QUINOLONE ANTIMICROBIAL AGENTS

3rd Edition

Edited by

DAVID C. HOOPER
Massachusetts General Hospital
Harvard Medical School
Boston, Massachusetts

and

ETHAN RUBINSTEIN
Sheba Medical Center and
Tel Aviv University
Faculty of Medicine
Tel Hashomer, Israel

ASM PRESS
Washington, D.C.
CONTENTS

Contributors • vii
Preface • xi
Introduction • xiii

I. Mechanisms and Spectrum of Antibacterial Activity and Resistance

1. Structure-Activity Relationships of the Quinolone Antibacterials in the New Millennium: Some Things Change and Some Do Not • 3
 John M. Domagala and Susan E. Hagen

2. Mechanisms of Quinolone Action • 19
 Karl Drlica and David C. Hooper

3. Mechanisms of Quinolone Resistance • 41
 David C. Hooper

4. Quinolones and Eukaryotic Topoisomerases • 69
 Thomas D. Gootz and Neil Osheroff

5. Activity In Vitro of the Quinolones • 91
 C. Thauvin-Eliopoulos and G. M. Eliopoulos

II. Pharmacology

6. Pharmacokinetics of Fluoroquinolones • 115
 Michael N. Dudley

7. Drug-Drug Interactions • 133
 Roula Qaqish and Ronald E. Polk

8. Pharmacodynamics of Quinolone Antimicrobial Agents • 147
 William A. Craig and David R. Andes

III. Clinical Applications

9. Treatment of Urinary Tract Infections • 159
 Kalpana Gupta, Kurt Naber, and Walter Stamm

10. Use of Quinolones for Treatment of Sexually Transmitted Diseases • 171
 Rosanna W. Peeling and Allan R. Ronald

11. Treatment and Prophylaxis of Gastroenteritis • 193
 Michael L. Bennish

12. Treatment of Intra-Abdominal Infections • 217
 Joseph S. Solomkin

13. Treatment of Community-Acquired Respiratory Tract Infections • 227
 Peter Ball and Lionel Mandell

14. Treatment of Infections of the Ears, Nose, and Throat and Nasal Carriage • 245
 Jennifer Rubin Grandis and Victor L. Yu

15. Treatment of Osteomyelitis and Septic Arthritis • 251
 Louis Bernard, Francis Waldvogel, and Daniel Lew

16. Treatment of Experimental and Human Bacterial Endocarditis with Quinolone Antimicrobial Agents • 259
 Thuan P. Le, Michael R. Yeaman, and Arnold S. Bayer

17. Treatment of Bacterial Meningitis and Other Central Nervous Systems Infections • 275
 Allan R. Tunkel and W. Michael Scheld
CONTENTS

18. Treatment of Eye Infections • 291
 Michael H. Miller and Martin Mayers

19. Treatment of Skin and Soft Tissue Infections • 311
 Adolf W. Karchmer

20. Treatment of Intracellular Infections • 323
 Jean-Marc Rolain and Didier Raoult

21. Fluoroquinolones in Intensive Care Unit Infections • 337
 Ethan Rubinstein

22. Quinolones in Pediatrics • 343
 Faryal Ghaffar and George H. McCracken, Jr.

23. Quinolone Resistance and Its Clinical Relevance • 355
 Donald E. Low

24. Veterinary Use of Quinolones and Impact on Human Infections • 387
 Henrik C. Wegener and Jørgen Engberg

IV. Adverse and Other Effects

25. Adverse Effects • 407
 Hartmut Lode and Ethan Rubinstein

26. QT Prolongation with Quinolone Antimicrobial Agents • 421
 Yee Guan Yap and A. John Camm

27. Effects on Connective Tissue Structures • 441
 Ralf Stahlmann

28. Phototoxicity Due to Fluoroquinolones • 451
 James Ferguson

29. Central Nervous System Toxicity • 461
 S. Ragnar Norrby

30. Effects of Quinolones on the Immune System • 467
 Lowell S. Young

Index • 475
CONTRIBUTORS

David R. Andes
Infectious Diseases and Clinical Pharmacology Sections, Department of Medicine, University of Wisconsin, and the William S. Middleton Memorial Veterans Hospital, Madison, WI 53792

Peter Ball
School of Biomedical Sciences, University of St. Andrews, Fife, Scotland, United Kingdom

Arnold S. Bayer
Division of Adult Infectious Diseases, Harbor-UCLA Medical Center, 1000 West Carson Street, Building RB2/Room 225, Torrance, CA 90509

Michael L. Bennish
Africa Centre for Health and Population Studies, P.O. Box 198, Mtubatuba, 3935, South Africa

Louis Bernard
Infectious Diseases Division and Medical Clinic II, Department of Medicine, Geneva University Hospitals, 24 Rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland

A. John Camm
Department of Cardiological Sciences, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, United Kingdom

William A. Craig
Infectious Diseases and Clinical Pharmacology Sections, Department of Medicine, University of Wisconsin, and the William S. Middleton Memorial Veterans Hospital, Madison, WI 53792

John M. Domagala
Department of Medicinal Chemistry, Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105

Karl Drlica
Public Health Research Institute, 225 Warren Street, Newark, NJ 07103

Michael N. Dudley
Pharmacology and Microbiology, Essential Therapeutics, Inc., 850 Maude Ave., Mountain View, CA 94034

G. M. Eliopoulos
Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, and Harvard Medical School, Boston, MA 02115

Jørgen Engberg
Department of Gastrointestinal and Parasitic Infections, Division of Diagnostics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark

James Ferguson
Photobiology Unit, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, United Kingdom

Faryal Ghaffar
Southwestern Medical School, 5323 Harry Hines Boulevard, Dallas, TX 75235-9063

Thomas D. Gootz
Pfizer Global Research and Development, Mail stop 8200-40, Eastern Point Road, Groton, CT 06340

Jennifer Rubin Grandis
Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213

Kalpana Gupta
Department of Medicine, Division of Allergy & Infectious Diseases, University of Washington School of Medicine, 1959 NE Pacific Street, BB1221, Mailstop 356523, Seattle, WA 98195
CONTRIBUTORS

Susan E. Hagen
Department of Medicinal Chemistry, Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105

David C. Hooper
Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114-2696

Adolf W. Karchmer
Division of Infectious Diseases, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Kennedy-6A, Boston, MA 02215-5399

Thuan P. Le
Division of Pediatric Infectious Diseases, Harbor-UCLA Medical Center, 1124 West Carson Street, E-6, Torrance, CA 90509

Daniel Lew
Infectious Diseases Division and Medical Clinic II, Department of Medicine, Geneva University Hospitals, 24 Rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland

Hartmut Lode
Department of Pulmonary Infectious Diseases, City Hospital Zehlendorf/Heckeshorn, Freie Universität Berlin, Zum Heckeshorn 33, D-14109 Berlin, Germany

Donald E. Low
Department of Microbiology, Toronto Medical Laboratories and Mount Sinai Hospital, and University of Toronto, 600 University Ave., Rm. 1487, Toronto, Ontario M5G 1X5, Canada

Lionel Mandell
Division of Infectious Diseases, McMaster University, Hamilton, Ontario L8V 1C3, Canada

Martin Mayers
Department of Ophthalmology, Bronx Lebanon Medical Center, Albert Einstein College of Medicine, Bronx, NY 10457

George H. McCracken, Jr.
Southwestern Medical School, 5323 Harry Hines Blvd, Dallas, TX 75235-9063

Michael H. Miller
Center for Immunology and Microbial Disease, Departments of Ophthalmology and Medicine, Albany Medical College, Albany, NY 12208

