Robert Koch
A Life
in Medicine
and Bacteriology
Contents

Foreword James Strick vii

Preface xxi

1 Introduction 1

2 Koch's Early Years 6

3 The Young Doctor and Husband 14

4 Steps toward Maturity: Koch in Wollstein 21

5 The Lone Scientist: The Work on Anthrax 27

6 First Recognition: Koch and Cohn 38

7 Koch's Role in the Microscope Revolution 54

8 Studies on Wound Infections: The Later Wollstein Years 70

9 On to Berlin 84

10 Koch at the Crossroads: From Lone Doctor to Group Leader 90

11 Simple Gifts: The Plate Technique 94

12 Sterilization, Disinfection, and other Techniques 105
Contents

13 The London Meeting: Koch, Lister, and Pasteur 114
14 World Fame: The Discovery of the Tubercle Bacillus 117
15 The World Traveler: To Egypt and India in Search of Cholera 140
16 The Pasteur/Koch Controversy 169
17 The Berlin Professor 178
18 At the Center of a Storm: Koch’s Work on Tuberculin 195
19 Consolidation and Transition 214
20 Africa Years: Robert Koch’s Research in Tropical Medicine 237
21 The World Tour: Koch in America and Japan 267
22 An Assessment of Koch and His Work 286

Chronology 303

Bibliography of Koch’s Writings 309

Notes 319

Index 349
Ten years have passed since Dr. Thomas Brock gave us this first major English-language biography of Robert Koch in 1988. Written by a distinguished microbiologist rather than a professional historian or biographer, the book has nonetheless stood the test of time. Indeed, though Brock did not work with unpublished archival sources or dissertations, his command of the published sources is extremely impressive, especially his use of the German-language biographies of Koch that are otherwise inaccessible to most English-speaking readers. Thus, although Brock did not make use of archival materials (many of which, in East Berlin, may have become available to scholars only after the fall of the Berlin Wall), his analysis in many ways opens up or foreshadows important themes that historians have since developed in more depth. His bibliography and notes are very well arranged so that this biography is useful to the average reader and an essential starting point for any historians studying Koch from this point on.

In his lifetime, Robert Koch did more to singlehandedly advance the world's understanding of microbes as causes of disease than any other man, with the exception only of his great French rival Louis Pasteur. Koch and his students created almost from scratch the majority of the techniques necessary for any modern study of bacteria, including microphotography of the organisms, staining procedures, and solid culture media, which allowed reproducible pure cultures and quantification of bacterial numbers for the first time. They also identified the microorganisms that cause anthrax, wound infections, tuberculosis, diphtheria, cholera, and many other major infectious diseases. Koch had the talents of a first-rate researcher: he was a keen observer, an ingenious technical innovator, and extremely persistent and single-minded in pursuit of his goal. Yet, being trained from the outset of his career as a practicing medical doctor, Koch never lost sight of the prac-
tical benefit to human health that was implicit in his work, for instance, devoting much time to the study of effective water filtration systems after the 1892 Hamburg cholera epidemic. This is not a mere academic point; Brock reminds us (p. 3) that “water filtration has probably saved more lives than immunization and chemotherapy combined.” Brock is thorough, and his deep admiration for Koch is obvious, as he documents in detail all of Koch’s important contributions, without which it is difficult to imagine the existence of bacteriology as we know it.

Yet this book stands out from a great many hagiographic biographies of the past. With figures of the stature of Koch or Pasteur, one rarely finds a study that can document the awesome contributions of the scientist without setting him up as a hero figure, a giant with no human qualities. Brock, more in tune with the needs of our own time, sees that Koch’s human qualities make an equally fascinating part of the story. An important thread in this narrative of Koch’s career is to show how an “eager amateur” country doctor, experimenting on microbes in his spare time, went on to become “an imperious and authoritarian father figure whose influence on bacteriology and medicine was so strong as to be downright dangerous.” And the point, Brock emphasizes, is not just to understand Koch’s personality, but to better understand science itself, including “the origins of the cult of personality in research” (p. 4). It might be added that, for a new generation of scientists in training, it is much more valuable as a model for study to have a real, complex human being, including his mistakes and excesses. By comparison, a too-perfect hero figure will always leave most of us doubting that we can measure up, especially in the face of the messy enterprise that laboratory science can be on a day-to-day basis.

I shall not attempt an exhaustive summary of the past decade’s historical work on Koch, but I shall briefly indicate some of the most important works and what contribution each has made. For the reader who wants more detail, the bibliographies of those works will provide a more than adequate guide to the literature. Subjects that have received excellent and fascinating treatment include the rivalry between the Koch and Pasteur schools (and the two men personally), the pleomorphism-monomorphism debate, the greater complexity of Koch’s postulates than at first meets the eye, the larger political and cultural resonances of the bacteriological revolution (especially in Germany), the tuberculin discovery and its relation to the creation of Koch’s Institute for Infectious Diseases, and finally the difficulties of the histo-
rian's task in adequately assessing a scientific giant without merely re-creating the mythic hero figure that the scientist often himself began constructing during his own lifetime.

Koch disagreed with Pasteur on a number of important issues in bacteriology. Brock tells us that in the Pasteur-Koch controversy, Koch could at times be so personally vicious as to be shocking. We learn, however, that the controversy "was certainly rooted, in part, in the French-German antagonism that still festered as an aftermath of the Franco-German war." This has also been documented for Pasteur in the most recent work. Brock points out (p. 176–177) that differences in style between the Koch and Pasteur schools, also "rooted in national characteristics," but with "more deep-seated significance" scientifically, contributed to the animosity and misunderstanding as well. These themes have been explored and developed in great depth by Andrew Mendelsohn (originally in his Princeton Ph.D. dissertation, which is soon to appear as a book), who characterizes the French and German schools as two fundamentally different "cultures of bacteriology." He argues that Pasteur's more ecological approach to microorganisms was rooted in an agricultural French context in which the "economy of nature" (and hence the role of microorganisms in that big picture) was a primary cultural motif. Indeed, Pasteur's entire work with microbes began through fermentation, their positive functions such as winemaking suggesting the ecological necessity of microbes. By contrast, Koch's view of bacteria was medically rooted from the beginning, his surgical experience in the Franco-Prussian war; microbes were pathogens, exclusively negative agents to be eliminated if at all possible. This fundamental difference in "culture" produced different methods of working with bacteria, e.g., Koch's early insistence on working with pure cultures as opposed to the Pastorians' preference for working with liquid cultures that, by nature, were mixed populations. But Mendelsohn shows that the deep philosophical difference continued to be manifested in the French and German "schools" and as the new science of bacteriology was transformed over several decades.

Another important contribution to this aspect of Koch's work has come from University of Toronto historian Pauline Mazumdar. She shows convincingly that an important early source of Koch's basic opposition to the Pastorians was his deep epistemological commitment to monomorphism, the idea that microbes, like all other organisms, come only in discrete species. Carl von Nägeli in Munich and his students
championed the opposite theory, pleomorphism, that microbes can undergo such a wide range of mutability under different environmental conditions that the morphologically different types are almost all interconvertible. Mazumdar shows that these views on microorganisms were manifestations of very long-standing opposed views of nature that she calls the "Linnaeans" and the "Unitarians." Koch emulated the work of the botanist Ferdinand Cohn, with whom he shared the view that bacteria came in true Linnaean species, and thus he was opposed to Nägeli's ideas as soon as he heard them. It was Koch's deep a priori belief in this view of nature that led him to think that photography of the organisms would be an important contribution to their study. Mazumdar suggests that Koch's insistence, as early as 1878 (long before there was any proof of such an idea), that one bacterial species must be the cause of one and only one disease also grew out of this basic difference in beliefs about nature. In his 1878 paper on wound infections, he used this as a new dimension to his definition of bacterial species: the disease that an organism caused was one of the chief features that could be used to define which species of microbe it must be. Brock pointed out many years ago in his book *Milestones in Microbiology* (p. 100–101) that Koch was exhibiting theory-laden observation when he emphasized tiny differences between, e.g., micrococci and indeed that the researcher was begging the question at issue in imagining "that the minor differences he saw were significant. . . . He wanted these organisms to be different" so that his theory would be verified. Brock concludes, "Fortunately Koch was right on this point, but there was no a priori reason why he should have been right, and so we must conclude that he was lucky." Thus, the widespread opposition Koch faced from other doctors and students of microbes was not at first due to their being unaware of his evidence. Rather, it was precisely because they saw that he did not have the evidence for his strong one bacterium-one disease claim that his theory was opposed and the theories of Nägeli and Max von Pettenkofer retained wide support into the 1890s.

So why should this contribute to antagonism between Koch and the Pasteur school as well? Mazumdar points out that the pleomorphist camp used exclusively liquid cultures, as did everybody else prior to Koch's invention of solid media. But Koch was convinced that it was that fact above all else that caused confusion between (what he was sure were) different separate species in a mixed culture and (what his opponents interpreted as) the different stages in the interconverting
life cycle of pleomorphic microbes. When Pasteur first announced the discovery of attenuated virulence in a microbe in 1880, this reminded Koch all too much of the pleomorphists’ claims that such a fundamental defining property of the organism as its ability to cause a disease was a mutable thing. And since the Pastorians, like Nägeli and his followers, still used liquid media for their cultures, this clinched the case in Koch’s mind: the Pasteur school was highly suspect of being as fundamentally misguided about stable, unchanging bacterial species as were the pleomorphists.

