CONTENTS

Contributors vii
Foreword R. John Collier xi
Preface xv

I. GENETICS AND REGULATION 1

1 Two-Component Systems 3
 Scott Stibitz
2 Regulation of Bacterial Toxin Synthesis by Iron 25
 Shelley M. Payne
3 AraC Family Regulators and Transcriptional Control of Bacterial Virulence
 Determinants 39
 Dara W. Frank and Meredith L. Hunt
4 Quorum Sensing 55
 Everett C. Pesci and Barbara H. Iglewski

II. TOXIN BIOGENESIS: CROSSING BACTERIAL MEMBRANE BARRIERS 67

Box 1: Type V Export Systems: Proteins That Export Themselves
Drusilla L. Burns

5 The Type I Export Mechanism 71
 Vassilis Koronakis, Jeyanthi Eswaran, and Colin Hughes
6 Toxins and Type II Secretion Systems 81
 Maria E. Scott and Maria Sandkvist
7 Type III Secretion Systems 95
 Gregory V. Plano, Kurt Schesser, and Matthew L. Nilles
 Box 2 Pathogenicity Islands
 Jörg Hacker
8 Type IV Secretion Systems 115
 Drusilla L. Burns

III. TOXIN DELIVERY INTO EUKARYOTIC CELLS 129

9 Receptors for Bacterial Toxins 131
 Catharine B. Saelinger
 Box 3 Domain Structures of Bacterial Toxins
 Stephen H. Leppla
CONTRIBUTORS

Klaus Aktories ● Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Otto-Krayer-Haus, Albertstr. 25, D-79104 Freiburg, Germany

Joseph T. Barbieri ● Department of Microbiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226-0509

James B. Bliska ● Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, State University of New York at Stony Brook, Stony Brook, NY 11794-5222

Drusilla L. Burns ● U.S. Food and Drug Administration, CBER FDA, Bldg. 29, Rm. 418, 8800 Rockville Pike, Bethesda, MD 20892

Bonny L. Dickinson ● GI Cell Biology, Combined Program in Pediatric Gastroenterology and Nutrition, Children’s Hospital; Harvard Digestive Diseases Center; and Department of Pediatrics, Harvard Medical School, Boston, MA 02115

Lawrence A. Dreyfus ● Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd., Kansas City, MO 64110

Jeyanthy Eswaran ● Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, United Kingdom

David J. FitzGerald ● Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bldg. 37, Rm. 5124, Bethesda, MD 20892

Dara W. Frank ● Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226

Mary C. Gray ● Department of Medicine, Rm. 6828, Old Medical School, University of Virginia School of Medicine, Charlottesville, VA 22908

Jörg Hacker ● Institute for Molecular Biology of Infectious Diseases, University of Würzburg, Röntgenring 11, D-97070 Würzburg, Germany

Erik L. Hewlett ● Department of Medicine and Department of Pharmacology, Rm. 6832, Old Medical School, Box 800419, University of Virginia School of Medicine, Charlottesville, VA 22908

Wim Hol ● Department of Biological Structure, University of Washington, SM-20, Seattle, WA 98185

Colin Hughes ● Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, United Kingdom

Meredith L. Hunt ● Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226
CONTRIBUTORS

Barbara H. Iglewski ● Department of Microbiology and Immunology, Box 672, Strong Memorial Hospital, 601 Elmwood Ave., University of Rochester, Rochester, NY 14642

Vassilis Koronakis ● Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QF, United Kingdom

Robert J. Kreitman ● Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bldg. 37, Rm. 5124, Bethesda, MD 20892

Wayne I. Lencer ● GI Cell Biology, Combined Program in Pediatric Gastroenterology and Nutrition, Children’s Hospital; Harvard Digestive Diseases Center; and Department of Pediatrics, Harvard Medical School, Boston, MA 02115

Stephen H. Leppla ● Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg. 30, Rm. 316, Bethesda, MD 20892

Vega Masignani ● IRIS, Chiron SpA, Via Fiorentina 1, 53100 Siena, Italy

Angela Melton-Celsa ● Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, 4301 Jones Bridge Rd., Bethesda, MD 20814-4799

Cesare Montecucco ● Dipartimento di Scienze Biomediche, Università di Padova, Viale G. Colombo, 3, 35121 Padova, Italy

Matthew L. Nilles ● Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202

Alison D. O’Brien ● Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, 4301 Jones Bridge Rd., Bethesda, MD 20814-4799

Camilla Oxhamre ● Microbiology and Tumor Biology Center, Karolinska Institutet, S-171 77 Stockholm, Sweden

Ira Pastan ● Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bldg. 37, Rm. 5124, Bethesda, MD 20892

Shelley M. Payne ● Section of Molecular Genetics and Microbiology, The University of Texas, Austin, TX 78712-1095

Everett C. Pesci ● Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858

Mariagrazia Pizza ● IRIS, Chiron SpA, Via Fiorentina 1, 53100 Siena, Italy

Gregory V. Plano ● Department of Microbiology and Immunology, University of Miami School of Medicine, RMSB 3097A (R-138), 1600 NW 10th Ave., Miami, FL 33136

Rino Rappuoli ● IRIS, Chiron SpA, Via Fiorentina 1, 53100 Siena, Italy

Agneta Richter-Dahlfors ● Microbiology and Tumor Biology Center, Karolinska Institutet, S-171 77 Stockholm, Sweden

Ornella Rossetto ● Dipartimento di Scienze Biomediche, Università di Padova, Viale G. Colombo, 3, 35121 Padova, Italy

Catharine B. Saelinger ● Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524

Maria Sandkvist ● Department of Biochemistry, American Red Cross, Jerome H. Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855
Kirsten Sandvig • Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
Kurt Schesser • Department of Microbiology and Immunology, University of Miami School of Medicine, 1600 NW 10th Ave., Miami, FL 33136
Patrick M. Schlievert • Department of Microbiology, University of Minnesota Medical School, 420 Delaware St. SE, MMC 196, Minneapolis, MN 55455
Maria E. Scott • Department of Biochemistry, American Red Cross, Jerome H. Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855
Scott Stibitz • U.S. Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892
Fiorella Tonello • Dipartimento di Scienze Biomediche, Università di Padova, Viale G. Colombo, 3, 35121 Padova, Italy
F. Gisou van der Goot • Department of Genetics and Microbiology, Centre Médicale Universitaire, 1, rue Michel-Servet, CH-1211 Geneva 4, Switzerland
Gloria I. Viboud • Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, State University of New York at Stony Brook, Stony Brook, NY 11794-5222
Franca R. Zaretzky • Department of Medicine, Rm. 6828, Old Medical School, University of Virginia School of Medicine, Charlottesville, VA 22908
As these words are being entered on the page, bacterial toxins are not far from the headlines. In the fall of 2001 the catastrophic attacks with fuel-laden airliners on the World Trade Center towers and the Pentagon were followed by assaults with *Bacillus anthracis* spores enclosed in letters sent through the United States postal system. The perpetrator of the anthrax assaults still remains unidentified, but 11 confirmed cases of inhalational anthrax and five deaths resulted. Now, facing the threat of bioterrorism realistically, the nation is struggling to identify countermeasures to protect the population in the event of a subsequent attack with anthrax or other agents—an attack of potentially much greater magnitude than that of late 2001. As a part of this effort, attention is being focused on the toxin produced by the anthrax bacillus that makes it so deadly, and on other toxins, such as botulinum toxin, that are directly relevant to bioterrorism.