Kurt G. Naber
Urologic Clinic, Hospital St. Elisabeth, D-94315 Straubing, Germany

S. Ragnar Norrby
Swedish Institute for Infectious Disease Control, Nobel’s Vg 18, SE17182 Solna, Sweden

Neil Osheroff
Division of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146

Rosanna W. Peeling
Sexually Transmitted Diseases Diagnostics Initiative, The World Health Organization, Geneva, Switzerland

Ronald E. Polk
Department of Pharmacy, School of Pharmacy, Virginia Commonwealth University, Smith Building Room 454, 410 North 12th Street, Richmond, VA 23298-0533

Roula Qaqish
St. Louis College of Pharmacy, 4588 Parkview Place, St. Louis, MO 63110-1088

Didier Raoult
Unité des Rickettsies CNRS UMR 6020, Faculté de Médecine, Université de la Méditerranée, 27, Boulevard Jean Moulin, 13385 Marseille Cedex 05, France

Jean-Marc Rolain
Unité des Rickettsies CNRS UMR 6020, Faculté de Médecine, Université de la Méditerranée, 27, Boulevard Jean Moulin, 13385 Marseille Cedex 05, France

Allan R. Ronald
Division of Infectious Diseases, St. Boniface Hospital, 409 Tache Avenue, Winnipeg, Manitoba R2H 2A6, Canada

Ethan Rubinstein
Unit of Infectious Diseases, Sheba Medical Center, Tel Aviv University, Tel Hashomer 52621, Israel

W. Michael Scheld
Department of Medicine, University of Virginia School of Medicine, P.O. Box 801342, Charlottesville, VA 22908-1342

Joseph S. Solomkin
Division of Trauma and Critical Care, Department of Surgery, University of Cincinnati, 231 Albert B. Sabin Way, Cincinnati, OH 45267-0558
Ralf Stahlmann
Institute of Clinical Pharmacology and Toxicology, Freie Universität Berlin, Garystrasse 5, D-14195 Berlin, Germany

Walter Stamm
Department of Medicine, Division of Allergy & Infectious Diseases, University of Washington School of Medicine, 1959 NE Pacific Street, BB1221, Mailstop 356523, Seattle, WA 98195

C. Thauvin-Eliopoulos
Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, and Harvard Medical School, Boston, MA 02115

Allan R. Tunkel
Division of Infectious Diseases, Department of Medicine, Drexel University College of Medicine, 3300 Henry Avenue, Philadelphia, PA 19129

Francis Waldvogel
Infectious Diseases Division and Medical Clinic II, Department of Medicine, Geneva University Hospitals, 24 Rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland

Henrik C. Wegener
Danish Zoonosis Centre, Danish Veterinary Institute, Bülowsvej 27, DK-1790 Copenhagen V, Denmark

Yee Guan Yap
Department of Cardiological Sciences, St. George's Hospital Medical School, Cranmer Terrance, London SW17 0RE, United Kingdom

Michael R. Yeaman
Division of Adult Infectious Diseases, Harbor-UCLA Medical Center, 1000 West Carson Street, Building RB2, Torrance, CA 90509

Lowell S. Young
Kuzell Institute for Arthritis & Infectious Diseases, California Pacific Medical Center, 2200 Webster Street, Suite 305, San Francisco, CA 94115

Victor L. Yu
Infectious Disease Section, VA Medical Center, and University of Pittsburgh, Pittsburgh, PA 15240
The quinolone class of antimicrobial agents has emerged as one of the most widely used classes of antimicrobials in clinical medicine. For this reason, the first edition of *Quinolone Antimicrobial Agents* was organized to bring together in a single volume information about their chemistry, antimicrobial activity, pharmacology, and clinical uses. As their use and numbers increased, additional information was covered in the second edition. Now with the substantial amount of new information on these agents that has become available since the publication of the second edition of *Quinolone Antimicrobial Agents* in 1993, an expanded third edition has been organized in a single, convenient volume to include comprehensive coverage of current information on a larger number of compounds, their clinical applications, and the limitations to their use, including updates on the important and expanding data on bacterial resistance and profiles of adverse effects. Like the first and second editions, this edition is designed for use by clinicians, clinical microbiologists, pharmacologists, pharmacists, basic scientists, and others needing information about these drugs.

The third edition of *Quinolone Antimicrobial Agents* now includes 30 chapters organized into sections on mechanisms and spectrum of activity and resistance (5 chapters), pharmacology (3 chapters), clinical applications (16 chapters), and adverse and other effects (6 chapters). All chapters are either new or completely updated. The area of greatest expansion has been in the section on adverse and other effects because of the substantial body of new information in this area that has become available since the second edition.

We are grateful for all of the considerable efforts of the authors of the individual chapters and the assistance and patience of the editors of *The American Society for Microbiology ASM Press*. Particular thanks are due to our families for their patience, support, and inspiration during this project.

David C. Hooper
Ethan Rubinstein
April 2003
INTRODUCTION

The quinolones (also called fluoroquinolones, 4-quinolones, and quinolone carboxylic acids) are analogs of the earlier developed agent nalidixic acid. Although nalidixic acid is a related naphthyridone, this chemical group is now generally included within the quinolone class. Nalidixic acid, the first member of the class, was originally isolated by Lesher and associates (1) from a distillate during chloroquine synthesis and thus was a by-product of antimalarial research (2). Additional older analogs include oxolinic acid, pipemidic acid, and cinoxacin. These older or first-generation analogs are not considered further in this book, except for purposes of comparison with the newer agents.

The second generation of quinolones, about which we have considerable information, includes norfloxacin, ciprofloxacin, ofloxacin, enoxacin, and pefloxacin. These agents are substantially more potent in vitro and have broader antibacterial spectra than nalidixic acid but maintain the favorable property of being absorbed after oral administration. Additional advantageous pharmacologic properties include relatively long half-lives due to slow of elimination that allow twice-daily dosing, excellent distribution into many tissues and body fluids, and penetration into human cells, resulting in antimicrobial activity in so called “sanctuaries” as well as against some intracellular pathogens. Although differences in spectra of activity exist, this generation of quinolones in general exhibits striking potency against enteric gram-negative bacilli; additional lesser activity against nonenteric, gram-negative bacilli and some staphylococci; and generally marginal activity against streptococci and anaerobes.

The third generation of quinolones that followed maintained many of the favorable properties of the second generation and added increases in potency against gram-positive bacteria and, in some cases, against anaerobes and mycobacteria and in many cases also added longer half-lives of elimination that supported once-daily dosing. A few compounds in the second generation (e.g., lomefloxacin and fleroxacin) also had long half-lives and once-daily dosing, and others (e.g., sparflloxacin, and tosufloxacin) had enhancements of activity against gram-positive and anaerobic bacteria, but none became widely used in the United States and in Europe. The earliest of the third third-generation compounds was temafloxacin, and later in succession levofloxacin, trovafloxacin, gatifloxacin, and moxifloxacin became members of this group.

In general, the tolerability of many of the marketed quinolones has been good and comparable to that of other commonly used classes of antimicrobials, and with many of the second-generation agents and some of the third-generation agents have been given to millions of patients. Some adverse effects related to particular structural properties were recognized among second-generation agents, e.g., the photosensitivity caused by lomefloxacin and sparflloxacin due to a halide substituent at position 8, were recognized. Other adverse effects were unexpected and incompletely recognized until after drug release, e.g., a hemolytic uremic syndrome with temafloxacin and severe hepatotoxicity with trovafloxacin, were unexpected and incompletely recognized until after drug release, resulting in part because of the rarity of their occurrence. The mechanisms of some of these rare reactions are still incompletely understood, and thus the tolerability of each member of the quinolone class must be considered individually.

