ENVIRONMENTAL MICROBE-METAL INTERACTIONS
Environmental Microbe-Metal Interactions

EDITED BY

Derek R. Lovley

Department of Microbiology
University of Massachusetts
Amherst, Massachusetts

ASM PRESS WASHINGTON, D.C.
CONTENTS

Contributors ... vii
Preface ... ix

I. Biogeochemical Cycling of Iron and Manganese
1. Fe(III) and Mn(IV) Reduction • Derek R. Lovley 3
2. Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH • David Emerson ... 31
4. Trace Metal-Phytoplankton Interactions in Aquatic Systems • William G. Sunda ... 79
5. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria • Dennis A. Bazylinski and Richard B. Frankel ... 109
6. The Role of Siderophores in Iron Oxide Dissolution • Larry E. Hersman ... 145
7. Microbially Influenced Corrosion of Steel • Ralf Cord-Ruwisch 159

II. Microbial Interactions with Toxic Metals: Biomineralization and Bioremediation
8. Microbial Mercury Reduction • Jon L. Hobman, Jon R. Wilson, and Nigel L. Brown ... 177
9. Dissimilatory Reduction of Selenate and Arsenate in Nature • Ronald S. Oremland and John Stolz 199
10. Microbial Reduction of Chromate • Yi-Tin Wang 225
11. Influence of Fungi on the Environmental Mobility of Metals and Metalloids • Geoffrey M. Gadd and Jacqueline A. Sayer 237
12. Bacterial Surface-Mediated Mineral Formation • Gordon Southam ... 257
13. Bioremediation of Radionuclide-Containing Wastewaters • Jon R. Lloyd and Lynne E. Macaskie 277
14. Biosorption Processes for Heavy Metal Removal • Silke Schiewer and Bohumil Volesky ... 329
15. Biodegradation of Synthetic Chelating Agents • Harvey Bolton, Jr., Luying Xun, and Don C. Girvin 363

Index ... 385
CONTRIBUTORS

Dennis A. Bazylinski • Department of Microbiology, Iowa State University, Ames, Iowa 50011
Robert Blake II • College of Pharmacy, Xavier University, New Orleans, Louisiana 70125
Harvey Bolton, Jr. • Pacific Northwest National Laboratory, Richland, Washington 99352
Nigel L. Brown • School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
Ralf Cord-Ruwisch • Biotechnology, Murdoch University, Perth, Western Australia 6150, Australia
David Emerson • American Type Culture Collection, 10801 University Boulevard, Manassas, Virginia 20110, and Institute for Biosciences, Bioinformatics, and Biotechnology, George Mason University, Manassas, Virginia 20110
Richard B. Frankel • Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407
Geoffrey M. Gadd • Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, Scotland
Don C. Girvin • Pacific Northwest National Laboratory, Richland, Washington 99352
Larry E. Hersman • Environmental Molecular Biology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Jon L. Hobman • School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
D. Barrie Johnson • School of Biological Sciences, University of Wales, Bangor, United Kingdom
Jon R. Lloyd • Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
Derek R. Lovley • Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
Lynne E. Macaskie • School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
Ronald S. Oremland • U.S. Geological Survey, ms 480, 345 Middlefield Road, Menlo Park, California 94025
Jacqueline A. Sayer • Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, Scotland
Silke Schiewer • Department of Chemical Engineering, McGill University, M. H. Wong Building, 3610 University Street, Montreal, Quebec H3A 2B2, Canada
Contributors

Gordon Southam • Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011-5640

John Stolz • Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282

William G. Sunda • Beaufort Laboratory, National Oceanic and Atmospheric Administration, Beaufort, North Carolina 28516

Bohumil Volesky • Department of Chemical Engineering, McGill University, M. H. Wong Building, 3610 University Street, Montreal, Quebec H3A 2B2, Canada

Yi-Tin Wang • Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506

Jon R. Wilson • School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

Luying Xun • Washington State University, Pullman, Washington 99164
The importance of metals in the life of microorganisms is well known. Iron and other metals are key components in many proteins that are necessary for microbial respiration and metabolism. Less appreciated is the major impact that microorganisms can have on the fate of metals in the environment. Environmental science textbooks typically discuss the geochemical cycles of metals in terms of equilibrium thermodynamics and Eh-pH diagrams. However, research on microbe-metal interactions, much of it conducted within the last decade, has demonstrated that new models that take into account nonequilibrium biochemical processes are required in order to truly understand metal geochemistry. The purpose of this volume is to give an overview of the current understanding of environmental microbe-metal interactions and to provide the basis for improved models of metal cycling.

This book deals first with biogeochemical cycling of iron and manganese. These are the two most abundant redox-active metals in the Earth’s crust. As outlined in chapter 1, the origin of life may have been intimately connected to the ability of iron to readily cycle between the ferric [Fe(III)] and ferrous [Fe(II)] states. Some of the earliest geochemical signals of life on Earth are the conversion of the Fe(II) dissolved in the archaean seas to massive Fe(III) oxide deposits, possibly as the result of activity of Fe(II)-oxidizing phototrophs (chapter 2), and the conversion of this Fe(III) oxide to magnetite by Fe(III)-reducing microorganisms (chapter 1). In modern environments, microbial oxidation of organic matter to carbon dioxide, coupled to the reduction of Fe(III) or Mn(IV), is an important process for the degradation of both naturally occurring and contaminant organic compounds in a variety of sedimentary environments and the subsurface (chapter 1). Microbial oxidation of the Fe(II) produced from Fe(III) reduction provides a “ferrous wheel” to complete the iron cycle (chapter 2). Microbiologically catalyzed Fe(III) reduction and Fe(II) oxidation are also important processes in acidic environments, such as those that result from mine drainage. Recent studies have begun to elucidate which microorganisms might catalyze these reactions at low pH and the biochemical mechanisms for these reactions (chapter 3).