In some sense these events take us back to the era in which bacterial toxins were first discovered. Evidence that certain bacteria produce diffusible toxic substances that are responsible for disease symptoms came late in the 19th century, soon after methods for isolating and growing bacteria in pure culture were developed. Injection of culture filtrates of, for example, the diphtheria bacillus into experimental animals produced death with symptoms and lesions in internal organs characteristic of the disease. Shortly thereafter it was found that sublethal amounts of diphtheria and tetanus toxins elicited the formation of substances in the bloodstream that could specifically neutralize these toxins. Thus toxins were pivotal in the discovery of the humoral immune system of mammals. This realization soon led to toxin-based vaccine strategies and eventually to the vaccines still used today to immunize against diphtheria and tetanus.

The century-long trek from the discovery of toxins to our current understanding of their chemistry and modes of action has been integrally linked with advances in fundamental knowledge of macromolecular chemistry, cell biology, and other relevant areas. In the 1930s diphtheria toxin was purified to a sufficient extent to ascertain that it was a protein. But concepts of the nature of proteins were primitive then, and not until the 1950s did understanding of their primary, secondary, and tertiary structures become firmly grounded. Similarly, significant data on the modes of action of toxins at the cellular and molecular levels have become available only as fundamental knowledge has advanced in areas such as how proteins are synthesized, how vesicle fusion occurs in neuronal cells, etc. Clearly it would have been impossible to determine that diphtheria toxin directly
blocked protein synthesis before systems for studying this process had advanced to a certain level. As understanding of biological science has exploded in the second half of the 20th century, knowledge of toxins and their role in bacterial diseases has kept pace.

Perhaps progress in toxin research would have occurred more rapidly had it not been for certain misconceptions. In the post-World War II era, bacterial pathogenesis was not the “hot” area of research it is today. The discovery and application of antibiotics had created the widespread misconception that bacterial diseases had been conquered once and for all. Furthermore, toxins were considered odd curiosities of nature, far from the mainstream of modern biology, which was then focused on monumental questions—the genetic code, how proteins are encoded and synthesized, and the structure of proteins in three dimensions. Finally, the potential danger of working with toxins has probably always been consciously or unconsciously exaggerated in the minds of many able researchers who would otherwise have contributed to our understanding of this intriguing class of molecules.

These obstacles notwithstanding, the field of toxin research held its own through the post-World War II era, in considerable measure because of the interest of stalwart individuals such as A. M. Pappenheimer, Jr. (“Pap” to those of us who worked with him), W. E. (“Kits”) van Heyningen, and Harry Smith. How a purified, potentially lethal toxin acted seemed to provide the most straightforward route to answer the question of how a bacterium could kill a human being.

As fundamental knowledge advanced in the 1960s and 1970s, seminal discoveries were made regarding the biochemical modes of action of several protein toxins—notably diphtheria, cholera, *Pseudomonas* exotoxin A, and the ricin family of plant toxins. Interest in these molecules grew as it became evident that a sizable fraction of bacterial and plant toxins were extraordinary enzymes having the capacity to enter mammalian cells and modify substrates within the cytosolic compartment. Hence, these proteins had the rare property of being able to cross membranes at some level. This fascinating property, combined with their interesting catalytic activities (e.g., ADP-ribosylation), brought toxins to the attention of mainstream biological researchers and made these proteins useful as tools to probe important metabolic pathways and processes.

In 1972 the first Gordon Conference on Bacterial Toxins was held (chaired by Sam Ajl), and the Conference has been a biennial event ever since. The European Workshop on Bacterial Protein Toxins came into existence later and has been held in various countries in alternate years. Fostering the exchange of ideas and advances in the area, these meetings have greatly elevated the stature of the field. As better methods to study the diverse array of virulence factors used by bacteria have evolved in recent years, interest in other aspects of bacterial pathogenesis has greatly increased, and the subject matter addressed in these conferences has broadened correspondingly. For decades toxins were about the only determinants of pathogenicity accessible to investigation. Now, all that has been changed by modern tools of biology.

The advent of recombinant DNA technology had a profound effect on toxin research, as it did on almost every other aspect of biology. Clearly the possibility of cloning and expressing a toxin in a heterologous organism required caution and regulation. Indeed, cloning of the most potent toxins (e.g., the clostridial
neurotoxins) is still prohibited. Nonetheless, as structure-function relationships of various toxins were elucidated, it became evident that they were complex proteins and that certain parts were benign in the absence of the complementary parts. This allowed selected domains of the highly potent toxins to be cloned under minimal containment conditions and, in turn, permitted approaches such as directed mutagenesis and creation of chimeric molecules to be implemented. Among the results are “recombinant toxoids” and new types of targeted toxins.

The notion that a toxin might be used to generate a “magic bullet” that could target a specific tissue or subset of cells in the body is an old one that emerged in a new form in the 1980s. The concept of AB toxins, containing an enzymatic A moiety linked by a disulfide bridge to a receptor-binding B moiety, a motif found in many toxins (e.g., diphtheria and ricin toxins), immediately suggested a way to direct the action of these proteins to specific cells. Early attempts involved generating disulfide-linked chimeras containing, for example, the A chain of diphtheria or ricin toxin linked to a monoclonal antibody directed towards a tumor-specific antigen. Such chimeras were generally less potent and specific than hoped, but the early attempts in this direction generated widespread interest. Subsequently there have been isolated successes, including a recombinant chimeric toxin against T cells that has recently been licensed by the FDA for treatment of certain types of tumors.

The past two decades have witnessed the discovery of many new toxins and toxin-like virulence factors (e.g., the effectors introduced into cells by type III secretion systems), and their numbers will undoubtedly grow as the genomic sequences of bacterial pathogens are determined. The diverse strategies adopted by bacteria to subvert the cellular biochemistry and physiology of the host have provided tools for use in cellular and molecular biological investigations, new targets for drug development, and a better understanding of the selective advantages accruing to bacterial pathogens from toxin production. Over the same period, our understanding of the classical toxins has extended to finer levels of detail. The crystallographic structures of many of these molecules have been solved, providing a framework to understand how they recognize receptors, penetrate membranes, and recognize and modify substrates. This said, there is still no toxin for which we can claim a complete understanding, and for most of them, major gaps remain in our knowledge.

Now, at the beginning of the 21st century, we have in a sense come full circle. Despite the advances made over the past century, multiple threats—bioterrorism, the spread of antibiotic resistance, and the emergence of new bacterial pathogens—keep knowledge of bacterial virulence a subject as crucial to the health of mankind as it was at the beginning of the 20th century. This volume presents an excellent summary of current knowledge of bacterial toxins and will serve as a major resource for current practitioners and new students entering the field in the coming years. I wish them the thrill of discovery and the camaraderie with outstanding students and colleagues that I have experienced throughout my career.