The information provided in the third edition of Quinolone Antimicrobial Agents is organized into sections on mechanisms and spectrum of activity and resistance (5 chapters), pharmacology (3 chapters),
clinical applications (16 chapters), and adverse and other effects (6 chapters). All chapters are either new or completely updated. The area of greatest expansion has been in the section on adverse and other effects because of the substantial body of new information in this area that has become available since the second edition.

REFERENCES

INDEX

Absorption of fluoroquinolones
- drug interactions involving, 133–138
- factors influencing, 115–116, 118
- mechanisms of, 115

Acinetobacter
- in CNS infections, 282–284
- in intensive care unit infections, 340–341
- in vitro activity against, 93

AcrAB-ToIC pump, 52–53

Actinobacillus actinomycetemcomitans, 268

Activity, antimicrobial. See also Pharmacodynamics, specific drugs
- animal studies, 148, 149–151
- human studies, 148, 151–152
- time course, 147–148
- in vivo studies, 148

Acute renal failure, 412

Acute tubular necrosis, 412

Adherence, effect on, 468

Adverse effects
- allergic reactions, 413–414
- bone marrow, 409–410
- candidiasis, 416
- central nervous system, 461–464
- connective tissue, 441–447
- drug withdrawals due to, 408
- frequency of, 407–409
- hepatic, 412–413
- immune system, 410–411
- laboratory test abnormalities, 413
- most common, list of, 407–408
- ocular toxicity, 304–305
- in pediatrics, 345–346
- phototoxicity, 451–458
- in pregnancy, 414
- QT interval prolongation, 421–436
- renal, 411–412
- acute renal failure, 412
- acute tubular necrosis, 412
- allergic interstitial nephritis, 411
- crystalluria, 412
- granulomatous interstitial nephritis, 411–412
- interstitial nephritis, 411
- temafloxacin syndrome, 412
- structure of drug, relationship to, 407, 408
- structure relationship to, 3–13

Aeromonas, 205

AIDS patients, fluoroquinolone pharmacokinetics in, 126

Allergic interstitial nephritis, 411

Allergic reactions, 413–414

Amifloxacin, 260, 261, 262, 265–266

Anaerobes. See also specific species
- resistance to quinolones, 222–223
- in vitro activity against, 99, 100

Animals, use in, 387–399
- in cattle, 389
- in companion animals, 390
- in fish, 390
- indications for use, 389
- in poultry, 389–390
- proprietary quinolones licensed for animal use, 388
- resistance in zoonotic bacteria, 392–396
- _Campylobacter_, 395–396, 397–399
- control measures, 399
- _Escherichia coli_, 396
- human quinolone use and, 398–399
- _Salmonella_, 393–394, 396–397, 398
- transfer to humans, 396–398

resistance of animal pathogens, 390–392
- _Campylobacter_, 391
- _Escherichia coli_, 390
- mechanism of, 392
- mycoplasmas, 392
- _Pasteurellaceae_, 392
- _Salmonella_, 390
- staphylococci, 391–392
- streptococci, 391–392
- in swine, 389

Antacids, effect on fluoroquinolone absorption, 133–137

Antimalarials, QT interval prolongation from, 430

Antineoplastic drugs, topoisomerase II-targeted, 72

Antiparasitic activity of fluoroquinolones, 82–83

Antitumor activity of fluoroquinolones, 82

Arthritis, septic, 251–258

Arthropathy, 196, 442–443, 445–446

AUC (area under the curve)/MIC ratio, 148–153

Azole antifungals, QT interval prolongation from, 430

Bacillus anthracis
- in skin and soft tissue infections, 318
- in vitro activity against, 99