Of course, we now know that Koch was wrong in thinking that stable species were incompatible with quite significant genetic mutability within a species of microorganisms. Indeed, some would argue that the discovery of such important phenomena as the variation among “smooth” and “rough” forms of pneumococci (and the resultant path to the double helix) may have been held up for decades by the extent to which Koch’s monomorphist dogma held sway, once he triumphed with the discovery of the causes of spectacular diseases such as cholera and tuberculosis. Bacteriologist Ludwik Fleck made such an argument in the 1930s. Brock also cites Philip Hadley and shows that disagreement over this point had surfaced among American bacteriologists even in the last years of Koch’s life. Yet the slow waning of Koch’s dogmatically extreme monomorphist view was still to create trouble, even for American researchers, as Harris Coulter has shown in the case of Arthur Isaac Kendall. Clearly, this is a prime example of what Brock intimated when he warned of the excessive influence of the “cult of personality” that grew up around Koch. While his insights about the use of pure cultures were brilliant, his a priori bias led him to mistakenly think this must mean that Pasteur’s discovery of variability among microbes was illusory. For the next several decades, this necessitated the creation of epistemological wastebasket categories such as “involution forms,” into which observations could be banished when they seemed at odds with the monomorphist paradigm. If an overriding commitment to his belief had the benefit of driving Koch through the years of hard work necessary to isolate the causes of major human woes, it simultaneously had the effect, proportional to his success, of calcifying the research and preserving Koch’s mistakes, at least for several decades. It also, as much as nationalistic feelings, may have contributed to driving a deep wedge of suspicion between him and the only other group of workers with whom he could have collaborated as equals. Such is a common feature of research that should give us pause.
One of the single most important new historical contributions on Koch is Richard Evans's masterly analysis of the 1892 Hamburg cholera epidemic, in which Koch and his new bacteriology clashed with the sanitarian theory of Max von Pettenkofer. Pettenkofer’s theory was based on exhaustive study of local conditions of soil and climate and emphasized that the cholera germ was only one ingredient needed to produce the disease. Only when the bacterium came in contact with the soil under specific conditions related to the underground water table could the actual cholera poison be generated. Thus, in Pettenkofer’s theory, which had enjoyed wide respect in medical circles for 20 years by 1892, the bacteria getting into drinking water could in no way transmit the disease. In the epidemic of 1892, it was noticed that the rate of cholera in the immediately adjacent, downstream city of Altona was negligible compared to the rate in Hamburg. Altona had a sand filtration system for its water supply, so to Koch and his supporters it seemed obvious that drinking water must be the main means of transmission of the disease. Historically, one of the things calling out for explanation has been how anyone in Hamburg could have resisted such compelling epidemiological evidence and not immediately thrown out the Pettenkofer theory in favor of the Koch theory that bacterium equals disease. Yet the epidemic reached very serious proportions indeed, claiming nearly 10,000 lives in 6 weeks before Koch’s views came to dominate. The power of Evans’s close-up history is in explaining which forces in the medical community and government of Hamburg lent support to Pettenkofer’s theory and why. Furthermore, Evans shows that larger political tensions between Hamburg and the German Empire (with Prussia the dominant state), over “federal” intervention in local matters, exacerbated the reasons why local Hamburg officials would be opposed to Koch, an official of the Prussian bureaucracy.

The famous historian of medicine Erwin Ackerknecht first suggested 50 years ago that anticontagionist, sanitarian theories of epidemic disease would tend to be supported by 19th century classical liberals (including free-trade advocates) while contagionist theories would be more likely to be supported by political conservatives. Why? Because contagionist theory implied the need for more centralized government authority and interference in local affairs to enforce quarantines and disinfection measures. Free traders, especially merchants and businessmen whose livelihood depended upon the free and cheap movement of goods across state and national boundaries, stood to lose most if
quarantines were imposed because of epidemics. In the 19th century, this group tended toward reformist, liberal politics. More extreme liberals, such as the famous pathologist Rudolf Virchow, insisted that social reforms for the underfed, overworked poor who lived in unclean conditions were the only real cure for epidemic diseases. Virchow and his supporters would always be highly suspicious of germs as any kind of true causative agents, recognizing that the easiest way for a conservative government (such as that of Prussia or, after 1871, the Prussian-dominated Empire) to avoid expensive and democratizing social reforms was to blame epidemics entirely upon a germ from without, thus avoiding issues of poverty and inequality altogether and insisting that all that was needed was quarantine and disinfection. These far-left liberals were not surprised that the imperial government in Berlin supported Koch. And they were skeptical of Pettenkofer's theory for allowing any role for a germ at all. Yet, compared to Koch's Prussian state antigerm bureaucracy, which gave the germ total causative blame, Pettenkofer's theory still appealed to liberals because it did at least emphasize the importance of local conditions in creating the actual poison that caused disease. Thus, it implied that local medical officials, not far-off Prussian bureaucrats trying to pass sweeping uniform policies and force them on all German cities under all conditions, were by far the most appropriate people to decide how best to deal with epidemics. Practically speaking, sanitary theories did actually greatly reduce overall mortality from epidemics because of their emphasis on building sewers and public water supplies (though not necessarily with filtration) and on improving nutrition and general living conditions. Thus, in England and in many areas of Germany, sanitary theory was credited with actually solving the problems, without the need for germs as central players.

If all this were not enough to make Pettenkofer's theory more popular with most local medical officials, Evans shows that Hamburg was an even more special case and proves that this political context was a very important reason why Hamburg, alone among German cities by 1892, experienced a severe cholera outbreak that year. Hamburg's government had been run for centuries by the mercantile class, as the merchants had basically made the wealth of this trading port since medieval times, when it first became a free and independent city-state within the Hanseatic League. In its liberal, free-trade policies and culture, the city had long been known as the "most English city on the
Continental," let alone in Bismarck's conservative German Empire. The mercantile ruling class selected the medical officials, and the doctors most likely to become public servants were those who saw their interests most closely tied to those of the wealthy merchants. Thus, the entire history and culture of the city militated against quarantine policies and the havoc they caused in disrupting trade, and Hamburg held out longer than any other German city against centralized control of local medical policies by Berlin. In 1892, huge numbers of eastern Europeans were passing through Hamburg to board ships for emigration abroad, especially to America. At that time, if ever, city officials would be loath to impose a lengthy quarantine, stopping the flow of this highly profitable cargo. Yet it was just the flow of these poor emigrants that was bringing the cholera bacillus from the east and depositing it in the sewers, the river, and the harbor of Hamburg. Because one of the most pointed differences between the Koch and Pettenkofer approaches was in whether epidemic disease poisons could be spread by drinking water supplies, the kind of epidemic Hamburg (or Pettenkofer's Munich) was most unprepared for, despite other intelligent sanitary measures, was an epidemic of a water-borne disease such as cholera or typhoid. Since centralized Berlin policy on germs, as dictated from Koch's lab, was enforced through almost the entire remainder of the Empire, only Hamburg fell victim to cholera that year. Needless to say, Koch was sent to investigate, and his eventual triumph over the 1892 epidemic was a crippling blow to Hamburg's continued economic and political independence from Prussian domination. It is not possible to predict simply and unequivocally that any given doctor would support or oppose contagious theory and policy based solely on his basic political views. Nevertheless, the integral nature of political history in understanding the fortunes of the germ theory of disease never came through more clearly than in Evans's story of *Death in Hamburg*.

Brock's biography makes eminently clear that Koch understood how crucial the support of the imperial and Prussian state politicians in Berlin was for the advancement of his career and the spread of his ideas. And the relationship was a true symbiosis. For, in the wake of worldwide fame for French science that came after Pasteur's triumphs with anthrax vaccine in 1881, the prestige of German science was at stake. If the memory of the Franco-Prussian war 10 years before were not still clearly in everyone's mind, Pasteur was deeply embittered and publicly campaigned all through these years for more support for
French science, insisting that France had fallen behind the state support the Germans gave to science and that this was an important reason for her defeat by the "Prussian chancre." Thus, supporting Koch and trumpeting his triumphs as the German answer to Pasteur were priorities for Berlin. The famed "race" between the German and French teams to find the germ of cholera in 1883 and the declaration of Koch's *Vibrio cholerae* in 1884 as a triumph for German science must be seen in this context. There are two reasons. First, several other investigators had observed the cholera bacillus before Koch (the Italian Pacini is officially credited with having first seen it in 1854), so presumably more conclusive proof of a causative link should account for the contemporary trumpeting of credit for Koch. But the second point is exactly this: Koch was *unable* to fulfill the criteria for proof of causation that were to be announced in that same year and later became enshrined in our microbiology textbooks as Koch's postulates. The most crucial missing link was the inability to infect an animal model with the bacterium and cause the disease. Thus, the Pettenkofer school, and many outside Germany as well, was highly skeptical of whether Koch's bacillus was any more proven to cause cholera than any of the other numerous intestinal bacteria for which the claim had been made before. Anticontagionists recalled in particular an episode in 1849 when British researchers claimed to have shown that a fungus was the cause of cholera, only to have it shown within the year that the organism in question was a common mold contaminant. Why, in this context, Koch's *Vibrio* came to be so widely celebrated makes much more sense if we recall that the Berlin government was the most vocal advocate of that view, treating Koch and his team as national heroes upon their return from India and arranging for Koch to be publicly greeted by the German emperor.

The French were not the only intended targets of this orchestrated propaganda for the superiority of German science. As Evans points out, 1884 was the year that saw the beginning of the imperial powers' "scramble for Africa." And the furious competition to conquer disease in the name of science ran neck-and-neck over the next 3 decades with the race among the Germans, French, British, and others to colonize territory in the name of civilization. The link was twofold: a propaganda war to justify imperialist expansion on one hand, combined with the need for science to control aggressive tropical diseases so that large numbers of Europeans, especially troops, could live in Africa on the other. By 1896, Koch had begun to shift his major research interest to
the tropical diseases of Africa. That Koch’s scientific interest moved in this direction is not to be doubted. But again we must recall that it was only the support of the German government that made possible Koch’s intensive full-time work in bacteriology after 1880. So perhaps it is not so surprising, and even may be instructive for modern high-budget science, to study the degree to which he who paid the piper chose in this case to call the tune. The racist and political roots of this, along with the science, are explored in depth in recent work by Heidelberg historian Wolfgang Eckart. Eckart shows, for instance, that trials of chemotherapy agents against the diseases were much easier to accomplish in the African colonial setting, with nonwhites as experimental subjects, than would ever have been possible in European labs.

To return to the issue of Koch’s postulates, this is an area in which very interesting work has been done recently as well. While Koch was willing to deploy these rules in a more rigid form for publicity purposes, we learn from Brock’s discussion (p. 180–182) that, from the very beginning, Koch understood that the situation was more problematic. He was convinced that his vibrio was the cause of cholera, for example, and thus that it might still not be possible in every case to fulfill the requirement for reinfecting an animal with the pure culture and reproducing the disease. Thus, from before they were even announced, in the mind of Koch the researcher these rules were not the kind of dogmatic requirements that they went on to become in microbiology textbooks. Historian Victoria Harden of the National Institutes of Health has studied the ongoing conflict in research, especially after the discovery of the viruses (which can almost never be cultivated on nonliving media), between the postulates as a helpful guideline for seeking new disease agents and simultaneously as obstacles to new fundamental breakthroughs. Virus researchers have insisted from the earliest days of their work that new versions of the rules must be continually reinvented to take into account the new properties of pathogens that differ from those of the bacteria worked with in the 1880s. Basic disagreements can be caused when two researchers insist on different versions of these postulates as bottom-line criteria, and in no case has this come out more clearly than in the objections of virologist Peter Duesberg that the epidemiological data for human immunodeficiency virus (HIV) are insufficient to prove that it causes AIDS. Harden looks at cases up to and including this one and tries to evaluate the validity of Duesberg’s arguments and those of his opponents, such as William Blattner and
Robert Gallo, in light of past historical disputes over which form of Koch's postulates is most reliable. In light of such a history, it is fascinating to reflect on the process by which such a scientific idea, though more flexible in the mind of its creator, can become an obstacle to new discoveries, especially if propagated in too rigid a form in science textbooks. Of course, in allowing the German state to use simplified notions of his work as propaganda tools, Koch himself must have realized his own participation in this process from the beginning.