R. John Collier
Harvard Medical School
PREFACE

For the past three decades, our understanding of the molecular aspects of bacterial toxins has grown exponentially. The seminal studies that identified diphtheria toxin as a protein with the intrinsic capacity to enter eukaryotic cells and inhibit protein synthesis through the posttranslational modification of a single eukaryotic protein provided a platform for studies on other medically important bacterial toxins. Initially, experts in protein structure, enzymology, and electrophysiology were drawn into our field to study toxin action, while more recent additions to our field have included cell biologists and investigators who study eukaryotic signal transduction. The study of bacterial toxins demands an integration of distinct fields of investigation, providing a synergy for our understanding of toxin action.

The initial concept of this book was spurred by our desire to provide a succinct reference source for students interested in bacterial toxins. The goal was to integrate historical experiences and contemporary concepts of toxin biosynthesis, structure, and function. One important concept that the authors share with students beginning their studies on bacterial toxins is the importance of pursuing quantitative analyses of toxins. This approach has allowed our field to advance to its current level of sophistication. The chapters include both written and pictorial representation of major concepts, provide references for additional reading, and are written by investigators who have direct expertise in the area. The book is divided into five sections which address (i) the genetics and regulation of toxin gene expression; mechanisms for toxin translocation across (ii) bacterial and (iii) eukaryotic membrane barriers; (iv) descriptions of toxins that covalently modify host target proteins and recently recognized toxins that modulate host protein function by noncovalent mechanisms; and (v) the current status of both the beneficial and harmful uses of bacterial toxins.

The study of bacterial toxins has led to novel strategies that use these toxins for medical purposes. However, in October of 2001, we witnessed the deplorable use of a bacterial organism as a reagent for terrorism, by an individual(s) who disregarded the ethical standards of our society. It is our obligation to work towards the beneficial use of bacterial toxins as vaccines, antidotes, and therapies.
This is the challenge we present to our junior microbiologists, and we provide this text as a reference for your studies.

Drusilla L. Burns
Joseph T. Barbieri
Barbara H. Iglewski
Rino Rappuoli
INDEX

A
A domain, of ADP-ribosylating toxins, 216, 218, 219
AB toxins, 132, 218–219
ABs, toxins, 132–133
Abrin, pathophysiology of, 252
AC toxin, see Adenylate cyclase toxin
Acetylcholine inhibition, botulinum toxin in, 272
N-Acetylglucosaminyltransferases, clostridial toxins as, see Clostridial cytotoxins, large
Actin, RhoGTPase action on, 283
Actinobacillus actinomycetemcomitans cytolethal distending toxin, see Cytolethal distending toxins LtxA toxin, 205, 210–211
Actinobacillus pleuropneumoniae, ApxIA, ApxIIA, ApxIIIA, 205
Actions, of toxins, see also specific toxins
ADP-ribosylation, 215–228
cytolethal distending, 257–270
deamidation, 237–243
 glucosylating, 229–237
immune system overactivation by superantigens, 293–308
membrane-damaging, 203–214
overview of, 187–188
pore-forming, 153, 189–202
proteolytic, 271–282
Rho GTPase modulation, 283–292
ribosome-inactivating, 245–255
Acyl-homoserine lactone-based quorum sensing, 55–56
Adaptor proteins, in toxin transport, 74–75
Adenosine diphosphate-ribosylating toxins, see ADP-ribosylating toxins
Adenylate cyclase toxin, 149–156
action of, 151, 153–156, 214
apoptosis induction by, 212–213

