asperuginus, 346
Atorvastatin, 368
Azoarcus, 295
Azotobacter, 391
Azotobacter chroococcum, 295
Azospirillum, 391
Azospirillum brasilense, 393-394
Azospirillum lipoferum, 393-394
Azospirillum amazonense, 393-394
Azospirillum halopraeferens, 394
Azospirillum irakense, 393-394
Azospirillum sp., 393-394
Azotobacter sp., 394
Azothobacter chroococcum, 295
Aztreonam, 337
Bacillus, 50, 149, 182, 185, 205, 337, 341, 378, 394
alkaliphilic, 147
biogeography, 229
desert-dwelling, 229
Bacillus acidocaldarius, 149
Bacillus anthracis, 50-52, 256, Color Plate 1
Bacillus brevis, 325, 337
Bacillus cereus, 51, 148, Color Plate 1
Bacillus halodurans, 296, 305
Bacillus lateosporus, 361
Bacillus licheniformis, 337
Bacillus mojavensis, 50, 229
Bacillus polymyxa, 337
Bacillus psychrosaccharolyticus, 148
Bacillus sphaericus, 50
Bacillus stearothermophilus, 149
Bacillus subtilis, 5, 46, 50, 229, 263–264, 296, 305, 344, 379, Color Plate 1

Bacillus thuringiensis, 51, Color Plate 1

Bacitracin, 337

Bacteria, see also Prokaryotes

species concept, 32–37, 41–42

phylospecies, 42–43

Bacterial artificial chromosome, 409

Bacterial diversity, see Microbial diversity

Bacterial speciation, 13, 40–48

biological factors, 44

chemical and physical factors, 43–44

constraints on genetic fluidity, 45–46

cospiculation, 44

dispersal and, 43

environmental factors, 43–44

genetic exchange and, 43

growth rates and, 43, 45

haploidy and, 45

horizontal gene transfer and, 44–45

intrinsic factors, 44–45

mutation and, 45

oligobacteria, 162–163

population sizes and, 45

Bacteriocyte, 192, 195

Bacteriome, 192, 195

Bafilomycin, 349

Baicalin, 348

Balanol, 366

Ballast water, 222

Bark beetles, 198–199

Barophiles, see Piezophiles

Basalt rocks, 125

Basidiomycetes, 62–63

Benefit sharing, 429–439, 462–463

INBio in Costa Rica, 429–430, 445–449

in practice, 436–437

β-Diversity, 15

β-Lactams, 345, 348

Bialaphos, 341, 344

Bioactivity, screening for, 317–318, 324–335

Biocartography, 232–236

Biocatalysts, 4–5, see also Enzymes

development, 317–318, 375–390

Biochemical systems theory, 282

Biocontrol agents, 205

antifoulants, 408

bacterial, 206

fungal, 208

Biodiversity, 290, see also Microbial diversity

bioprospecting for industrial enzymes, 376–381

conferred value, 430

Convention on Biological Diversity, 429–439

definition, 15

economic benefits, 472

economic valuation, 469–470

biodiversity as information, 474

equation of well-being, 470–472

in practice, 474

techniques, 475

ecosystem functioning and, 423–424

effect of anthropogenic activities

increase in microbial diversity, 422

lack of, 422

reduction of microbial species, 421–422

estimation, 16–19, 29, 424

extinction, see Extinction

hot spots, 77, 419, 458–466

International Cooperative Biodiversity Groups, 458–466

loss of, 469

evidence for, 415–416, 421–425

irreversibility, 474

significance, 422–423

loss of evolutionary history, 415–420

overview, 15–28

Biofilms, 94–95, 110, 398

anti-biofilm agents, 405–412

Biofouling, 405–412

Biofuels, 3

Biogeochemical cycles, 109

Biogeography, 288, 419

body size and, 225–227

dispersal of free-living microbes, 213–214, 216–224

microbial endemism, 213–214, 223–231, 419

studies of small-subunit RNA, 228–229

Yellowstone National Park Microbial Database and

Map Server, 214, 232–236, Color Plates 3 through 7

Bioinformatics, 4, see also Genomics; Phenomics;