We see this kind of double-edged nature of patronage again when Brock shows how (p. 198–199) Koch's German government superiors forced him to announce his discovery of tuberculin and its possible curative role for tuberculosis before he thought it scientifically appropriate. The premature announcement was forced on Koch because of the publicity opportunity of making the announcement at the Tenth International Medical Congress. It almost certainly also resulted from the enormous international prestige that came to the Pasteur group in the first years after the development of the rabies vaccine, which led to donations of an enormous sum of money that was used to create the Institut Pasteur in 1888. In the wake of this, Koch's government patrons were planning to create an institute for him in Berlin that would have comparable prestige for cutting-edge research. As soon as his work on tuberculin made it mistakenly seem that it would be an effective therapy for tuberculosis, the negotiations for Koch's new institute became bound up immediately with the potential fame and profit associated with that remedy.

In this area too, recent historical work has also brought new and interesting details of Koch's negotiations with the state bureaucracy to light. Heidelberg scholar Christoph Gradmann has found, in East Berlin archives, detailed government documents showing that the negotiations bogged down in late 1890, but not because Koch was digging in his heels about being forced to announce the discovery prematurely. Koch was trying to strike a deal that would guarantee him a large share of the profits that would accrue from tuberculin sales for the first 6 years. This is in striking contrast with the image of Koch the selfless researcher, whom biographers have been convinced had no real interest in fame or profit. Over the ensuing months, when large-scale trials brought out the fact that tuberculin really had very little therapeutic effect, Koch was forced to back down from his tough stance and accept the creation of the Institute for Infectious Diseases on terms mostly
dictated by the German government, since he feared losing all in the public relations debacle over tuberculin. It never became public that, as many tuberculin critics had charged during the months of controversy, Koch hoped to personally profit from the discovery, in addition to getting his institute for the good of humanity.

Here we are faced with something harder to accept into our previous heroic vision of Koch. Despite Brock's thoughtful comments on the larger context of science, politics, and bureaucracy in which Koch worked, here is one area where Brock the microbiologist generously views his subject with the basic faith that Koch was "strongly motivated to excel without regard to fame and fortune," at least in his early years. And yet, working out the role of personal profit in this incredible new field, so important for humanity, is surely an important part of the history of work on human disease. The controversy that followed Selman Waksman and Albert Schatz's discovery of streptomycin, which eventually led to a lawsuit and a court settlement over allocation of profits from that drug, shows that this tension did not go away after the early days of giants like Koch and Pasteur. Surely the recent dispute between Robert Gallo and Luc Montagnier over patent rights resulting from the discovery of HIV shows that it is still a matter very relevant in research. We must realistically include these matters in our picture of Koch to see the full human being and to understand the full relevance of his story for our own times, as well as for the future of scientific research. Paraphrasing from Gerald Geison's recent scholarly and provocative biography of Pasteur, we need a Koch for our times, not only the Koch who has inspired generations of young people to become scientists, but also the more complex person that we know he must have been. This can be done while simultaneously keeping in view the important contributions to science that Koch made so brilliantly. It is a tribute to this book that it has gone so far in that direction without sacrificing the details that make the science itself so compelling, indeed world-changing.

James Strick
Arizona State University

Further Reading

Preface

Robert Koch was one of the most important figures in medical science and was also the founder of bacteriology. Surprisingly, there has been no serious biography of Koch in English. Indeed, even the German-language biographies of Koch are dated and mostly inaccessible. The present book attempts to correct this deficiency.

This book began as an outgrowth of a larger project on the history of microbiology. When I began my research, I realized that I would have to spend considerable time on Koch because of his major importance. Yet there was no detailed summary of his work in English. There are many books in English about Louis Pasteur, the other leading figure of 19th century microbiology, but Robert Koch has attracted little attention in spite of his well-recognized importance. The biography by Dolman in the Dictionary of Scientific Biography is meritorious but is brief and hence serves primarily as a useful starting point. Most of the German-language biographies suffer from the sin of “hero worship”. The biography by Bochalli is not only brief but rather stilted. The book by Heymann is rather too detailed and only deals with Koch up until his discovery of the tubercle bacillus. The book by Möllers, Koch’s last assistant, is a useful source book of correspondence and dates but is ponderous and much too detailed for the general scientific reader. Both the Heymann and Möllers are out of print. The book by Genschorek, published in the German Democratic Republic, is also fairly brief. There are also a few fictionalized accounts of Koch in German, as well as a German-language movie, but nothing of any use to the student, scientist, or medical researcher.

The present book is based in the first instance on Koch’s published work itself, and on the detailed Koch correspondence published by Heymann and Möllers, but has been greatly supplemented by my own reading in the bacteriological literature of the late 19th century. Prob-
ably at no time in the history of bacteriology did so much happen so quickly as between the year 1876, when Koch published his first work on the life cycle of the anthrax bacillus, and 1900, when Koch went into semi-retirement. In 1876, most physicians did not believe in the germ theory of disease, and medical practice was antiquated and based on incredible personal bias. By 1900, the Koch school of bacteriology was well established, and the disciplines of hygiene and public health had been placed on firm footings. Guided by Koch's postulates, investigators uncovered much of what is now known of the causes of the most important infectious diseases of humans and lower animals. Even today, Koch's postulates are considered in detail whenever a new infectious disease (such as AIDS), arises. To a real extent, we owe our current good health and longevity to discoveries made by Robert Koch and his school.

Koch was one of the true scientific revolutionaries. Beginning as a simple country doctor, he ended up his career as a Noble Prize winner and a dominant figure in 19th century and early 20th century medical research. His story can serve as an example of how a lone doctor, living and working in scientific isolation, can rise above his environment and become a major medical and public figure.

The manuscript for this book was read in its entirety by Professors Hanspeter Mochmann (Berlin-Buch), Werner Köhler (Jena), and Dieter Gröschel (Virginia), all of whom provided invaluable suggestions and corrections. Professor Mochmann also served as a gracious host during my visit to the various Koch sites in East Berlin. Dr. Masao Soekawa provided me with full access to the extensive Koch materials at the Kitasato Institute in Tokyo. Mr. Klaus Gerber of the Robert Koch Institute in West Berlin gave me full access to the Koch archives of that institute, and also provided me with photographs. Other photographs were provided by Dieter Gröschel, Hanspeter Mochmann, and by Dr. W. Presber of the Institute for Medical Microbiology in East Berlin. The Koch bibliography published here is based on a more extensive German-language version kindly prepared for me by Professors Mochmann and Köhler.

