Vibrio cholerae and Cholera

MOLECULAR TO GLOBAL PERSPECTIVES
Vibrio cholerae and Cholera
MOLECULAR TO GLOBAL PERSPECTIVES

Edited by

I. KAYE WACHSMUTH
Division of Bacterial and Mycotic Diseases
Centers for Disease Control and Prevention
Atlanta, Georgia

PAUL A. BLAKE
Foodborne and Diarrheal Diseases Branch
Division of Bacterial and Mycotic Diseases
Centers for Disease Control and Prevention
Atlanta, Georgia

ØRJAN OLSVIK
Foodborne and Diarrheal Diseases Branch
Division of Bacterial and Mycotic Diseases
Centers for Disease Control and Prevention
Atlanta, Georgia

ASM PRESS
Washington, D.C.
Contents

Contributors .. vii
Introduction .. xi

I. THE BACTERIUM VIBRIO CHOLERAE

1. Isolation and Identification of Vibrio cholerae O1 from Fecal Specimens. Bradford A. Kay, Cheryl A. Bopp, and Joy G. Wells .. 3

2. Toxigenic Vibrio cholerae O1 in Food and Water. Charles A. Kaysner and Walter E. Hill .. 27

3. Detection of Cholera Toxin Genes. Tanja Popovic, Patricia I. Fields, and Ørjan Olsvik .. 41

4. Detection of Toxins of Vibrio cholerae O1 and Non-O1. G. Balakrish Nair and Yoshifumi Takeda .. 53

6. Molecular Basis for O-Antigen Biosynthesis in Vibrio cholerae O1: Ogawa-Inaba Switching. Paul A. Manning, Uwe H. Strother, and Renato Morona .. 77

7. Vibrio cholerae O139 Bengal. J. Glenn Morris, Jr., and the Cholera Laboratory Task Force .. 95

8. Non-O Group 1 Vibrio cholerae Strains Not Associated with Epidemic Disease. J. Glenn Morris, Jr. .. 103

10. Serologic Diagnosis of Vibrio cholerae O1 Infections. Timothy J. Barrett and John C. Feeley .. 135

II. VIRULENCE FACTORS

11. Toxins of Vibrio cholerae. James B. Kaper, Alessio Fasano, and Michele Trucksis .. 145

12. Regulation of Cholera Toxin Expression. Karen M. Ottmann and John J. Mekalanos .. 177

III. CHOLERA: THE DISEASE

15. Cholera: Pathophysiology, Clinical Features, and Treatment. Michael L. Bennish .. 229

Contents

17. Host Susceptibility. *Stephen H. Richardson* ... 273

IV. EPIDEMIOLOGY AND SURVEILLANCE

18. Historical Perspectives on Pandemic Cholera. *Paul A. Blake* ... 293
23. Molecular Epidemiology of Cholera. *Kaye Wachsmuth, Ørjan Olsvik, Gracia M. Evins, and Tanja Popovic* ... 357

V. VACCINES

27. Protective Oral Cholera Vaccine Based on a Combination of Cholera Toxin B Subunit and Inactivated Cholera Vibrios. *J. Holmgren, J. Osek, and A.-M. Svennerholm* ... 415

VI. CHOLERA: THE FUTURE

Index .. 455
Contributors

Timothy J. Barrett
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Michael L. Bennish
Division of Geographic Medicine and Infectious Diseases, Departments of Pediatrics and Medicine, New England Medical Center, Tufts University School of Medicine, Boston, MA 02111

Paul A. Blake
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Cheryl A. Bopp
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Daniel N. Cameron
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

John Clemens
Division of Epidemiology, Statistics, and Prevention Research, National Institute of Child Health and Human Development, Bethesda, MD 20892

Mitchell L. Cohen
Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Rita R. Colwell
Center of Marine Biotechnology, Maryland Biotechnology Institute, Baltimore, MD 21202, and Department of Microbiology, University of Maryland, College Park, MD 20742

Gracia M. Evins
Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Alessio Fasano
Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201