Proteomics

definition, 241–242

environmental and industrial applications, 246–247

enzyme discovery, 379

impact on biological research, 243

integration and interoperability, 243–244

medical applications, 244

paradigm shift in microbial prospecting, 239–249

pharmaceutical applications, 245–246

Bilog methodology, 54

Biological species concept, 31–32, 40

Biomaterials, 321–322

Biomimetics, 321–322

Biopiracy, 434, 442–443

Bioprospecting

colonial, 440–441

definition, 445

discursive icons related to, 442

effect of species loss, 423

historical context, 429–430, 440–444

how to search, 69, 71–78, 306

INBio experience, 429–430, 445–449

International Cooperative Biodiversity Groups, 458–466

major lineages as prolific producers, 305

paradigm shift, 239–249

postwar, 441

scope and issues, 6–9

taxonomy as roadmap, 239–240, 288–313
where to look, 76–77
Yellowstone-Diversa agreement, 429–430, 450–457
Bioprospecting targets
anti-biofilm agents, 317–318, 405–412
antifoulants, 317–318, 405–412
antimicrobials, 317–318, 336–355
biotreatment, 317–318, 397–404
enzymes, 317–318, 375–390
pharmacological agents, 317–318, 356–374
plant growth-promoting agents, 317–318, 391–396
screening for bioactivity, 317–318, 324–335
Bioreactor design, 398
Bioremediation, 173, 246, 397
Bioscreen C system, 281–282
Biosensors, 322
Biotechnology
applications, 3
clean, 5
contribution to sustainable industry, 5
impact, 5–6
sectors and markets, 317–323
Biotin synthesis, 382
Biotransformation, linking microbial community structure
with function, 93–95
Biotreatment, 173, 317–318, 397–404
ex situ, 398
in situ, 397
novel microbes, 399–400
Bisabosquals, 369
Bisulfite reductase, 169–170
Black smokers, 148
Blasticidin S, 349
Blochmannia, 196–197
Borrelia burgdorferi, 273, 293
Borrelia garinii, 263
Botanical gardens, 435, 441, 464
Branhamella catarrhalis, 267
Bradyrhizobium, 205
Brochothrix thermosphacta, 148
Busy Lizzie, 440–442
By-product secretion, 281
C
Cadmium contamination, 422
Cafeteria roenbergensis, 218
Calicheamycins, 364–365
Calyspospora truncata, 184
Callyspongia flabellata, 181
Candida albicans, 63, 245, 339–340
Candida, 340
Candidatus Accumulibacter phosphatis, 402
Candidatus Brocadia anammoxidans, 399
Candidatus Competibacter phosphatis, 402
Candidatus Endobugula sertula, 186
Candidatus Kuenenia stuttgartiensis, 399
Candidatus Pelagibacter ubique, "82, 85
Capacity building, 446–447
Carbon cycle, 167
Cardiovascular drugs, 368–371
Carbonmonycin, 349
Carnobacterium, 148
Carpenter ants, 196–197
Caryomycin, 329
Casafungin, see Candida
Caulobacter crescentus, 164, 253, 296
Cefoxitin, 337
Cell membranes, under pressure conditions, 154–155
Cell size, 160–161
Cellular slime molds, 63
Cellulase, 4, 378, 382–383
Cenarchaeum symbiosum, 115, 181
Cepacidine A, 349
Cephalosporins, 6, 326, 336–337
Cephalexin C, 327, 348
Ceratoporella nicholsoni, 179
Cercospora rosicola, 392
Cervivastatin, 368
Chactomellic acid, 366
Chlamydia pneumoniae, 305
Chlamydia trachomatis, 305
Chloramphenicol, 326, 336–337, 341
Chlorobium tepidum, 46
Chlorofusin, 366–367
(S)-Chloropropionic acid, 6
Chlorotetracycline, 337
Choanoflagellates, 62
Cybernetic modeling, 282
Cyclodactylus oligotrophus, 75, 82, 85, 161-162, 166-167
Cycloserine, 326, 337, 341
Cyclosporin, 328, 345, 351, 356, 359-361, 429, 441-442
Cylinder plate assay, 325
Cymbimicins, 361-362
Cystathiazole, 349
Cytochrome bd, 173
Cytochrome c
- c-type cytochromes under pressure, 155-157
 - multiheme c-type cytochromes, 169, 172-173
Cytokinins, 394
Cytophaga, 341
Cytophagales, 133
Dactinomycin, 349
Dalfopristin, 348
Data mining, 243
Database, molecular biology, 243-244
Daunomycin, 356, 363
Daunorubicin, 300, 330, 344, 349
Deep biosphere, 69, 120-129
 - cold, 125-126
 - marine sediments, 120-124
 - petroleum and coal reservoirs, 124
 - significance, 126-127
 - terrestrial, 124-125
Deep-sea environment, 18-19, 25-26, 72, 75-76, 148, 154
Deep-sea subsea floor biosphere, 417-418
Deforestation, 422
Dehalococcoides ethenogenes, 399
Dehalogenase, 6
Deinococcus radiodurans, 256
Deletions, see Gene deletions
Denaturing gradient gel electrophoresis, 91-92
Dercitamide, 183-184
Dereplication, 9, 20, 343, 350, 357-358
 - pharmacological agents, 357-358
 - at species level, 305-306
Desert locust, 193
Desmids, 221
Desulfbacter, 172
Desulfbacterium, 171
Desulfbacterium autotrophicum, 172
Desulfbacterium catecholicum, 172
Desulfbacula, 297
Desulfbacula toholica, 297
Desulfbulbus, 171-172
Desulfbulbus propionicus, 171-172
Desulfococcus, 149, 171
Desulfococcus multivorans, 172
Desulfmicrobium, 170, 172
Desulfmicrobium baculatum, 172
Desulfmicrobium norvegicum, 173
Desulfomaculum, 170-172, 297
Desulfomaculum auripigmentum, 173
Desulfomaculum reducens, 173
Desulfomaculum ruminis, 297
Desulfomaculum thermostaterum, 297
Desulfovibrio, 169-172
Desulfovibrio aminophilus, 171
Desulfovibrio desulfuricans, 170-173, 296
Desulfovibrio fructosovorans, 171, 173
Desulfovibrio gigas, 170, 172-173
Desulfovibrio profundus, 123-124
Desulfovibrio sulfodismutans, 171
Desulfovibrio termidris, 172-173
Desulfovibrio vulgaris, 171, 173, 246
Determomyces, 62-63
Developing countries, Convention on Biological Diversity, 431-439
2,4-Diacetylphloroglucinol, 349
Diagnostic species concept, 31
Diatoms, 60-61, 219-221, 322
Diazotrophs, icy biosphere, 135
Dicarboxylic acid acylase, 6
Dictyostelium, 63
Dictozia, 292
Dihydromaltophilin, 349
Disocyanodociane, 183
Diketopiperazines, 182
Dilute environments, 69, 160-168
Dilution culture, see Extinction culture
Dimethyl sulfoxide reductase, 296-297
Dimethyl sulfoxide reductase, 296-297
Dinoflagellates, 60-61, 217, 341
Dinophysis, 183
Diplomonads, 63-64
Directed evolution, 247-248
 - industrial enzymes, 383-386
 - candidates for basis of next generation, 385
 - coupling DNA mutants and protein variants, 384-385
 - DNA variation, 384
 - iterative aspect, 385-386
Dirithromycin, 350
Disciplinary matrix, 241
Discoderma, 179
Discoderma dissoluta, 185
Discodermolide, 184
Discounting, 471, 473
Dispersal, free-living microbes, 213-214, 216-224
Diversa Corporation
 - Diversa-INBio RCA, 447-448
 - Yellowstone-Diversa CRADA, 429-430, 450-457
DNA
 - environmental, 75, 88, 346-347
 - detecting unculturable bacteria, 22-23
 - dot blot hybridization and gene arrays, 92-93
 - extraction, 88-89
 - molecular analysis, 89-93
 - molecular fingerprinting, 91-92
 - PCR, cloning, and sequencing approach, 90-91
 - oligobacteria, 161-162
DNA sequencing, 9
 - environmental DNA, 90-91
 - methods, 250-251
 - whole-genome, 250-251, 297-298, 305
DNA shuffling, 247, 385
DNA-based typing methods, 35
DNA-DNA hybridization
delineation of bacterial species, 33–35
microbial identification, 50–51, 55
species concept based on, 41–42, 47
DNase, 382
Docetaxel, 349–350
Doratomyces, 208
Dormancy, 100–105
Dot blot hybridization, quantitative, 92–93
Doxorubicin, 349, 356, 363
Drosophila, 195
Dunaliella, 150
Dust storms, 221
Dysidea, 182
Dysidea arenaria, 184
Dysidea avara, 183
Dysidea herbacea, 177

E
E-CELL project, 247
Echinocandins, 328–329, 336, 340, 346, 349
Ecome, 243
Economics, environmental, 469–475
Ecosystem functioning, microbial diversity and, 423–424
Ecosystem functions, 472
Ecosystem resilience, 472, 474
Ecosystem restoration, 205, 207
Ecteinascidia turbinata, 186–187
Ecteinascidins, 186–187
Ectoines, 151
Ectomycorrhizal fungi, 206–207
Edmonds Institute v. Babbitt, 452–453
Elaophylin, 300, 302–303, 306
Elementary mode analysis, 282
Emiliax buxleyi, 217–218
Encephalitozoon cuniculi, 62
Endangered habitats, 416
Endemism, see Microbial endemism
Endophytes, 204
bacterial, 206
fungal, 18
of leaves, 208
Endosymbiont theory, 57
Energy yield, genome size and, 47
Enfumafungins, 346, 349
Enhanced biological phosphorus removal, 400–402
Enrichment methods, 83–84
Entamoeba bistolytica, 58
Enterobacter, 391, 394
Enterobacter cloacae, 395
Enterococci, vancomycin-resistant, 338
Environmental DNA, see DNA, environmental
Environmental economics, 469–475
Environmental genomics, see Metagenomic libraries
Environmental impact statement, 452–453
Environmental permits, 437

Enzymes
chemotaxonomy, 291
enzyme inhibitory assays, 330
extremophiles, 4, 151–152
industrial, 4, 151–152, 317–320, 375–390
bioinformatics in enzyme discovery, 379
bioprospecting, 376–381
cloning from nonculturable microbes, 380–382
cloning to obtain enzymes for testing, 378
directed evolution, 383–386
genome analysis for novel genes, 379–380
manufacturers, 375
metagenomics approach, 380–382
molecular screening, 378–379
rational protein engineering, 381–383, 386
screening based on culturing of microbes, 377–378
screening programs, 375–376
worldwide use, 375

Ephemeral habitats, 416
Epigallocatechin gallate, 348
Epothilones, 349–350, 364–365
Epoxomicin, 368
Eupharpiscium fisheloni, 236
Equation of well-being, 470–472
Erbstatin, 366
Ergokinin A, 349
Ergot, 356
Ergotamine, 345
Eriocid mycorrhiza, 207
Erwinia, 148
Erythromycin, 326, 336–337, 341
Erythromycin resistance, 274
Escherichia coli, 225, 296, 299, 305
comparison with primate host species, 42
environmental, 110
genome sequence, 20, 256, 298
genome size, 46
in silico strains, 247
phenomics, 283–286
proteome database, 263–264
specific affinity, 166
Escherichia coli O157:H7, 255
Esvovopsis, 198
Esterases, 382, 453
Ethericins, 328
Ethnomedicine, 461
Ethylene, 391–392, 394
Euglenids, 62
Euglenozoa, 61–62
Eukaryotic microbes
alveolates, 59–61
biogeography, 226–227
definition, 57–59
diplomonads, 63–64
diversity, 21–22
eyearly, 58
euglenozoa, 61–62
evolutionary relationships, 57–58
foraminifers, 63
heterokonts, 61
lineages, 59–64
metabolism, 58
mycetozoans, 63
opisthokonts, 62–63
parabasalids, 63
photosynthetic, 58–59
species concept, 31–32
Eupenicillium, 208
Euplotes aediculatus, 218
Europa (moon of Jupiter), 131
Evaporite lagoons, 150
Everninomycin, 337
“Everything is everywhere” concept, 422–423

Evolution
cold-adapted species, 140–141
directed, see Directed evolution
eukaryotes, 57–58
on frozen earth, 131–132
loss of evolutionary history, 415–420
plant-microbe associations, 204
resuscitation-promoting factor, 105–106
understanding genomics, 254–255