Iron is also an important nutrient for environmentally relevant microbes. Nowhere is this more apparent than in the dramatic effect that iron and other trace metals can have on primary productivity in the ocean (chapter 4). The study of this phenomenon is essential to understanding global carbon cycling and nutrient dynamics in marine systems.

An amazing impact of microorganisms on the iron cycle is the ability of magnetotactic bacteria to concentrate iron from the environment into intracellular chains of single-domain magnetite crystals (chapter 5). Magnetite from magnetotactic bacteria provides one of the best-characterized geological signatures of microbial activity on Earth and possibly other planets.
One of the most-studied forms of microbe-metal interactions is microbial acquisition of iron through the use of siderophores. Nearly all of the research on microbial siderophores has focused on iron uptake by microorganisms of medical interest. However, as described in chapter 6, siderophores may also have an impact on iron cycling and microbial metabolism in aerobic soils. Studies in this area are in their infancy, but it seems likely that this form of metal solubilization plays an important role in metal cycling.

Microbially influenced corrosion of metallic iron is of considerable economic concern and has been studied intensively for many years. Chapter 7 reviews the diverse concepts that have been developed in this area and presents a new model for the mechanisms by which microorganisms enhance iron corrosion.

A major factor driving recent increased interest in environmental microbe-metal interactions is the need to remediate extensive metal contamination of water and soils. Microorganisms are not alchemists and cannot change a toxic metal to a less-toxic element. However, microbially catalyzed precipitation or volatilization of metals can remove them from polluted environments. The most-studied form of microbial metal reduction is reduction of soluble Hg(II) to volatile Hg(0) (chapter 8). Hg(II) reduction is not linked to respiration but rather is a detoxification strategy which removes mercury from the cell and may also promote mercury volatilization from contaminated environments. The detailed information that is available on Hg(II) reduction serves as an excellent model for the study of microbial reduction of other metals.

Reductive precipitation of metal and metalloid contaminants from waters and waste streams also shows promise for environmental restoration. For example, microbes can use oxidized forms of the metalloids selenium and arsenic as terminal electron acceptors to support anaerobic growth (chapter 9). Reduction of soluble selenium in insoluble elemental selenium naturally removes this toxic metalloid from agricultural drainage waters and can be stimulated in order to promote selenium removal (chapter 9). The metalloid arsenic can also be microbially reduced, which, depending upon environmental conditions, can lead to solubilization or precipitation of arsenic (chapter 9). Microbial reduction of soluble, toxic Cr(VI) to less soluble, less toxic Cr(III) provides a potential mechanism for remediation of chromium-contaminated waters and soils (chapter 10). Microorganisms can even conserve energy to support growth from the reduction of uranium and other radioactive metals and in the process immobilize these metals in the environment (chapter 13).

Although most investigations of microbe-metal interactions have focused on prokaryotes, fungi have similar abilities to affect the fate of metals (chapter 11). Considering the vast biomass of fungi in many soils, fungus-metal interactions are certain to be a major area of future study on the biogeochemistry of metals.

A major environmental fate of toxic metals may be adsorption to microbial biomass. As outlined in chapters 12 and 14, there are numerous mechanisms by which metals can bind to cell surfaces. Microorganisms can also promote cell-associated precipitation of toxic metals by the release of phosphate, which can form insoluble metal phosphates (chapter 13). These various adsorption processes can lead to mineral formation in the environment (chapter 12), and they have
practical application for the removal of metals from contaminated waters and waste streams (chapters 13 and 14).

One of the most important factors promoting the solubility of contaminant metals, and hence their mobility in subsurface environments, is complexation of the metals to synthetic chelators (chapter 15). The discovery that microbes can degrade the organic portion of metal chelates, thus diminishing the mobility of the metals, has been a major advancement in the field of microbe-metal interactions.

A take-home message of many of the chapters in this book is the need for better understanding of many facets of environmental microbe-metal interactions. The level of inquiry into microbe-metal interactions has been modest in comparison with the intensive study of microbial carbon metabolism and microbial interactions with major, nonmetallic inorganic species such as oxygen, nitrogen, phosphorous, sulfur, and hydrogen. Hopefully, this book makes clear the significance of environmental microbe-metal interactions and provides some clues for fruitful areas of further investigation.