Bacillus cereus
- in CNS infections, 282
- in eye infections, 303, 305

Azole antifungals, 390–392

Azole antifungals, QT interval prolongation from, 430

Bacterial infections, 417–420

Bacterial resistance, 115–116

Bacterial species, 93–99

Bacterial wall, 412

Bioavailability, 417–418

Biopsy, 466

Blood, 275, 300, 305

Bone, 409–410

Bone marrow, 409–410

Bone resorption, 468

Botulinum toxin, 291

Brain, 275, 300, 305
Bacillus subtilis, resistance in, 50, 56, 57
Bacteremia, in intensive care unit infections, 340
Bacterial vaginosis, 186-187
Bacterial vaginosis, 186-187
Bactericidal action of quinolones, 31-34, 103
Bacteriostatic action of quinolones, 24-31
Bacteroides fragilis
intra-abdominal infections, 217, 219-223
resistance in, 42-43, 44, 56, 222-223
in skin and soft tissue infections, 311, 314-315
in vitro activity against, 99
Bacteroides thetaiotaomicron, resistance in, 50, 56
Balofloxacin
allergic reactions, 414
for eye infections, 297-298
structure, 11
Bartonella
treatment for intracellular pathogens, 329-330
in vitro activity against, 102
Bay 3118
adverse effects, 407, 408
photosensitivity from, 455-458
structure, 453
Benzodiazepines, drug interactions with, 141-142
Binding sites, quinolone, 26-28
Bit efflux system, 57
Bmr efflux system, 57
Bone infections. See also Osteomyelitis
in pediatrics, 347-348
Bone marrow, adverse effects on, 409-410
Bordetella pertussis, 96
Borrelia burgdorferi, 183-184
Bronchitis
acute, 235
chronic, acute exacerbation of, 235-238
cost, 238
severe, 237
third-generation quinolones for, 236
treatment duration and response, 236-237
Brucella, 268, 329
Campylobacter fetus, 42
Campylobacter jejuni
gastrointestinal infections, 197, 201-202
resistance in, 42, 44, 55, 194, 196-197, 201-202, 348,
367-369, 391, 395-396, 397-399
clinical relevance, 368
drivers of resistance, 367
prevalence of resistance, 367-368
in vitro activity against, 95
Candidiasis, after antibiotic treatment, 416
Cardiotoxicity
QT interval prolongation, 421-436
as a quinolone class effect, 424-426
Cardiovascular hemodynamic responses, 470
Cartilage, effects on, 196, 441-443, 445-446
in pediatrics, 345-346
Central nervous system (CNS) infections
brain abscess, 284-285
carriage of meningococcus, prophylaxis for, 285
cerebrospinal fluid penetration of fluoroquinolones,
277-280
efficacy of fluoroquinolones
in animal models, 280-282
in humans, 282-285
meningitis
efficacy of fluoroquinolones in, 282-284
epidemiology and etiology, 275-276
in vitro activity of fluoroquinolones, 276-277
in pediatrics, 349
pharmacodynamics, 280
Central nervous system (CNS) toxicity, 461-463
Cerebrospinal fluid, distribution into, 120
Cervicitis, 182
Chancroid (Haemophilus ducreyi), 183-184
Children. See Pediatrics
Chlamydia pneumoniae
bronchitis, treatment for, 235
intracellular pathogens, treatment for, 328-329
in vitro activity against, 96
Chlamydia psittaci
treatment for intracellular pathogens, 328-329
in vitro activity against, 96
Chlamydia trachomatis
resistance in, 43, 46, 361
treatment of infection, 173-176
clinical studies, 175-176
intracellular pathogens, 328-329
microbiological studies, 174-175
in vitro activity against, 96, 101, 174
Cholesteatoma, 246-247
Ciprofloxacin
adverse effects, 409-413, 428, 443-447, 462
allergic reactions, 414
for CNS infections, 276-279, 281-286
drug interactions, 136-143
for ear diseases, 245-247
for endocarditis, 260-264, 266-269
for eradication of nasal carriage of bacteria, 248
for eye infections, 291-305
for gastrointestinal infections, 194, 196-208
immune effects of, 469
for intensive care unit infections, 337-341
for intra-abdominal infections, 219-221
pharmacodynamics, 148, 151-153
pharmacokinetics, 115, 117-120, 122-128
photosensitivity from, 452, 455, 458
in pregnancy, 415, 416
for respiratory tract infections, 232-233, 235-238
for skin and soft tissue infections, 312-318
structure, 24, 116, 453
Citrobacter diversus, 283-284
Citrobacter freundii, resistance in, 42, 44, 48, 55
Clinafloxacin
adverse effects, 407, 408, 410, 462
for CNS infections, 277, 282
drug interactions, 139, 140, 141, 142
immune effects of, 469
for intensive care unit infections, 341
for intra-abdominal infections, 221–222
pharmacokinetics, 117, 119, 126
photosensitivity from, 455, 458
for skin and soft tissue infections, 312–313, 316
structure, 24, 116, 453
Clostridium difficile
resistance in, 43, 45
treatment of pseudomembranous colitis, 341
in vitro activity against, 99
Clozapine, drug interactions with, 143
Colitis, pseudomembranous, 341
Colonization, effect on, 468
Combinations of antimicrobials, 104–105
Community-acquired pneumonia (CAP), treatment of, 227–234
Conjunctivitis, 291
Connective tissue, effects on, 441–447
clinical data, 445–447
arthropathy, 445–446
tendinopathy, 446–447
experimental data, 441–445
epiphysial growth plate, 443
joint cartilage, 442–443
mechanism, 441–442
pharmacokinetics, 442
tendons, 443–444
Corynebacterium, in vitro activity against, 99
Coxiella burnetii
in endocarditis, 266–267, 269
treatment for intracellular pathogens, 328
Crystaluria, 410
Cyclosporine, drug interactions with, 142
Cystic fibrosis, 124–125, 346–347
Cystitis, 161–162
Deasquin, 414
Desfluoroquinolones, pharmacodynamics of, 149, 150
Diabetic foot infections, 317
Diarrhea, 193–208
empirc therapy, 197–200
traveler’s, 197–200
Aeromonas, 205
Campylobacter jejuni, 201–202
Escherichia coli, 202
Plesiomonas shigelloides, 205
prophylaxis, 201
Salmonella, 204–205, 206–207
Shigella, 203
treatment, 200–201
Vibrio cholerae, 202–203
Yersinia enterocolitica, 205
Diflucacin
for endocarditis, 260, 262, 265–266
structure, 4
Distribution of fluoroquinolones
in cerebrospinal fluid, 120
methods for describing, 118–119
in normal versus infected tissue, 119–120
in ocular tissues, 120
protein binding, 118
DNA gyrase, 21–34
description, 21–22
quinolone action on, 23–34
topoisomerase II compared, 69
DNA synthesis, inhibition of, 29–30, 32–34
DNA topoisomerases, 19–24
bacteriostatic action of quinolones and, 24–31
gyrase, 21–34
lethal action of quinolones and, 31–34
targets, fluoroquinolone, 22–24
topoisomerase I, 20, 74
topoisomerase II
antineoplastic drugs, 72
bacterial DNA gyrase compared, 69
catalytic cycle, 70–71
evolutionary conservation of quinolone interaction domain, 78–79
isoforms of, 70
physiological roles, 70
quinolone effects on, 73–78
quinolone enhancement of DNA cleavage, 75–77
regulation, 70
topoisomerase III, 21
topoisomerase IV, 22–24, 25–26, 28–30, 32
Drug interactions, 133–143
CNS toxicity potentiated by, 462–463
involving absorption, 133–138
involving metabolism, 138–143
Ear disease
auricular perichondritis, 246
chronic, 246–247
malignant (necrotizing) external, 245–246
otitis media in pediatrics, 349
Efflux systems
in gram-negative bacteria, 50, 51–56
AcrAB-ToIC pump, 52–53
EmrAB and MdfA pumps, 53
Mex-Opr, 53–55
in gram-positive bacteria, 50, 56–58
Bmr and Blt, 57
NorA, 56–57
PmrA, 57–58
in mycobacteria, 58
Ehrlichia
treatment for intracellular pathogens, 328
in vitro activity against, 101
Elderly
adverse effects in, 408–409, 442
fluoroquinolone pharmacokinetics in, 125–126
urinary tract infections in, 164
EmrAB pump, 53
Enantiomeric forms, of fluoroquinolones, 116
Endocarditis, 259–270
efficacy of quinolones against
Coxiella burnetii, 266–267
Enterobacter, 264–265
INDEX

enterococci, 266
Escherichia coli, 265
Pseudomonas aeruginosa, 263–264
Staphylococcus aureus, 260–262
Staphylococcus epidermidis, 262–263
viridans group streptococci, 265–266
tissue penetration of quinolones, 259–260
use of quinolones against
Coxiella burnetii, 269
Pseudomonas aeruginosa, 268
Staphylococcus aureus, 267–268

Endophthalmitis, 291–305
Endotoxin, 469–470
Enoxacin
adverse effects, 428
for CNS infections, 278, 285
drug interactions, 136, 139, 141, 142
for endocarditis, 262, 265
for eye infections, 296–297
pharmacokinetics, 115, 118, 119
for pharyngitis, 235
photosensitivity from, 452
in pregnancy, 415
structure, 6
Enteric fever. See Typhoid fever
Enteric pathogens. See also Gastrointestinal infections
resistance, 361–369
Enterobacter
in CNS infections, 283–284
in endocarditis, 264–265
in intensive care unit infections, 340
resistance in, 44, 48, 55
in vitro activity against, 93
Enterobacteriaceae
in intensive care unit infections, 337–340
osteomyelitis, 251–252, 254, 256
resistance in, 193–194
in skin and soft tissue infections, 312, 315
in vitro activity against, 91–93, 160
Enterococcus
in endocarditis, 266
in intensive care unit infections, 341
resistance in, 42, 45, 46, 47, 49, 50
in skin and soft tissue infections, 313
in vitro activity against, 98–99
Epididymitis, 186
Epiphyseal growth plate, effect on, 443
Escherichia coli
in CNS infections, 276, 278, 280–282, 284
in endocarditis, 265
in gastrointestinal infections, 197, 200, 202
in intensive care unit infections, 340
resistance in, 41, 42, 44, 47, 48, 50, 52, 58, 338, 369–372, 390, 396
Shiga toxin producing (STEC), 197, 200, 202
in vitro activity against, 91, 103
Excretion of fluoroquinolones, 121–122
Eye infections, treatment of, 291–305
ocular pharmacology, 292–295
outcome studies
in animals with endophthalmitis, 302–303
in animals with external eye disease, 301–302
in humans, 303
pharmacodynamics, 295–296
pharmacokinetics
with intravitreal administration, 298
with systemic administration, 297–298, 299
with topical administration, 296–297, 298
toxicity, ocular, 304–305
Fandofloxacin, 4
Febrile neutropenia, 347
Fleroxacin
adverse effects, 407, 462
allergic reactions, 414
for CNS infections, 278
for endocarditis, 260–261, 264
for eye infections, 294, 298, 301
for gastrointestinal infections, 200, 206
pharmacokinetics, 120, 124
photosensitivity from, 452
in pregnancy, 415
for skin and soft tissue infections, 316–317
structure, 116, 453
Fluoroquinolones. See also specific drugs
drug-drug interactions, 133–143
pharmacodynamics, 147–152
pharmacokinetics, 115–129, 133–143
phototoxicity due to, 451–458
structure-activity relationships, 6–8, 33–34
targets of action, 22–24
Francisella, 331
GABA receptors, quinolone interaction with, 462
Gardnerella vaginalis
treatment of infection, 187
in vitro activity against, 99
Garenoxacin
drug interactions, 143
for intensive care unit infections, 341
pharmacodynamics, 149
for skin and soft tissue infections, 312–314
structure, 8
Gastrointestinal infections, 193–208
diarrhea
empiric therapy, 197–200
traveler’s, 197–200
in pediatrics, 347–348
pharmacologic properties important in treatment of, 194–196
in vitro activity against pathogens, 94–95, 193–194
Gatifloxacin
adverse effects, 409, 413, 414, 416, 426–429
allergic reactions, 414
for CNS infections, 280, 282
drug interactions, 135, 136, 139, 142
for intensive care unit infections, 340
pharmacodynamics, 149, 150, 152, 153
pharmacokinetics, 117, 120–123, 125, 127–128
for respiratory tract infections, 228, 230–233
for skin and soft tissue infections, 312–314, 316
structure, 24, 116