In preparing this book, I was fortunate in having access to an excellent library on the history of medicine at the University of Wisconsin-Madison. Librarian Dorothy Whitcomb provided endless amounts of help. Her courtesy in giving me long-term access to some of the most important Koch sources is greatly appreciated. Professor William Coleman gave me important advice and insights as this work progressed.
Jon Bartells did an excellent job as research assistant, digging out from the various library catacombs an amazing amount of valuable material. Kathie Brock copyedited the manuscript and provided many valuable comments. The Graduate School of the University of Wisconsin-Madison provided a modest amount of financial support. I would also like to acknowledge the good grace of my colleagues in the Department of Bacteriology of the University of Wisconsin-Madison for tolerating my decision to do work on the history of science. I hope I have justified their faith.
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbe, Ernst</td>
<td>65–69</td>
</tr>
<tr>
<td>Abbe condenser</td>
<td>54, 68–69, 76, 80, 289</td>
</tr>
<tr>
<td>Abrin</td>
<td>228</td>
</tr>
<tr>
<td>Abscess, spreading</td>
<td>77</td>
</tr>
<tr>
<td>Aden, 166</td>
<td>245</td>
</tr>
<tr>
<td>Africa, 8, 237–266, 269, 301</td>
<td></td>
</tr>
<tr>
<td>European possessions, 240–241 map</td>
<td></td>
</tr>
<tr>
<td>African Coast Fever, see Rhodesian red</td>
<td></td>
</tr>
<tr>
<td>water</td>
<td></td>
</tr>
<tr>
<td>Agar, 101–103, 123</td>
<td></td>
</tr>
<tr>
<td>Air, microbial content, 102–103</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Egypt, 140–141, 147–148,</td>
<td></td>
</tr>
<tr>
<td>150–152, 233</td>
<td></td>
</tr>
<tr>
<td>Algae, 41–42, 324</td>
<td></td>
</tr>
<tr>
<td>Althoff, 215, 221, 226</td>
<td></td>
</tr>
<tr>
<td>Altona, Germany, 230–232</td>
<td></td>
</tr>
<tr>
<td>Amani, German East Africa, 262, 266</td>
<td></td>
</tr>
<tr>
<td>Amoeba, 239</td>
<td></td>
</tr>
<tr>
<td>Amoebic dysentery, 151</td>
<td></td>
</tr>
<tr>
<td>Aniline, 63, 76, 120, 133</td>
<td></td>
</tr>
<tr>
<td>Aniline brown, 63, 66</td>
<td></td>
</tr>
<tr>
<td>Animal experiments, 11</td>
<td></td>
</tr>
<tr>
<td>animal rights movement, 129–131, 269</td>
<td></td>
</tr>
<tr>
<td>anthrax, 35</td>
<td></td>
</tr>
<tr>
<td>cholera, 148–150, 153, 159, 162, 180–182</td>
<td></td>
</tr>
<tr>
<td>disadvantages, 181–182</td>
<td></td>
</tr>
<tr>
<td>equipment and supplies, 145</td>
<td></td>
</tr>
<tr>
<td>passage of bacteria, 79–80</td>
<td></td>
</tr>
<tr>
<td>tuberculosis, 124–126, 235</td>
<td></td>
</tr>
<tr>
<td>white mice, 24, 35, 45, 50, 76–78, 149–</td>
<td></td>
</tr>
<tr>
<td>150, 321</td>
<td></td>
</tr>
<tr>
<td>wound infection, 76–77</td>
<td></td>
</tr>
<tr>
<td>Anthrax, 22, 27–37, 73, 77–78, 171–175,</td>
<td></td>
</tr>
<tr>
<td>223, 227, 290</td>
<td></td>
</tr>
<tr>
<td>advantages as experimental model, 30–31</td>
<td></td>
</tr>
<tr>
<td>animal experiments, 35</td>
<td></td>
</tr>
<tr>
<td>Cohn's encouragement of Koch's work,</td>
<td>38–53</td>
</tr>
<tr>
<td>Cohn's work on, 43</td>
<td></td>
</tr>
<tr>
<td>Davaine's work on, 30, 43</td>
<td></td>
</tr>
<tr>
<td>etiology, 34, 36–37, 49–53</td>
<td></td>
</tr>
<tr>
<td>Koch's initial work, 31–33</td>
<td></td>
</tr>
<tr>
<td>Pasteur's work on, 115, 170–171</td>
<td></td>
</tr>
<tr>
<td>ruminant, 36</td>
<td></td>
</tr>
<tr>
<td>soil-borne, 33, 36</td>
<td></td>
</tr>
<tr>
<td>Anthrax bacillus, 78, 290–291</td>
<td></td>
</tr>
<tr>
<td>background, 30</td>
<td></td>
</tr>
<tr>
<td>culture, 32–33</td>
<td></td>
</tr>
<tr>
<td>demonstration for Sanderson (1877),</td>
<td>71–72</td>
</tr>
<tr>
<td>endospore, 31, 33–36, 49–53, 66, 171</td>
<td></td>
</tr>
<tr>
<td>heat resistance of spores, 112</td>
<td></td>
</tr>
<tr>
<td>life cycle, 3, 33–35</td>
<td></td>
</tr>
<tr>
<td>photomicrograph, 64–66</td>
<td></td>
</tr>
<tr>
<td>resistance of spores to disinfection,</td>
<td>107–108</td>
</tr>
<tr>
<td>in tissue, photomicrographs, 98</td>
<td></td>
</tr>
<tr>
<td>Antibiotic, assay, 107</td>
<td></td>
</tr>
<tr>
<td>Antibody, 197</td>
<td></td>
</tr>
<tr>
<td>Antigen, 197–198</td>
<td></td>
</tr>
<tr>
<td>Antimicrobial testing, 107</td>
<td></td>
</tr>
<tr>
<td>Antiseptic surgery, 2, 28, 74, 105–106,</td>
<td>115, 325</td>
</tr>
<tr>
<td>Antitoxin, 234, 263</td>
<td></td>
</tr>
<tr>
<td>diphtheria, see Diphtheria antitoxin</td>
<td></td>
</tr>
<tr>
<td>Anti-vivisectionists, 129–131, 269</td>
<td></td>
</tr>
<tr>
<td>Appert, Nicholas, 110</td>
<td></td>
</tr>
<tr>
<td>Aqueous humor, as culture medium, 32–33,</td>
<td>46, 50–51</td>
</tr>
<tr>
<td>Arabian Desert, 158</td>
<td></td>
</tr>
<tr>
<td>Archaeology, 26, 157–158, 260, 296</td>
<td></td>
</tr>
<tr>
<td>Archives, 343</td>
<td></td>
</tr>
<tr>
<td>Arloing, S., 282–284</td>
<td></td>
</tr>
<tr>
<td>Arthritis, 253</td>
<td></td>
</tr>
<tr>
<td>Atoxyl, 4</td>
<td></td>
</tr>
</tbody>
</table>
Attenuation, 172, 174–175, 243
Ausserordentliche professor of hygiene, 84
Autoclave, 220

Bacillinum, see Tuberculin
Bacillus
anthrax, see Anthrax Bacillus
tubercle, see Tubercle bacillus
Bacillus anthracis, see Anthrax bacillus
Bacillus Father, 167
Bacillus subtilis, endospores, 49–53
Bacillus typhosus, 255

Bacteria
classification, 42, 61, 72–73, 79
genetics, 324
Bacteridia, 30
Bacteridium prodigiosum, see Serratia marcescens
Bacteridium violaceum, see Chromobacterium violaceum

Bacteriological Research Methods (lectures), 187

Bacteriology, 288–293
chemical disinfection, 105–106
development as science, 1–2, 4
heat sterilization, 109
hot air sterilization, 109–110
nonmedical, 295
plate technique, see Plate technique
school of, 4
staining, see Staining
steam sterilization, 110–113

Bacterium lactis, 95

Baden-Baden, Germany, 7 (map), 285
Barrackpore, India, 165
Basic fuchsin, 133
Batavia, Dutch East Indies, 249
Battle wounds, 20

Bauemgarten, Paul von, 133
Bay of Naples, 342
Bazaar (Calcutta), 164–166
Beck, Max, 253, 265–266
Beekeeping, 19
Behring, Emil von, 191, 222–229, 234, 254, 263, 295
dispute with Koch, 235–236
Beiträge zur Biologie der Pflanzen, 49, 297
Belgium, African colonies, 240–241
Bennigsen, von, 250
Benoic acid, 108
Bergmann, Ernst von, 167, 200
freedom of the city of, 199
invasion by tubercular patients, 209
map, 7, 87
university, 287

Berliner Klinische Wochenschrift, 129, 167, 210

Berlin Hygiene Exposition (1883), 185

Berlin Medical Society, debate on tuberculin (1890–1891), 210

Berlin Physiological Society, see Physiological Society (Berlin)

Beyer, 172
Biewend, Eduard, 6–8
Billroth, Theodor, 29, 52–53, 80, 324
Biographies of Koch, 317–318
Birth of Koch, 6, 9
Bismarck, Otto von, 167, 199
Bismarck brown, 119–120

Black death, see Bubonic plague
Blood, 78, 98, 153, 225, 243, 247, 250–251
Blood serum, coagulated, 123–124
Blue bodies, 259
Boarding House (Calcutta), 164
Bokhara (steamship), 166
Bombay, India, 166, 245, 342
Bordet, J., 290
Boric acid, 108
Botulism, 290
Bouillon, 99
Braetz, Germany, 17
Brefeld, Oscar, 96–97
Breslau, Germany, 7 (map), 70–72, 270, 297–298
University of, see University of Breslau

Brieger, Ludwig, 216, 242, 339
Brindisi, Italy, 147–148
British Colonial Office, 241, 256
British Medical Journal
editorial on Koch’s postulates, 180–181
report on German Cholera Expedition, 159–162
report on Koch’s work on cholera, 150, 168
report on tuberculin, 201–202

Broad Street Pump (London), 162
Bromine, 108
Bruce, David, 262
Bubonic plague, 235, 245–247, 253, 290, 342
Buchler, J.H., 45
Buchner, Hans, 324
Bulawayo, Rhodesia, 258, 260–261
Cairns, Australia, 343
Cairo, Egypt, 152, 157–158, 166, 233
Calcutta, India, 147, 152, 155–160, 164–166, 243, 247
Cameroon, 240 (map)
Cape Town, South Africa, 242–243
Capri, 342
"Captain of the Men of Death", see Tuberculosis
Carbolic acid, 106–108, 133
Carl Zeiss Microscope Company, 66–69, 76
Carnegie, Andrew, 267, 270, 272–273
Carrier, 3–4
diphtheria, 274
malaria, 256
typhoid fever, 255–256
Cartoon, 197
Cattle, 235–236, 254–255
dipping, 259, 261
diseases, 239, 247, 256–261, 279, see also Rinderpest
Cattle plague, see Rinderpest
Cellular immunology, 3, 196–197, 226
Ceylon, 157–159, 166
Charité Hospital (Berlin), 14–15, 86–87, 87 (map), 118, 121, 199–200, 205, 209, 215–217, 227–228, 251, 341
Chemical disinfection, 105–109
Cheyne, W. Watson, 77, 134
Childhood of Koch, 6–13
China, 268, 276–277
Chlorine, 108, 231
Cholera, 3, 15, 43, 139, 177–182, 234–236, 253, 290, 292, see also French Cholera Expedition; German Cholera Expedition
animal experiments, 148–150, 153, 159, 162, 180–182
background, 140–141
Koch’s work on, 42
conference (1884), 167–168
epidemic of 1883, 141, 151–152
epidemiology, 151, 162–163
Koch’s work, 141–168
outbreak in France (1884), 167, 176
outbreak in Hamburg (1892), 229–232
purification of water supply, 229–232
soil theory of, 166–167
spread to Europe, 140–141
Thuillier’s death from, 154
tiny bodies in blood, 153
Cholera vibrio, 176, 180–182
characteristics, 160
culture, 148, 159–161
Pettenkofer swallowing, 183, 332
potential hazards, 334
in tissue, 149–150
Chromobacterium violaceum, 96
Chronology of Koch’s life, 303–308
Clan Buchanan (steamship), 155
Clausthal, Germany, 6, 7 (map), 9 (photo), 9–10
Clinical trials, tuberculin, 199–201
Clostridium tetani, 224
Coccobacteria septica, 324
Cohn, Ferdinand, 30, 37, 81, 109, 291, 297, 319, 322–324
biography, 38–44
encouragement of Koch, 38–53
home, 48
Imperial Health Office council, 86
Koch’s demonstrations, 45–49
Koch’s first visit, 44–45
Koch’s letters to, 61–62, 64, 70–73, 81
Koch’s move to Breslau, 84–85
paper on etiology of anthrax, 49–53
scientific work, 38–44
work on bacterial classification, 72–73
Cohnheim, Julius, 45–48, 64, 72, 81–82, 118, 182, 227, 271, 294, 321
Collodion, photographic, 58–59
Colonial, 96, see also Plate technique
bacterial, 42, 99
Conma bacillus, see Cholera vibrio
Communicable disease laws, 236
Complement, 253
“Concordia” (school club), 10
Condenser, Abbe, 54, 68–69, 76, 80, 289
Conjunctivitis, infectious, 151
Conradi, 255
Consumption, see Tuberculosis
Contagion, 28–29
Contagium animatum, 319, 335
Cornea, 32
Cornet, Georg, 200, 203
Corynebacterium diphtheriae, 92, 178–179, 225
Cotton plug, 97, 327
Culture
 anthrax bacillus, 32–33
 cholera vibrio, 148, 159–161
 enrichment, 80, 95
 plate, 42
 pure, 78, 93–104, 180, 291, 325–326
 slide, 33–34, 45, 55
 sterilization of apparatus and media, 109
 temperature, 32–34
 throat, 274
 tubercle bacillus, 121–124
Culture medium, 99
 aqueous humor, 32–33, 46, 50–51
Curie, 302