Derek R. Lovley
INDEX

Acidianus brierleyi, Fe(II) oxidation, 63, 71
Acidianus spp., 63
Acidimicrobium ferrooxidans, Fe(II) oxidation, 60–61
Acidimicrobium spp., 61, 63
Acidiphilium acidophilum, 63
Acidophilic bacteria, Fe(II) oxidation, 53–74
Acinetobacter spp., radionuclide-containing waste, 299
Acrodyinia, 178
Actinide-microbe interactions, 292–304
actinium(III), 293–294
curium(III), 293–294
hexavalent actinides, 288–300–301
neptunium(V), 296–297
neptunium(VI), 297
plutonium(III), 293–294
plutonium(IV), 294–296
plutonium(VI), 297
protactinium(V), 296–297
thorium(IV), 294–296
uranium(VI), 297–304
Actinides
biomineralization of hexavalent actinides, 300–301
in radioactive waste, 290–291
Actinobacteria, 60
Aeromonas hydrophila
radionuclide-containing waste, 293
selenate reduction, 210
Aeromonas spp., Fe(III) reduction, 8
Ag(I)
in marine systems, 82
Ag(I) reduction, by fungi, 247
Agrobacterium radiobacter
Cr(VI) reduction, 226–229
EDTA degradation, 281
Agrobacterium spp., chelating agent biodegradation, 367
Alcaligenes eutrophus
heavy metal resistance and, 258
radionuclide-containing waste, 314
Alga-trace metal interactions, see
Phytoplankton-trace metal interactions
Algae
as biosorbent, 298, 299, 314, 336–343
cesium uptake by, 306
AlgaSORB, for radioactive waste, 299
ALH84001, Martian meteorite, 110, 134
Alicyclobacillus spp., 62
Alternaria alternata, Se(VI) reduction, 258
Alteromonas putrefaciens, 111
Americium(III), actinide-microbe interactions, 293–294
Anabaena variabilis, radionuclide-containing waste, 306
Anthraquinone-2,6-disulfonate (AQDS), Fe(III) reduction and, 8, 19–20
Aquaspirillum magnetotacticum, 126
Aquifer sediments, Fe(III) reduction in, 18
Arabidopsis thaliana, mercury phytoremediation with, 190
Archaeglobus fulgidus, 41
Arsenate-reducing bacteria, 209–211
Arsenate reductase, 218
Arsenic
As(V), 199
As(V) reduction, 203, 209–211, 216–220
biogeochemistry in anoxic environments, 199–209
biomethylation by fungi, 247–248
Arsenic resistance, 211–212
Arsenobetaine, 211
Arthrobacter spp., radionuclide-containing waste, 308
Aspergillus niger
bioremediation with, 248–249
metal solubilization, 239–240
radionuclide-containing waste, 294
Aspergillus terreus, radionuclide-containing waste, 309
As(V) reduction, 203
arsenate-reducing bacteria, 209–211
biochemistry, 211, 216–220
Azotobacter vinelandii, siderophore production by, 151
Azotobactin, 151
Azotochelin, 151
Bacillus alcalophilus, 210
Bacillus arsenicoelensatis, selenate reduction, 210
Bacillus infernus, Fe(III) reduction and, 11
Bacillus licheniformis, metal-metal binding, 263
Bacillus selenirereducens, selenate reduction, 210
Bacillus spp.
Cr(VI) reduction, 226, 227, 229, 231
Mn(II) oxidation, 44–45
radionuclide-containing waste, 306
Bacillus subtilis
metal binding and, 264
radionuclide-containing waste, 300
Bacteria
actinide-microbe interactions, 292–304
arsenate-reducing bacteria, 209–211
as biosorbent, 298, 299–300, 340, 343–344
cell envelope structure, 259
Cr(VI)-reducing bacteria, 226–227
cyanobacteria, 93, 264, 306
Fe(II) oxidation, 41–42, 53–74
Fe(III) reduction, see Fe(III)-respiring microorganisms
fermentative bacteria, 167
hyperthermophilic bacteria, 11–12
magnetotactic bacteria, 109–135
mercury tolerance and resistance in, 181–184
microbe-metal interactions, see Microbe-metal interactions
microfossils, 267–268
nitrate-reducing bacteria, 39–40
radionuclide-microbe interactions, 281–288
selenate-reducing bacteria, 209–211
sulfate-reducing bacteria (SRB), 10–11, 160–171, 203
thermophilic bacteria, 11–12, 61, 62–63
Bacterial microfossils, 267–268
Banded iron formations (BIFs), 16, 46
BCM, see Biologically controlled mineralization
Beggiatoa spp., Fe(II) oxidation, 41
Bioaccumulation
defined, 330
of radionuclides, 284–285
Bioaugmentation, 292
Biodegradation, chelating agents, 363–379
Biofilm, microbially influenced steel corrosion, 161, 170
Biofouling, Fe(II) oxidation and, 34
Biogeochemical cycle, mercury, 179–181
Biologically controlled mineralization (BCM), 109, 113–134
Biologically induced mineralization (BIM), 109, 110–113
Biomethylation, of metals and metalloids, 247–248
Biomineralization
bacterial surface-mediated, 257–269
biologically controlled mineralization (BCM), 109, 113–134
biologically induced mineralization (BIM), 109, 110–113
cell physiology and, 258–260
environmental conditions and, 123–124
geological consequences, 266–269
of hexavalent actinides, 300–301
of radionuclides, 286–287
surface catalysis and, 260–266
via microbially generated ligands, 286–287
Bioremediation
advantages, 291–292
chromium-containing wastes, 226, 232
fungus-metal interactions, 248–249
microbial mercury reduction, 189–190
of radionuclide-containing wastewaters, 277–315
Biosensors, mercury reduction and, 189
Biosorbents, 336, 357, see also Biosorption
algal biomass, 298, 299, 314, 336–343
bacterial biomass, 298, 299–300, 340, 343–344
binding sites, 335–336, 337
fungal biomass, 297–298, 340–341, 344
regeneration, 331–333
for uranium(VI), 298
Biosorption, see also Biosorbents
applications, 330–331
by algal biomasses, 298, 299, 336–343
by bacterial biomasses, 298, 299–300, 340, 343–344
by fungal biomasses, 297–298, 340–341, 344
defined, 329–330
heavy metal removal by, 329–357
industrial reactors, 331, 355–357
kinetics, 283, 353–357
mechanism, 333–336
modeling, 349–352, 357
operating conditions, 344–349
of radionuclides, 282–284, 297–300
of uranium(VI), 297
Biostimulation, 292
Biotransformation
kinetics, 285
of radionuclides, 285–286
Boundary-organized biomineralization, 109
Cadmium
biochemical role in metalloproteins, 91, 96
in marine systems, 82, 83
phytoplankton and, 80, 98
uptake, 96, 97
Cadystins, 243
Calcium oxalate, 247
California
Mono Lake, arsenate in waters of, 200, 201,
207, 211, 212
San Joaquin Valley, selenate in porewaters,