Evolutionary species concept, 31
Ex situ programs, conservation of microbes, 416

Exiguobacterium, 141
Exploitable microbiology, 3–5, 7
exhaustion of exploitable organisms, 7–8
Expression cloning, enzyme production, 378
Extinction, 415–420, 422–423, 434
habitat destruction, 419
random vs. nonrandom nature, 418–419
Extinction culture, 75–76, 82, 84–85, 163, 409
Extraterrestrial life, 125, 127, 130–131, 142
Extreme halophiles, 150–151
Extreme pathway analysis, 282
Extreme thermophiles, 149
Extremophiles, 69, 146–153
biocatalysis by, 4, 151–152
growing around boiling point of water, 148–149
growing around freezing point of water, 147–148
growing at extreme salinity, 150–151
living at extreme pH, 146–147
living at high pressure, 154–159

F

F_{ST}, 25

Faerifungin, 339
Family shuffling, 247, 385–386
Fatty acid analysis, microbial identification, 53, 55
Fatty dienic alcohols, 115–117
Favolaschia pustulosa, 358–359
Feed enzymes, 6
Feedstocks, industrial, 3–4
Fermentation, by sulfate-reducing bacteria, 171

Fervidobacterium, 52, 149

Fervidobacterium pennivorans, 149
“Field of bullets” scenario, 418–419
Filter disk plate diffusion assay, 325
Fjord water, 82
FK506, 300, 341, 351, 360–361
Flagellates, 217–219

Flavobacterium, 166, Color Plate 2

Flexibacter polymorphus, 292–293

Flucnazole, 339–340

Fluorescent in situ hybridization, 84, 94

Fluvastatin, 368

Flux-balance analysis, 282–284

Fog particles, 137

Fourier-transform infrared spectroscopy, microbial identification, 53–55, 292

Francisella tularensis, 272–273

Free-living microbes
absolute abundance, 216–217
mechanisms of dispersal, 220
animals, 221
human activities, 221–222
wind and water, 220–221
ubiquitous dispersal, 213–214, 216–224
evidence from genotypes, 217–219
evidence from morphospecies, 217
evidence from sibling and physiological species, 218–219
indirect evidence, 219

Friedmanniella antarctica, 141

Friedmanniella spumicola, 141
Fumagillin, 364–365

Functional diversity, 15

Functional genomics, 250, 252, 255–256, 260

Functional redundancy, groups of microbes, 415

Functional screening assays, enzymes, 376

Fungi, 62–63
aerial transport, 221
antimicrobials from, 341, 345–346, 351
diversity, 17–18, 22
insect-associated, 198–199
plant-associated, 205–208
sponge-associated, 182
Fungus-cultivating insects, 198–199
Fusaric acid, 392

Fusarium, 345, 378

Fusarium oxysporum, 208

Fusidic acid, 337, 341, 345
Fusidium coccineum, 337

G

G+C content, 35, 42

γ-Diversity, 15

Gas hydrate sediments, 121–122
Gasoline contamination, 421–422
Gemtuzumab ozagamicin, 364

Gene(s)
identification, 251–252
inferring from biomarkers, 291–292
lineage-specific loss, 22
taxonomy and, 291–298

Gene deletions, flux-balance analysis, 284
INDEX 485

Gene expression, 260, 288, see also Proteomics
 drug-induced, 275
 in vivo expression technology, 270–273
 studies of, 256
Gene pool, microbial, loss of, 415
Gene trapping methods, 380
Genetic diversity, 23–25
Genetic fluidity, 45–46
Genetic headroom, 20
Genetic resources, 3
Genome
 oligobacteria, 161–162
 species genome, 20, 36
Genome sequencing, 250–252, 297–298, 305
Genome size, 76
 bacteria, 46–47
 Buchnera, 195–196
 upper limit, 47
Genome species concept, 297, 306
Genomics, 241, 243, 249–259
 bioinformatics analysis of genome sequence, 251–252
 eukaryotic, 254
 functional, 250, 252, 255–256, 260
 insights into metabolic diversity, 252–254, Color Plate 8
 limitations, 260, 280
 sequencing methods, 250–251
 tools for comparing genomes, 252–254
 unculturable species, 250, 256–257
 understanding evolution, 254–255
Genotype-phenotype relationship, 280–287
Geobacter metallireducens, 296
Geographic information systems, Yellowstone National Park Microbial Database and Map Server, 214, 232–236, Color Plates 3 through 7
Geography, bacterial speciation and, 43–44
Giardia, 58
 Giardia lamblia, 63–64, 295
Gibberella fujikuroi, 392
Gibberellins, 392, 394
Glaciers, 125–126, 136–138, 148
Glarea lozoyensis, 337
Gldobactin, 349
Global Biodiversity Information Facility, 244
Glomus, 394
Glucose isomerase, 4
Glucosidases, 330
Glyceraldehyde phosphate dehydrogenase, 274
Glycogen-accumulating organisms, 400–402
Glycogens, 453
Gonium pectorale, 218
Gordonia, 292
Gramicidin, 337, 341
Green fluorescent protein, 94–95
Griseofulvin, 328
Growth rate, 280
 bacteria, 43, 45, 81, 160
Gut microbes, insect-associated, 192–194, 200
Gymnacrus, 208
Gymnodinium, 218
Gymnodinium catenatum, 217
H
 Habitat destruction, 416, 419
 Habitat simulation, 74
 Haemophilus influenzae, 225, 246, 267, 274
 genome sequence, 250
 proteome database, 263–265
 Haliangcin, 349
 Halichondria melanodocia, 183
 Halichondria okadai, 183, 185
 Halichondria panicea, 182
 Halichondrin B, 184
 Haliclona, 183, 185
 Haloalkaliphiles, 147
 Haloanaerobium praevalens, 150
 Haloarcula marismortui, 296, 299
 Halobacteria, 150
 Halobacterium denitrificans, 150
 Haloferax vulcanii, 150
 Halophiles, 150–151
 Haploidy, bacterial speciation and, 45
 "Hardangervidda fungus," 441–442
 Heavy metal contamination, 422
 Hebeloma, 207
 Helicobacter pylori, 245, 267–268, 273–274, 284, 305
 drug-induced gene expression, 275
 genome sequence, 256
 proteome database, 263, 265–266
 Herbaspirillum, 205
 Herbicides, 422
 assays, 331–332
 Heterokonts, 61
 Heterotrophs, icy biosphere, 135
 Hierarchical Classification System, 244
 High-pressure environment, 154–159
 High-fructose syrup, 4
 High-throughput screening, 324, 356–357
 Hindgut microbes, 192–193
 Histoplasm capsulatum, 339–340
 HMG-CoA reductase inhibitors, 330–331, see also Statins
 Holophaga, 132
 Homocysteines, 125
 Homoaerothionin, 183
 Horizontal gene pool, culture-independent study, 95–96
 Horizontal gene transfer, see Lateral gene transfer
 Hot fumaroles, 148
 Hot spots, biodiversity, 77, 419, 458–466
 Hot springs, 146, 148
 Human genome, 298
 Hurricanes, 221
 Hyatella, 182
 Hydrogen sulfide, 172
 Hydrogenase, 169–173
 Hydrothermal vents, 83, 148, 154, 227–228
 4-Hydroxybutyrate dehydrogenase, 382
 Hygromycin, 344
 Hyaunaron synthase, 298
 Hymenoscyphus ericae, 207
 Hypaphorine, 341
 Hypersaline sites, 76, 147
 Hyperthermophiles, 148–149, 151, 227–228
Hypomyces, 208
Hypothesis-driven science, 243
Hypoxylon, 345
Hyrityos altum, 183