Damiette, Egypt, 141, 151, 157
Dar es Salam, German East Africa, 246–247, 260, 262
Darjeeling, India, 165
Darkroom, photographic, 59
Darlington, Theodore, 270
Darwin, Charles, 50
Davaine, Casimir Joseph, 30, 43, 74, 79, 321
DDT, 239
Death of Koch, 285
De Beers Mining Company, 243
deKruif, Paul, 155
Delayed-type hypersensitivity, 196–198
Department of Health (New York), 273–274
Department of Trade (France), 153
Deutsche Gesellschaft für öffentliche Gesundheitspflege, 27
Diarrhea, 290
Dietary experiment, 12
Diphtheria, 43, 92, 178–180, 225–229, 234, 290
 carrier, 274
Diphtheria antitoxin, 179, 197, 223–229, 236, 263, 274
Disinfectant
 assay, 106–107
 gaseous, 108
Disinfection, 3, 93, 209, 253, 291
 apparatus, 220
 chemical, 105–109
 definition, 105
 quantitation, 107–108
 time course, 107–108
District Health Officer, 18
District Medical Officer, 21, 25
Divorce, 233–234, 238, 300
Donitz, Wilhelm, 251, 253, 262
 letters to, 258
Dorotheenstrasse, see Physiological Institute
Doyle, A. Conan, 201, 208
Drigalski, 255
Drinking water, 141, 151, 162–163, 166–168, 214, 255–256
 purification, 229–232
"Dr. Koch's Cure for Tuberculosis", 338
Dr. Robert Koch Street (Wollstein, Germany), 22
du Bois-Reymond, Emil, 126–128
Dutch East Indies, 248–250
Dysentery, 290
 amoebic, 151
Earthworm, 171
East Africa, 240 (map)
Eastbourne, England, 250
Eberth, C.J., 255, 290
Ecology, microbial, 2
Education of Koch, 8–13
Egypt, 15, 141–168, 213–215, 228, 233, 239, 240 (map), 242, 292
 French Cholera Expedition, 153–155
 German Cholera Expedition, 147–153
Ehrenberg, Christian G., 39
Ehrlich, Paul, 4, 136, 253, 290, 338
 description of Koch, 286–287
 staining, 63, 120, 129, 132–133, 227
 work on diphtheria antitoxin, 227–229, 236, 263
 work in immunology, 222–223
Eidam, Eduard, 45, 47, 49, 64, 72, 321
Elbe River, Germany, 230–232
Electricity, healthful effects, 25
El Tor, Egypt, 151–152
El Wedi, Egypt, 152
Emmerich, Rudolf, 392
Endospore, 3, 47
 anthrax bacillus, 31, 33–36, 49–53, 66, 171
 Bacillus subtilis, 49–53
 disinfectant-resistant, 106–108
 heat resistance, 112
England
 African colonies, 240–241
 cholera, 141
 impact of Koch's work on tuberculosis, 129–132
tuberculosis, 296
Enrichment culture, 80, 95
Entebbe, British East Africa, 266
Environmental medicine, 183
Environmental sample, microbial content, 101
Eosin, 63
Epidemiology
- cholera, 151, 162-163
- typhoid fever, 255-256
Enrichment culture, 80, 95
Erysipelas, 77, 253
Escherich, T., 290
Esmarch, von, 191, 205
Etiology
- anthrax, 34, 36-37, 49-53
- wound infection, 4, 73-75
 "Etiology of Anthrax, Based on the Life Cycle of Bacillus Anthracis", 34
Europe, bubonic plague, 245
Faculty of Medicine (Konigsberg), 133
Farbwerke Hoechst pharmaceutical firm, 226, 297
Fermentation, 1-2, 170
Filtration, water, 3
Finsen, Niels Ryberg, 263
Fischer, Bernhard, 62, 65, 81
Froesch, Paul, 190-191, 248, 253, 255, 258
Fuchs, 63, 120
Fungi, 41-42
Gaertner, A.A.H., 290
dispute with Pasteur, 171-172
letters to, 213, 257-260
work on cholera, 141-142
work on bubonic plague, 245
work on typhoid fever, 255
Gangrene, 43, 77, 290
Gauss, Friederich, 11
Gelatin, 99, 160-161
disadvantages, 101, 157, 163
Genetics, 324
Geneva, Switzerland, 174
Gengou, O., 290
Gentian violet, 133
Gerichtliche Stadtsphysikus, 84-86
German army, 293
German Cholera Expedition, 140, 176, 241
in Egypt, 147-153
equipment and supplies, 143-147
expenses, 142-147
in India, 155-166
members, 141-142
preparations, 141-142
return to Germany, 166-168
German Consulate, 147-148, 157
German East Africa, 240 (map), 246, 262, 267, 270, 298
German Embassy (Rome), 187
German Exposition of Hygiene and Public Health (1882-1883), 137-139, 327
German Medical Society of New York, 268, 270-273, 345
German Plague Commission, 245-247
German Sleeping Sickness Expedition, 264-266
Germany
- African colonies, 240-241
cholera, 141
map, 7
Germ theory of disease, 2, 22, 28, 71–72
Gesellschaft Deutscher Naturforscher und Ärzte, 11, 27, 82–83
Gesellschaft für Anthropologic, Ethnologie, und Urgeschichte (Berlin), 26
Glanders, 253
Glass plate, photographic, 58–60
Glycerine extract, tubercle bacillus, 211
Goat, 235
Gonorrhea, 290
Göttingen, 7 (map), see also University of Göttingen
Gram, Hans Christian, 133
Grand Cross of the Red Eagle, 199
Grass, 239
Gray, C.E., 261
Greek Hospital (Alexandria), 147
Grosseto, Italy, 247–248
Gossler, von, 203–204, 210–213
Growth, inhibition, 107
Guinea pig, 24, 50, 119, 124–125, 182, 194, 196, 198–199, 211, 223
Gymnasium (Koch’s school), 8, 10
Haeckel, E.H., 41
Haemamoeba kochi, 239
Haffkine, Waldemar, 342
Haltenhoff, M., 174
Hamburg, Germany, 7 (map), 229–232, 236
Hamburger Platz, 230
Hamburg General Hospital, 15
Hannover, Germany, 7 (map), 11
Harben Medal, 254
Harvey, 273
Hasse, 6, 319
Heat sterilization, 109, 111
Helgoland, 191–192
Heliostat, 58, 61
Henle, Jacob, 6, 11–12, 28–29, 291, 319, 335
Hesse, Fannie Eilshemius, 102–103
Hesse, Walther, 101–103
Hoffmann, Erich, 264, 290
Hog cholera, 252, 345
Honolulu, Hawaii, 275–276
Hôpital des Enfants Malades (Paris), 227
Hôpital Européen (Alexandria), 141, 147
Horse sickness, 259
Hospital infection, 216
Hot air sterilization, 109–110
Hotel du Nil (Cairo), 158
Hotel Khedivial (Alexandria), 148
“How Odysseus Conquered Ajax”, 8
Hueppe, Ferdinand, 92–93, 127–128
Humoral immunology, 196–197, 226
Hydrochloric acid, 108
Hygiene, see Public health
Hygiene Institute (Berlin), 179, 182–194, 204–205, 215, 251, 339
Koch’s resignation, 221
founding, 183–184
Hygiene Laboratory (Berlin), 86, 184–186
Hygiene Museum (Berlin), 184–185
Illumination of microscopic field, 68
Immersion lens, see Oil-immersion lens
Immune lysis, 223, 232, 336
Immunity, 225, 234–236, 300
passive, 225
Immunization, see Vaccination
Immunology, 223, 234, 294
cellular, 3, 196–197, 226
development as science, 2
humoral, 196–197, 226
of tuberculosis, 137
Imperial Health Office (Berlin, Luisenstrasse), 86–93, 87 (map), 101, 126–127, 135, 137, 178, 182–183, 187, 190, 193, 251, 264–266, 292, 326, 343
Incubator room, 186, 220
India, 8, 15, 141–168, 244, 276, 292, 301
German Cholera Expedition, 155–166
Koch’s work on bubonic plague, 245–247
Infectious conjunctivitis, 151
Infectious disease, mortality, 1, 296
Inflammation, 46
Influenza, 237
Inguinal gland, 32
Insect, 262
Institute for Experimental Therapy (Steglitz), 253
Institute for Infectious Diseases (Berlin, Schumannstrasse, founded 1891), 87 (map), 205, 215, 251, 338
attendants’ quarters, 217
autopsy and disinfection building, 217
barracks, 217, 339
buildings, 216–220
directors, 193, 262
founding, 212–213
operating budget, 217–219
plans, 215–217
Triangle building, 217–220, 343
work of, 221–223
Institute for Infectious Diseases (Berlin, Föhrerstrasse, founded 1900), 87
(map), 251–253, 259
directors, 326
Koch’s retirement, 262
Institute for Infectious Diseases (Tokyo), 276
Institute of Hygiene (Berlin), see Hygiene Institute
Institute of Hygiene (Breslau), 85
Institute of Hygiene (Göttingen), 184
Institute of Medical Microbiology (Berlin), 339–340
Institute of Pathology (Breslau), 45–47
Institute of Plant Physiology (Breslau), 39–53
International Congress of Hygiene and Demography, IVth (Geneva), 174–175
International Congress of Medicine, Tenth (Berlin, 1890), 195–199
International Medical Congress, Seventh (London, 1881), 114–116, 169–171
International Sanitation Conference (Rome, 1885), 185–187
International Tuberculosis Congress (London, 1901), 254–255, 279
International Tuberculosis Congress (Washington, 1908), 255, 268, 276–284
Intestine, 149, 159–162
Iodine, 108
Iodoform, 223
Iowa, Koch’s visit, 274–275
Italy, 247–249, 342
“Jackknife” (military bow), 299
Jacobi, Abraham, 270
Janisch, 62
Japan, 268, 275–278
Jena, Germany, 76
Jenner, E., 273
Jochmann, 253
Kaiserlichen Geheimen Regierungsrat, 137
Kaiserlichen Gesundheitsamt, see Imperial Health Office
Kaiser-Wilhelm-Land, 342–343
Kartulis, Alexander, 266, 342
Kassel, Germany, 82–83
Keudell, Baron von, 187
Keystone, Iowa, 274–275
Kidney, 98
Killing of microorganisms, 107
Kimberley, South Africa, 243–244
King, O.W., 275
Kirchner, Martin, 187–188, 193, 318
Kitasato, Shibasaburo, 4, 179, 197, 222–227, 276–277, 290, 318, 345
Kitasato Institute (Tokyo), 226
Klebs, Edwin K., 29–30, 46, 74, 81, 118, 291, 320–321
Klebs, T.A.E., 290
Kleine, F.W., 257, 265–266
Kloster Strasse laboratory, 87 (map), 184–185, 208; see also Hygiene Laboratory
Knorr, 229
Koch Institute for Infectious Diseases (Berlin), see Institute for Infectious Diseases
“Koch myth”, 292
Koch phenomenon (tuberculin), 200, 294
Koch archives, 543
Koch, Adolph, 8, 275
Koch, Albert, 20
Koch, Dr. Edward, 338
Koch, Eduard, 290
Koch, Emmy Fraatz, 8, 15–18, 31, 232, 296–297, 300
in Breslau, 85
care of laboratory animals, 55
cloud chaser, 23, 61
divorce, 233–234
engagement, 14–15
marriage, 16
Koch, Ernst, 20
Koch, Gertrud (Gertrud Koch Pfuhl), 18, 192, 296, 321
birth, 18
in Breslau, 85
childhood, 23–25
engagement, 192
Cohn's encouragement of anthrax experiments, 38-44
Koch's demonstrations, 45-49
Koch's first visit to Cohn, 44-45
Koch's move to Breslau, 84-85
paper on etiology of anthrax, 49-53
Koch, Robert, and Cohnheim, 45-48, 81-82
Koch, Robert, and Lister
communication of plate technique, 104
Lister's comments on tuberculin, 205-207
London meeting (1881), 114-116
visit to Koch in Berlin, 205-207
Koch, Robert, and Pasteur
communication of plate technique, 104
disputes, 137, 169-177, 215, 319, 323
London meeting (1881), 114-116
Pasteur's comments on tuberculin, 205
philosophical differences, 2
Koch, Robert, and Virchow, 14, 168
disputes, 81-82, 126-127, 132, 183-184
first meeting, 11
Koch, Robert, letters
to Cohn, 43-44, 56-57, 61-62, 64, 70-73, 81
to Donitz, 258
to Emmy Koch, 148, 150-151, 157-159, 163-165, 191-192
to Flugge, 193, 257
to Fritsch, 65
to Gaffky, 213, 257-260
to Gertrud Koch, 24, 138-139, 152-153, 157-158, 165-166, 185-187, 260-261, 276-278
to Hedwig Koch, 233
to his father, 19-20
to Hugo Koch, 158
to Libbertz, 191, 258, 264, 342
to Seibert & Kraft, 55-56
Koch, Robert, medical practice, 4, 83-85, 286-287, 293-296
Braetz, 17
District Health Officer, 18
Hamburg General Hospital, 15
healthful effects of electricity, 25
Langenhagen, 15-17
license to practice, 14
Niemegk, 18-19