Bordetella pertussis, 19
calcium-binding domain of, 209
cell interaction with, 152–153
discovery of, 150
domains of, 150–151
expression of, 204, 206
gene of, 150
structure of, 150, 207
Adhesion factors, regulation of, AraC family regulators in, 51–53
ADP-ribosylating factor, in proenzyme activation, 226
ADP-ribosylating toxins, 215–228
actions of, 215–216
active sites in, 221–224
in vivo detection of, 227–228
mechanisms of, 224–225
examples of, 217
NAD affinity of, 225
stereochemistry of, 224–225
structures of, 216, 218–219, 221–224
synthesis of, 225–226
targets of, 219–221
as tools for cell physiologic studies, 226–227
vs. other ADP-ribosylating proteins, 227
Aerolysin, Aeromonas hydrophila, 193
action of, 191
pore formation by, 195
advantages of, 189, 191
consequences of, 200
receptor for, 198
secretion of, 82–83
Aeromonas hydrophila aerolysin, see Aerolysin
toxin secretion from, 81–83, 89
Agmatine, ADP-ribosylating toxin action on, 220–221
Agrobacterium tumefaciens sensor kinases of, 8
Agrobacterium tumefaciens (continued)
tumor formation from, 117–120
Amino acid residues, in type III secretion systems, 101–102
Ammonia release, in toxin action on Rho GTPases, 242
Anthrax toxin
action of, 133, 152, 191
domain structure of, 133
edema factor, 166, 278, 328–329
intracellular transport of, 158–159, 165–166
lethal factor, 166, 278–280, 328–329
protective antigen, 278, 328–330
receptors for, 133
Antibiotics
based on two-component systems, 22
efflux effects of, 73–77
Antiviral agents, ribosome-inactivating proteins as, 253
Apoptosis, in toxin action, 200–201
adenylate cyclase, 212–213
cytolethal distending, 265–267
leukotoxin, 212
ApxIA, ApxIIA, ApxIIIA, Actinobacillus pleuropneumoniae, 205
AraC family regulators, 39–54
in adhesion factors regulation, 51–53
C-terminal domain of, 40–43
definition of, 39–40
dimerization of, 43–44
DNA-binding activity of, 40–43, 45–46
functions of, 40–44
ligand-binding activities of, 43–44
ligand-independent expression of, 44–45
light switch mechanism of, 45–46
N-terminal domain of, 43–44
Pseudomonas aeruginosa, 46–49
structures of, 40–44
in urease regulation, 49–51
Aspergillus, sarcin, 245
ATPase(s)
cytoplasmic, in type III secretion systems, 110
in toxin transport, 71–74, 88
Autoimmune diseases, superantigens causing, 307
Autotransporter proteins, 68–69
B
B lymphocytes, cytolethal distending
Bacillus anthracis toxin action on, 268–269
Bacillus anthracis
as biological weapon, 328–330, 332, 333
toxin, see Anthrax toxin
Bacillus subtilis, Spo0B protein, 16
Bacteroides fragilis, fragilysins, 280–282
Barley toxins, 247
Barrel motif, in transmembrane proteins, 195–197
Bartonella henselae, toxin secretion from, 118–119, 125
B domain, of ADP-ribosylating toxins, 218, 219
Bipartite toxins, 133, 219
Bordetella, dermonecrotizing toxin
in Rho GTPase deamidation, 237, 241–242
structure of, 238
Bordetella bronchiseptica, sensor domain of, 9
Bordetella pertussis
adenylate cyclase toxin, see Adenylate cyclase toxin
BvgA protein, 18
BvgAS protein, 10, 19–21
BvgR protein, 20
BvgS protein, 9–10, 13, 20–21
CyaA toxin, 205, 212
pertussis toxin, see Pertussis toxin sensor domain of, 9
toxin secretion from, 71–79, 118–119
two-component system of, 6
Botulinum toxin, 272–277
actions of, 272–273, 275–277
C2
action of, 217, 222
intracellular transport of, 158
structure of, 219
C3
action of, 217, 222
structure of, 219
as tool for cell physiologic studies, 226–227
historical review of, 272
intracellular transport of, 158–159
specificity of, 276–277
structures of, 219, 273–274
target proteins of, 276–277
 transcytosis of, 184
types of, 272
Brucella, toxin secretion from, 118–119, 125
Bryodin
as immunotoxin, 254
structure of, 250
BvgA protein, Bordetella pertussis, 18
BvgAS protein, Bordetella pertussis, 10, 19–21
BvgR protein, Bordetella pertussis, 20
BvgS protein, Bordetella pertussis, 9–10, 13, 20–21
C
C2 toxin, see Botulinum toxin, C2
C3 toxin, see Botulinum toxin, C3
CagA, Helicobacter pylori, transport of, 124
Calcium
in adenylate cyclase toxin action, 153–154
intracellular oscillations of, HlyA induction of, 211–212
Calcium-binding domains, of RTX toxins, 209
Calmodulin, in adenylate cyclase toxin regulation, 151, 153
Campylobacter jejuni, cytolethal distending toxin, see Cytolethal distending toxins
Cancer, recombinant immunotoxins for, 134–135
Carnation, dianthin 32, localization of, 248
Castor bean toxin, see Ricin
Caulobacter crescentus, toxin secretion from, 82
Caveolae, in endocytosis, 160–162
CD9 antigen, diphtheria toxin receptor interactions with, 143
Cdc2, inactivation of, cytolethal distending toxin in, 257
Cdc42, in Rho GTPase subfamily, 285
SptP toxin action on, 288
CdtB, in cytolethal distending toxin action, 261–263, 269
CDTs, see Cytolethal distending toxins
Cell(s)
apoptosis of, see Apoptosis, in toxin action
cytolethal distending toxin entry of, 267–268
deat of, cytolethal distending toxin in, 267
pathogens within, toxin secretion from, 124–125
ricin entry into, 248
signaling between, see Quorum sensing
toxin delivery into
intracellular membrane transport, 157–172
overview of, 128–129
plasma membrane penetration, 149–156
receptors in, see Receptor(s)
transcytosis across mucosal barriers, 173–186
Cell cycle, arrest of, cytolethal distending toxin in, 263–265
Channel tunnels, in toxin transport, 75–77
Chaperones
secretion systems, type III, 102–105
for type III secretion systems, 102–105
CheY protein, Escherichia coli, 13–14
Chlamydia, toxin secretion from, 97
Cholera toxin, 178–185
ADP-ribosylating, 215–216, 217, 220, 224
B subunit of, transcytosis of, 181–182
domain structure of, 132–133
in endoplasmic reticulum, 181
ganglioside GM1 binding to, 180–183
intracellular transport of, 158–159, 161, 163, 166, 168–169, 170
as mucosal vaccine adjuvant, 320–324
proenzyme of, 226
receptors for, 133, 180
secretion of, 82–84
structure of, 82, 180–181, 219, 320
synthesis of, 82, 226
Cholera toxin (continued)
transcytosis of, 177, 181–185
Cholesterol-dependent toxins, 189, 193, 197–199
Clathrin-coated pits, in endocytosis, 160–163
Clostridial cytotoxins, large, 229–237
action of
enzymatic, 229–231
functional consequences of, 234–235
pathologic, 229–230
Rho GTPase targets for, 232–237
as biological tools, 236–237
glucosyltransferase domain of, 232
structures of, 236
uptake of, 236
Clostridial toxins
action of, 133–134
intracellular transport of, 158–159, 165–166
Clostridium botulinum toxins, see also
Botulinum toxin
intracellular transport of, 158
Clostridium difficile, toxin A and toxin B, see Clostridial cytotoxins, large
Clostridium novyi toxins, see Clostridial cytotoxins, large
Clostridium perfringens, two-component system of, 6
Clostridium septicum toxins, 193, 200
Clostridium sordellii toxins, see Clostridial cytotoxins, large
Clostridium tetani, tetanus toxin, 272–277, 312–315
Conjugation, bacterial, secretion system derived from, 115–117
Conservation, in two-component systems, 5–8
Corynebacterium diphtheriae, diphtheria toxin, see Diphtheria toxin
CRM197 (cross-reacting material), as conjugate vaccine carrier, 314–315
Cross-reacting materials, as conjugate vaccine carrier, 314–315
CT, see Cholera toxin
CyaA toxin, Bordetella pertussis, 205, 212
Cyclin-dependent kinases, cytolethal distending toxin effects on, 263
Cystic fibrosis, Pseudomonas aeruginosa infections in, biofilms and, 63
Cytokines, release of, superantigens in, 303–305

Cytolethal distending toxins, 257–270
action of, 257
apoptosis, 265–267
CdtB in, 261–263, 269
cell cycle arrest, 263–265
cell death, 267
cellular entry of, 267–268
biochemistry of, 260–261
discovery of, 257
genetics of, 257–263
nomenclature of, 258
research on, 268–270
trimeric form of, 261
Cytoplasmic ATPase complex, in type III secretion systems, 110
Cytosol, toxin translocation to, from endosomes, 164–166
Cytotoxic necrotizing factors
intracellular transport of, 159, 161, 166
in Rho GTPase deamidation, 237–240, 242–243
structures of, 240–241

D
Deamidation
cytotoxic necrotizing factors in, 237–240, 242–243
dermonecrotizing toxin in, 237, 238, 241–242
Dermonecrotizing toxin, Bordetella
in Rho GTPase deamidation, 237, 241–242
structure of, 238
Dianthin 32, localization of, 248
Dick test, for scarlet fever, 304
Diphtheramide, ADP-ribosylating toxin action on, 220
Diphtheria toxin
action of, 132, 134
active sites in, 221–222
ADP-ribosylating, 215–217, 221–225
activation of, from proenzyme, 225–226
detoxification of, 313–314
domain structure of, 132
intracellular transport of, 158–159, 162–165
pathophysiology of, 215–216
proenzyme of, 225–226
pseudomembrane formation from, 215–216
INDEX

receptor for, 132, 141–144
 action of, 144
 binding of, 143
 molecules associated with, 143
 structure of, 140–143
 synthesis of, 140–141
 structure of, 218, 312
 synthesis of, 225–226
 iron regulation of, 27–30
 for vaccine manufacture, 312–314
Diphtheria vaccines, 312–315
Distention, of cells, see Cytolethal distending toxins
DNA, transfer of, in conjugation, 116–117
DNA-binding activity, of AraC family regulators, 40–43, 45–46
DT, see Diphtheria toxin
DtxR protein, in iron regulation, 28–30