I
Iceobacter, 217
Icy biosphere, 130–145
cold deep biosphere, 125–126
cold-adapted species, 140–141
cryoconite holes, 135–136
evolution on frozen earth, 131–132
extraterrestrial life, 130–131
glacial ice, 136–138
microbes growing around freezing point of water, 147–148
permanent Antarctic lake ice, 132–135
subglacial lakes, 139–140
Idarubicin, 349
Igneococcus, 148
Igneous rock, 125
Ignicoccus, 228
Illicicolin, 349
Imipenem, 327, 336–337
Immunocompromised patients, 339
Immunosuppressive agents, 359–363
Impatiens sultani, see Busy Lizzie
In silico strains, 247
In situ hybridization, whole cells, linking microbial community structure with function, 94
In situ programs, conservation of microbes, 416
In vivo expression technology, 270–273
INBio (Costa Rica), 429–430, 437, 445–449
achievements of bioprospecting, 448
Akkadix-INBio RCA, 447–448
Chagas space program, 448
Diversa-INBio RCA, 447–448
future, 449
La Gavilana RCA, 448
Merck & Co-INBio RCA, 445, 447–449
microbial bioprospecting agreements, 447–448
research collaborative agreements, 445–447
Indigenous peoples, 462–463
Indirubin, 115–117
Indoleacetic acid, 394
Indole-3-glycerol phosphate synthase, 248
Industrial sectors, penetration of biotechnology, 319–320
Infrared spectroscopy, microbial identification, 53–55, 292
Insect-associated microbes, 191–203
bioprospecting within, 199–200
ectosymbionts, 198–199
extracellular endosymbionts, 192–194
intracellular endosymbionts, 194–198
terminology, 191–192
Insulin mimetic, 371
Intellectual property rights, 437, 462–463
Intercontinental trade, 221–222
International Agricultural Research Centres, 435
International Cooperative Biodiversity Groups (ICBG), 429–430, 458–466
access, intellectual property rights, and benefit sharing, 462–463
bioprospecting results, 460–461
capability and capability accomplishments, 463
conservation outcomes
capacity-building efforts, 464
dissemination of findings, 465
ex situ botanical conservation, 464
integrated conservation and development, 464–465
natural resources management, 464
interactions with industrial partners, 462
program summaries, 458–460
International law, 429
International Treaty on Plant Genetic Resources for Food and Agriculture, 434–435
Intertidal sediments, 74
Inventive problem solving, 321
Inventory project, 73
Invertebrates, marine, 186–187
Ionophores, rhizosphere, 392–393
Irma, 185
Irinotecan, 349–350
Iron-reducing bacteria, 94, 173
Isaria sinclairii, 361–362
Isopentyladenine, 392
Isoprenoids, 291, 293–295, 341
Isotope-coded affinity tags, 262
K
Kanamycin, 337
Kasugamycin, 341
Keratinase, 382
Ketoconazole, 339–340
Kinetoplastids, 62
Kissing bugs, 196–197
Kitasatospora, 368
Klebsiella, 394
Klebsiella oxytoca, 193, 296
Klebsiella pneumoniae, 296, 305
Kluyvera ascorbata, 395
L
L-671,776, 358–359
L-783,281, 370–371
La Gavilana S.A., 448
Labyrinthula macrocystis, 61
Labyrinthulids, 61
Lactacystin, 367–368
Lactic acids, chiral, 4
Lactobacillus casei, 50
Lactobacillus paracasei, 50
Lactococcus lactis, 337
Ladybird beetles, 195
Lake Vostok, Antarctica, 126, 130, 139–140
Land tenure, 437
Landfills, 398
Latency, 100
Latent gene transfer, 22, 32, 57–58, 254–255, 288, 293–300, 305
bacterial speciation and, 44–45
prokaryotes, 35–36
Lateral gene transfer, 22, 32, 57–58, 254–255, 288, 293–300, 305
bacterial speciation and, 44–45
prokaryotes, 35–36
Latrunculins, 183
Laulimalide, 350
Legionella pneumophila, 271
Leishmania, 246
Leishmania donovani, 272
Leishmania major, 62
Leninus edodes, 206
Leptodontium elatius, 368
Letters of intent, 437
Liplomycin, 329
Lichens, 207
LightCycler, 52
Lincomycin, 336–337, 341
Linezolid, 350
Lipases, 382–383
Lipids, membrane, under pressure conditions, 154–155
Lipopolysaccharides, 291
Lipstatin, 370–371
Lissodendoryx, 184
Listeria monocytogenes, 148, 267, 271
Lovastatin, 330–331, 341, 351, 368–369
Lucilactaene, 366
Luffisphaera, 219
Lyngbia, 346
M
Magainins, 322
Magnaporthe grisea, 205
MALDI-TOF mass spectrometry, 54
Manganese, reduction by sulfate-reducing bacteria, 173
Manufacturing industries, 319–320
Manzamines, 180, 185–186
Marasmiellus, 362–363
Marine environment, 8, 18–19, 81–82, 84–85, 419
bacterial diversity, 25–26, 346, 405–412
invertebrates, 186–187
Marine industries, biofouling, 405–412
Marine saltern, 150
Marine sediments
basement rock beneath, 123
deep, 120–124
Marine sponges, see Sponge(s)
Marinobacter arcticus, 165
Marker genes, 94–95
Market(s), for biotechnology products, 321
Market forces, 470
Mars, life on, 130–131
Mass extinction, 417–419
Mass spectrometry, 262, see also specific types of mass spectrometry
Material Transfer Agreement, 436–437
Matsuebacter chitosanotabidus, 82–83
McMurdo Dry Valleys, 132–135
Mealybugs, 196–197
Media, 81
Memnoniella echinata, 358–359
Memorandum of understanding, 437
Merck & Co-INBio RCA, 445, 447–449
Mercury contamination, 422
Mesorhizobium, 205
Metabolic control analysis, 282
Metabolic diseases, drugs to treat, 368–371
Metabolic diversity
eukaryotic microbes, 58
P. falciparum, Color Plate 8
Metabolic engineering, 246, 282
Metabolic measurements, 280–281
Metabolism
linking microbial community structure with function, 93–95
oligobacteria, 162
reconstructing pathways from genome analysis, 253–254
Metabolome, 243, 260
Metagenomic libraries
heterologous gene expression, 117
screening for industrial enzymes, 380–382
soil microbes, 109–119
biological insights from, 115–117
challenges and limitations, 115
experimental strategy, 113–114
future, 117
metagenomics as experimental strategy, 113–114
Metal reduction, sulfate-reducing bacteria, 173
Metallosphaera, 147
Meteorological events, extreme, 221
Methane, 162
Methanobacterium thermoautotrophicum, 46
Methanobrevibacter, 194
Methanococcus, 148–149
Methanococcus jannaschii, 46, 149, 155
Methanogens, deep biosphere, 124–125
Methanohalobium evestigatum, 150
Methanomicrococcus blatticola, 194
Methanopyrus, 148–149
Methanopyrus kandleri, 149
Methanosarcina barikeri, 295
Methanothermus, 149
Methanothermus fervidus, 146, 149
9-Methoxystrobilurin E, 358–359
Methyllobacterium extorquens, 246
Mevastatin, 331, 368–369
Mevinolin, 208, 330–331, 356
Micafungin, 340
Microarray technology, 243–244, 246, 250, 255–256, 424, Color Plate 1
analysis of environmental nucleic acids, 92–93
Microautoradiography, 94
Microbacterium, 182
MicrobeLynx system, 55
Microbial area-species curve, 73
Microbial cosmopolitanism, 225–226
eukaryotic microbes, 226–227
prokaryotic microbes, 227–228, 230
Microbial diversity, 4, 340, see also Biodiversity
bacterial speciation, 13, 40–48
defining, 13, 29–39
disproportionate taxonomic effort, 21
estimating and comparing uncountable species, 22–25
eukaryotic, 13, 57–65
mapping, 214, 232–236
marine bacteria, 25–26
microbial identification, 13, 49–56
numbers and diversity, 20–21
phylogenetic framework, 21–22
supersaturated coexistence, 71–72
unit of count, 19–20

Microbial ecology
deep biospheres, 69, 120–129
dilute environments, 69, 160–168
extremophiles, 69, 146–159
icy biosphere, 130–145
insect-associated microbes, 191–203
plant symbions, 69, 204–210
resuscitation of uncultured microorganisms, 100–108
soil metagenomics, 69, 109–119
sponge-associated microbes, 177–190
sulfate-reducing bacteria, 69, 169–176

Microbial identification, 13, 49–56
approaches, 49
cell composition, 53–55
DNA-DNA hybridization, 50–51, 55
fatty acid analysis, 53
Fourier-transform infrared spectroscopy, 53–55, 292
mass spectrometry, 54
nucleic-acid-based procedures, 49–52
PCR-based procedures, 51–52, 54–55
physiology-based methods, 54–55
protein analysis, 52–53
ribotyping, 52
Micrococcus, 182
Micrococcus cryophilus, 148
Micrococcus letens
dormancy and resuscitation, 101
resuscitation-promoting factor, 102–105

Microcolony technique, 81
Microcytis, 217
Microdochium caespitosum, 366–367
Microfossils, 417
Micromanipulation, 83–84
Micromonospora, 350, 361
Micromonospora carbonacea, 337
Micromonospora chalcea, 340
Micromonospora echinospora, 364–365
Microorganisms Sustainable Use and Access Regulation
International Code of Conduct (MOSAICC), 435–436
MicroSeq 500 Bacterial Identification System, 50
Microsphaeropsis, 182
Microsporidians, 62
Mining practices, effect on microbial diversity, 421