Rakwitz, 19-20
Wollstein, 21-26
Koch, Robert, work on anthrax, 22, 27-37, 77-78, 171-175, 227
assessment, 290–291
Cohn’s encouragement, 38–53
demonstration for Sanderson (1877), 71–72
etiologic studies, 36–37
initial, 31–33
life cycle of bacillus, 3, 33–35
Koch, Robert, work in bacteriology assessment, 288–293
chemical disinfection, 105–109
heat sterilization, 109
hot air sterilization, 109–110
microscopic pathology, 2
plate technique, 2, 94–104
school of bacteriology, 4
slide technique, 2, 62–65
staining, see Staining
steam sterilization, 110–113
Koch, Robert, work on bubonic plague, 245–247
Koch, Robert, work on cholera, 3, 15, 139, 141–168, 177, 180–182, 236, 292, see also German Cholera Expedition
awards, 167
in Egypt, 147–153
in Germany, 167–168
in India, 155–156
opposition, 162, 166–167
purification of water supply, 229–232
research program, 159
short courses for physicians, 178–179
Koch, Robert, work in photography, 2
Koch, Robert, work on photomicroscopy, 6, 22–23, 54–69, 115, 291
bacteria in tissue, 97–98
paper, 1877, 62–66
perfecting technique, 61–62
tubercle bacillus, 119
Koch, Robert, work in public health, 2, 4, 25, 27
assessment, 290, 293–296
sterilization and disinfection, 3, 105–113
water filtration, 229–232
plate technique, 101
typhoid fever carriers, 255–256
Koch, Robert, work in tropical medicine, 4, 237–266, see also specific diseases
South Africa, 241–245
Koch, Robert, work on tuberculin, 3, 177, 179, 194–215, 233–236
clinical trials, 199–201
foreign response to, 205–208
secrecy surrounding, 199, 201–205, 219, 294
self-injection, 200
speech to Tenth International Congress of Medicine, 195–199
Koch, Robert, work on tuberculosis, 3, 116, 238, 272–274
acceptance, 132–137
approach to problem, 118–119
assessment, 291–292
Berlin Physiological Society lecture (1882), 126–130
Cohnheim’s influence, 46
culture of tubercle bacillus, 121–124
foundation, 78–79
human versus bovine, 254–255, 278–284
International Tuberculosis Congress (Washington, 1908), 278–284
opposition, 133–134
paper of 1884, 181
spread to England and United States, 129–132
staining of bacillus, 119–121
tubercle bacillus in tissue, 121–122
virulence of tubercle bacillus culture, 123–126
Koch, Robert, work on wound infection, 20, 68–83
etiology, 73–75
microscopy, 75–76
Koch, Trudy, see Koch, Gertrud
Koch, Wilhelm, 8
Kochin, see Tuberculin
Koch’s blue bodies, 259
Koch’s fluid, see Tuberculin
Koch’s lymph, see Tuberculin
Koch’s mouse forceps, 35
Koch’s postulates, 2, 29, 139, 179–182, 238, 294, 334–335
Koehler, 209
Kohlstock, Paul, 242
Kolle, 253
Kossel, Hermann, 247, 255
Krause, Wilhelm, 11
Kreisphysikus, see District Health Officer
Kronig, B., 108
Kronprinzessin Cecilie (ocean liner), 268
Kudicke, R., 265–266
Laboratory facilities
German Cholera Expedition, 143–147
Imperial Health Office, 88, 91–92
India, 156
Institute for Infectious Diseases, 217–220
Institute of Hygiene, 184–190
South Africa, 243–244
Wollstein, 82
Laennec, René, 118
Lake Victoria, 240 (map), 265–266
Lancet, The
report on Koch’s tuberculin speech, 198–199
report on Koch’s work on tuberculin, 206
Landtag, Prussian, 214–215
Langenhagen, Germany, 15–17
Laveran, 239, 298
Law of increasing virulence, 79–80
Lea, Charles M., 136
Leipzig, Germany, 7 (map), 81
Lens
microscope, 65–69
oil immersion, see Oil-immersion lens
Lentz, 253
Leprosy, 329
Libbertz, A., 201–202, 212, 249, 266
letters to, 191, 258, 264, 342
Lichtheim, Professor, 175
Liebrich, Oskar, 221, 233
Life cycle, anthrax bacillus, 3, 33–35
Lingelsheim, 229
Lister, Joseph, 28, 74, 226
Berlin visit with Koch, 205–207
comments on tuberculin, 205–207
communication of plate technique to, 104
London meeting with Koch (1881), 114–116
pure culture technique, 95
work on antiseptic surgery, 2
work on disinfection, 105–108
Liver, 98
Lockemann, 253
dispute with Pasteur, 171–172
London, England, 268
First British Congress of Tuberculosis (1901), 254–255
International Congress of Medicine (1881), 169–171
meeting of Koch, Lister, and Pasteur (1881), 114–116
London Times, summary of Koch’s work on tuberculosis, 129–132
Lotze, Rudolf Hermann, 11
Luisenstrasse laboratory, 87 (map), 88 (photo), 91
Lupus, 196, 200, 206, 210
Luxor, Egypt, 233
Lyssa disease, 253
Madras, India, 159
Malaria, 4, 157, 166, 238–239, 246–251, 253, 256, 262–263, 298, 342–343
carrier, 256
control, 250–251
simian, 239
Manson, Patrick, 239, 262
Map
Africa, 240
Berlin, 87
Germany, 7
Poland, 7
Marriage of Koch
to Emmy Fraatz, 16
to Hedwig Freiberg, 234
Marseille, France, 167
Marx, 253
Mausoleum, 285, 343, 346
Measles, 237
Mecca, 151
Medical College Hospital (Calcutta), 156
Medical microbiology, 289
Medical Microbiology and Immunology (journal), 335
Medical practice, see Koch, Robert, medical practice
Meinhardt, 194
Meissner, Georg, 6, 11–12, 319
Meister Lucius and Brüning, 226
Meningitis, 290
Mercuric chloride, 108
Metal salts, as disinfectants, 108
Metchnikoff, Elie, 225, 264, 269, 298–302, 318
Methylene blue, 119–120, 133
Methyl green, 63
Methyl violet, 63, 78
Microbe, origin of term, 332–333
Microbe Hunters, 155
Microbiology, see Bacteriology
Microscope, 289, 291
development, 65–69, 76
equipment and supplies, 143
heatable stage, 34–35
Koch's first, 23
Seibert, 55
Microscopic pathology, 3
Microscopic slide, for photomicroscopy, 62–63
Microsporon septicum, 74
Military service, 19–20
Milk, 254, 280, 282–285
Mission Pasteur, see French Cholera Expedition
Mitteilungen aus dem Kaiserlichen Gesundheitsamt, 106, 171–172
Mokokkam Mountains (Egypt), 158
Mollers, Bernhard, 318
Moltke, Count von, 199
Mongolia (steamship), 147
Monomorphism, 324
Monkey, as experimental animal, 24, 149
Mosquito, 157, 247–251, 258, 263, 342
Mountaineering, 209, 296
Mouse, 24, 35, 45, 50, 76–78, 149–150 white, 321
Mouse forceps, 35
Moxter, 253
Mozambique, 245
Muanza, German East Africa, 266
Müller, Professor, 172
Munich, Germany, 7 (map), 166–167
Mycobacterium tuberculosis, see Tubercle bacillus
Nägeli, Carl von, 72–73, 324
Naples, Italy, 187, 249, 257, 342
Natural history, 19
Natural selection, 79
Neelsen, Friedrich, 133
Neisser, Albert, 72, 290
Nerves, uterine, Koch's study, 11
Neufchateau, France, 19–20
Neufeld, Fred, 235, 253, 257, 299
New Guinea, 248–250, 256, 342–343
New York, New York, 268–274, 278
summary of Koch's work on tuberculosis, 131
New York Tribune, editorial on vaccination, 132
Niagara Falls, 268
Nicati, 182
Nicholaier, A., 290
"Nicht locker lassen" (Koch's motto), 288
Niemegk, Germany, 17–19
Nietner, 253
Nile River, 151
Nissen, F., 223
Nobel Prize, 28
Behring, 227, 229, 263, 295
Ehrlich, 228
Finsen, 263
Koch, 263–264, 287
Metchnikoff's letter, 264
Pavloff, 263
Ross, 247, 263
Nocard, Edmond, 153
Nocht, 191
Nosocomial infection, see Hospital infection
Nouvelle Presse, La, 176
Numerical aperture, 67
Nummulite, 158
"Nunquam otiosus" (Koch's motto), 11, 286
Nutrient broth, 99
Nutrient gelatin, 99
Obermeier, Otto, 262
Ogston, Alexander, 80, 290, 325
Oil-immersion lens, 54, 67–68, 76, 80, 82, 289
Ollwig, Heinrich, 248–249
Opium, 154
Orleans, France, 19–20
Osler, 207–208
Panse, O., 265–266
Paratyphoid fever, 290
Paris, France, 301–302
Park, William H., 273–274
Passive immunity, 225
Pasteur, Louis, 28, 273, 290, 293
70th birthday celebration, 177
comments on tuberculin, 205
communication of plate technique to, 104
disputes with Koch, 2, 137, 169–177, 215, 319, 323
London meeting (1881), 114–116
pure culture technique, 94–95
use of term "microbe", 332–333
work on anthrax, 115, 170–171
work on cholera, 140–141, 153–155, 162
work on fermentation, 1-2
work on fowl cholera, 115
work on rabies, 203
work on spontaneous generation, 1-2
work on sterilization, 109-110
work on vaccination, 2, 131-132, 171-172
Pasteur Institute (Paris), 177, 215, 301-302
Pasteurization, 110, 284
Patent, for medicines, 201-202
Pathogen, 95
culture, 100
Pathological Institute (Berlin), 216-217
Pathologische Untersuchungen, 335
Pathology, 294, see also specific topics
microscopic, 3
Paul, Th., 108
Pavloff, Ivan Petrovich, 263
Payne, Frank, 115
Pearson, Leonard, 282
Petri, Richard, 179, 193, 327
Petri plate, 103, 327
Petrified wood, 158
Pettenkofer, Max von, 28, 166-167, 183, 221, 231
swallowing cholera vibrio, 183, 332
Pfeiffer, Richard, 4, 190-193, 216, 222-225, 232, 247, 251, 262, 301, 336
Pfeiffer phenomenon, 223
Pfeuffer, Karl von, 12
Pfuhl, Eduard, 25, 191-193, 201, 213-214, 234
Pfuhl, Gertrud, see Koch, Gertrud
Philadelphia, Pennsylvania, 278
Photographic darkroom, 59
Photographic emulsion, 58-60
Photography, history, 58-60
Photomicroscopic apparatus
horizontal, 58, 62
vertical, 57
Photomicroscopy, 2, 6, 22-23, 54-69, 97-98, 115, 291
anthrax bacillus, 64-66
bacteria in tissue, 65
perfecting technique, 61-62
tubercle bacillus, 119
typical session, 60-61
Phototherapy, 263
Phthisis, see Tuberculosis
Physiological Institute (Berlin), 87 (map), 126-130, 132, 329, 339
Physiological Society (Berlin), 82, 117
lecture on tuberculosis (1882), 126-130
Pigmented organisms, 96
Pyroplasma bigeminum, 298
Plague, see Bubonic plague
Plate, Petri, 103, 327
Plate-pouring apparatus, 179
Plate technique, 2, 42, 291-292
agar, 101-103
background, 96-97
demonstration, 114-116
eye uses, 101
Koch’s paper (1881), 97-101
Petri plate, 103
Pleomorphisms, 324
Pneumonia, 237, 290
Poland, map, 7
Pollender, Aloys, 30
Port Said, Egypt, 147-148
Portugal, African colonies, 240-241
Postulates, see Koch’s postulates
Pouilly-le-Fort, France, 115, 171-172
Pressure sterilization, 111-112
Privy Councillor, 183
Proskauer, Bernhard, 92, 191, 222-223, 253
Protozoa, 238-239, 247, 253, 259
Prudden, T. Mitchell, 4, 271, 334
Prussian Academy of Sciences, 319
Publications of Koch, 309-317
Public health, 2, 4, 25, 27, 36-37, 86, 290, see also Institute of Hygiene; specific diseases
assessment of Koch’s work, 293-296
German exposition (1882-1883), 137-139
government regulations, 293-294
sterilization and disinfection, 105-113
water filtration, 229-232
Pulmonary tuberculosis, 118, 210, 254, 280-281
Punkah, 165
Pure culture, 78, 93-104, 180, 291, 325-326, see also Plate technique
before Koch, 94-95
Purulent infection, 74
Putrid infection, 74
Pyemia, 74, 77
Pyramids, 158
Quacks, 338
Quarantine, 3-4, 147, 151-152, 185
Quinine, 4, 108, 249-250
Index 361

