Cover illustration is adapted from a poster, “Mechanisms of antibiotic action and resistance,” by C. Walsh, J. Trauger, P. Courvalin, and J. Davies (Trends in Microbiology, volume 9, 2001, with permission from Elsevier Science).

Copyright © 2003 ASM Press
American Society for Microbiology
1752 N Street, N.W.
Washington, DC 20036-2904

Library of Congress Cataloging-in-Publication Data

Walsh, Christopher.
Antibiotics : actions, origins, resistance / by Christopher Walsh.
p. ; cm.
Includes bibliographical references and index.
ISBN 1-55581-254-6
 QV 350 W223a 2003] I. Title.

RM267 .W357 2003
615 '.329—dc21 2002152389

All Rights Reserved
Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Address editorial correspondence to: ASM Press, 1752 N St., N.W., Washington, DC 20036-2904, U.S.A.

Send orders to: ASM Press, P.O. Box 605, Herndon, VA 20172, U.S.A.
Phone: 800-546-2416; 703-661-1593
Fax: 703-661-1501
Email: books@asmusa.org
Online: www.asmypress.org
Dedicated to

Diana
Allison
Thomas
Contents

Preface xi

Section I *Introduction to Antibiotics 1*

Chapter 1 Antibiotics: Initial Concepts 3

Section II *Validated Targets and Major Antibiotic Classes 11*

Chapter 2 Introduction to Major Antibiotic Classes and Modes of Action 13

Chapter 3 Antibiotics That Act on Cell Wall Biosynthesis 23

Chapter 4 Antibiotics That Block Bacterial Protein Biosynthesis 51

Chapter 5 Antibiotics That Block DNA Replication and Repair: the Quinolones 71

Chapter 6 Other Targets of Antibacterial Drugs 79

Section III *Antibiotic Resistance 89*

Chapter 7 Natural and Producer Immunity versus Acquired Resistance 91

Chapter 8 Enzymatic Destruction or Modification of the Antibiotic by Resistant Bacteria 107

Chapter 9 Antibiotic Resistance by Efflux Pumps 125

Chapter 10 Antibiotic Resistance by Replacement or Modification of the Antibiotic Target 143

Section IV *Antibiotic Biosynthesis 157*

Chapter 11 Regulation of Antibiotic Biosynthesis in Producer Organisms 159
chapter 12 Polyketide Antibiotic Biosynthesis: Assembly-Line Enzymology 175
chapter 13 Enzymatic Assembly Lines for Nonribosomal Peptide Antibiotics 195
chapter 14 Biosynthesis of Other Classes of Antibiotics 221

section V New Strategies for Finding Novel Antibiotics and Extending Their Lifetimes 235

chapter 15 New Looks at Targets 237
chapter 16 New Molecules 271
chapter 17 Contexts and Challenges for the Use of New Antibiotics 285

References 297

Index 329
Preface

This book has developed from four sustained, convergent interests in my research group: enzyme inhibitors; bacterial cell wall biosynthetic pathways; the mechanism of action of antibiotics and the development of resistance mechanisms; and the biosynthesis of polyketide and nonribosomal peptide natural products.

The basic premise of the approach is that one can understand and categorize antibiotic action, both historically and prospectively, by analysis of how these small molecules interfere selectively with one or more processes central to the survival of bacterial cells. Most of the attention in this book is on natural products with antibiotic activity elaborated by microbes to act as chemical weapons on neighboring bacteria, but synthetic chemicals with antibiotic activity are also examined. Thousands of molecules have been reported to have antibiotic activity, but only a few structural classes have had an impact in human infectious disease. The focus of this text is on those classes of antibiotics. This book is, then, not meant to be encyclopedic, nor a compendium of pharmacologic information, nor a microbiologic survey of pathogens and how to treat them. Authoritative texts already exist on those aspects of antimicrobial agents.

The current major classes of antibiotics act on only a small set of targets: bacterial cell wall biosynthesis, bacterial protein synthesis, DNA replication and repair, and the folate coenzyme-dependent pathway for thymidine biosynthesis. The first section of the book examines how antibiotics block specific proteins acting in these essential bacterial processes and how the molecular structure of the small-molecule drugs enables their antibiotic activity.