200, 206, 249
Candida glabrata, metal resistance and, 243
Candida humicola, biomethylation by, 248
Candida utilis, radionuclide-containing waste,
293, 300, 314
Cathode depolarization theory, 160–166
Cesium
radioesium bioremediation, 304–307
uptake by bacteria, 305–306
Chelating agents
biodegradation, 363–379
radionuclide-containing wastes, 280–281, 290
Chelatobacter heintzii, chelating agent
biodegradation, 366, 368, 370–375, 377
Chemisorption of heavy metals, microbially
enhanced, 287–288, 300
Chlorella, as biosorbent, 298, 299
Chlorella pyrenoidosa, cesium uptake by, 306
Chlorella salina, radionuclide-containing waste,
306–307
Chromatium vinosum, 39
Chromium
chemistry, 225
phytoplankton and, 98
reduction, 225–233
toxicity, 225, 231
Chromium-containing wastes, bioremediation,
226, 232
Chromium-reducing bacteria, 226–227
Chrysiogenes arsenatis
arsenate reduction, 210, 217–218
strain BAL–1T, 210–211
Citrobacter spp., radionuclide-containing waste,
284, 294, 296, 299, 308, 309, 314
Cladosporium spp., radionuclide-containing
waste, 306
Clostridium barkeri, 211
Clostridium cochlearium, mercury reduction
and, 183, 184
Clostridium spp., radionuclide-containing waste,
304
Cobalt
biochemical role in metalloproteins, 91
cellular growth requirements for, 94
Co(II) in marine systems, 82
phytoplankton and, 98
radioactive cobalt bioremediation, 313–314
Copper
cellular growth requirements for, 94
Cu(I) in marine systems, 82
Cu(II) in marine systems, 82–83
Cu(II) reduction, by fungi, 247
greigite particles and, 123–124
in phytoplankton, 98
Synechococcus and, 82–83, 101
Copper oxalate, 246–247
Corrosion
aerobic, 159–160
anaerobic, 160, 167, 171
bacterial enzymes and, 167
bacterial polysaccharides and, 167
bacterial sulfide production, 166–167
cathode depolarization and, 160–166
Fe(II) oxidation and, 34
microbially influenced corrosion, of steel,
159–171
Cr(V), detection, 226
Cr(VI)-reducing bacteria, 226–227
Cr(VI) reduction, 225–233
bioremediation, 227
Cr(VI)-reducing bacteria, 226–227
environmental factors and, 227–230
inhibition, 230
phenol degradation simultaneous with, 232–
233
Cu(II) reduction, 247, see also under Copper
Curium(III), actinide-microbe interactions, 293–
294
Cyanobacteria
calcite precipitation, 264
cesium uptake by, 306
nitrogen fixation by, 93
Cytochrome
Fe(II) oxidation and, 69, 72
Fe(III) reduction and, 22, 72
Sulfurospirillum barnesii, 218, 220
Debaryomyces hansenii, Cu(II) reduction, 247
Deferrribacter thermophilus, Fe(III) reduction
and, 11
Deinococcus radiodurans, 289
Denmark, Marselisborg iron seep, 34
Desulfobulbus propionicus, microbially
influenced corrosion and, 171
Desulfotomaculum auripigmentum, arsenate
reduction, 203, 210
Desulfotomaculum reducens, radionuclide-
containing waste, 303
Desulfovibrio desulfuricans, 112
mercury reduction, 183, 184, 258
methyl-mercury formation, 258
radionuclide-containing waste, 279–280, 290, 303, 304, 312–313
selenate reduction, 209
Desulfovibrio gigas, radionuclide-containing waste, 312
Desulfovibrio postgatei, microbially influenced corrosion, 164
Desulfovibrio spp., microbially influenced corrosion, 164
Desulfovibrio vulgaris
Cr(VI) reduction, 226, 227, 229, 231
radionuclide-containing waste, 303, 312
Diatoms, trace metals and, 87–88, 89, 91–92
Dimethylmercury (DMHg), 179, 183
Dinoflagellates, trace metals and growth rate, 91–92
Dissimilatory As(V) reduction, 199–220
Dissimilatory Fe(II) oxidation, 53, 54
Dissimilatory Fe(III) reduction, 3
Dissimilatory Se(VI) reduction, 199–220, 258
EDTA
biodegradation, 363, 367–369, 375–376
cellular transport, 377–378
EDTA monoxygenase, 375–376
Enterobacter cloacae
Cr(VI) reduction, 227–229
selenate reduction, 209
Environment microbe-metal interactions, see Microbe-metal interactions
Enzymatically catalyzed biotransformation, of radionuclides, 285–286
Erethism, 178
Escherichia coli
cesium uptake by, 305
Cr(VI) reduction, 226, 228–230, 232–233
radionuclide-containing waste, 290, 305
selenate reduction, 209
Fe(II), see also under Iron
in marine systems, 82
Fe(II) oxidation, 53
acidophilic bacteria, 53–74
anaerobic, 35, 38–39
at circumneutral pH, 31–42, 47–48
bioenergetics, 32–34
extraterrestrial implications, 47
habitats, 34–35
heterotrophic bacteria, 41–42
history, 32
microaerobic bacteria, 41
organisms, 35–42
paleobiology, 46–48
Fe(II) reoxidation, 14, 84
Fe(III), see also under Iron
in marine systems, 83, 84
photoredox cycling, 84
Fe(II,III) oxides, 204, 207
Fe(III) oxides
dissolution, siderophores and, 149–154
in soil, 149
Fe(III) reduction, see also Fe(III)-respiring microorganisms; Iron as abiotic process, 4
anaerobic fermentation and, 4–5, 10–11
biologically induced mineralization (BIM), 109, 110–113
carbon cycle, 14–15
environmental significance, 12–20
enzymatic, 20–22
hot environments, 11–12, 14
magnetite and, 110–111
mechanisms, 20–24
mineral dissolution and, 16
mineral formation and, 15–16
nonenzymatic, 5–7
organic contaminants and, 16–19
respiration on early earth, 12–13
siderite and, 111
soil chemistry and, 15
sulfate-reducing microorganisms, 10–11
vivianite and, 112
water quality and, 15
Fe(III) respiration, 3–24
Fe(III)-respiring microorganisms (FRM), 5–24,
see also Fe(III) reduction; Iron
acidophilic, 63–64
aromatic compounds and, 16–19
environmental significance, 12–24
hyperthermophilic, 11–12
magnetite and, 110–111
mechanisms, 20–22
in pure culture, 7–9
sediments, 9–10
thermophilic, 11–12
Ferredoxin, 100
Ferrabacter limneticum, Fe(III) reduction, 8
Ferric/ferrous couple, reduction potential, 53–54
Ferrichrome, 239
Ferrihydrite, 149
Ferrimonas spp., Fe(III) reduction, 8
Ferrobacillus ferrooxidans, Fe(II) oxidation, 57
Ferrobacillus sulfuroxidans, 57
Ferroglobulus placidus, Fe(II) oxidation, 40
Ferrromicrobium acidophilus, 60, 73
Flavodoxin, 100
Framboidal pyrite, 112