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit</td>
<td>24, 32, 77</td>
</tr>
<tr>
<td>Rabies</td>
<td>175, 177, 203, 253</td>
</tr>
<tr>
<td>Rabinowitsch</td>
<td>298</td>
</tr>
<tr>
<td>Rakwitz, Poland</td>
<td>19–20</td>
</tr>
<tr>
<td>Rat</td>
<td>223, 246</td>
</tr>
<tr>
<td>Ravanel, M.P.</td>
<td>284</td>
</tr>
<tr>
<td>Recurrent fever</td>
<td>66, 262, 300</td>
</tr>
<tr>
<td>Referierabende</td>
<td>287</td>
</tr>
<tr>
<td>Reincke</td>
<td>340</td>
</tr>
<tr>
<td>Retirement</td>
<td>262–263</td>
</tr>
<tr>
<td>Revue d’Hygiène et de Police Sanitaire</td>
<td>172</td>
</tr>
<tr>
<td>Rhodesia</td>
<td>240 (map), 256–261, 341</td>
</tr>
<tr>
<td>Rhodesian red water</td>
<td>256–262, 298</td>
</tr>
<tr>
<td>Ricin</td>
<td>228</td>
</tr>
<tr>
<td>Rietsch</td>
<td>182</td>
</tr>
<tr>
<td>Ripon, Lord</td>
<td>165</td>
</tr>
<tr>
<td>Robert Koch Foundation for the Conquest of Tuberculosis</td>
<td>267</td>
</tr>
<tr>
<td>Robert Koch Institute (Berlin)</td>
<td>see Institute for Infectious Diseases</td>
</tr>
<tr>
<td>Robert Koch Memorial (Berlin)</td>
<td>87</td>
</tr>
<tr>
<td>Robert Koch museum (Berlin)</td>
<td>340, 343</td>
</tr>
<tr>
<td>Rockefeller</td>
<td>272</td>
</tr>
<tr>
<td>Roloff</td>
<td>172</td>
</tr>
<tr>
<td>Rome, Italy</td>
<td>185–187</td>
</tr>
<tr>
<td>Römer, Paul</td>
<td>235</td>
</tr>
<tr>
<td>Ross, Ronald</td>
<td>239, 247, 262–263</td>
</tr>
<tr>
<td>Rubner, Max</td>
<td>221</td>
</tr>
<tr>
<td>Rudolf Virchow Hospital (Berlin)</td>
<td>87 (map), 251</td>
</tr>
<tr>
<td>Ruge</td>
<td>253</td>
</tr>
<tr>
<td>Ruppel</td>
<td>229</td>
</tr>
<tr>
<td>Russell, Harry</td>
<td>335–336</td>
</tr>
<tr>
<td>Sacher</td>
<td>265</td>
</tr>
<tr>
<td>Safranin</td>
<td>63</td>
</tr>
<tr>
<td>Saint Louis, Missouri</td>
<td>269, 274</td>
</tr>
<tr>
<td>Salmon, Daniel</td>
<td>345</td>
</tr>
<tr>
<td>Salmonella cholerae suis</td>
<td>345</td>
</tr>
<tr>
<td>Salomonsen, Carl</td>
<td>64, 92, 118, 248, 323, 325, 354</td>
</tr>
<tr>
<td>Salzwedel</td>
<td>253</td>
</tr>
<tr>
<td>Sanderson, John Burdon</td>
<td>71–72, 241</td>
</tr>
<tr>
<td>Sand filter</td>
<td>250–251</td>
</tr>
<tr>
<td>San Francisco, California</td>
<td>268–269, 275–276</td>
</tr>
<tr>
<td>Saranac Laboratory</td>
<td>see Trudeau Institute</td>
</tr>
<tr>
<td>Scarlet fever</td>
<td>43, 237</td>
</tr>
<tr>
<td>Schaudinn</td>
<td>263–264, 290</td>
</tr>
<tr>
<td>Schiess</td>
<td>213</td>
</tr>
<tr>
<td>Schilling</td>
<td>253</td>
</tr>
<tr>
<td>Schiemann</td>
<td>199</td>
</tr>
<tr>
<td>School fraternity</td>
<td>10</td>
</tr>
<tr>
<td>Schottmüller, H.</td>
<td>290</td>
</tr>
<tr>
<td>Schroeter, Joseph</td>
<td>42, 96, 99–100, 104</td>
</tr>
<tr>
<td>Schumannstrasse laboratory</td>
<td>see Triangle laboratory</td>
</tr>
<tr>
<td>Schütz</td>
<td>253</td>
</tr>
<tr>
<td>Sealdah Hospital (Calcutta)</td>
<td>160</td>
</tr>
<tr>
<td>Sédillot, Charles</td>
<td>332–333</td>
</tr>
<tr>
<td>Seibert microscope</td>
<td>55</td>
</tr>
<tr>
<td>Sell, Eugen</td>
<td>90, 93</td>
</tr>
<tr>
<td>Sepsis</td>
<td>74</td>
</tr>
<tr>
<td>Septicemia</td>
<td>74–75, 77–78</td>
</tr>
<tr>
<td>Serology</td>
<td>225</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>96</td>
</tr>
<tr>
<td>Serum Institute (Steglitz)</td>
<td>228, 236</td>
</tr>
<tr>
<td>Sese Islands</td>
<td>265–266</td>
</tr>
<tr>
<td>Shakespeare, Edward O.</td>
<td>134–135</td>
</tr>
<tr>
<td>Sheep</td>
<td>173, 175</td>
</tr>
<tr>
<td>Shiga, K.</td>
<td>290</td>
</tr>
<tr>
<td>Silver iodide, photographic</td>
<td>58–59</td>
</tr>
<tr>
<td>Simian malaria</td>
<td>239</td>
</tr>
<tr>
<td>Sleeping sickness</td>
<td>4, 239, 262, 264, 268, 270</td>
</tr>
<tr>
<td>Slide culture</td>
<td>33–34, 45, 55</td>
</tr>
<tr>
<td>Slide technique</td>
<td>2, 62–63, 289</td>
</tr>
<tr>
<td>Smallpox</td>
<td>131–132, 185, 216, 237, 253</td>
</tr>
<tr>
<td>Smith, Theobald</td>
<td>262, 270, 279, 282–285, 345</td>
</tr>
<tr>
<td>Snow, John</td>
<td>141, 162, 340</td>
</tr>
<tr>
<td>Sodium benzoate</td>
<td>108</td>
</tr>
<tr>
<td>Soil, diseases acquired from</td>
<td>30</td>
</tr>
<tr>
<td>Soil-borne anthrax</td>
<td>36</td>
</tr>
<tr>
<td>Soil theory of cholera</td>
<td>166–167</td>
</tr>
<tr>
<td>Sour-milk diet</td>
<td>269</td>
</tr>
<tr>
<td>South Africa</td>
<td>240 (map), 240–245, 256–257</td>
</tr>
<tr>
<td>Spain, African colonies</td>
<td>240–241</td>
</tr>
<tr>
<td>Spina, A.</td>
<td>133–134, 136</td>
</tr>
<tr>
<td>Spirillum undula</td>
<td>66</td>
</tr>
<tr>
<td>Spirochaeta pallida, see Treponema pallidum</td>
<td>66, 262</td>
</tr>
<tr>
<td>Spirochaete Obermeieri</td>
<td>66, 262</td>
</tr>
<tr>
<td>Spirochete</td>
<td>262</td>
</tr>
<tr>
<td>Spleen</td>
<td>45, 50, 66</td>
</tr>
<tr>
<td>Splenic fever, see Anthrax</td>
<td></td>
</tr>
<tr>
<td>Spontaneous generation</td>
<td>1–2, 170</td>
</tr>
<tr>
<td>Staining</td>
<td>54, 63–64, 68–69, 76–77, 80, 228</td>
</tr>
<tr>
<td>assessment</td>
<td>289, 292</td>
</tr>
<tr>
<td>Ehrlich's work on</td>
<td>63, 120, 129, 132–133, 227</td>
</tr>
</tbody>
</table>
Index