The middle section of the book takes up the development of bacterial resistance to antibiotics, starting with the molecular logic that microbial producers of antibiotics use for self-protection. The three major routes of resistance in antibiotic producers—destruction of the antibiotic, active extrusion of antibiotics by transmembrane pumps, and modification of target structures to antibiotic insensitivity—are seen to be the major mechanisms of resistance in bacterial pathogens.

The third part of the text takes up the molecular logic of antibiotic biosynthesis, starting with regulatory networks that control gene transcription of secondary metabolites in streptomycetes, those prolific producers of antibiotics. Polyketide and nonribosomal peptide antibiotics are manufactured on multimodal "assembly lines" that resemble fatty acid synthase machinery. The
modular assembly line strategy enables wide variation of structure in these classes of antibacterial agents and offers the prospect of directed combinatorial biosynthesis.

The last section of the book examines the prospects for broadening the base of bacterial targets and also where new antibiotics are likely to emerge. Bacterial genomic sequencing has moved antibacterial research from a target-poor to a target-rich arena. New antibiotics are likely to arise both from synthetic chemical efforts, perhaps via combinatorial chemistry efforts, and also from natural products, by combinatorial biosynthetic variants.

I am indebted to many members of my research group, over the past 5 years in particular, for many discussions and ideas about antibiotic action, biosynthesis, and resistance. I thank John Trauger for his design and execution of artwork on targets in bacterial cells that led to the book cover art and the chapter opener figures. I thank Gary Marshall, Raymond Chen, Hiten Patel, Steve Bruner, Mike Burkart, Susan Clugston, Rahul Kohli, Heather Losey, and Lusong Luo for their many contributions to artwork creation, design, and implementation, as well as the correction of numerous inconsistencies and errors along the way. I acknowledge the help and input of Tanya Schneider, Sarah O’Connor, and particularly Lusong Luo for efforts in literature citations. My special thanks go to Gary Marshall for his tremendous diligence and attention to the text and especially the bulk of the final artwork of the book.

Christopher Walsh
January 2003
Index

A
A47934 (glycopeptide), structure of, 100
Abs proteins, *Streptomyces coelicolor*, in antibiotic biosynthesis regulation, 162–164
ABT-773 (ketolide), structure of, 148
Acetyl-CoA, in ketide synthesis, 175
Acetylation, in aminoglycoside deactivation, 120–122
Actinonin, structure of, 253
Actinoplanes, vancomycin producing, self-protection against, 99
Actinorhodin, biosynthesis of, 161–164
Acyl carrier protein, in ketide synthesis, 176–181
Acylhomoserine lactones, as antibacterial targets, 266–267
Adenylylation, in aminoglycoside deactivation, 120–122
AfsQ proteins, *Streptomyces coelicolor*, in antibiotic biosynthesis regulation, 162–164
Amp proteins, in *Escherichia coli* resistance, 115–117
Ampicillin-clavulanate, mechanism of action of, 113–114
Ampicillin-sulbactam, mechanism of action of, 114
Amp proteins, in *Escherichia coli* resistance, 115–117
Amycolatopsis orientalis, in vancomycin biosynthesis, 158
Azithromycin, indications for, 59
Azithromycin
bacterial self-protection against, see Bacteria, self-protection in
classification of, 4–5, 13–18
definition of, 3
efflux from bacteria, see Efflux pumps
first-line selections of, 16–18
new, see Novel antibiotics
resistance to, see Resistance
gene sales of, 13
structures of, 12
targets for, see Bacterial targets
Antibiotic biosynthesis, 5, see also specific antibiotics
nonribosomal peptide, 195–218
novel libraries for, 271–277
nonribosomal peptides, 278–282
polyketides, 274–282
polyketides, 175–193
regulation of, 159–173
in gram-negative bacteria, 171–173
in streptomycetes, 159–170
Arp proteins, in antibiotic biosynthesis, 168
Apt-binding cassette family, of efflux pumps, characteristics of, 126–127, 129–132
Avoparcin, for food animals, resistance development and, 291