Mithramycin, 349, 363
Mitomycin C, 341, 349, 356, 363
Mitoxantrone, 349
Mobile genetic elements, culture-independent study,
95–96
Moderate halophiles, 150
Moderate thermophiles, 148–149
Molecular complexity index, 8
Molecular ecology, 290
Molecular phylogeny, 17, 75
Molybdenum, reduction by sulfate-reducing bacteria, 173
Monascus, 208, 345
Monascus ruber, 331
Monensin, 337, 341
Monophyletic species concept, 31, 34
Monorden, 358–359
Monotropoid mycorrhiza, 207
Moraxella, 148
Moritella, 155, 293
Moritella japonica, 155
Moritella marina, 148
Moritella yayanosii, 155
Morphologic species concept, 31–32, 40, 217
Morphospecies, see Morphologic species concept
MOSAICC, 435–436
Most-probable-number methods, 81, 83, 102
mRNA expression profiles, 256
MUMmer, 252
Mupirocin, 337
Muramic acids, 292
Mutagenesis, 384
Mutation, bacterial speciation and, 45
Mycetocyte, 192
Mycetome, 192
Mycetozoans, 63
Mycobacterium, 291–292
Mycobacterium avium, 103, 272
Mycobacterium bovis, 103, 269–271, 296
Mycobacterium leprae, 76, 103
Mycobacterium smegmatis, 272
Mycobacterium tuberculosis, 76, 103, 268–273, 296, 345
drug-induced gene expression, 275
drug-resistant, 339
proteome database, 263, 266
Mycolic acids, 291–292
Mycoplasma genitalium, 247, 250
Mycoplasma pneumoniae, 263, 268
Mycophenolic acid, 345, 361
Mycoplasma, 267
Myriocins, 361–362
Myxalamide, 349
Myxin, 349
Mycoparasites, 343, 349, 351
Myxococcus, 46