FRM, see Fe(III)-respiring microorganisms

Fungal biosorbents, 340–341
- heavy metal removal, 344
- radioactive waste, 297–299

Fungi
- as biosorbent, 297–299, 340–341, 344
cesium uptake by, 306
- metal-binding compounds, 244
- metal immobilization and, 240–247
- metal solubilization and, 238–240
- Mn(II) oxidation, 43
- siderophore concentration in soil, 148

Fungus-metal interactions
- bioremediation, 248–249
- environmental mobility of metals and metalloids, 237–249
- metal immobilization, 240–247
- metal and metalloid reduction, 247
- metal solubilization, 238–240

Gallionella ferruginea, Fe(II) oxidation, 32, 33, 38, 40
Gallionella spp., Fe(II) oxidation, 37–38

Genetics
- magnetotactic bacteria, 129–133
- microbial mercury reduction, 187–188

Geobacteraceae, Fe(III) reduction, 7–8

Geobacter metallireducens
- Fe(III) reduction, 5, 8, 16, 20, 111, 112
- radionuclide-containing waste, 302–303, 312

Geobacter spp., Fe(III) reduction, 9, 10, 18, 19, 21, 111

Geobacter sulfurreducens
- Fe(III) reduction, 8, 22
- radionuclide-containing waste, 312

Geospirochoccus barnesii, 209

Geothrix fermentans, 8, 111

Geothrix spp., Fe(III) reduction, 9

Geovibrio ferrireducens, Fe(III) reduction, 8

Glaciealum roseum, biomethylation by, 248

Goethite, 112, 149
- dissolution, 153
- goethites, 152

Gram-negative bacteria
- as biosorbents, 340
- physiology, 259, 343

Gram-positive bacteria
- as biosorbents, 340
- physiology, 259, 343

"Green rust," 204

Greigite, 109, 111–112, 114, 115, 118, 120, 121

Groundwater, Fe(III) reduction and, 15

Hawaii, Loihi seamount, 34–35

Heavy metals
- biosorption for removal, 329–357
- microbially enhanced chemisorption, 287–288, 300

Hematite, 149
- siderophores and, 152

Heterotrophic leaching, 248–249

Hg(II), see also under Mercury
- in marine systems, 82

Humic substances, Fe(III) reduction, 6–7, 19–20

Hydrogen
- microbiologically influenced steel corrosion and, 160–164, 169

Hydrogen sulfide
- as electron acceptor, 168–169

Hydroquinones, Fe(III) reduction and, 5–6

Hyperthermophilic microorganisms
- Fe(III) reduction and, 11–12
- radionuclide-containing waste, 313

IDA dehydrogenase, 374–375

Iron
- biochemical role in metalloproteins, 91
- microbiologically influenced corrosion, 159–171
- for nitrate assimilation, 93
- for nitrogen fixation, 93
- physiological functions, 145
- phytoplankton and, 80, 88, 98, 101
- soil concentration of, 149

Iron(II), see Fe(II)

Iron(III), see Fe(III)

Iron sulfide, sulfate-reducing bacteria and, 265

Irving-Williams order of affinity, 96

Kinetics
- biosorption, 283, 353–357
- biotransformation, 285
- Fe(II) oxidation, 32–34
- microbiologically influenced corrosion of steel, 165–166
- Mn(II) oxidation, 42–43

Kluyveromyces lactis, metal resistance and, 244

Lead, Pb(II) in marine systems, 82

Leidocrocite, 149

"**Leptospirillum ferrooxidans,**" Fe(II) oxidation, 57, 58, 60, 69–70, 72

Leptospirillum spp., 60

"**Leptospirillum thermosferrooxidans,**" 62

Leptothrix discophora
- Fe(II) oxidation, 40, 42
- Mn(II) oxidation, 43–44

Leptothrix ochracea, Fe(II) oxidation, 32, 34, 35–37
Index

Leptothrix spp., 264
Lipopolysaccharide (LPS), 259
Loihi seamount (Hawaii), 34–35