D-Alanyl-D-alanine ligase, in cell wall biosynthesis, 30–32
L-Aminoadipyl-L-cysteinyl-L-valine (ACV), in peptide antibiotic biosynthesis, 195
bacitracin, 204–206
cephalosporins, 206–211
chloreremomycin, 202–204
penicillins, 206–211
tecoplanin, 211–214
tyrocidine, 204–206
vancomycin, 202–204, 211–214
L-Aminoadipyl-L-cysteinyl-D-valine (ACV) synthase, 195–197, 200–201
Aminocoumarins
bacteria producing, self-protection against, 99
biosynthesis of, 226–228
Aminoglycosides
biosynthesis of, 222–226
protein biosynthesis effects of, 66–67, 249
resistance to, enzymes causing, 120–122
Amoxicillin, structure of, 12
Amoxicillin-clavulanate, mechanism of action of, 113–114
Amoxicillin-sulbactam, mechanism of action of, 114
Amp proteins, in *Escherichia coli* resistance, 115–117
Amycolatopsis orientalis, in vancomycin biosynthesis, 158
Antibiotic(s)
appropriate use of, 293–295
Agriculture, antibiotic use in, resistance development in, 291–292
AI-2 quorum autoinducers, as antibacterial targets, 267
Alanine racemase, in peptidoglycan assembly, 30–32
Aztreonam
cell wall biosynthesis effects of, 45
mechanism of action of, 112
structure of, 38, 111