E
Edema factor, 166, 278, 328–329
EDIN, action of, 217
Effector domain, in two-component systems, 16–19
Efflux pumps, in toxin transport, 73–77
EhxA toxin, Escherichia coli, 205
Electrophoresis, of toxin effects on Rho GTPases, 242
Emesis, superantigens in, 298
Endocytosis
 of adenylate cyclase toxin, 152
 of cytolethal distending toxin, 267–268
 for cytosol entry, 157–160
 of diphtheria toxin, 144
 mechanisms of, 160–164
 translocation from endosomes to cytosol in, 164–166
Endoplasmic reticulum
 cholera toxin in, 181
 toxin transport into, 170
Endosomes, toxin translocation from to cytosol, 164–166
to Golgi apparatus, 168, 182–183
Endothelial cells, Shiga toxin interactions with, 147
Enterotoxin(s)
 heat-labile, see Heat-labile enterotoxin
 staphylococcal, see Staphylococcal enterotoxins
Enterotoxin B, Escherichia coli, secretion of, 84
EnvZ, core domain of, 11–12
Epithelium, see also Transcytosis, across mucosal barriers
 absorptive mechanisms of, 174
Eps complex
 Escherichia coli, 92–93
 Vibrio cholerae, 89–93
Erwinia, toxin secretion from, 89
Erwinia carotovora, toxin secretion from, 81
Erwinia chrysanthemi, toxin secretion from, 81
Escherichia coli
 AraC family regulators, 39–40
 CheY protein, 13–14
 cytolethal distending toxin, see Cytolethal distending toxins
 cytotoxic necrotizing factors, see Cytotoxic necrotizing factors
EhxA, 205
enterotoxin B, 84
Eps complex, 92–93
Fur protein, in iron regulation, 32–35
heat-labile enterotoxin, see Heat-labile enterotoxin
Hly toxins, see Hly toxins
MarA protein, 40
Min proteins, 89–90
pathogenicity islands of, 98
receiver domains, 13–14
sensor kinases of, 8
Shiga toxins, see Shiga toxins
toxins
 intracellular transport of, 158, 168
 secretion of, 71–79, 81, 97, 103, 106, 87–88
uropathogenic, toxins in, 213–214
ExoS, Pseudomonas aeruginosa, 286–287, 289
 action of, 217, 220
 proenzyme of, 226
 structure of, 219, 289–291
 synthesis of, 226
ExoT, Pseudomonas aeruginosa, 286–287, 289
Exotoxin(s)
 streptococcal mitogenic, 296
 streptococcal pyrogenic, see Streptococcal pyrogenic exotoxins
Exotoxin A, Pseudomonas aeruginosa
 action of, 134, 215–216, 221–223
 intracellular transport of, 158–162, 169
 iron regulation of, 35–38

Downloaded from www.asmscience.org by IP: 54.70.40.11
INDEX

Exotoxin A, *Pseudomonas aeruginosa* (continued)
receptor for, 135–140
action of, 135–136
characteristics of, 136–139
evidence for, 139–140
ligands recognized by, 138–139
mutations of, 137–138
structure of, 136–137
recombinant, 134–135
retrograde transport of, 169
secretion of, 82–84
structure of, 135
Exotoxin A ADP-ribosylated elongation factor–2, 215, 221
Exs protein family, *Pseudomonas aeruginosa*, 46–49
Extracytoplasmic sensor domain, in two-component systems, 8–9

F
Factor activating exoenzyme S, in proenzyme activation, 226
Fatty acyl groups, of RTX toxins, 207–208
FcRn protein, in immunoglobulin transcytosis, 177–179
Flagella, structures of, 111–113
Fli proteins, in type III secretion systems, 109–111
Fluorescence studies, of toxin effects on Rho GTPases, 242
Food poisoning, superantigens in, 298
Formaldehyde, for toxin treatment, in vaccine manufacture, 313–314
Fragilysins, 280–282
Fur protein, in iron regulation, 32–35

G
G proteins, ADP-ribosylating toxin action on, 220, 226–227
Ganglioside GM1, cholera toxin binding to, 180–183
Gb3 Shiga toxin receptor, 145–147, 168
Genomic islands, toxin secretion and, 99
Geobacter sulfurreducens, toxin secretion from, 82
Glucosylation
clostridial toxins in, see Clostridial cytotoxins, large
of ribosome-inactivating proteins, 248
Glutamic acid, ADP-ribosylating toxin action on, 221–222, 224
Glycohydrolase, in ADP-ribosylating toxin action, 221
N-Glycosidases, RNA, see Ribosome-inactivating proteins
Glycosylation
clostridial toxins in, see Clostridial cytotoxins, large
of ribosome-inactivating proteins, 248
Gram-negative bacteria, toxin transport from, channel tunnels in, 76–77
GTPase-activating proteins, 284, 286–291
GTPases, Rho, see Rho GTPases
Guanine nucleotide dissociation inhibitors, 284–285
Guanine nucleotide exchange factors, 285–286, 291

H
Haemophilus ducreyi, cytolethal distending toxin, see Cytolethal distending toxins
ADP-ribosylating, 217
as mucosal vaccine adjuvant, 320–324
structure of, 218–219, 320
Helicobacter hepaticus, cytolethal distending toxin, see Cytolethal distending toxins
Helicobacter pullorum, cytolethal distending toxin, see Cytolethal distending toxins
Helicobacter pylori
toxin secretion from, 124
VacA toxin, 193, 200, 201
Hemolysin(s), see also Adenylate cyclase toxin
export of, 71–72
repeat-in-toxin, see Repeat-in-toxin family
Serratia marcescens, 200
Staphylococcus aureus, 193
action of, 191
pore formation by, 189, 196–197, 200
Vibrio cholerae, 200
Hemolytic-uremic syndrome, Shiga toxins in, 146, 251–252
Hemorrhagic toxin, *Clostridium sordellii*, see Clostridial cytotoxins, large

Heparin, diphtheria toxin receptor interactions with, 143

Heparin-binding epidermal growth factor-like growth factor, precursor form of, diphtheria toxin receptor identical to, 141–144

Histidine kinase domain, in two-component systems, 10–13

Histidine phosphotransfer domains, 7, 14–16

Hly toxins, *Escherichia coli*

actions of, 210–211
calcium-binding domains of, 209–210
expression of, 204, 206
fatty acyl groups of, 207–208
hydrophobic domains of, 208–209
intracellular signal transduction effects of, 211–212
specificity of, 205
transport of, 71–74
in urinary tract infections, 213–214
Holotoxin form, of pertussis toxin, 123
HPt domains (histidine phosphotransfer domains), 7, 14–16
Hydrophobic domains, of RTX toxins, 208–209