N
NADH oxidase, 172
“Nanoarchaeum equitans,” 46, 228
Natamycin, 349
National Environmental Policy Act, 452–453
National Park Service
bioprospecting on federally owned land, 450–457
current state of bioprospecting in parks, 453–454
evaluation of bioprospecting in parks, 454–456
Natural products, 3, 7–8
biosynthesis, taxonomic distribution, 299
dereplication methods, see Dereplication
 gene libraries, 346–347
marine, 8, 346
pharmacological agents, 317–318, 356–374
screening for bioactivity, 317–318, 324–335
taxonomy as roadmap to genes, 239–240, 288–313
Navicula pelliculosa, 322
Negombata magnifica, 183
Neisseria gonorrhoeae, 267
Neisseria meningitidis, 225, 256, 267, 297, 305
Nematode diversity, 21
Neomycin, 336–337
Nigericin, 302–303, 306
Nikkomycin, 328, 340–341, 349
Nisin, 337, 341
Nitrate reductase, 172, 296–297
Nitrate reduction, dissimilatory, by sulfate-reducing
 bacteria, 172
Nitrile hydratase, 5–6
Nitrite reductase, 172
Nitrite-oxidizing bacteria, 94
Nitrobacter, 400
Nitrogen, removal from wastewater, 398–399
Nitrogen fixation
 icy biosphere, 133, 135
 rhizobia, 205–206
 sulfate-reducing bacteria, 172
taxonomic significance, 295
Nitrogenase, 295
Nitrospiria, 297, 399
Nocardia, 291–292
Nocardia lactamdurans, 327, 337
Nodulisporic acid, 341
Nodulisporium, 208, 345
Nonactin, 344
“Nonculturable” organisms, see Unculturable/uncultured
 microbes
Nonparametric estimators, 24
Nonproportionate sampling, 73
Nonuse value, 472
Nosocomial infections, 338
Novobiocin, 326, 337
Nrramp gene, 272–273
NtrB-NtrC system, pressure-regulated, 157–158
Nuclear dualism, 59
Numerical taxonomy, 19, 33
Nyctotherus ovalis, 58, 193
Nystatin, 328, 336–337, 339, 348
O
O-antigens, 297, 306
Ocean circulation, 221
Oceanapia sagittaria, 183
Octadecabacter, 227
Oidiodendron, 207
Oidiodendron griseum, 363
Okadaic acid, 183
Oligobacteria, 69, 160–168
activity control by substrate concentration, 163–167
composition, 161
metabolism, 162
speciation, 162–163
transporters, 162–167
viability, 163
Oligomycin, 349
Oligonucleotide fingerprinting, 51–52, 424
Oligonucleotide microarray, 51, Color Plate 1
Oomycetes, 61
Open reading frame analysis, 251–252, 260
Operational taxonomic unit, 19, 23
Opisthonia, 199
Opisthokonts, 62–63
Opportunity costs, 469–470
Optical tweezers, 84
Option agreements, 437
Orbulina universa, 218, 221
Oreganic acid, 366
Origins of life, 131–132, 142
Orlistat, 371
Oscillatoria chalybea, 296
Oscillatoria spongelliae, 177
Outer-membrane proteins, piezophiles, 156
Oxygen
 reduction by sulfate-reducing bacteria, 172–173
 uptake rate, 280
Oxytetracycline, 337, 341
P
P test, 25
Pachyphellina, 185
Paclitaxel, 349–350
Paedilomycyces, 208, 345
Paenibacillus, 295
Paenibacillus validus, 74
Palaeococcus ferrophilus, 155
Panamycin, 349
Pantoea agglomerans, 193
Parabasalids, 63
Paracoccus denitrificans, 296
Paradigm shift, microbial prospecting, 239–249
“Paradox of the plankton,” 71
Paramecium aurelia, 218
Paramecium primaurelia, 218
Paramecium tredecaurelia, 218
 PARAMETRIC estimators, 23–24
Parapatric speciation, 41
Paraphysomonas, 219, 227
Patenting, 442–443, 453, 456
Pathogenesis
 in vivo-induced protein synthesis, 270–273
investigations at proteome level, 268–273
Pathogens, biogeography, 225
PCR-based analysis
 environmental nucleic acids, 90–91
 microbial identification, 51–52, 54–55
 Taq polymerase, 450–451
Pediococcus, 52
Pellina, 185
Peloruside A, 350
Penicillin, 324, 336–337, 341, 345
 Penicillin G expandase, 6
 Penicillium, 208, 331, 368–369
 Penicillium chrysogenum, 6
 Penicillium citrinum, 368–369
 Penicillium griseofulvum, 328
 Penicillium notatum, 324, 337
 Pentostatin, 349
 Peptaibol, 349
 Peptide mass fingerprinting, 262
 Peptide synthetases, nonribosomal, 341
 Peptidoglycans, 291–292
 Peptimycin, 329
 Perchlorate-reducing bacteria, 219
 Periodicity atlas, 252
 Periwinkle, 349, 441–443
 Permafrost, 130
 Pestalotiopsis microspora, 205
 Petroleum reservoirs, deep, 124
 Petromia, 185
 Pfisteria piscicida, 218
 Phage display technology, 322
 Pharmacogenomics, 245
 Pharmacological agents, 3, 8, 317–318, 356–374
 development using proteomics, 273–275
 diversity, reactivity, and toxicity of natural products, 358–359
 high-throughput screening, 356–357
 sample presentation and chemical dereplication, 357–358
 searching for new drugs, 245–246
 sponge-associated microbes, 181–182
 trends and prospects, 371–372
 Phenazine-1-carboxylic acid, 206
 Phenetic (polythetic) species concept, 31, 33–34
 Phenome, 243
 Phenomics, 239–241, 280–287
 flux-balance analysis, 282–284
 gene deletions, 284
 impact on biotechnology, 285–286
 measurement tools, 281–282
 phenotypic measurements, 35, 280–281
 phenotypic phase plane analysis, 284–285
 predicting and analyzing data, 282–285
 Phenotype Microarrays, 281
 Phenotypic phase plane analysis, 284–285
 Phepropeptins, 368
 Pheromones, bacterial, 102
 Pheolymycins, 329
 Phoma, 76–77, 208, 345, 363, 369
 Phomopsis, 363
 Phosphoribosylanthranilate isomerase, 248
 Phosphorus, removal from wastewater, 400–402
 Photobacterium profundum, 155–156
 Phototrophic microbes, icy biosphere, 135
 Phyletic gradualism, 41
 Phyllosphere, 208
 Phyllospecies, 42–43, 47
 Phylomycins, 329
 Phoma, 76–77, 208, 345, 363, 369
 Phomopsis, 363
 Phytoplankton, 160
 Picromycin, 326
 Phytophthora infestans, 61
 Phytase, 6, 248
 Phytic acid, 6
 Pimaricin, 349
 Pisolithus, 207
 Planctomyces, 133
 Planococcus mcekeinii, 141
 Planococcus okeanokoites, 141
 Planococcus psychrotoleratus, 141
 Plant(s), speciation, 40–41
 Plant growth-promoting agents, 317–318, 391–396
 ACC deaminase, 395
 from *Azospirillum*, 393–394
 ionophores, 392–393
 from *Trichoderma*, 394–395, Color Plates 10 and 11
 Plant growth-promoting bacteria, 205
 Plant growth-promoting fungi, 207–208
 Plant-associated microbes, 69, 204–210
 eukaryotic symbiosis, 206–208
 prokaryotic symbiosis, 205–206
 prospects for exploitation, 208–209
 Plasmids
 culture-independent study, 95–96
 transfer in mixed communities, 95–96
 Plasmodium falciparum, 60, 245–246, 253–254, Color Plate 8
 Plate reader, 281–282
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page Numbers</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plating methods, 81–83</td>
<td>Color Plate 2</td>
<td></td>
</tr>
<tr>
<td>Plcaminic, 349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluramycins, 329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pmoA gene, 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumocandin, 341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumocystis carinii, 63–340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polaribacter, 227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyenes, 302–328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyethylene terephthalate, 3–4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyketide(s), 341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyketide keto synthase, 299–300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxin B, 337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyphasic species, 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyphasic taxonomy, 13, 35, 289–290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyphosphate-accumulating organisms, 400–402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polytic species concept, see Phenetic (polythetic) species concept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysaturated fatty acid synthesis, taxonomic significance, 292–294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porphyromonas gingivalis, 253–254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postgardi mariagerensis, 217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postwar bioprospecting, 441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pradamyccins, 340, 349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pravastatin, 351, 368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure-adapted bacteria, 154–159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prianos, 185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles on Access and Benefit-Sharing for Participating Institutions, 435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process innovation, 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process replacement, 5–6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing industries, 319–320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prochlorococcus, 160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prochlororoccus marinus, 218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product improvement, 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prokaryotes, see also Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>biogeography, 227–228, 230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>genetic exchange, 35–36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>recognition of new species, 36–37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>species concept, 32–37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Propanediol, 3–4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportionate sampling, 73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prooctocentrum concavum, 183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prooctocentrum lima, 183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>consensus approach for stabilizing, 248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>membrane, under pressure conditions, 155–157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>microbial identification from protein analysis, 52–53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rational design, 248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein chips, 262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein engineering, rational, improving industrial enzymes, 381–383, 386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteinase, 382–383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteome, 260</td>
<td>databases, 262–266</td>
<td></td>
</tr>
<tr>
<td>Proteomic signature, 261–262</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ralstonia solanacearum, 345
Random shotgun sequencing strategy, 250–251
Rapamycin, 300, 303, 306, 328, 344, 349, 351, 360–361
Rare species, 15, 219, 288, 442
Rarefaction analysis, 23, 72
Raromycin, 329
Ratjadon, 349
Real estate leases, 437
Real-time PCR, 52
Renewable raw materials, 3–4
Reporter genes, 94–95
Research collaborative agreements, INBio, 445–447
Resorcyclic acid lactones, 363
Rifampin, 327, 337
Rifamycin, 326, 336, 341
Rigid (fixed) sampling, 73
RNA
environmental
dot blot hybridization and gene arrays, 92–93
extraction, 89
molecular analysis, 89–93
molecular fingerprinting, 91–92
PCR, cloning, and sequencing approach, 90–91
oligobacteria, 162
Rosocbacter, 81–83
Royalties, 438, 452, 456
rpoB gene, 90
rRNA genes
genus-level biogeography, 228–229
microbial identification, 49–51, 54
oligobacteria, 163
16S or small-subunit, 21–25, 33–35, 42, 75–76, 80–81, 90, 289–290
soil microbes, 112–113
sponge-associated microbes, 179–180
taxonomic significance, 289–290, 299
Rubber, 441
Russula, 207
Rustmicin, 340, 348
S
Saccharomyces cerevisiae, 154, 157, 166, 284, 286
Saccharopolyspora erythraea, 102, 337
Saccharothrix, 366
Safe minimum standards approach, 470
Saintpaulia, 440–442
Salinibacter ruber, 83
Salmonella enterica, 271–272, 297–298, 305
Salters, 82, 150
Sampling effort, 73
Sampling strategy, 72–73
Sand layers, deep terrestrial, 124
Sanglifehrins, 361–362
Sapropels, 122–123
Sarcina ventriculi, 147
Sarkomycin, 329
Schizochytrium, 293
Sea ice, 130, 227
Search strategy, 3, 306, 375–376
Seawater, see Marine environment
Seed banks, 464
Selenium, reduction by sulfate-reducing bacteria, 173
Self-assembly, 322
Serratia ficaria, 92
Service industries, 319–320
“Sex ratio Spiroplasma,” 195
Sherlock Microbial Identification System, 53, 55
Shewanella, 155, 292–293, 306
Shewanella benthica, 155
Shewanella violacia, 155, 157
Siderophores, 392–393
Sigma 54, pressure-regulated, 157
Silicification, 322
Similarity species concept, 32
Simocyclinones, 332–333
Simonsiella, 44
Simvastatin, 368
Sinefungin, 349
Single-strand conformation polymorphism, 91
Sinorhizobium, 205
Site-directed mutagenesis, 384
Skermania, 292
Slime molds, 63
Snowball Earth Hypothesis, 132
Soda lakes, 217–219
Sodalis glossinidius, 196–197
Sodium/proton antiporter, 382
Soil
DNA extraction, 88–89
saline, 150
Soil microbes
functional diversity, 113
history of soil biology, 109–111
linking phylogeny and function, 113–115
metagenomic libraries, 109–119
biological insights from, 115–117
challenges and limitations, 115
experimental strategy, 113–114
future, 117
metagenomics as experimental strategy, 113–114
Soil structure, 110–111
Solfataras, 146–149
Sorangicin, 349
Sorangium cellulosum, 349, 364–365
Sordarin, 340, 349