B
Bacillus subtilis
resistance in, efflux pumps in, 134–135
two-component regulatory system of, 265
Bacitracin
biosynthesis of, 200–206
cell wall biosynthesis effects of, 32–35
mechanism of action of, 83
structure of, 37, 196
Bacteria
antibiotic efflux from, see Efflux pumps
cell wall biosynthesis by, see Cell wall biosynthesis
protein biosynthesis in, see Protein biosynthesis
resistance in, see Resistance
self-protection in, 5–6
aminocoumarin producers, 99
macrolide producers, 96–97
mitomycin producers, 100–101
pathogenic, 101–105
vancomycin producers, 99–100
Bacterial targets
antibiotic classification by, 14–16
cell wall biosynthesis, 23–49, 241–246
DNA replication and repair, 71–77, 252–256
efflux pumps, see Efflux pumps
fatty acid biosynthesis, 257–258
folic acid metabolism, 79–83
isocitrate lyase, 261–262
isoprenoid biosynthesis, 258–261
lipid A biosynthesis, 262
modification of, 143–155
in macrolides, 147–148
peptidoglycan termini, 148–155
Staphylococcus aureus methicillin resistance, 143–146
Streptococcus pneumoniae beta-lactam resistance, 146–147
for novel antibiotics, see Novel antibiotics, targets for overview of, 18–20
for peptide antibiotics, 83–87
protein biosynthesis, 51–69, 246–251
RNA polymerase action, 87–88
Bacteroides fragilis, beta-lactamase of, 115
Bar proteins, in antibiotic biosynthesis regulation, 166, 168
Beta-lactam antibiotics, see also specific antibiotics
bacterial effects of, 2
cell wall biosynthesis effects of, 36–45
resistance to, 146–147, see also Beta-lactamases
Beta-lactamase inhibitory protein, 114–115
Beta-lactamases, 107–120
active-site serine hydrolases, 107–111
classification of, 108
Escherichia coli, 115–117
gene expression regulation by, 115–120
metallo-, 111–112, 115
neutralization of, 112–115
number of, 108
slow substrates for, 112
Staphylococcus aureus, 117–119
Streptococcus pneumoniae, 119–120
structures of, 109
suicide substrates for, 113–115
zinc hydrolases, 111–112
Biofilms, quorum sensing in, 265–266
Biosynthesis
antibiotic, see Antibiotic biosynthesis
cell wall, see Cell wall biosynthesis
protein, see Protein biosynthesis
Bla proteins, in Staphylococcus aureus resistance, 117–119
Bleomycin
biosynthesis of, 216–218
as hybrid molecule, 279
structure of, 217
Bmr proteins, as efflux pumps, 134–136
BtuCD protein pair, as efflux pump, 130
Butaneolides, in antibiotic biosynthesis, 164–167
Carbapenems
beta-lactamase resistance in, 112
biosynthesis of, 206–211
Cell wall biosynthesis effects of, 36–37, 45
for methicillin-resistant Staphylococcus aureus, 145–146
resistance to
beta-lactamases in, see Beta-lactamases
efflux pumps in, 137
Pseudomonas aeruginosa, 137
structures of, 38, 111
Carbomycin, protein biosynthesis effects of, 247
CcdB toxin, in DNA gyrase inhibition, 256
Cefotaxime, structure of, 111
Ceftazidime, structure of, 111
Cell membranes, peptide antibiotic effects on, 83–87
Cell wall biosynthesis, 23–49
antibiotic side chain modification effects on, 41–45
antibiotic susceptibility and structural considerations in, 23–26
antibiotic targets in, 241–246
bacitracin effects on, 32–35
beta-lactam effects on, 36–45
GlmU in, 244
glycopeptide effects on, 45–48
in gram-negative and gram-positive bacteria, 23–26
D,D-ligase in, 30–32
lipid intermediate formation in, 32–34
moenomycin effects on, 48–49
Mur enzymes in, 26–30
mycobacterial A85 in, 241–244
peptidoglycan complete unit formation in, 34–36
peptidoglycan enzymatic assembly in, 26–32
racemase in, 30–32
ramoplanin effects on, 32–35
staphylococcal sortase in, 241–242
transglycosylase in, 48–49, 244–246
transeptidation in, 37–41, 45–48
Cephalosporins
bacterial overgrowth due to, 292–293
biosynthesis of, 206–211
Cell wall biosynthesis effects of, 36–41, 45
generations of, 44–45
resistance to
beta-lactamases in, see Beta-lactamases
Streptococcus pneumoniae, 146–147
side chain modifications of, 44–45
structures of, 38
Cerulenin, fatty acid biosynthesis effects of, 257
Chloramphenicol
biosynthesis of, 226–228
mechanism of action of, 61–62
structure of, 231
Chlorobiocin
biosynthesis of, 226–228
in DNA gyrase inhibition, 253
structure of, 228, 254
Chloroeremomycin
biosynthesis of, 202–204
structure of, 100, 246
Chloroeremomycin
biosynthesis of, 202–204
structure of, 100, 246
Chlortetracycline
biosynthesis of, 181–186
structure of, 182
Cholera toxin, secretion of, 139
Ciprofloxacin
in DNA gyrase inhibition, 71
structure of, 12, 72
Clarithromycin
indications for, 59
mechanism of action of, 61–62
resistance to, 147–148
structure of, 58
Clavulinate
biosynthesis of, 206–211
mechanism of action of, 113–114
structure of, 38, 113
Clinafloxacin, in DNA gyrase inhibition, 253
Clostridium difficile, overgrowth of, 292–293
Combination therapy, for resistance control, 294
Combinatorial chemistry, in novel antibiotic development
libraries for, 271–277
nonribosomal peptides, 278–282
polyketides, 274–282
Coumarins
bacteria producing, self-protection against, 99
biosynthesis of, 226–228
as DNA replication and repair inhibitors, 71–73, 253
Coumermycin
biosynthesis of, 226–228
in DNA gyrase inhibition, 71, 253
structure of, 72, 228, 254
Cut proteins, Streptomyces coelicolor, in antibiotic biosynthesis regulation, 162–164
Cyclothialidine, in DNA gyrase inhibition, 253–254
Ertapenem, cell wall biosynthesis effects of, 45
Erwinia carotovora
antibiotic biosynthesis in, 171
resistance in, protein secretion machinery in, 139
Erythromycin(s)
bacteria producing, self-protection against, 96–99
biosynthesis of, 186–191, 191–193
genes of, combinatorial reprogramming of, 274–277
mechanism of action of, 60–63
protein biosynthesis effects of, 57–63
resistance to, 147–148
structures of, 12, 57–59, 96
Escherichia coli
antibiotic targets in, 239
O157:H7, resistance in, 137–138
resistance in, 289–290
beta-lactam antibiotics, 110
efflux pumps in, 127, 129–130, 133–134
penicillins, 115–117
protein secretion machinery in, 138–139
Evernimomycin, protein biosynthesis effects of, 247–248
Evolution, of resistance, 6–7, 286–287
Ertapenem, cell wall biosynthesis effects of, 45
Erwinia carotovora
antibiotic biosynthesis in, 171
resistance in, protein secretion machinery in, 139
Erythromycin(s)
bacteria producing, self-protection against, 96–99
biosynthesis of, 186–191, 191–193
genes of, combinatorial reprogramming of, 274–277
mechanism of action of, 60–63
protein biosynthesis effects of, 57–63
resistance to, 147–148
structures of, 12, 57–59, 96
Escherichia coli
antibiotic targets in, 239
O157:H7, resistance in, 137–138
resistance in, 289–290
beta-lactam antibiotics, 110
efflux pumps in, 127, 129–130, 133–134
penicillins, 115–117
protein secretion machinery in, 138–139
Evernimomycin, protein biosynthesis effects of, 247–248
Evolution, of resistance, 6–7, 286–287
Fatty acid(s), biosynthesis of, as antibiotic target, 257–258
Fatty acid synthases, vs. polyketide synthases, 175–181
Fluoroquinolones
for food animals, resistance development and, 291
mechanism of action of, DNA gyrase inhibition, 71–77
Folic acid metabolism, sulfamethoxazole-trimethoprim effects on, 79–83
Food animals, antibiotic use in, resistance development and, 291–292
Fosfomycin
biosynthesis of, 221–222
resistance to, enzymes causing, 122–123
structure of, 222
Gatifloxacin
in DNA gyrase inhibition, 71
structure of, 72
Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Sat, 18 May 2019 16:02:57
GE2270A
protein biosynthesis effects of, 248
structure of, 250
Gentamicin
biosynthesis of, 222–226
structure of, 223
GlmU enzyme, as antibiotic target, 244
Glutamate, in cell wall biosynthesis, 32
Glutathione S-transferase, in fosfomycin deactivation, 122–123
Glycopeptides
bacteria producing, self-protection against, 99–100
cell wall biosynthesis effects of, 45–48
structures of, 46, 100
Glycosyltransferases
in glycopeptide biosynthesis, 213–214
in ketolide biosynthesis, 191–193
Glycylcyclines, protein biosynthesis effects of, 64, 66
Gram-negative bacteria
antibiotic biosynthesis in, regulation of, 171–173
cell wall structure of, 23–26
lipid A biosynthesis in, 262
resistance in, 138–140
virulence factor regulation in, 171–173
Gram-positive bacteria, cell wall structure of, 23–26
Gramicidin S
mechanism of action of, 83
structure of, 84