I

IcmS, *Legionella pneumophila*, 191, 193

Immune system, pertussis toxin effects on, 122–123

Immunoglobulin(s), transcytosis of, 175–178

Immunotoxins

recombinant, 134–135

ribosome-inactivating proteins as, 254
translocation of, into cells, 171

Interleukin–1 release, superantigens in, 303

Intracellular membranes, toxin transport across, see also Endocytosis

endoplasmic reticulum, 170

Golgi apparatus in, 166–168, 182–183

immunotoxins, 171

peptides and proteins with, 170–171

retrograde, 168–170

translocation in, 164–166

Intracellular pathogens, toxin secretion from, 124–125

InvG protein, in type III secretion systems, 112–113

Iron, in toxin synthesis regulation, 25–38
diphtheria toxin, 27–30

excess iron effects on, 26

mechanisms of, 25–27

Pseudomonas aeruginosa exotoxin A, 35–38

Shiga toxins, 30–35

J

Janus-like proteins, pore formation in, 191–192

JIP60 toxin, 247

K

KDEL sequence, in retrograde toxin transport, 168–170, 181–182

Klebsiella oxytoca, toxin secretion from, 81, 87

L

las quorum sensing system, 56–59, 61

LcrG protein, in type III secretion systems, 107–108

LcrV protein, in type III secretion systems, 107–108

Legionella pneumophila

IcmS, 191, 193

toxin secretion from, 81, 119, 125

Lethal factor, *Bacillus anthracis*, 166, 278–280, 328–329

Lethal toxin, *Clostridium sordellii*, see Clostridial cytotoxins, large

Leukemia, recombinant immunotoxins for, 134–135

Leukotoxins

export of, 71

Pasteurella haemolytica, 205, 212

Staphylococcus aureus, 193, 196

Linker region, of sensor kinase proteins, 9–10

Lipases, export of, 72

Lipid rafts, in transcytosis, 183, 184

Lipopolysaccharide, RTX interactions with, 210

Lipoprotein receptor-related protein, low-density, see Exotoxin A, *Pseudomonas aeruginosa*, receptor for
INDEX

Listeriolysin O, *Listeria monocytogenes*, 191, 193
Liver, superantigen effects on, 303–304
LktA toxin, *Pasteurella haemolytica*, 205, 212
Low-density lipoprotein receptor-related protein, see Exotoxin A, *Pseudomonas aeruginosa*, receptor for
LT, see Heat-labile enterotoxin
LtxA toxin, *Actinobacillus actinomycetemcomitans*, 205, 210–211
Lux proteins, in quorum sensing, 56, 63–64
Lymphoma, recombinant immunotoxins for, 134–135

M
Magnesium ion, sensor domain interactions with, 8–9
Maize toxins, structure of, 247
Major histocompatibility complex, superantigen interactions with, 299–302
MAPK kinases, anthrax lethal factor action on, 278–279
MarA protein, 40–42
Mass spectrometry, of toxin effects on Rho GTPases, 242
Mechanisms of action, of toxins, see also specific toxins, action of overview of, 187–188
Membrane(s), pore formation in, see Pore-forming toxins
Menstruation, toxic shock syndrome associated with, 306–307
Metalloproteases, 271–282
 anthrax lethal factor, 166, 278–280, 328–329
 botulinum toxin, see Botulinum toxin export of, 72
 fragilysins, 280–282
tetanus toxin, 272–277, 312–315
Min proteins, *Escherichia coli*, in toxin secretion, 89–90
Mitosis, cytolethal distending toxin effects on, 263–265
MmA toxin, *Morganella morganii*, 205
Modeccin, pathophysiology of, 251
Morganella morganii, MmA toxin, 205
mRNA signals, in type III secretion systems, 101–102
Mucosal barriers, transcytosis across, see under Transcytosis
Mucosal vaccines, toxin mutants for, 320–324
Mycoplasma arthritidis superantigens, see Superantigens

N
NAD, ADP-riboosylating toxins interaction with, see ADP-riboosylating toxins
NarL family, of effector domains, 17–18
Needle structure, in type III secretion systems, 106, 111–113
Nefarious uses, of toxins, see Biological weapons
Neisseria gonorrhoeae, twitching ability in, 88
Neonatal receptor FcRn, in immunoglobulin transcytosis, 177–179
Neurotoxins
 botulinum, see Botulinum toxin
tetanus toxin, 272–277, 312–315
NtrC family, of effector domains, 17–18

O
OmpR family, of effector domains, 17–19

P
p53 protein, activation of, cytolethal distending toxin in, 265–266
PAP toxins, protective role of, 252–253
Para-aminosalicylic acid domains, of sensor kinase proteins, 8
Paracellular transport, across epithelium, 174
Pasteurella haemolytica, LktA toxin, 205, 212
Pathogenicity islands
 staphylococcal superantigen encoding on, 297
toxin secretion and, 97–99
Perfringolysin O, *Streptococcus pyogenes*, 193, 197–198
Pertussis, see Bordetella pertussis
Pertussis toxin, 19
 action of, ADP-riboosylating, 216, 217, 220, 222
detoxification of, 317–320
INDEX

anthrax lethal factor, 166, 278–280, 328–329
botulinum toxin, see Botulinum toxin
fragilysins, 280–282
tetanus toxin, 272–277, 312–315
Protective antigen, 278, 328–330
Protein A, in type II secretion, 89
Protein B, in type II secretion, 89
Protein D, in type II secretion, 86–88
Protein E, in type II secretion, 88, 89
Protein G, in toxin transport, 88, 89
Protein L, in type II secretion, 89
Protein S, in type II secretion, 86–88
Pseudomonas aeruginosa
 AraC family regulators, 46–49
 ExoS, 286–287, 289
 action of, 217, 220
 structure of, 219, 289–291
 ExoT, 286–287, 289
 exotoxin A
 iron regulation of, 35–38
 receptor for, 135–140
 secretion of, 82–84
 Exs protein family, 46–49
 Fur protein, 35–37
 quorum sensing, 56–63
 gene control in, 60
 hierarchy of, 60
 intercellular signals in, 60–62
 las system for, 56–59, 61
 rhl system for, 59–61
 virulence and, 62–63
 toxin secretion from, 81, 82, 90, 91, 97
 apparatus for, 87–88
 two-step process in, 82–83
 twitching ability in, 88
 two-component system of, 5
Pseudomonas marginalis, two-component system of, 6
Pseudomonas quinone signal, 60, 62
Pseudomonas syringae, two-component system of, 6
Ptl system, for toxin secretion, 122–123
PtX protein, *Pseudomonas aeruginosa*
 RegA protein, in iron regulation, 36–37
Pullulanase, *Klebsiella oxytoca*, 81
Pyelonephritis, *Escherichia coli*, 213–214

Q
Quorum sensing, 55–65
 acyl-homoserine lactone-based, 55–56

intracellular transport of, 158
pathophysiology of, 216, 317
proenzyme of, 226
secretion of, 121–124
structure of, 122, 219, 316–317
synthesis of, 226
as tool for cell physiologic studies, 226
virulence of, 121–122

Pertussis vaccines, 316–320
Phagocytosis, adenylate cyclase toxin
 effects on, 155–156
PhoQ protein, Salmonella enterica serovar
 Typhimurium, 8
pIgR protein, in immunoglobulin transcytosis, 175–177

Pili
 Agrobacterium tumefaciens, 119
 in bacterial conjugation, 116–117
 biogenesis of, in type II secretion, 85–89