Gemifloxacin
for CNS infections, 282
drug interactions, 135, 136, 139, 141
pharmacodynamics, 149, 150
pharmacokinetics, 118, 122
for respiratory tract infections, 227
for skin and soft tissue infections, 312–314
structure, 5, 9, 24, 116

Genital pathogens
sexually transmitted diseases (STDs), 171–187
in vitro activity against, 99–101
Genotoxicity, 80–82

Glyburide, drug interactions with, 142

Gonococcal infection, 176–182
clinical studies, 176–178
duration of treatment, 173
epidemiology of resistance, 178–179
mechanisms of resistance, 179–180
microbiological studies, 176
QRNG (quinolone-resistant Neisseria gonorrhoeae), 176, 179, 182
resistance in Neisseria gonorrhoeae, 44, 48, 56
clinical relevance, 361
drivers of resistance, 360
prevalence of resistance, 360–361
treatment of keratoconjunctivitis, 304
pharyngitis, 234–235
sexually transmitted disease, 176–182
in vitro activity against pathogen, 99
Gram-positive infections, quinolones and, 471
Granulocyte-macrophage colony-stimulating factor (GM-CSF), 411
Granuloma inguinale (Donovanosis), 184
Granulomatous interstitial nephritis, 411–412

Grepafloxacin
adverse effects, 345, 407–409, 416, 425, 427–429
allergic reactions, 414
for CNS infections, 276
drug interactions, 139, 141, 142
pharmacodynamics, 148
pharmacokinetics, 117, 119–127, 129
for respiratory tract infections, 230, 232, 236–237
structure, 6, 116

Group A β-hemolytic streptococcus (GABHS), 234

Gyrase. See DNA gyrase

Haemophilus ducreyi, 173, 183–184
clinical studies, 184
microbiological studies, 183–184

Haemophilus influenzae
bronchitis, treatment for, 236–237
in eye infections, 304
resistance in, 42, 44, 48, 359

in vitro activity against, 95

Helicobacter pylori
resistance in, 42, 44
in vitro activity against, 95

Hemolytic-uremic syndrome (HUS), 197, 200, 202
Hepatic disease, fluoroquinolone pharmacokinetics in, 127, 129
Hepatic system, adverse effects on, 412–413
Hypoxanthine-guanine phosphoribosyl transferase gene (HGPRT) assay, 81

Immune system, effects on, 83, 467–472
adverse, 409–411
cytokine network, impact on, 469–470
experiments needed, 471–472
gram-positive infections, 471
intra-abdominal infections, 470–471
mechanism of, 467–469
In vitro activity, 91–105
anaerobic bacteria, 99, 100
assessment of, factors influencing, 102
Bartonella, 102
Borrelia burgdorferi, 101–102
Chlamydia trachomatis, 101
combinations of antimicrobials, 104–105
genital pathogens, 99–101
gram-negative bacteria, 91–96, 97
Enterobacteriaceae, 91–93
gastrointestinal pathogens, 94–95
Pseudomonas, 93–94
respiratory tract pathogens, 95–96
gram-positive bacteria, 96–99, 100
enterococci, 98–99
Listeria monocytogenes, 99
staphylococci, 96–98
streptococci, 98
mycobacteria, 101–102
mycoplasmas and ureaplasmas, 101
rickettsia, 101

Intensive care unit infections, 337–341
bacteremia, 340
overview, 337–339
pharmacokinetics/pharmacodynamics of fluoroquinolone use, 339
pseudomembranous colitis, 341
sinusitis, 341
urinary tract infections, 341
wound infections, 341

Interferon γ (IFN-γ) induction, 410, 469
Interleukin-2 (IL-2) induction, 410

Interstitial nephritis, 411

Intra-abdominal infections, 217–223
ciprofloxacin-metronidazole versus imipenem-cilastatin, 219
ciprofloxacin-metronidazole versus piperacillin-tazobactam, 220–221
clinofloxacin for, 221–222
clinical trials, 217–218
microbiology of community-acquired, 217, 218
outcomes of treatment, 219–220
pefloxacin-metronidazole versus gentamicin-metronidazole, 218
postoperative, use of quinolones in, 223
resistance by anaerobes to quinolones, 222–223
trovafloxacin for, 222

Intracellular pathogens, 323–332
activity of antibiotics, studies on
animal models, 326
cell culture models, 325–326
results of, 326–327
uptake and subcellular localization, 323–325
behavior of, 323
treatment for
Bartonella, 329–330
Brucella, 329
chlamydial diseases, 328–329
Coxiella burnetii, 328
Francisella, 331
Legionella pneumophila, 331
rickettsia, 327–328
Salmonella, 330
Shigella, 330
Yersinia enterocolitica, 330–331

Joint infections
arthropathy, 196, 442–443, 445–446
in pediatrics, 347–348
septic arthritis, 251–258

Keratitis, 291–292
Klebsiella pneumoniae
in CNS infections, 276, 282–284
in intensive care unit infections, 338–340
pharmacodynamics of killing, 148, 150, 153
resistance in, 44, 48, 55, 58, 369–372
in vitro activity against, 91, 93, 103

Laboratory test abnormalities, 411
Legionella pneumophila, 234, 331
Levofoxacin
adverse effects, 409, 426
allergic reactions, 414
for CNS infections, 276–277
drug interactions, 135, 136, 137, 139, 141
for endocarditis, 269
for eye infections, 291, 294, 297–298, 300–302, 305
for intensive care unit infections, 338, 340
pharmacodynamics, 148, 151–153
pharmacokinetics, 116, 117, 118, 120–128
in pregnancy, 415
for respiratory tract infections, 227–233, 236–238
for skin and soft tissue infections, 312–314, 316
structure, 24, 116
Lipoteichoic acid, 471, 472
Listeria monocytogenes, 349
in CNS infections, 277, 280–281
in vitro activity against, 99
Lomefloxacin
adverse effects, 407
allergic reactions, 414
drug interactions, 136, 139
for eye infections, 302–304
pharmacodynamics, 148
pharmacokinetics, 118, 119, 122
photosensitivity from, 455, 457, 458
structure, 116, 453