H
Hemolysin protein, Escherichia coli, 139
Hygromycin B, protein biosynthesis effects of, 67–68

I
Imipenem
cell wall biosynthesis effects of, 45
structure of, 38, 111
Isocitrate lyase, as antibiotic target, 261–262
Isoniazid, fatty acid biosynthesis effects of, 257
Isopenicillin N, structure of, 38
Isoprenoid biosynthesis, as antibiotic target, 258–261

K
Kanamycin
biosynthesis of, 222–226
structure of, 58, 223
Ketides/ketolides/polyketides, 148;
see also specific antibiotics, e.g., Tetracycline(s)
biosynthesis of, see Polyketide synthases
Klebsiella pneumoniae, resistance in, beta-lactam antibiotics, 110

L
Lantibiotics, 85, 228–234
Levofoxacin
in DNA gyrase inhibition, 71
structure of, 72
Libraries, for novel antibiotics
natural product, 274–277
synthetic chemical, 271–274
D,D-Ligase, in cell wall biosynthesis, 30–32, 149–153
Lincosamide, mechanism of action of, 60
Linezolid
protein biosynthesis effects of, 67, 69
structure of, 12, 58
Lipid A, biosynthesis of, in gram-negative bacteria, 262
Lipid I and II intermediates, in cell wall biosynthesis, 32–34, 245
Lipoglycopeptides, biosynthesis of, 214–216
Lipoproteins, biosynthesis of, 214–216
LpxC enzyme, in lipid A biosynthesis, 262
LuxI proteins, as antibiotic targets, 266–268