Gram, 133
tubercle bacillus, 119–121, 132–133
Ziehl-Neelsen procedure, 133

Staphylococcus, 80
Steam sterilization, 110–111, 179
Steglitz, *see* Serum Institute
Sterilization, 3, 97, 291, 328
definition, 105
fractional, 109–110
heat, 109, 111
hot air, 109–110
pressure, 111–112
steam, 110–111, 179
Sternberg, George M., 270
Stockholm, Sweden, 264
Stockman, Stewart, 261
Stool specimen, 149, 153
Straus, Isidore, 153, 167, 176–177

Succinic acid, 12–13

Suez, Egypt, 151–152, 157, 166

Surgery, antiseptic, 2, 28, 74, 105–106, 115
Surgical sepsis, 74
Surra disease, 246
Switzerland, 191–192, 194
Syphilis, 222, 264, 290

T cells, activated, 197
Temperature, culture, 32–34
Tetanus, 223–226, 234, 290, 339
Tetanus antitoxin, 197

Texas fever, 247, 259, 262, 345
Theiler, Arnold, 261
Theileria kochi, 239
Thiersch, Karl, 30
Throat culture, 274
Thuillier, Louis, 153, 172–174, 176
death from cholera, 154
Tick, 259, 261–262

Tissue
bacteria in, 65, 76–78, 97–98
cholera vibrio in, 149–150
tubercle bacillus in, 121–122

Togo, 240
Tokyo, Japan, 276
Toulon, France, 167, 176
Toxin, 224–225, 228, 234–235, 339
Traumatic fever, 74

Treponema pallidum, 264
Treskow, 141–142, 155
Triangle Laboratory, 217–220, 343
Trier, Germany, 7 (map), 255–256
Tropical medicine, 4, 237–266, *see also* specific diseases
Koch's work in South Africa, 241–245
Trudeau, Edward L., 135–136, 207–208, 270
Trudeau Institute (Saranac Lake, New York), 136, 330

Trypanosoma evansi, 247
Trypanosoma gambiense, 262
Trypanosome, 239, 262
Tsetse fly, 262–263, 266
Tubercle bacillus, 3, 173, 292
25th anniversary of discovery, 267
antigen, 198
culture, 121–124
delayed-type hypersensitivity, 196–198
isolation of tuberculin from, 211
photomicroscopy, 119
polymorphism, 279–284
staining, 119–121, 132–133
in tissue, 121–122
virulence of culture, 123–126
Tuberculin, 177, 179, 194–215, 233–236
clinical trials, 199–201
distribution, 201, 204
foreign response to, 205–208
reaction in humans, 198
Koch's speech to Tenth International Congress of Medicine, 195–199
origin of name, 212
preparation, 201–204, 207, 210–212
secrecy surrounding, 199, 201–205, 219, 294
self-injection by Koch, 200
sensitivity to, 3
therapeutic or diagnostic, 209–210

Tuberculinum, 212
Tuberculosis, 117–139, 238, 253, 272–274, 290–292, *see also* Tubercle bacillus; Tuberculin
animal experiments, 235
background, 118
bovine, 278–284, 289
Cohnheim's work on, 46
cure, 196, 210
delayed-type hypersensitivity in, 198
diagnosis, 200, 209–211, 256, 292, 294
First British Congress of Tuberculosis (London, 1901), 254-255
foundation of Koch’s work, 78-79
immunology, 137, 235-236
incidence, 1, 117-118, 196, 295-296
International Tuberculosis Congress (Washington, 1908), 276-284
intestinal, 280-281
invasion of Berlin by patients, 209
Koch’s approach to, 118-119
miliary, 118, 122, 196, 235
pulmonary, 118, 210, 254, 280-284
transmission, 254-255
Tyndall, John, 50-52, 109-110, 322
letter to London Times on tuberculosis, 129-131
Tyndallization, 322
Typhoid fever, 20, 179, 234-235, 253, 290
carriers, 255-256
epidemiology, 255-256
Typhus, 43

Union of South Africa, 240 (map)
Unruhe Bomst, Baron von, 19, 21, 26
United States, 8, 268-276, 284-285
cholera, 141
impact of Koch’s work on tuberculosis, 129-132
University of Berlin, 87 (map), 287, 329
University of Breslau, 37, 39-53, 64, 81, 84-86
summer semester of 1877, 71-72
University of Göttingen, 11-12, 184
University of Leipzig, 182
University of Munich, 183
Uterine nerves, 11

Vaccination, 131-132, 170-172, 177, 234-235, 259, 261, 342
German test of Pasteur’s anthrax vaccine, 172
rinderpest, 243
van Ermengem, E.M.P., 290
Variola, 43
Vesuvin, 119-120
Veterinary diseases, 241-245
Veterinary School (Berlin), 172
Vibrio
cholera, see Cholera vibrio
nonpathogenic, 232
Victoria, Lake, see Lake Victoria
Villemin, Jean Antoine, 118

Virchow, Rudolf, 11, 29, 137, 172-173, 210, 216, 219, 221, 233, 294, 325
archaeologic interests, 26
Cohnheim and, 46
disputes with Koch, 81-82, 126-127, 132, 183-184
first meeting with Koch, 26
hospital, see Rudolf Virchow Hospital
lectures, 14
opinion on cholera, 168
work on tuberculosis, 118

Virulence
law of increasing, 79-80
tubercle bacillus in culture, 123-126

Virus, 92, 238

Vitalism, 11
Vogel, C.F.W., 82
Voges-Proskauer test, 223

Waldorf-Astoria Hotel (New York), 270-271
Wasserman, August von, 4, 222, 235, 252-253

Water, Te, 242
Water filtration, 3, 151, 230-231, 255, 340
Water supply, see Drinking water
Water tank, cholera vibrio in, 162-163
Weigert, Carl, 45, 63, 68, 72, 76, 81, 227
Weischselbaum, A., 290
Welch, William Henry, 4, 47, 72, 270-272, 279, 290, 323, 334

Wernicke, 226
Weyl, 224
Whooping cough, 237, 290
Wilhelm I, Kaiser, 135, 137
Willard Hotel (Washington), 281
Wöhler, Friedrich, 11
Wolffhügel, Gustav, 86, 90, 92-93, 109-110

Wollstein, Germany, 7 (map), 21-26, 70-83, 85-87, 89, 227, 320
Dr. Robert Koch Street, 22
Koch’s home, 22 (photo)
laboratory facilities, 82
Wolsztyn, Poland, see Wollstein, Germany

Wound infection, 20, 68-83, 290
animal experiments, 76-77
etiology, 4, 73-75
work of Klebs on, 74

Yellow fever, 237
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Ranges</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yersin, Alexandre</td>
<td>245-246, 290</td>
<td></td>
</tr>
<tr>
<td>Yersinia pestis</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>Yokohama, Japan</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>Zanzibar</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>Zeiss</td>
<td>see Carl Zeiss</td>
<td></td>
</tr>
<tr>
<td>Zeitschrift für Hygiene</td>
<td>190, 335</td>
<td></td>
</tr>
<tr>
<td>Ziehl, Franz</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Zielewski, Dr.</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Zupitza, Max</td>
<td>247</td>
<td></td>
</tr>
</tbody>
</table>