Mackinawite
 Fe(III) reduction and, 12, 124
 formation, 261
magA gene, 131
Maghemite, 149
Magnetiite, 109
 Fe(III) reduction and, 13, 16
 magnetotactic bacteria and, 110–111, 114, 115, 118, 128
 morphology, 119, 120
Magnetobacterium bavaricum, 60
Magnetoosome mineral phase, composition and morphology, 118–123
Magnetoosomes, 115–123
 formation, 124–125, 129
Magnetospirillum gryphiswaldense, 125, 127, 128
Magnetospirillum magnetotacticum
 Fe(III) reduction and, 111, 112, 116–117, 124, 126, 129
 genetics, 130
Magnetospirillum strain AMB-1, 125, 127, 131
Magneto tactic bacteria
 biologically controlled mineralization (BCM), 109, 113–134
 biologically induced mineralization (BIM), 109, 110–113
 classification, 113–114
 ecology, 114–115
 features, 113
 genetics, 129–133
 magnetoosomes, 115–123
 motility, 116–117
 physiology, 125–129
Magneto taxis, physics of, 115–118
Manganese
 cellular growth requirements for, 94
 phytoplankton and, 98, 101
Manganese(II), see *Mn(II)
Manganese(IV), see *Mn(IV)
Many-celled magnetotactic procaryote (MMP), 121
Marcasite, 112
Mars, evidence of ancient life on, 110, 134
Marselisborg iron seep, 34
MECHM, see Microbially enhanced chemisorption of heavy metals
merA gene, 190
merB gene, 188
MerC protein, 187
Mercuric reductase, 187–188
Mercury
 bioavailability, 180
 biogeochemical cycle, 179–181
 Hg(II) in marine systems, 82
 human uses of, 179
 in nature, 178
 properties, 177
 refining, 177–178
 resistance to and tolerance of, 181–184, 185
 speciation, 180
 toxicity, 178–179, 189
Mercury compounds, human uses of, 179
Mercury cycle, 179–181, 182
Mercury reduction, 181, 183
 by fungi, 247
 environmental, 189–190
 microbial, 184, 186–188
merD gene, 188
mer operons, 184, 188
MerP protein, 186–187
MerR protein, 184, 186
MerT protein, 186–187
Mesophilic iron-oxidizing acidophilic bacteria, 55–61
Metal-binding compounds, fungal, 244
Metal-chelate complexes, biodegradation, 363–379
Metal-fungus interactions, see Fungus-metal interactions
Metal immobilization
 environmental significance, 244–247
 fungi and, 240–247
 "Metallogenium," 45–46
Metalloids, biomethylation, 247–248
Metalloproteins
 arsenic compounds, 211
 selenium compounds, 211
 trace metal chemistry and, 90–95
Metallosphaera prunae, Fe(II) oxidation, 63
Metallosphaera sedula, Fe(II) oxidation, 63, 71–73
Metallosphaera spp., 63
Metallothionein
 copper resistance and, 243
 mercury resistance and, 183
 radionuclide-containing waste, 284
Metal-microbe interactions, see Microbe-metal interactions
Metals, see also Heavy metals; Toxic metals
 microbially enhanced chemisorption of heavy metals (MECHM), 287–288, 300
Metal solubilization, by fungi, 238–240
Methanobacterium spp., 259
Methanococcus spp., cell envelope, 260
Methanococcus vannielii, 211
Methanosaeta concilii, 260
Methanospirillum hungatei, 260
Methylated arsenic compounds, 211
Methylation, of mercury, 183
MIC, see Microbially influenced corrosion
Microaerobic zone, 114
Microbe-actinide interactions, see Actinide-microbe interactions
Microbe-metal interactions, see also Fungus-metal interactions
arsenate reduction, 199–220
bacterial surface-mediated mineral formation, 257–269
chromate reduction, 225–233
Fe(II) oxidation, 31–42, 47–48, 53–74
Fe(III) reduction, 3–24, 63–65
heavy metal removal, biosorption, 287–288, 300, 329–357
iron oxide dissolution, siderophores and, 145–154
magnetic iron minerals, mineralization by magnetotactic bacteria, 109–135
mercury reduction, 177–191
microbially influenced corrosion, 159–171
Mn(II) oxidation, 31, 42–46, 47, 48
Mn(IV) reduction, 3, 14–16, 19, 24
radionuclide-containing wastewaters, bioremediation, 277–315
selenate reduction, 199–220
steel corrosion, 159–171
synthetic chelating agents, biodegradation, 363–379
trace metal-phytoplankton interactions, 79–102
Microbe-radionuclide interactions, see Radionuclide-microbe interactions
Microbially enhanced chemisorption of heavy metals (MECHM), 287–288, 300
Microbially influenced corrosion (MIC)
biofilms, 161, 170
hydrogen, role in, 160–164
localized vs. uniform, 170–171
of steel, 159–171
Microbial mercury reduction, 184, 186–188
genetics, 186–188
regulation, 184, 186
transport, 187
Micrococcus luteus, radionuclide-containing waste, 296, 309
Microfossils, bacterial, 267–268
Microprecipitation, 334
Mine effluents, radioactive, 279
Mineral dissolution, Fe(III) reduction and, 16
Mineral formation
Fe(III) reduction and, 15–16
mechanism, 262
Mineralization
bacterial surface-mediated, 257–269
biologically controlled mineralization (BCM), 109, 113–134
biologically induced mineralization (BIM), 109, 110–113
Mn(II), see also under Manganese
in marine systems, 82, 83–84
in phytoplankton, 87–88, 98
Mn(II) oxidation
at circumneutral pH, 31, 42–46, 47, 48
bioenergetics, 42–43
habitats, 43
organisms, 43–46
paleobiology, 46–48
Mn(II) reoxidation, 14
Mn(IV) reduction, 3, 14–16, 19, 24
Modeling, biosorption, 349–352, 357
mofA, 44
Molybdenum
biochemical role in metalloproteins, 91
phytoplankton and, 98
Mono Lake (California), arsenate in waters of, 200, 201, 207, 211, 212
Monomethylmercury (MMHg), 178, 179, 183
Moraxella spp., radionuclide-containing waste, 312
Mycobacterium smegmatis, radionuclide-containing waste, 294, 299
Naumanniella spp., Fe(II) oxidation, 42
Nephrotic syndrome, 178
Neptunium(IV), actinide-microbe interactions, 294–296
Neptunium(V), actinide-microbe interactions, 296–297
Neptunium(VI), actinide-microbe interactions, 297
Nickel
biochemical role in metalloproteins, 91
in marine systems, 82
radioactive nickel bioremediation, 314–315
Niobium, bioremediation, 310–311
Nitrate/nitrite couple, reduction potential, 53–54
Nitrate-reducing organisms, anaerobic iron oxidation and, 39–40
Nitrate reductase, 209
Nitritotriacetate (NTA)
biodegradation, 363, 364–366, 372–375
cellular transport, 377
structure, 365
Nitrospira spp., 60
Index

NTA monooxygenase, 372–374
Nuclear decontamination, see Radioactive wastewater bioremediation
Nuclear fuel cycle, 278–281