Plague
 as biological weapon, 329, 331, 332
toxins in, 82

Plants, ribosome-inactivating proteins in, see Ribosome-inactivating proteins

Plasma membrane, toxin penetration of, 149–156, 200–201

Plasmid(s), transfer of, in conjugation, 116–117

*Pore-forming toxins, 189–202
 actions of, 194–195
 adenylate cyclase, see Adenylate cyclase toxin
 bacterial survival advantages of, 189–191
 cholesterol-dependent, 197–199
 examples of, 193
 Janus-like nature of, 191–192
 plasma membrane effects of, 200–201
 pore locations and, 189–191
 receptors for, 193, 198, 200
 RTX, see Repeat-in-toxin family
 staphylococcal, 196–197
 Prepilin peptidase, in type II secretion, 86
 Prg proteins, in type III secretion systems, 112–113
 Proaerolysin, toxin secretion and, 90
 Proenzymes, of ADP-ribosylating toxins, 225–226
 Protease toxins, 271–282
Quorum sensing (continued)
 biofilms and, 63
 in gene control, 60–61
 intercellular signals in, 60–62
 las system for, 56–59, 61
 Pseudomonas aeruginosa, 56–63
 rhl system for, 59–61
 Vibrio fischeri, 55–56
 Vibrio harveyi, 63–64
 virulence and, 62–63

R
 R domain, of ADP-ribosylating toxins, 216
 Rab9 and Rab11 pathways, in intracellular transport, 167–168
 Rac protein
clostridial cytotoxin action on, 233, 240
 ExoS complex with, 290–291
 in Rho GTPase subfamily, 285
 SptP toxin action on, 288, 290–291
 Ras proteins, see also Clostridial cytotoxins, large; Rho GTPases
 ADP-ribosylating toxin action on, 220
 in guanine nucleotide exchange factor analysis, 291
 Receiver domain, in two-component systems, 13–14
 Receptor(s), for toxins, 131–148
 AB, 132
 AB
to 132–133
 actions of, 132–133
 bipartite, 133
 diphtheria, 140–144
 domain structures of, 131–133
 evidence for, 131
 large clostridial, 236
 pore-forming, 193
 Pseudomonas aeruginosa, 135–140
 RTX, 210–211
 Shiga, 144–148
 types of, 131, 133–134
 Receptor-associated protein, as chaperone, for exotoxin A, 138–140
 RegA protein, *Pseudomonas aeruginosa*, in iron regulation, 36–37
 Regulation, two-component systems for, 3–23
 advantages of, 5
 anti-infective compounds based on, 22
 BvgAS in, 19–21
 effector domain in, 16–19
 extracytoplasmic sensor domain in, 8–9
 histidine kinase domain in, 10–13
 histidine phosphotransfer domains in, 14–16
 linker region in, 9–10
 modular nature of, 5–8
 overview of, 3–5
 receiver domain in, 13–14
 response regulation interactions in, 16
 sequence conservation in, 5–8
 structure-function relationships in, 8–19
 transmembrane region in, 9
 vaccines related to, 21–22
 Repeat-in-toxin family, 150; see also
 Adenylate cyclase toxin action of, 210–211
 characteristics of, 203–204
 in disease, 213–214
 domains of
 calcium-binding, 209
 fatty acyl groups, 207–208
 hydrophobic, 208–209
 genetic organization of, 204, 206–207
 in intracellular signal-transduction pathways, 211–213
 members of, 205
 receptors for, 210–211
 Response regulator proteins, in two-component systems, 6–8, 15
 Bordetella pertussis, 20
 histidine phosphotransfer domain interactions with, 16
 structure-function relationships in, 8–19
 RfaH protein, in toxin transport, 206
 rhl quorum sensing system, 59–61
 Rho GTPases, 283–292
 action of, analysis of, 291
 clostridial toxin action on, see
 Clostridial cytotoxins, large
 deamination of, 237–242
 description of, 232–233
 function of, 283–285
 regulation of, 283–285
 subfamily of, 285
 toxins modulating
 GTPase-activating proteins, 284, 286–291
guanine nucleotide exchange factors, 285–286, 291
Ribosome-inactivating proteins, 245–255
action of
 enzymatic, 245–246
 sites for, 249–250
 substrate specificity in, 250
animal pathophysiology of, 251–252
autologous, tolerance of, 251
cell protection against, 251
cellular entry of, 249
expression of, 248
glycosylation of, 248
localization of, 248
medical uses of, 253–254
protective function of, 253
receptors for, 249
Shiga toxins as, see Shiga toxins
 structures of, 246–250
types of, 246–248
Ricin
 action of, 245, 249
 active site of, 249
 as biological weapon, 333
 cellular entry of, 248
glycosylation of, 247
as immunotoxin, 254
intracellular transport of, 167–170
localization of, 248
pathophysiology of, 251
structure of, 246–247, 250
Rickettsia, toxin secretion from, 125
Rickettsia prowazekii, toxin secretion from, 118–119
RIPs, see Ribosome-inactivating proteins
RNA N-glycosidases, see Ribosome-inactivating proteins
Rns protein, in adhesion factor
 regulation, 51–53
Rob protein, 40–42
RT6 protein, in ADP-ribosylation, 227
RTX family, see Repeat-in-toxin family

S

Salmonella, toxin secretion from, 100, 107–109, 111–113
Salmonella enterica
 Sop proteins, 285–286
toxin secretion from, 97, 103–104
Salmonella enterica serovar Typhimurium
 MarA protein, 40

PhoQ sensor protein of, 8
Salmonella typhi, cytolethal distending
toxin, see Cytolethal distending
toxins
Saporins
 as immunotoxins, 254
 localization of, 248
Sarin, action of, 245
Scarlet fever
 Dick test for, 304
 toxins in, 298
Sec61p complex, in toxin transport, 170
Secretins
 in type II secretion, 86–87
 in type III secretion, 110
Secretion systems, 67–127
evolution of, 69–70
type I, 71–79
 adaptor protein in, 74–75
 C-terminal signal in, 73
 channel tunnels in, 75–77
 HlyB traffic ATPase in, 74
 mechanism of, 77–78
 membrane components and, 73–77
 substrates for, 71–73
type II, 81–94
 apparatus for, 84–89
 distribution of, 81–82
 Eps complex in, 89–93
 signals in, 83–84
 two-step process in, 82–83
 vs. type IV, 85–89
type III, 95–114
 bacteria associated with, 95–97
 chaperones for, 102–105
 cytoplasmic ATPase complex in,
 109–110
 exported proteins in, 100–103, 110–111
 historical review of, 95
 inner membrane components in, 110
 machinery for, 108–113
 membrane translocation in, 104–106
 mRNA signals in, 101–102
 needle structures in, 106
 outer membrane components in, 110
 pathogenicity islands and, 97–99
 regulation of, 107–108
 substrate specificity switching in,
 113
 translocon in, 104–106