M
Macrolides, see also specific antibiotics, e.g., Erythromycin(s)
bacteria producing, self-protection against, 96–99
resistance to, 147–148
Major facilitator subfamily, of efflux pumps
characteristics of, 125–127, 129
function of, 132–134
MakK pump, in antibiotic efflux, 129
Mature autoinducing peptide, as antibiotic target, 265
Mec proteins, in Staphylococcus aureus resistance, 143–146
Meropenem
cell wall biosynthesis effects of, 45
resistance to, efflux pumps in, 137
structure of, 111
Mersacidin
biosynthesis of, 228–234
cell wall biosynthesis effects of, 35
mechanism of action of, 86
structure of, 36
Methicillin, resistance to
development of, 92–93
Staphylococcus aureus, 103, 117–119, 143–146, 239, 288
target modification in, 143–146
Methionine aminopeptidase, as antibiotic target, 249–250
5’-Methoxyhydnocarpin D, as efflux pump inhibitor, 269
Methylenemycin, biosynthesis of, 162–164
Mevalonate pathway, for isoprenoid biosynthesis, 258–260
Microcin B17
biosynthesis of, 228–234
in DNA gyrase inhibition, 255
structure of, 233
Miniycin, biosynthesis of, 165
Minocycline, protein biosynthesis effects of, 64
MipA protein, penicillin-binding protein complexes with, 36
Mitomycin
bacteria producing, self-protection against, 100–101
structure of, 102
Moenomycin
cell wall biosynthesis effects of, 48–49
mechanism of action of, 244
Monobactams
cell wall biosynthesis effects of, 45
structures of, 38
Monooxygenases, in ketolide biosynthesis, 191–193
MraY enzyme, in cell wall biosynthesis, 32–34
MsBA protein, as efflux pump, 129–131
Multidrug resistance, 287–290
Mupirocin
protein biosynthesis effects of, 251
structure of, 253
Mur enzymes, in peptidoglycan assembly, 26–30
Mureidomycins, cell wall biosynthesis effects of, 34
Murein layer, see Peptidoglycan layer
Mycobacterium tuberculosis
acyltransferase of, as antibiotic target, 243–244
isocitrate lyase of, as antibiotic target, 261–262
rifamycins for, 87–88
Mycolytransferases, as antibiotic targets, 243–244
Mycosubtilin biosynthesis of, 214–216
structure of, 215
Naphthyl dipeptide, as efflux pump inhibitor, 269
Neamine, structure of, 252
Neomycins
biosynthesis of, 222–226
structures of, 252
New antibiotics, see Novel antibiotics
Nisin, biosynthesis of, 228–234
Nosideptide
protein biosynthesis effects of, 248
structure of, 250
Nosocomial infections, resistance development in, 91–94, 292–294
Novel antibiotics
libraries for natural product, 274–277
synthetic chemical, 271–274
need for, 7–8
targets for, 237–269
cell wall biosynthesis, 241–246
definition of, 237–241
DNA replication and repair, 252–256
efflux pumps, 269
fatty acid biosynthesis, 257–258
isocitrate lyase, 261–262
isoprenoid biosynthesis, 258–261
lipid A biosynthesis, 262
protein biosynthesis, 246–251
quorum sensor biosynthesis, 265–268
two-component regulatory systems, 262–265
time line for introduction, 236
Novobiocin biosynthesis of, 226–228
in DNA gyrase inhibition, 71, 253
structure of, 72, 228, 254
Oleandomycin
bacteria producing, self-protection against, 96–99
structure of, 96
Orf proteins, in fosfomycin biosynthesis, 222
Ortavancin, 154–155
Oxytetracycline biosynthesis of, 181–186
structure of, 182
Penicillin(s)
biosynthesis of, 206–211
cell wall biosynthesis effects of, 36–44
generations of, 43–44
resistance to, 115–120
beta-lactamases in, see Beta-lactamases
Streptococcus pneumoniae, 146–147
side chain modifications in, 41–44
structures of, 38, 42, 196
Penicillin-binding proteins, 107–111
evolution into beta-lactamases, 108, 110
inhibition of, 40–41
MipA complexes with, 36
Streptococcus pneumoniae, 146–147
Peptide antibiotics
mechanism of action of, 83–87
nonribosomal biosynthesis of, 195–218
novel, development of, 274–282
Peptide deformylase, as antibiotic target, 249–250
Peptidoglycan layer, of bacterial cell wall
as antibiotic target, 244
beta-lactam effects on, 36–45
completion of, 34–36
enzymatic assembly of, 26–32, 34–36
glycopeptide effects on, 45–48
in gram-negative vs. gram-positive bacteria, 23–26
proteins linked to, 25
reprogramming of, 148–155
Peptidyltransferases, in bacterial protein synthesis, 51–57
Phosphonopyruvate mutase, in fosfomycin biosynthesis, 221–222
Phosphopantetheinyltransferase in ketide synthesis, 177–178
in nonribosomal peptide biosynthesis, 197–200
Phosphorylation, in aminoglycoside deactivation, 120–122
Pleuromutilin, protein biosynthesis effects of, 247
Polyketide synthases, 175–193
characteristics of, 175–181
as hybrid molecules, 279–280
resistance to, 291
structures of, 196, 217
Propionyl-CoA, in ketide synthesis, 183
Protein biosynthesis, 51–69
aminoacyl-tRNA synthases in, 251
aminoglycoside effects on, 66–67
as antibiotic target, 246–251
erthyromycin effects on, 57–63
glycylcycline effects on, 64, 66
linezolid effects on, 67–69
methionine aminopeptidase in, 249–250
mupirocin effects on, 251
peptide deformylase in, 249–250
peptidyltransferase cycle in, 51–57
ribosome structure in, 51–57, 246–249
synergistic nonribosomal peptide combination effects on, 63–64
tetracycline effects on, 64–66
Protein secretion, as resistance mechanism, 138–140
Proton motive force, in efflux pumps, 125–129
Pseudomonas aeruginosa
antibiotic biosynthesis in, quorum sensing in, 172–173
resistance in, 102–103
Pseudomonas aeruginosa (continued)
aminoglycosides, 120
beta-lactam antibiotics, 111–112
carbanemems, 137
efflux pumps in, 132–133, 269
two-component regulatory system of, 264
Puromycin, mechanism of action of, 62
Pyrrhocoricin, mechanism of action of, 86–87