Spatial variability, microbial population, 72
Speciation, 40–48
animals and plants, 40–41
bacterial, see Bacterial speciation
Species
common, 15
definition, 23
rare, 15, 219, 288, 442
unit of biodiversity, 15
Species 2000, 16, 19
Species accumulation curves, 17, 72–73, 76
Species concept, 13, 19, 29–39, 290
bacteria, 41–42
phylospecies, 42–43
eukaryotic microbes, 31–32
formulation, 30–31
prokaryotes, 32–37
polyphasic approach, 35
uncultured bacteria, 36
Species genome, 20, 36
Species inventories, 15–16
Species redundancy, 415, 417
Species richness, 15, 415
effect of human activities, 421–422
estimation, 23–24
global, 219
scale effects, 72
supersaturated coexistence, 71–72
Specific affinity theory, 163–167
Spectinomycin, 337, 341, 344
Spergularin, 361
Sphero assay, 348
Sphingofungin, 349
Sphingomonas, 137, 141
Sphingomonas alaskensis, 75, 82, 85, 166
Spinosyn, 351
Spirastrella spini spirulifera, 183
Spirochetes, insect-associated, 194
Spirulina, 147
Sponge(s), 177–190, 322
anatomy and physiology, 177
aquaculture, 187
Sponge 01IND 35, 180–181, 185–186
Sponge 01IND 52, 185–186
Sponge-associated microbes, 177–190
diversity, 179–181
manzamine-containing sponges, 185–186
microbiology, 177–179
natural products from, 181–185
Spongia, 183
Spongiosatins, 183
Sporormiella intermedia, 368
Spray-ionization mass spectrometry, 54, 292, 333
Squalestatins, 368–369
Stable isotope technique, linking microbial community
structure with function, 93–94
Stachybotrys, 369
Staphylococcus, 185, 291
Staphylococcus agalactiae, 256
Staphylococcus aureus, 225, 256, 296–297, 306
drug-induced gene expression, 275
drug-resistant, 338–339
Staphylococcus carnosus, 296
Staphylococcus epidermidis, 256
Staphylococcus pneumoniae, 256
Staphylothermus, 149
Stated preference techniques, 475
Statins, 330–331, 351, 356, 368
Stauroporine, 366
Stellata, 184
Stephanodiscus niagarae, 220
Stigmagellin, 349
Strain development, 285–286
Strain discrimination, 9
Strain typing, at proteome level, 267–268
Stramenoples, 61
Streptococcus equisimilis, 274
Streptococcus pneumoniae, 225, 253
drug-resistant, 274, 338
Streptococcus pyogenes, 273
Stereomycin, 336
Streptomyces, 246, 305, 340–342, 361–362, 366
antitumor agents, 363
sponge-associated, 182
taxonomy, 291
“*Streptomyces aerovirifer*,” 295
Streptomyces albiflavus, 303
Streptomyces antibiotics, 325, 332, 344, 349
Streptomyces amallus, 367–368
Streptomyces argillaceus, 349
Streptomyces asiaticus, 300
Streptomyces auranticolor, 303
Streptomyces aureofaciens, 326, 337
Streptomyces avirulent, 325, 332, 344, 349
Streptomyces avermitilis, 246, 299–300, 332, 344
Streptomyces caespitosus, 349
Streptomyces chungkingensis, 300
Streptomyces cattleya, 327, 337
Streptomyces cinamomonomycins, 337
Streptomyces clavuligerus, 337
Streptomyces coelicolor, 46, 103, 246, 253, 296,
299–300, 306, 344
Streptomyces coeruleorubidus, 303
Streptomyces cyaneus, 364–365
Streptomyces diastaticus, 330
Streptomyces erythraea, 326
Streptomyces felleus, 326
Streptomyces fradiae, 327, 337
Streptomyces galilaeus, 330, 349
Streptomyces garyphalus, 326
“Streptomyces geldamyceticus,” 300, 303
Streptomyces griseiniger, 303
Streptomyces griseolosporeus, 295, 341
Streptomyces griseus, 337, 344
Streptomyces hygroscopicus, 300, 303, 328, 344, 360–361
Streptomyces indonesiensis, 300
Streptomyces javensis, 300
Streptomyces kanamycetus, 337
Streptomyces lavendulae, 186–187, 326
Streptomyces lincolnensis, 337
Streptomyces lividans, 306
Streptomyces malaysiensis, 300
Streptomyces mediterranei, 337
Streptomyces melanosporofaciens, 300
Streptomyces niveus, 295, 326
Streptomyces nodosus, 328, 337
Streptomyces noursei, 328, 337
Streptomyces orchidaceus, 326, 337
Streptomyces orientalis, 337
Streptomyces parvulus, 349
Streptomyces peucetius, 349
Streptomyces phaeogriseichromogenes, 303
Streptomyces phaeoluteichromogenes, 303
Streptomyces phaeoluteigriseus, 303
Streptomyces pristinaespiralis, 337
Streptomyces rhizosphaericus, 300
Streptomyces rimosus, 326, 337
Streptomyces sparsogenes, 303
Streptomyces spectabilis, 337
Streptomyces spheroides, 295, 326, 337
Streptomyces tendae, 328
Streptomyces toxytricini, 370–371
Streptomyces tsukubaensis, 360–361
Streptomyces venezuelae, 326, 337
Streptomyces verticillus, 329, 349
Streptomyces violaceoruber clade, 303–304, 306, Color Plate 9
Streptomyces violaceusniger clade, 300–303, 306
Streptomyces viridochromogenes, 325, 337
Streptomyces viridofaciens, 337
Streptomyces yogyakartensis, 300
Subterranean environment, 120–129
Subtilisin, 386
Suillus, 207
Sulfate-reducing bacteria, 69, 94, 169–176, 297
dissimilatory sulfate reduction, 169–171, 297
fermentation of inorganic sulfur compounds, 171
fermentation of organic substrates, 171
metal reduction, 173
reduction of elemental sulfur, nitrate, and oxygen, 172–173
Sulfide-producing bacteria, 124, 170
Sulfite oxidase, 296–297
Sulfite reductase, 297
Sulfolobus, 146–147, 149
Sulfolobus acidocaldarius, 147
Sulfolobus brierley, 147
Sulfolobus “islandicus,” 228–229
Sulfolobus metallicus, 147
Sulfolobus solfataricus, 149, 255
Sulfur, elemental, reduction by sulfate-reducing bacteria, 172
Supercooled clouds, 137
Supersaturated coexistence, 71–72
Suppressive subtractive hybridization, 255–256
Sustainable industry, 5
Swinholide A, 182–183
Symbionts, 21, 76
of insects, 191–203
of marine invertebrates, 186–187
of plants, 204–210
of sponges, 177–190
Sympatric speciation, 41
Synechococcus, 160, 296
Synechocystis, 46, 263
Synercid, 337, 348
Syringomycin, 349
Syringopeptin, 349
T
TA, 343
Tacrolimus, see FK506
Taq polymerase, 450–451, 454
Taxic diversity, 15
Taxols, 350, 364
Taxomyces andreanae, 205
Taxon, 30
Taxonomic databases, 75
Taxonomy
α-taxonomy, 19
β-taxonomy, 19
biodiversity estimates from, 17
genes and, 291–298
history, 289
importance, 19
modern era, 289–291
morphologically based, 289
phylogeny-based, 289–290
as roadmap to genes, 239–240, 288–313
role in bioprospecting, 288–313
Taxonomy Workbench, 244
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxon-to-taxon ratios</td>
<td>16</td>
</tr>
<tr>
<td>Taxus</td>
<td>349</td>
</tr>
<tr>
<td>Technological innovation, recovery of microorganisms</td>
<td>74-75</td>
</tr>
<tr>
<td>Technology transfer</td>
<td>429, 431-432, 438, 446-447, 449</td>
</tr>
<tr>
<td>Tedania ignis</td>
<td>182</td>
</tr>
<tr>
<td>Telemostatin</td>
<td>367-368</td>
</tr>
<tr>
<td>Temperature gradient gel electrophoresis</td>
<td>91-92</td>
</tr>
<tr>
<td>Temporal variability, microbial population</td>
<td>72</td>
</tr>
<tr>
<td>Tenipocide</td>
<td>349</td>
</tr>
<tr>
<td>Tensin</td>
<td>349</td>
</tr>
<tr>
<td>Tephritis</td>
<td>193</td>
</tr>
<tr>
<td>Terminal restriction fragment analysis</td>
<td>91</td>
</tr>
<tr>
<td>Termitomyces</td>
<td>199</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>341</td>
</tr>
<tr>
<td>Terragine</td>
<td>115-117</td>
</tr>
<tr>
<td>Tethya aurantia</td>
<td>322</td>
</tr>
<tr>
<td>Tetracenomycins</td>
<td>327</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>326, 336-337</td>
</tr>
<tr>
<td>Thauera</td>
<td>94</td>
</tr>
<tr>
<td>Telephora</td>
<td>207</td>
</tr>
<tr>
<td>Theonella swinhoei</td>
<td>179, 181-183</td>
</tr>
<tr>
<td>Theopalauamide</td>
<td>182-183</td>
</tr>
<tr>
<td>Thermoalkaliphiles</td>
<td>147</td>
</tr>
<tr>
<td>Thermoaerobic bacterium</td>
<td>149</td>
</tr>
<tr>
<td>Thermoaerobic bacterium ethanolicus</td>
<td>149</td>
</tr>
<tr>
<td>Thermobispora bispora</td>
<td>299</td>
</tr>
<tr>
<td>Thermococcus</td>
<td>148-149, 153, 228</td>
</tr>
<tr>
<td>Thermococcus acidominivorans</td>
<td>147</td>
</tr>
<tr>
<td>Thermococcus aggregans</td>
<td>149</td>
</tr>
<tr>
<td>Thermococcus alcaliphilus</td>
<td>147</td>
</tr>
<tr>
<td>Thermococcus peptonophilus</td>
<td>155</td>
</tr>
<tr>
<td>Thermodesulfbacterium</td>
<td>170, 297</td>
</tr>
<tr>
<td>Thermofilum</td>
<td>149</td>
</tr>
<tr>
<td>Thermomicrospira</td>
<td>217</td>
</tr>
<tr>
<td>Thermomonospora chromogena</td>
<td>299</td>
</tr>
<tr>
<td>Thermophiles</td>
<td>piezophilic, 155</td>
</tr>
<tr>
<td>Thermoplasma</td>
<td>146</td>
</tr>
<tr>
<td>Thermoplasma acidophilum</td>
<td>147</td>
</tr>
<tr>
<td>Thermoproteus</td>
<td>149</td>
</tr>
<tr>
<td>Thermoproteus tenax</td>
<td>146, 149</td>
</tr>
<tr>
<td>Thermotoga</td>
<td>148-149</td>
</tr>
<tr>
<td>Thermotoga maritima</td>
<td>149, 151, 253-256, 298</td>
</tr>
<tr>
<td>Thermotoga neapolitana</td>
<td>4, 149</td>
</tr>
<tr>
<td>Thermus</td>
<td>83, 149</td>
</tr>
<tr>
<td>Thermus aquaticus</td>
<td>149</td>
</tr>
<tr>
<td>Thermus thermophilus</td>
<td>296</td>
</tr>
<tr>
<td>Thienamycin</td>
<td>327</td>
</tr>
<tr>
<td>Thiobacillus caldus</td>
<td>147</td>
</tr>
<tr>
<td>Thiobacillus ferroxidians</td>
<td>147</td>
</tr>
<tr>
<td>Thraustochytrium</td>
<td>293</td>
</tr>
<tr>
<td>Time-series description, discovery of new species</td>
<td>16</td>
</tr>
<tr>
<td>TNP-470</td>
<td>364</td>
</tr>
<tr>
<td>Tolypocladium</td>
<td>345</td>
</tr>
<tr>
<td>Tolypocladium inflatum</td>
<td>356, 359-360, 429, 441-442</td>
</tr>
<tr>
<td>Topotecan</td>
<td>349-350</td>
</tr>
<tr>
<td>Toxicogenomics</td>
<td>245</td>
</tr>
<tr>
<td>ToxR-ToxS proteins</td>
<td>156-157</td>
</tr>
<tr>
<td>Transcript profiling</td>
<td>246</td>
</tr>
<tr>
<td>Transcriptional regulation, piezophiles</td>
<td>157-158</td>
</tr>
<tr>
<td>Transcriptome</td>
<td>260</td>
</tr>
<tr>
<td>Transcriptomics</td>
<td>241, 243</td>
</tr>
<tr>
<td>Transglutaminase</td>
<td>377</td>
</tr>
<tr>
<td>Transporters, oligobacteria</td>
<td>162-167</td>
</tr>
<tr>
<td>Transferric organisms</td>
<td>163</td>
</tr>
<tr>
<td>Travel behavior</td>
<td>475</td>
</tr>
<tr>
<td>Trembly princeps</td>
<td>196-197</td>
</tr>
<tr>
<td>Treponema</td>
<td>194</td>
</tr>
<tr>
<td>Treponema pallidium</td>
<td>244</td>
</tr>
<tr>
<td>Tributylin-based paints</td>
<td>405</td>
</tr>
<tr>
<td>Trichoderma</td>
<td>207-208, 345, 378, 391</td>
</tr>
<tr>
<td>plant growth-promoting agents</td>
<td>394-395, Color Plates 10 and 11</td>
</tr>
<tr>
<td>Trichoderma harzianum</td>
<td>208, 394-395, Color Plates 10 and 11</td>
</tr>
<tr>
<td>Trichoderma polysporum</td>
<td>8-9, 328</td>
</tr>
<tr>
<td>Trichomonas</td>
<td>58</td>
</tr>
<tr>
<td>Trichomonas vaginalis</td>
<td>63, 298</td>
</tr>
<tr>
<td>Trichostatin A</td>
<td>366</td>
</tr>
<tr>
<td>Trichothecene</td>
<td>341</td>
</tr>
<tr>
<td>Trisporic acids</td>
<td>392</td>
</tr>
<tr>
<td>Trihionate pathway</td>
<td>170</td>
</tr>
<tr>
<td>Tryprostatin</td>
<td>341</td>
</tr>
<tr>
<td>Tryptophan uptake</td>
<td>pressure-sensitive, 157</td>
</tr>
<tr>
<td>Tsetse flies</td>
<td>196-197</td>
</tr>
<tr>
<td>Tsukamurella</td>
<td>292</td>
</tr>
<tr>
<td>Tubermycin</td>
<td>349</td>
</tr>
<tr>
<td>Turbomycins</td>
<td>115-117, 346</td>
</tr>
<tr>
<td>Two-component regulatory system, pressure-regulated</td>
<td>157</td>
</tr>
<tr>
<td>Two-dimensional gel electrophoresis, monitoring protein synthesis</td>
<td>261-262, 267</td>
</tr>
<tr>
<td>Tylosin</td>
<td>337</td>
</tr>
<tr>
<td>Tyropeptins</td>
<td>368</td>
</tr>
<tr>
<td>Tyrothricin</td>
<td>337</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Ubiquitous dispersal, free-living microbes</td>
<td>213-214, 216-224</td>
</tr>
<tr>
<td>UCN-01</td>
<td>366-367</td>
</tr>
<tr>
<td>Ultramicrobacteria</td>
<td>85</td>
</tr>
<tr>
<td>Ulva reticulata</td>
<td>407</td>
</tr>
<tr>
<td>Unculturable/uncultured microbes</td>
<td>22-25, 74-76</td>
</tr>
<tr>
<td>antifoulant production</td>
<td>409</td>
</tr>
<tr>
<td>classification</td>
<td>36</td>
</tr>
<tr>
<td>culture-independent microbiology</td>
<td>88-89</td>
</tr>
<tr>
<td>genomics</td>
<td>250, 256-257</td>
</tr>
<tr>
<td>industrial enzyme production</td>
<td>377, 380-382</td>
</tr>
<tr>
<td>metagenomics approach</td>
<td>109-119</td>
</tr>
<tr>
<td>resuscitation</td>
<td>100-108</td>
</tr>
<tr>
<td>soil, 109-119</td>
<td></td>
</tr>
<tr>
<td>Uranium, reduction by sulfate-reducing bacteria</td>
<td>173</td>
</tr>
<tr>
<td>Urauchimycins</td>
<td>182</td>
</tr>
<tr>
<td>Uronema</td>
<td>219</td>
</tr>
<tr>
<td>Usmic acid</td>
<td>207</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vaccine development</td>
<td>246, 273-274</td>
</tr>
<tr>
<td>Valinomycin</td>
<td>341, 344</td>
</tr>
</tbody>
</table>
Vancomycin, 336–337
Vancomycin resistance, 338–339
Verrucomicrobia, 82–83, 133
Vertical gene transfer, 32
Verticillium balanoides, 366
Viability, 100
 oligobacteria, 163
“Viable but nonculturable,” 88, 288
Vibrio, 182, 407
Vibrio anguillarum, 408
Vibrio cholerae, 293–295, 298
Vibrio parahaemolyticus, 166, 408
Vibrio psychroerythreus, 148
Vibrio splendidus, 408
Vinblastine, 349, 441
Vincristine, 349, 441
Vinorelbine, 349
Violacein, 115–117
Violaceol I, 346
Virginiamycin, 337
Virtual whole-cell models, 247
Virulence, investigations at proteome level, 268–273
Vicosinamide, 349
Volcanic eruptions, 221