Macrolides, QT interval prolongation from, 429–430
MdfA pump, 53
Mechanism of quinolone action, 19–34
bacteriostatic, 24–31
lethal, 31–34
Meningitis
eficacy of fluoroquinolones in, 282–250
epidemiology and etiology, 275–276
in vitro activity of fluoroquinolones, 276–277
Meningococcal carriage, prevention of, 248, 350
Metabolism
drug interactions involving, 138–143
of fluoroquinolones, 120–121
Methylxanthines, drug interactions with, 138
Mex-Opr efflux system, 53–55
MIC, 147–153. See also in vitro activity
Moraxella catarrhalis, 359
Morganella morganii, 282
Moxifloxacin
adverse effects, 409, 413–414, 425–429, 443
allergic reactions, 414
for CNS infections, 276, 281–282
drug interactions, 135, 136, 137, 139, 141
pharmacodynamics, 153
pharmacokinetics, 117, 119–123, 128, 129
for respiratory tract infections, 228, 230–233, 236–237
for skin and soft tissue infections, 312–314, 316
structure, 11, 12, 24, 116, 453
Mutation prevention concentration (MPC), 153
Mycobacteria
in pediatrics, 350
in vitro activity against, 101–102
Mycobacterium avium, blockage of adherence, 468
Mycobacterium leprae, 350
Mycobacterium smegmatis, resistance in, 43, 45, 50, 58
Mycobacterium tuberculosis
in pediatrics, 350
resistance in, 43, 45, 47, 48, 58
in vitro activity against, 101–102, 103
Mycoplasma hominis
resistance in, 43, 45, 47, 48, 58
in vitro activity against, 103
Mycoplasma hominis
resistance in, 43, 46, 48, 49, 359
treatment of genital infections, 182–183
in vitro activity against, 101, 182
Mycoplasma pneumoniae
in vitro activity against, 96, 103
Mycoplasmas
bronchitis, treatment for, 235
genital infections, 182–183
resistance in, 392
in vitro activity against, 101, 182
<table>
<thead>
<tr>
<th>Nalidixic acid</th>
<th>Olamufloxacin, 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>adverse effects, 304, 410, 445</td>
<td>Osteomyelitis, 251–256</td>
</tr>
<tr>
<td>for gastrointestinal infections, 193, 194, 203, 204–205</td>
<td>experimental, 252–255</td>
</tr>
<tr>
<td>resistant organisms, 205, 348</td>
<td>chronic osteomyelitis, 254</td>
</tr>
<tr>
<td>structure, 453</td>
<td>clinical studies, 254</td>
</tr>
<tr>
<td>Narcotics, drug interactions with, 142–143</td>
<td>comparative studies, 254–255</td>
</tr>
<tr>
<td>Nasal carriage of bacteria, 248</td>
<td>concentration of quinolones in bone, 253–254</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
<td>diabetic osteomyelitis, 255</td>
</tr>
<tr>
<td>resistance in, 44, 48, 56</td>
<td>fractures and, 253, 255</td>
</tr>
<tr>
<td>clinical relevance, 361</td>
<td>models with presence of foreign implant, 253</td>
</tr>
<tr>
<td>drivers of resistance, 360</td>
<td>nonprospective and open studies, 254–255</td>
</tr>
<tr>
<td>prevalence of resistance, 360–361</td>
<td>penetration of quinolones, 253</td>
</tr>
<tr>
<td>treatment of</td>
<td>rabbit model, 252</td>
</tr>
<tr>
<td>keratoconjunctivitis, 304</td>
<td>rat model, 252–253</td>
</tr>
<tr>
<td>pharyngitis, 234–235</td>
<td>microbial aspects of, 251</td>
</tr>
<tr>
<td>sexually transmitted disease, 176–182</td>
<td>overview of, 251</td>
</tr>
<tr>
<td>in vitro activity against, 99</td>
<td>Otitis. See Ear disease</td>
</tr>
<tr>
<td>Neisseria meningitidis</td>
<td>Pasturellaceae, resistance in, 392</td>
</tr>
<tr>
<td>carriage of, 248, 350</td>
<td>Pazufloxacin</td>
</tr>
<tr>
<td>in CNS infections, 275–276, 280, 284–285</td>
<td>allergic reactions, 414</td>
</tr>
<tr>
<td>Nervous system toxicity, 461–464</td>
<td>structure, 11</td>
</tr>
<tr>
<td>Neutropenia, febrile, 347</td>
<td>Pediatric patients, fluoroquinolone pharmacokinetics in, 126–127</td>
</tr>
<tr>
<td>NMDA receptors, quinolone interaction with, 462</td>
<td>Pediatrics, quinolone use in, 343–350</td>
</tr>
<tr>
<td>Nonspecific urethritis, 182</td>
<td>adverse effects, 345–346</td>
</tr>
<tr>
<td>Nonsteroidal anti-inflammatory drugs (NSAIDs), drug interactions with, 143</td>
<td>clinical uses, 346–350</td>
</tr>
<tr>
<td>NorA efflux system, 56–57</td>
<td>bone and joint infections, 347–348</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>CNS infections, 349</td>
</tr>
<tr>
<td>adverse effects, 409, 410, 412, 443, 446</td>
<td>cystic fibrosis, 346–347</td>
</tr>
<tr>
<td>allergic reactions, 414</td>
<td>febrile neutropenia, 347</td>
</tr>
<tr>
<td>drug interactions, 136, 139, 141</td>
<td>gastrointestinal infections, 196, 208, 347–348</td>
</tr>
<tr>
<td>for eye infections, 291, 297–300, 304</td>
<td>meningococcal carriage, prevention of, 350</td>
</tr>
<tr>
<td>for gastrointestinal infections, 198, 200–201, 203–206</td>
<td>mycobacterial infections, 350</td>
</tr>
<tr>
<td>pharmacokinetics, 119, 122</td>
<td>otitis media, 349</td>
</tr>
<tr>
<td>photosensitivity from, 452</td>
<td>pneumococcal infections, resistant, 350</td>
</tr>
<tr>
<td>in pregnancy, 414–415</td>
<td>urinary tract infections, 347</td>
</tr>
<tr>
<td>structure, 6, 24</td>
<td>pharmacokinetics, 344–345</td>
</tr>
<tr>
<td>Ocular pharmacology, 292–295. See also Eye infections, treatment of</td>
<td>pharmacology, 344</td>
</tr>
<tr>
<td>Ocular tissue, distribution into, 120</td>
<td>resistance, 343–344</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>spectrum of activity, 343</td>
</tr>
<tr>
<td>adverse effects, 409, 410, 412, 444–446</td>
<td>Pefloxacin</td>
</tr>
<tr>
<td>allergic reactions, 414</td>
<td>adverse effects, 409, 410, 412, 442, 444, 446</td>
</tr>
<tr>
<td>for CNS infections, 276–281</td>
<td>allergic reactions, 414</td>
</tr>
<tr>
<td>drug interactions, 136, 139</td>
<td>for CNS infections, 276–279, 281–283, 285</td>
</tr>
<tr>
<td>for endocarditis, 260–261, 264, 266–267, 269</td>
<td>drug interactions, 136, 139</td>
</tr>
<tr>
<td>for eye infections, 291, 294–305</td>
<td>for endocarditis, 260–262, 264–269</td>
</tr>
<tr>
<td>for gastrointestinal infections, 194, 196, 199–200, 202, 204–208</td>
<td>for eye infections, 295, 297–298, 300, 304</td>
</tr>
<tr>
<td>immune effects of, 469</td>
<td>for gastrointestinal infections, 206</td>
</tr>
<tr>
<td>pharmacokinetics, 115–116, 118, 119, 120, 121, 122</td>
<td>for intra-abdominal infections, 218</td>
</tr>
<tr>
<td>photosensitivity from, 452</td>
<td>pharmacodynamics, 149</td>
</tr>
<tr>
<td>in pregnancy, 415</td>
<td>pharmacokinetics, 118, 119, 120–121, 122</td>
</tr>
<tr>
<td>structure, 116</td>
<td>photosensitivity from, 452</td>
</tr>
<tr>
<td>Pelvic inflammatory disease (PID), 185–186</td>
<td>in pregnancy, 415</td>
</tr>
<tr>
<td>Pentamidine, QT interval prolongation from, 431</td>
<td>structure, 116</td>
</tr>
<tr>
<td>Pentavalent antimonial meglumine, QT interval prolongation from, 431</td>
<td>Persistent effects, 147–148</td>
</tr>
</tbody>
</table>
Pharmacodynamics, 147–153
 applications of, 153
 CNS infections, 280
 efficacy, requirements for, 148–152
 of eye infection treatment, 295–296
 of fluoroquinolone use for intensive care unit infections, 339
 resistance, emergence of, 152–153
 in respiratory tract infection, 228–229
 skin and soft tissue infections, 311–312
 time course, 147–148
 in urinary tract, 160