Q
Quaternary ammonium compounds, as efflux pumps, 127
Quinolones
for food animals, resistance development and, 291
mechanism of action of, DNA gyrase inhibition, 71–77, 252–256
Quinupristin, 63–64
Quorum sensing
as antibiotic target, 265–268
in gram-negative bacteria, 171–173, 265–269

R
Racemase, in peptidoglycan assembly, 30–32
Ramoplanin
biosynthesis of, 214–216
cell wall biosynthesis effects of, 32–35
structure of, 36, 215
Resistance, see also specific bacteria and antibiotics
agricultural antibiotic use and, 291–292
in antibiotic producers, 95–96 of aminocoumarins, 99
of macrolides, 96–99
of mitomycin, 100–101
of vancomycins, 99–100
bacterial target modification in, 143–155
control of, 293–295
development of, 6–7, 91–95
efflux pumps in, 125–140
enzymes in aminoacylase-modifying, 120–122
beta-lactamases, see Beta-lactamases
fosfomycin deactivation in, 122–123
inappropriate use causing, 286–287
list of antibiotics, 94
mechanisms of, 18–20
multidrug, 287–290
new antibiotics need and, 7–8
outbreaks of, 91
protein secretion systems in, 138–140, 268–269
rRNA methylation in, 147–148
Resistance/nodulation/cell division family, of efflux pumps
characteristics of, 126–127, 129
function of, 132–134
Ribosomes, in bacterial protein synthesis, 51–57, 246–249
Rifampin
structure of, 87, 217
for tuberculosis, 87–88
Rifamycins
biosynthesis of, 216–218
for tuberculosis, 87–88
RNA, proteins interacting with, as antibiotic targets, 256
S
Salmonella
protein secretion from, 268–269
resistance in, protein secretion machinery in, 139–140
Salmonella enterica serovar Typhimurium
DT104, multidrug resistance in, 290
two-component regulatory system of, 264–265
SARPs (Streptomyces antibiotic regulatory proteins), 166–170
Secretin, in resistance, 139
Secretion systems, as resistance mechanisms, 138–140
Self-protection mechanisms, of antibiotic-producing bacteria,
see Bacteria, self-protection in
Serine hydrolases, active-site, in beta-lactam antibiotic destruction, 107–111
Serratia marcescens, resistance in, 111–112
Shiga toxin, secretion of, 139

Shigella dysenteriae
antibiotic targets in, 239
beta-lactam antibiotics, 146–147
penicillins, 119–120
target modification in, 146–147
two-component regulatory system of, 263–264
Streptococcus pneumoniae
antibiotic targets in, 239
resistance in, 286
beta-lactam antibiotics, 146–147
penicillin, 119–120
target modification in, 146–147
two-component regulatory system of, 263
Streptococcus pyogenes, resistance in, 290
Streptogramins, 63–64
biosynthesis of, 164–166
resistance to, 122
Streptomyces, antibiotic biosynthesis in
aminocoumarins, self-protection against, 99
list of, 160–161
regulation of butaneolides in, 164–167
integration of, 166–170
two-component, 161–164
Streptomyces antibiotic regulatory proteins (SARPs), 166–170
Streptomyces antibioticus, macrolide production by, self-protection against, 97–99
Streptomyces clavuligerus, beta-lactamase inhibitory protein
produced by, 114–115
Streptomyces coelicolor
antibiotic biosynthesis in, 158, 161–164, 170
gnome of, 161
Streptomyces fradiae, antibiotic biosynthesis in, 168–169
Streptomyces lavendulae
antibiotic biosynthesis in, 165
mitomycin producing, self-protection against, 100–101
Streptomyces peucetius, antibiotic biosynthesis in, 165
Streptomyces toyocaensis, vancomycin producing, self-protection against, 99
Streptomyces venezuelae, chloramphenicol biosynthesis in, 227
Streptomyces virginiae, antibiotic biosynthesis in, 164–166
Streptomyces wedmorensis, fosfomycin biosynthesis in, 221–222
Streptomycin biosynthesis of, 222–226
protein biosynthesis effects of, 68
structure of, 58, 223
Suicide substrates, for beta-lactamases, 113–115
Sulbactam, 113–114
Sulfamethoxazole, structure of, 12
Sulfamethoxazole-trimethoprim folic acid metabolism effects of, 79–83
resistance to, 289
Surfactin, biosynthesis of, 214–216
Susceptibility testing, methods for, 103–104
Synercid, mechanism of action of, 63–64