OATZ, see Oxic-anoxic transition zone
Ochrobium spp., Fe(II) oxidation, 42
Organic contaminants, Fe(III) reduction and, 16–19
Organic matrix-mediated mineralization, 109
Organomercury compounds, dealkylation by fungi, 248
Organomercury lyase, 248
Organometallic compounds, dealkylation by fungi, 248
Organotin compounds, dealkylation by fungi, 248
Orpiment, 203
Oxalates, fungal production, 244–247

Paleobiology
ancient life on Mars, 110, 134
Fe(III) reduction and, 12–13
magnetite, 110
Mn(II) oxidation, 46–48
Paracoccus denitrificans, radionuclide-containing waste, 313
Pb(II), see also under Lead in marine systems, 82
Penicillium bilaii, agricultural use, 240
Penicillium chrysogenum, radionuclide-containing waste, 294, 305, 307, 309
Penicillium italicum, radionuclide-containing waste, 294
Penicillium simplicissimum, bioremediation with, 248
Penicillium spp.
biomethylation by, 248
radionuclide-containing waste, 309
Peptidoglycan, 259
Pettaquamscutt Estuary (Rhode Island), magnetotactic bacteria in, 114, 122, 124, 128

Phanerochaete chrysosporium, Mn(II) oxidation, 43
Phenolic compounds, Cr(VI) reduction and, 230, 232–233
phoN gene, 292
Photobacterium fischeri, 376
Photoredox cycling, 84
Phytochelatins, 243
Phytoextraction, 282
Phytoplankton-trace metal interactions, 79–102

Plutonium, actinide-microbe interactions, 293–297
Polonium
bioremediation, 311
naturally occurring, 278
Pristinamycin IIA synthase, 376

Pseudomonas aeruginosa, radionuclide-containing waste, 281, 285, 294, 296
Pseudomonas ambiguа, Cr(VI) reduction, 226, 231

Pseudomonas fluorescens
Cr(VI) reduction, 226–227, 230, 231
radionuclide-containing waste, 281, 305–306, 308

Pseudomonas putida
Cr(VI) reduction, 229, 230, 232
radionuclide-containing waste, 281

Pseudomonas spp.
Fe(III) reduction and, 4–5
radionuclide-containing waste, 284, 299–300
siderophores and, 152, 153

Pseudomonas stutzeri
Fe(II) oxidation, 39–40
selenate reduction, 209
siderophores and, 152

Pseudomurein, 259
Pyrite
formation, 265
oxidation, 279

Pyrobaculum islandicum
Fe(III) reduction and, 11, 111
Index 393

radionuclide-containing waste, 313
Pyrrhotite, 109, 111, 120

Quinones, Fe(III) reduction and, 5–6, 19–20

Radioactive waste
actinides, 290–291
bioremediation, see Radioactive wastewater bioremediation
from fuel reprocessing, 280
nuclear fuel cycle, 278–281
from reactor and plant decontamination, 280–281
scale of bioremediation, 288–290
toxicity, 289–290
from uranium mining and extraction, 278, 279–280

Radioactive wastewater bioremediation, 277–315
actinides, 292–304
chelating agents, biodegradation, 363–379
nonactinides, 304–315
Radionuclide-chelate complexes, biodegradation, 363–379
Radionuclide-microbe interactions, 281–288
actinides, 292–304
americium(III), 293–294
bioaccumulation, 284–285
biomineralization, 286–287
biosorption, 282–284
biotransformation, 285–286
cesium, 304–307
cobalt, 313–314
curium(III), 293–294
hexavalent actinides, 300–301
microbially enhanced chemisorption of metals, 287–288
neptunium(V), 296–297
neptunium(VI), 297
nickel, 314–315
niobium, 310–311
nonactinides, 304–315
plutonium(III), 293–294
plutonium(IV), 294–296
plutonium(VI), 297
polonium, 278, 311
protactinium(V), 296–297
radium, 307–308
ruthenium, 313
strontium, 308–309
technetium, 311–313
thorium(IV), 294–296
uranium(VI), 297–304
yttrium, 309–310
zirconium, 310

Radionuclides
bioremediation, see Radioactive wastewater bioremediation
codisposal with synthetic chelating agents, 363
Radium, bioremediation, 307–308
Redoxocline, 114
Reductive mercury resistance (mer), 181
Rhizofiltration, 282
Rhizopus arrhizus, radionuclide-containing waste, 283–284, 293, 305, 307, 309, 310
Rhizopus spp., radionuclide-containing waste, 309
Rhizospheres, Fe(II) oxidation habitat, 35
Rhode Island, Pettaquamscutt Estuary, magnetotactic bacteria in, 114, 122, 124, 128
Rhodobacter capsulatus, 39
Rhodobacter sphaeroides radionuclide-containing waste, 313
selenite reduction, 211
Rhodochrosite, Mn(IV) reduction and, 16
Rhodococcus erythropolis, radionuclide-containing waste, 306
Rhodovulum, Fe(II) oxidation, 39
Rust formation, steel, 159
Rusticyanin, 64–65
Ruthenium, bioremediation, 313

Saccharomyces cerevisiae
manganese transport system, 241–242
metal resistance and, 243–244
radionuclide-containing waste, 283, 294, 306, 309
San Joaquin Valley (California), selenite in porewaters, 200, 206, 249
Sargassum natans, radionuclide-containing waste, 314
Scenedesmus obliquus, radionuclide-containing waste, 296
Schizosaccharomyces pombe, metal resistance and, 243