Pharmacokinetics
 absorption, 115–116, 118
 central nervous system, 461
 connective tissue, effects on, 442
 distribution, 118–120
 drug interactions, 133–143
 excretion, 121–122
 of eye infection treatment
 with intravitreal administration, 298
 with systemic administration, 297–298, 299
 with topical administration, 296–297, 298
 of fluoroquinolones, 115–129
 in intensive care unit infections, 339
 metabolism, 120–121
 in pediatrics, 344–345
 skin and soft tissue infections, 311–312
 in special populations, 122, 124–129
 summary table of, 117
 in urinary tract, 160–161
Pharyngotonsilitis, 247–248
Pharyngitis, 234–235
Phenytoin, drug interactions with, 142
Phototoxicity due to fluoroquinolones, 79–80, 451–458
 comparison of drugs, 458
 eye effects, 454
 human studies, 454–458
 laboratory studies, 454
 overview, 451–453
 in pediatrics, 345
 structure relationship to, 453–454
PID (pelvic inflammatory disease), 185–186
Plesiomonas shigelloides, 205
PmrA efflux system, 57–58
Pneumococcal infections, in pediatrics, 350
Pneumonia, community-acquired (CAP), 227–234
Postantibiotic effects, 147–148
Pregnancy, use in, 414
Prostatitis, 165–166
Protein binding, of fluoroquinolones, 118
Proteus vulgaris, resistance in, 55
Prulifloxacin, 414
Pseudomembranous colitis, 341
Pseudomonas aeruginosa
 in bone and joint infections, 348
 in CNS infections, 276, 278, 280–284
 in cystic fibrosis patients, 346
 in ear disease, 245–247
 in endocarditis, 263–264, 268
 in eye infections, 291–292, 301–305
 in intensive care unit infections, 337–340
 osteomyelitis, 251–256
 in otitis media, 349
 pharmacodynamics of killing, 148–149, 151, 153
 resistance in, 44, 48, 50, 52, 53–55, 372–374
 in skin and soft tissue infections, 315–316
 in vitro activity against, 93–94, 103
Pyelonephritis, 163–164
Q fever. See Coxiella burnetii
QT interval prolongation, 421–436
 cardiotoxicity as a quinolone class effect, 424–426
 drug involvement
 antimalarials, 430
 azole antifungals, 430
 list of, 432–433
 macrolides, 429–430
 mechanism, 421–422
 pentamidine, 431
 pentavalent antimonials, 431
 prevention and treatment, 431, 433
 quinolones, 424–428
 measurement of QT interval, 423
 mechanism of acquired, 422–423
 regulatory perspective in drug development, 433, 435, 436
 risk with quinolone use, 424–426
RecA, 31–32
Renal adverse effects, 411–412
 acute renal failure, 412
 acute tubular necrosis, 412
 allergic interstitial nephritis, 411
 crystalluria, 412
 granulomatous interstitial nephritis, 411–412
 interstitial nephritis, 411
 temafloxacin syndrome, 412
Renal dysfunction, fluoroquinolone pharmacokinetics in, 127, 128
Renal excretion of fluoroquinolones, 121
Resistance, 355–375
 by anaerobes, 222–223
 of animal pathogens, 390–392
 Campylobacter, 391
 Escherichia coli, 390
 mechanism of, 392
 mycoplasmas, 392
 Pasteurellaceae, 392
 Salmonella, 390
 staphylococci, 391–392
 streptococci, 391–392
Campylobacter, 367–369
 clinical relevance, 368
 drivers of resistance, 367
 prevalence of resistance, 367–368
Chlamydia trachomatis, 361
 in endocarditis pathogens, 261–262
 in enteric pathogens, 193–197, 201–202, 205, 361–369
Escherichia coli, 369–372
frequencies of, 103–104
Haemophilus influenzae, 359
in intensive care unit infections, 337–341
Klebsiella, 369–372
Moraxella catarrhalis, 359
Mycoplasma, 359
in Neisseria gonorrhoeae, 176, 178–182
in pediatrics, 343–344
PK/PD parameters and emergence of, 152–153
Pseudomonas aeruginosa, 372–374
repeated passage and, 104
respiratory tract pathogens, 355–359
Salmonella, 362–367
clinical relevance, 365–367
drivers of resistance, 364–365
prevalence of resistance, 364–365
Shigella, 369
Staphylococcus, 374
Streptococcus pneumoniae, 355–359
clinical relevance, 355–356
drivers of resistance, 356–358
prevalence of resistance, 356–358
Streptococcus pyogenes, 359
viridans group streptococci, 374–375
in zoonotic bacteria, 392–396
Campylobacter, 395–396, 397–399
control measures, 399
Escherichia coli, 396
human quinolone use and, 398–399
Salmonella, 393–394, 396–397, 398
transfer to humans, 396–398
Resistance mechanisms, 41–59
due to altered access to target enzymes, 51–58
altered permeation in gram-negative bacteria, 51–56
altered permeation in gram-positive bacteria, 56–58
altered permeation in mycobacteria, 58
due to altered drug target enzymes, 41–51
gyrase A subunit changes, 43–47
gyrase B subunit changes, 47
models for, 50–51
topoisoromerase IV ParC subunit changes, 47–49
topoisoromerase IV ParE subunit changes, 49–50
in Neisseria gonorrhoeae, 179–180
plasmid mediated, 58–59
Respiratory tract infections
bronchitis, acute, 235
bronchitis, acute exacerbation of chronic, 235–238
cost, 238
severe, 237
third-generation quinolones for, 236
treatment duration and response, 236–237
community-acquired pneumonia (CAP), treatment of, 227–234
gatifloxacin, 231–232
gemifloxacin, 232
levofloxacin, 229–230
moxifloxacin, 230–231
pharmacoeconomic analysis of fluoroquinolone use, 232–233
PK-PD parameters and therapy, 228–229
role of fluoroquinolones in, 233–234
pharyngitis, 234–235
resistance, 355–359
in vitro activity against pathogens, 95–96
Rickettsia
treatment for intracellular pathogens, 327–328
in vitro activity against, 101
Rifampin, drug interactions with, 142
RNA synthesis, inhibition of, 30–31
Rosoxacin, for eye infections, 296–298
Rufloxacin
for CNS infections, 280
drug interactions, 136
effectiveness of, 471
Salmonella
in arthritis, septic, 348–349
in CNS infections, 282–285
gastrointestinal infections, 197, 200, 204–205, 206–207, 347–348
resistance in, 42, 44, 47, 48, 53, 362–367, 390, 393–394, 396–397, 398
clinical relevance, 365–367
drivers of resistance, 363–364
prevalence of resistance, 364–365
treatment for intracellular pathogens, 330
in vitro activity against, 95
Sexually transmitted diseases (STDs), 171–187
bacterial vaginosis, 186–187
chancroid (Haemophilus ducreyi), 183–184
Chlamydia trachomatis, 173–176
clinical manifestations, 172
duration of treatment, 173
epididymitis, 186
gonococcal infection, 176–182
granuloma inguinale (Donovanosis), 184
ideal drugs for, 171–173
mycoplasmas, 182–183
nonspecific urethritis and cervicitis, 182
overview, 171
pelvic inflammatory disease (PID), 185–186
resistance, 360–361
clinical relevance, 361
drivers of resistance, 360
prevalence of resistance, 360–361
syphilis, 186
treatment guidelines, 173
Shiga toxin producing Escherichia coli (STEC), 197, 200, 202
Shigella
gastrointestinal infections, 200, 203, 347–348
resistance in, 42, 44, 369
treatment for intracellular pathogens, 330
in vitro activity against, 95
Side effects. See Adverse effects
Sinusitis, 341
Sitafloxacin
 adverse effects, 405
 allergic reactions, 412
 pharmacodynamics, 149, 150
 structure, 4, 10
Skin and soft tissue infections, 311–319
 fluoroquinolone treatment, clinical evaluation of, 315–318
 complicated infections, 316–317
 cutaneous anthrax, 318
 diabetic foot infections, 317–318
 uncomplicated infections, 315–316
 microbiology of, 312–315
 pharmacokinetics and pharmacodynamics, 311–312
Sparfloxacin
 adverse effects, 345, 407–410, 425–429
 allergic reactions, 414
 for CNS infections, 277, 280
 drug interactions, 136, 139
 for endocarditis, 260, 262, 266
 for eye infections, 294, 297–298, 300–303, 305
 for intensive care unit infections, 340
 pharmacokinetics, 115, 117, 119, 120, 122
 photosensitivity from, 452, 458
 for skin and soft tissue infections, 312–314
 structure, 6, 11, 24, 116, 453
Staphylococci
 resistance in, 374, 391–392
 in vitro activity against, 96–98
Staphylococcus aureus
 in CNS infections, 276, 278, 280, 282–283
 in endocarditis, 260–262, 267–268
 in eye infections, 291, 301–304
 in intensive care unit infections, 337–339
 nasal carriage of, 248
 osteomyelitis, 251–256
 resistance in, 42, 44, 46–51, 56–59, 261–262, 374
 in skin and soft tissue infections, 311–319
 in vitro activity against, 96–98, 103
Staphylococcus epidermidis
 in endocarditis, 262–263
 in eye infections, 291–293, 296, 302–303
 in intensive care unit infections, 340
STDS. See Sexually transmitted diseases
Stenotrophomonas maltophilia
 in intensive care unit infections, 338
 resistance in, 50, 55
 in vitro activity against, 94
Streptococci
 resistance in, 355–359, 374–375, 391–392
 viridans group streptococci in endocarditis, 265–266
 in vitro activity against, 98
Streptococcus agalactiae, 277
Streptococcus mitis
 in endocarditis, 265
 resistance in, 45, 48, 49
Streptococcus pneumoniae
 in CNS infections, 275–276, 280, 282, 349
 in otitis media, 349
 pharmacodynamics of killing, 147–153
 resistance in, 42, 45, 46, 48–50, 57–58, 355–359
 clinical relevance, 358–359
 drivers of resistance, 355–356
 prevalence of resistance, 356–358
 respiratory tract infection, treatment of, 227–234, 236, 350
 in vitro activity against, 96–98, 103
Streptococcus pyogenes
 resistance, 359
 in skin and soft tissue infections, 311–312
 treatment of pharyngitis, 234
 in vitro activity against, 96–98
Streptococcus sanguis, in endocarditis, 265
 Structure of drug, adverse effects relationship to, 407, 408
 Structure-activity relationships, 3–13
Syphilis, 186
Temafoxacin
 adverse effects, 345, 407–409, 412, 425
 for CNS infections, 280
 drug interactions, 136, 139, 141
 pharmacodynamics, 148, 149
 in pregnancy, 415
 for respiratory tract infections, 236, 237
 structure, 3
Tendinopathy, 443–445, 446–447
Topoisomerases. See DNA topoisomerases
Torsades de pointes. See also QT interval prolongation
 drugs linked to, 424–426, 429–433, 435
 mechanisms of, 421–424
 risk from quinolones, 424–426
Tosufloxacin
 adverse effects, 407, 409
 allergic reactions, 414
 for skin and soft tissue infections, 313
Troxifloxacin
 adverse effects, 407–409, 413, 416, 462
 allergic reactions, 414
 for CNS infections, 276, 280–285
 drug interactions, 135, 136, 139, 141, 143
 for endocarditis, 260, 262–263, 265–266, 269
 for eye infections, 291, 293, 297–298, 302
 for intensive care unit infections, 340
 for intra-abdominal infections, 222
 pharmacodynamics, 148
 pharmacokinetics, 117–120, 122–123, 126
 for respiratory tract infections, 230–233, 237–238
 for skin and soft tissue infections, 312–318
 structure, 3, 4, 24, 116
Traveler’s diarrhea. See Diarrhea
Treponema pallidum, 172, 186
Trovafloxacin
 adverse effects, 407–409, 413
 allergic reactions, 414
 for CNS infections, 276, 280–285
 drug interactions, 135, 136, 139, 141, 143
 for endocarditis, 260, 262–263, 265–266, 269
 for eye infections, 291, 293, 297–298, 302
 for intensive care unit infections, 340
 for intra-abdominal infections, 222
 pharmacodynamics, 148
 pharmacokinetics, 117–120, 122–123, 126
 for respiratory tract infections, 230–233, 237–238
 for skin and soft tissue infections, 312–318
 structure, 3, 4, 24, 116
Tumor necrosis factor α (TNF-α), 411, 469, 470
Typhoid fever, 204–205, 206–207