Downloaded from www.asmscience.org by
IP: 54.70.40.11
Secretion systems (continued)
type IV, 115–127
bacterial related to, 121
Bordetella pertussis, 121–124
categories of, 115
directly to eukaryotic cell, 124
evolution of, 115–117
to extracellular milieu, 121–124
family members of, 117–119
Helicobacter pylori, 124
of intracellular pathogens, 124–125
structures of, 119–120
vs. type II, 85–89
types of, 68–69
Secreton, in cholera toxin secretion, 83–84
Sensor kinase proteins, in two-component systems, 3–5
effector domains of, 16–19
extracytoplasmic domain of, 8–9
histidine kinase domain of, 10–13
histidine phosphotransfer domains of, 14–16
interactions with response regulator, 16
linker region of, 9–10
receiver domain of, 13–14
sequence conservation in, 5–8
transmembrane region, 9
unorthodox, 14–16
Serratia marcescens, hemolysin, 200
SEs, see Staphylococcal enterotoxins
Shewanella putrefaciens, toxin secretion from, 82
Shiga-like toxins
intracellular transport of, 169
transcytosis of, 177, 184
Shiga toxins
actions of, 245, 247–248
bacterial protective role of, 253
expression of, 247
intracellular transport of, 158–159, 161–163, 167–168
iron regulation of, 30–35
pathophysiology of, 251–252
receptors for, 133, 144–148
cells interacting with, 146–147
structure of, 145–147
toxin interactions with, 147–148
structures of, 247–248, 250
synthesis of, iron regulation of, 30–35
transcytosis of, 177, 184
Shigella, toxin secretion from, 97, 107
Shigella dysenteriae
cytolethal distending toxin, see
Cytolethal distending toxins
Fur protein, in iron regulation, 32–35
Shiga toxins, see Shiga toxins
Shigella flexneri, toxin secretion from, 119
Shock, toxic, see Toxic shock syndrome toxin–1
SHP–2, in *Helicobacter pylori* toxin transport, 124
Signaling
cell-to-cell, see Quorum sensing
intracellular, RTX toxins in, 211–213
Simian virus 40, cellular entry of, 170
SMEZ, see Streptococcal mitogenic exotoxin
SNARE proteins, as neurotoxin targets, 276–277
Spa proteins, in type III secretion systems, 113
SPes, see Streptococcal pyrogenic exotoxins
Spo0B protein, *Bacillus subtilis*, 16
structure of, 289–291
Staphylococcal enterotoxins
biochemistry of, 294–296
genetics of, 296–297
history of, 298
immunobiology of, 299–302
structure of, 294–296
Staphylococcal superantigens, see Superantigens
Staphylococcus aureus
in abscesses, 307
hemolysins of, see Hemolysin(s),
Staphylococcus aureus
leukotoxins, 193, 196
toxic shock syndrome toxin–1, see
Toxic shock syndrome toxin–1 two-component system of, 6
Streptococcal mitogenic exotoxin, 296
Streptococcal pyrogenic exotoxins
biochemistry of, 294–296
history of, 298
immunobiology of
functional, 304–305
structural, 300–301
structures of, 294–296
variants of, 294
Streptococcal superantigens, see
Superantigens
Streptococcus pyogenes
perfringolysin O, 193, 197–198
streptolysin O, 191, 193, 197, 200
toxic shock syndrome and, 305–306
two-component system of, 6
Streptolysin O, Streptococcus pyogenes,
191, 193, 197, 200
Stxs, see Shiga toxins
Superantigens, 293–308
actions of, 296
bacterial survival advantages of, 307–308
biochemistry of, 294–296
family of, 293–294
genetics of, 296–297
history of, 298–299
illnesses related to, 305–307
immunobiology of
functional, 303–305
structural, 299–303
structures of, 294–296
SycH protein, in type III secretion systems, 108
SycN protein, in type III secretion systems, 107

T
T domain, of ADP-ribosylating toxins, 216, 218
T lymphocytes
cytolethal distending toxin action on, 268–269
superantigen effects on, 299, 301, 302
T-pilus, Agrobacterium tumefaciens, 119
Terrorism, biological, see Biological weapons
Tetanus toxin, 272–277
action of, 272–273, 275
detoxification of, 313–314
historical review of, 272
recombinant fragment C of, 315
structure of, 312
synthesis of, 273, 313–314
target proteins for, 276–277
Tetanus vaccines, 312–315
ToIC protein, in toxin transport, 73–78
tox gene, diphtheria toxin, 27–30
ToxA protein, Pseudomonas aeruginosa, in iron regulation, 36–37
Toxic shock syndrome toxin-1
bacterial survival advantage of, 308
biochemistry of, 294–296
forms of, 294
genetics of, 297
history of, 299
illnesses associated with, 304–307
immunobiology of
functional, 304–305
structural, 299
ovine, 294
structure of, 295–296
Toxin A and toxin B, Clostridium difficile, see Clostridial cytotoxins, large
ToxR protein, Vibrio cholerae, 3, 5
Traffic ATPase, in toxin transport, 71–74
Transcellular transport, across epithelium, 174
Transcription, in type III secretion systems, 108
Transcytosis, across mucosal barriers, 173–186
cholera toxin, 178–185
classical pathway for, 175–178
definition of, 174–175
indirect pathway for, 178–185
lipid rafts in, 183, 184
mechanisms of, 174–175
neonatal FcRn in, 177–179
pIgR in, 175–177
Transglutaminase, dermonecrotizing toxin as, 241–243
Translocation, in type III secretion systems, 104–106
Transmembrane region
proteins of, 194–195
of sensor kinase proteins, 9
Transport, of toxins, see Secretion systems
Trichosanthin, cellular entry of, 248
Trichosantin, for HIV inhibition, 253
TSST-1, see Toxic shock syndrome toxin-1
TTSS (type III secretion system), see Secretion systems, type III
Tumor necrosis factor α, release of, superantigens in, 303–305
Two component systems, for regulation, see under Regulation
TyeA protein, in type III secretion systems, 107
INDEX

U
UDP-glucose, large clostridial cytotoxin action on, 231
Urease regulation, AraC family regulators in, 49–51
UreR protein, in urease regulation, 49–51
Urinary tract infections, Escherichia coli, 211, 213–214

V
VacA toxin, Helicobacter pylori, 193, 200, 201
Vaccines, 311–325
based on two-component systems, 21–22
diphtheria, 312–315
mucosal delivery of, mutant toxins for, 320–324
pertussis, 315–320
tetanus, 312–315
Verotoxins, see Shiga toxins
Vfr protein, Pseudomonas aeruginosa, 37–38, 58–59
Vibrio cholerae
cholera toxin, see Cholera toxin
hemolysin, 200
toxin secretion from, 81
Eps complex in, 89–93
two-step process in, 82–83
ToxR protein of, 3, 5
Vibrio fischeri, quorum sensing, 55–56
VirB system
in plant tumor formation, 117–120
Ptl system similar to, 122–123
Virulence factors, encoded by pathogenicity islands, 97–99
Volkensin, pathophysiology of, 251

W
Water, ADP-ribosylating toxin action on, 221
Weapons, biological, see Biological weapons
Whooping cough, see Bordetella pertussis

X
Xanthomonas campestris, toxin secretion from, 81
Xylella fastidiosa, toxin secretion from, 82

Y
Yersinia
toxin secretion from chaperones in, 102–105
discovery of, 95–97
machinery for, 108–111
proteins in, 100–106
regulation of, 106–108
Yop proteins, see yop genes and products
Yersinia pestis
as biological weapon, 329, 331, 332
toxin secretion from, 82
yop genes and products, 286–288
as biological weapons, 329, 331
in toxin secretion, 96
chaperones in, 102–103
regulation of, 107–108
signaling and, 101–102
structures of, 100
in translocation, 104–106
Ysc proteins, in type III secretion systems, 107, 110

Z
Zinc-metalloproteases, see Metalloproteases