Sediments
microbial Fe(III) reduction and, 9–10, 14, 22–24
selenium reduction, 204–206
Selenate-reducing bacteria, 209–211
Selenate reductase, 205
Selenium
biogeochemistry in anoxic environments, 199–209
biomethylation by fungi, 248, 249
Se(VI), 199
Se(VI) reduction, 203–220, 247
Se(VI) reduction, 203–220
biochemistry, 211–220
by fungi, 247
selenate-reducing bacteria, 209–211
Shewanella putrefaciens
Fe(III) reduction, 4–5, 21, 111
radionuclide-containing waste, 279, 297, 302, 312
Shewanella saccharophila, Fe(III) reduction, 9
Shewanella spp., Fe(III) reduction, 8, 10, 111
Siderite, Fe(III) reduction and, 16, 112
Siderocapsaceae, 42
Siderocapsa spp., Fe(II) oxidation, 42
Siderococcus spp., Fe(II) oxidation, 42
Siderophores, 125, 146, 238–239
concentration in soils, 147, 148
fungal, 148, 239
history, 146
iron oxide dissolution and, 149–154
physiological function, 146–147
Silver
Ag(I) in marine systems, 82
Ag(I) reduction by fungi, 247
S layers, 260, 343–344
Soils
iron occurrence in, 149
microbial Fe(III) reduction and, 15, 22–24
siderophores in, 147, 148
Sphaerotilus natans, Fe(II) oxidation, 40, 41–42
Sphaerotilus spp., 264
Steel, microbially influenced corrosion (MIC), 159–171
Streptomyces longwoodensis, radionuclide-containing waste, 297
Streptomyces pristinaespiralis, 376
Streptomyces viridochromogenes, radionuclide-containing waste, 296, 297
Strontium, bioremediation, 308–309
Subsurface environments, Fe(III) reduction and, 13–19
Sulfate-reducing bacteria (SRB)
arsenate reduction and, 203
buffer species and weak acids produced by, 167–168
cathode depolarization and, 160–161
Fe(III) reduction and, 10, 111–112
iron sulfide deposit, 265
microbially influenced corrosion of steel, 160–171
proton excretion by, 168
radionuclide-containing wastes, 279, 286
Sulfide, Fe(III) reduction and, 6
Sulfobacillus acidophilus, 61
Sulfobacillus spp., 61, 63
Sulfobacillus thermosulfidooxidans, 61, 62, 70–71
Sulfobolales, 63
Sulfobolus acidocaldarius, 62, 63
Sulfobolus metallicus, 62–63
Sulfobolus spp., 63
Sulfurococcus yellowstonensis, Fe(II) oxidation, 63
Sulfurospirillum arcachonense, 209
Sulfurospirillum arsenophilum, arsenate reduction, 210
Sulfurospirillum barnesi
As(V) reduction, 210, 218
cytochromes, 218, 220
Fe(III) reduction, 9
selenate reduction, 209, 220
strain MIT-13, 210, 215
strain SES-3, 209, 215, 219
Sulfurospirillum deleyianum, 209
Synechococcus
calcite precipitation, 264
copper and, 82–83, 101
Synthetic chelating agents, biodegradation, 363–379
Talaromyces emersonii, radionuclide-containing waste, 299
Technetium, bioremediation, 311–313
Tellurite reduction, by fungi, 247
Terminal electron-accepting process (TEAP), Fe(III) reduction, 5
Thalassiosira oceanica, cellular metal regulation in, 87–88, 89
Thalassiosira pseudonana, trace metals and, 91–92, 96
Thalassiosira weissflogii, trace metals and growth rate, 91–92
Thauera selenatis, selenium reduction, 205, 209, 216–217
Thermodesulfovibrio yellowstonii, 60
Thermophilic microorganisms
Fe(II) oxidation, 61, 62–63
Fe(III) reduction and, 11–12
Thermoterrabacterium ferrireducens, Fe(III) reduction and, 11
Thermotoga maritima, Fe(III) reduction and, 11, 12, 111
Thermotolerant iron-oxidizing acidophilic bacteria, 61–62, 63
Thermus spp., Fe(III) reduction and, 11
Thiobacillus denitrificans, Fe(II) oxidation, 39–40
Thiobacillus ferrooxidans
Fe(II) oxidation, 33, 54–58, 60, 63, 64–69
radionuclide-containing waste, 313
Index 395

Thiobacillus prosperus, Fe(II) oxidation, 58, 66, 67

Thiobacillus spp., 171, 248

Thiobacillus thiooxidans, 57, 63

radionuclide-containing waste, 313

Thorium(IV), actinide-microbe interactions, 294–296

Tn21 transposon, 187

Tn501 transposon, 186, 187

Toxic metals

arsenate reduction, 199–220

chromate reduction, 225–233

mercury reduction, 177–191

selenate reduction, 199–220

solubilization of, 240

transport analysis of, 242

Trace metal chemistry

complexation in marine systems, 82

metal distribution, 80–81

metalloproteins and, 90–95

speciation, 81–84

Trace metal-phytoplankton interactions, 79–102

cellular metal regulation in, 87–90

cellular metal uptake, 84–87

growth rate limitation, 90–95

metal controls on phytoplankton communities, 99–107

metal-metal interactions and metal inhibition, 96–99

trace metal chemistry, 79–84

Tributyl phosphate (TBP), uranium extraction, 280

Tributyltin naphthenate, dealkylation by fungi, 248

Tributyltin oxide, dealkylation by fungi, 248

Trimethyllead, dealkylation by fungi, 248

Uranium

bioreduction of U(VI) to U(IV), 301–304

mining and extraction, 278, 279–280

Uranium(VI)

actinide-microbe interactions, 297–304

bioreduction to U(IV), 301–304

biosorbents, 298

Vitamin B12, phytoplankton and, 87

Vivianite, Fe(III) reduction and, 112

Wastewater

nuclear fuel cycle, 278–281

radioactive, bioremediation, see Radioactive wastewater bioremediation

Water quality, Fe(III) reduction and, 15

Waterways, Fe(II) oxidation and, 34

Wolinella succinogenes, selenate reduction, 209

Xanthomonas spp., Fe(II) oxidation, 40, 41

Yeast, zinc uptake systems, 88

Yttrium, bioremediation, 309–310

Zinc

biochemical role in metalloproteins, 91, 96

cellular growth requirements for, 94

in marine systems, 82, 83

phytoplankton and, 80, 88, 98, 101

in yeast, 88

Zirconium, bioremediation, 310

Zoogloea spp., radionuclide-containing waste, 314