Unscheduled DNA synthesis (UDS) assay, 80

Ureaplasma
- genital infections, 182–183
- in vitro activity against, 101, 182

Urinary fluoroquinolone concentration, 121–122

Urinary tract infections, 159–167
- clinical definitions, 159–160
- epidemiology, 159
- in intensive care unit, 341
- in pediatrics, 347
- pharmacology of quinolones, 160
- quinolone agents in prevention of, 166–167
 - catheter-associated UTI, 167
 - recurrent UTI, 166
 - urological surgery, 166–167
- quinolone agents in treatment of, 161–166
 - acute pyelonephritis, 163–164
 - acute uncomplicated cystitis, 161–162
 - complicated UTI, 164–165
 - prostatitis, 165–166
 - UTI in elderly, 164

Vaginitis, after antibiotic treatment, 416
Veterinary use of quinolones, 387–399

Vibrio cholerae
- gastrointestinal infections, 202–203
- resistance in, 50, 55

Vibrio parahaemolyticus, resistance in, 42, 44, 48, 50, 55

Viridans group streptococci
- in endocarditis, 265–266
- resistance in, 374–375

Warfarin, drug interactions with, 140

Wound infections, in intensive care unit, 341

Yersinia enterocolitica
- gastrointestinal infections, 205
- treatment for intracellular pathogens, 330–331

Zoonotic bacteria, resistance in, 392–396
- Campylobacter, 395–396, 397–399
- control measures, 399
- Escherichia coli, 396
- human quinolone use and, 398–399
- Salmonella, 393–394, 396–397, 398
- transfer to humans, 396–398