T
Targets, of antibiotics, see Bacterial targets
Tazobactam, 113–114
Teicoplanin biosynthesis of, 211–214
cell wall biosynthesis effects of, 45–48
genes of, combinatorial reprogramming of, 282
structure of, 46, 100, 215
Telithromycin, 148
mechanism of action of, 59
structure of, 58
TEM lactamases, 110–111, 114–115
Tet proteins, as efflux pumps, 127,
134–136
Tetracenomycin, 181–186
Tetracycline(s) biosynthesis of, 181–186
protein synthesis effects of, 64–66
resistance to, 134–136

structures of, 12, 58, 64, 182
Thienamycin
mechanism of action of, 112
structure of, 38
Thiosterases in ketide synthesis, 176
in nonribosomal peptide biosynthesis, 198–200, 204–206
Thiopeptides, protein biosynthesis effects of, 248
Thiopeptides, protein biosynthesis effects of, 248
structure of, 250
Tiamulin, protein biosynthesis effects of, 134–136
Tigilicycline, protein biosynthesis effects of, 64
Tobramycin, biosynthesis of, 222–226
TolC protein, as efflux pump, 133–134
Topoisomerases, DNA, quinolone effects on, 71–77, 252–256
Toxins, secretion of, 139
Transglycosylases, in cell wall biosynthesis, 34–36, 244–246
Transpeptidation, in cell wall biosynthesis, 37–41, 45–48
Triclosan, fatty acid biosynthesis effects of, 257
Trimethoprim, structure of, 12
Trimethoprim-sulfamethoxazole folic acid metabolism effects of, 79–83
resistance to, 289
Tuberculosis bacterial targets in, 243–244
rifamycins for, 87–88
Two-component regulatory systems, 161–164, 262–265
Tyl proteins, in antibiotic biosynthesis regulation, 169–170
Tylisin bacteria producing, self-protection against, 96–99
biosynthesis of, 186–191
mechanism of action of, 59–60
structure of, 58, 96
Tyrocidine, biosynthesis of, 200–206

Undecaprenyl phosphopantetheinyl synthase, as antibiotic target, 260–261
Undecylprodigiosin, biosynthesis of, 161–164

V
Valnemulin, protein biosynthesis effects of, 247
Van phenotypes, in enterococcal resistance, 149–155
Vancomycin analogs of, enterococcal activity of, 246
bacteria producing, self-protection against, 99–100
biosynthesis of, 200–206, 211–214
cell wall biosynthesis effects of, 45–48
genes of, combinatorial reprogramming of, 282
resistance to development of, 91–92
enterococci, 148–155, 263
peptidoglycan termini reprogramming in, 148–155
Staphylococcus aureus, 103, 239, 288–289
structure of, 12, 46, 100, 158, 196
Var proteins, in antibiotic biosynthesis, 168
Virginiamycins, 63–64
biosynthesis of, 164–166, 168
resistance to, 122
structures of, 164
Virulence factors quorum sensing as, inhibition of, 265–268
regulation of, 171–173
VmsR protein, in antibiotic biosynthesis regulation, 166, 168
Vnc proteins, in Streptococcus pneumoniae resistance, 119–120

Y
Yersinia protein secretion from, 268–269
resistance in, protein secretion machinery in, 139–140

Z
Zinc hydrolases (metallo-beta-lactamases), 111–112, 115