W
Wastewater treatment, 397–404, 422
 nitrogen removal, 398–399
 phosphorus removal, 400–402
Water, transport of microbes, 220–221
Water molds, 61
Weevils, 196
Well-being, equation of, 470–472
Western Australian Department of Conservation and Land Management, 437
Whiteflies, 196–197
Whole-genome sequencing, see Genome sequencing

Wigglesworthia glossinidia, 196–197
Willingness to pay, 470–471, 473
Wind, transport of microbes, 220–221
Wolbachia, 195
Wolbachia pipientis, 195
WORLDMAP project, 16
Wortmannin, 366

X
Xanthomonas, 345
Xenical, 351
Xenobiotics, 397
Xestospongia, 185
XR774, 362–363
XR842, 364–365
Xylaria, 345
Xylella fastidiosa, 162, 263, 345

Y
Yellowstone National Park
 hot pools, 84
 Taq polymerase, 450–451, 454
Yellowstone National Park Microbial Database and Map Server, 214, 232–236, Color Plates 3 through 7
Yellowstone-Diversa CRADA, 429–430, 450–457
 benefit distribution, 455–456
 effect on conservation, 454–455
 legal challenges, 452–453
 sustainable use of biotic resources, 455
Yersinia enterocolitica, 148, 271
Yersinia pestis, 298
Yew tree, 349–350

Z
Zaragozic acids, 368–369
Zeatin, 392
Zygomycetes, 62–63