John C. Feeley
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Patricia Fields
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333
Kathy Greene
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Rajesh Gupta
Massachusetts Public Health Biologic Laboratories, Jamaica Plain, MA 02130

Walter E. Hill
Food and Drug Administration, Bothell, WA 98041-3012

Jan Holmgren
Department of Medical Microbiology and Immunology, University of Goteborg, S-41346 Goteborg, Sweden

Anwarul Huq
Department of Microbiology, University of Maryland, College Park, MD 20742

Margaritha Isaäcson
Department of Tropical Diseases, School of Pathology, South African Institute for Medical Research, University of the Witwatersrand, Johannesburg 2000, South Africa

Gunhild Jonson
Department of Medical Microbiology and Immunology, University of Goteborg, S-41346 Goteborg, Sweden

James B. Kaper
Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201

Melissa R. Kaufman
Hopkins Marine Station, Stanford University, Pacific Grove, California 93950

Bradford A. Kay
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Charles A. Kaysner
Food and Drug Administration, Bothell, WA 98041-3012

Myron M. Levine
Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201

Marlo Libel
Pan American Health Organization, Washington, DC 20037

Paul A. Manning
Department of Microbiology and Immunology, University of Adelaide, Adelaide S.A. 5005, Australia

John J. Mekalanos
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115

Eric D. Mintz
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Renato Morona
Department of Microbiology and Immunology, University of Adelaide, Adelaide S.A. 5005, Australia
J. Glenn Morris
Divisions of Geographic Medicine and Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, and Veterans Affairs Medical Center, Baltimore, MD 21201

G. Balakrish Nair
National Institute of Cholera and Enteric Diseases, Beliaghata, Calcutta 700010, India

Ørjan Olsvik
Diarrheal and Foodborne Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

J. Osek
Department of Medical Microbiology and Immunology, University of Goteborg, S-14346 Goteborg, Sweden

Karen M. Otteman
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115

Tanja Popovic
Diarrheal and Foodborne Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Stephen H. Richardson
Department of Microbiology and Immunology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157

John B. Robbins
Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, Bethesda, MD 20892

Daniel C. Rodrigue
Department of Medicine, Division of Infectious Diseases, University of Southern California School of Medicine, Los Angeles, CA 90033

David Sack
Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD 21205

Luis Seminario
General Office of Epidemiology, Ministry of Health, Lima, Peru

Dale Spriggs
Virus Research Institute, 61 Moulton Street, Cambridge, MA 02138

Uwe H. Stroeher
Department of Microbiology and Immunology, University of Adelaide, Adelaide S.A. 5005, Australia

Ann-Mari Svennerholm
Department of Medical Microbiology and Immunology, University of Goteborg, S-41346 Goteborg, Sweden

David L. Swerdlow
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Shousun C. Szu
Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, Bethesda, MD 20892
x Contributors

Carol O. Tacket
 Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201

Yoshifumi Takeda
 Department of Microbiology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan

Roberto Tapia
 Direccioion General de Epidemiologia, Col. Lomas de Plateros, Mexico

Robert A. Tauxe
 Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Ronald K. Taylor
 Department of Microbiology, Dartmouth Medical School, Vail Building, Hanover, NH 03755-3842

Michele Trucksis
 Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201

Due J. Vugia
 Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

I. Kaye Wachsmuth
 Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Joy G. Wells
 Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333
Introduction

From the time the cholera proclamation was issued, the local garrison shot a cannon from the fortress every quarter hour, day and night, in accordance with the local superstition that gun powder purified the atmosphere.

—Gabriel Garcia Marquez

This quotation from the novel *Love in the Time of Cholera* nicely reflects the prevailing misperceptions concerning the cause, transmission, and prevention of cholera at the end of the 19th century. The cholera of Garcia Marquez’s novel was an often irreversible illness that more frequently affected the poor but was feared by all because treatment was inadequate and illness more often than not led to death. Although science was beginning to understand the cause of cholera and how the organism was transmitted, fear and superstition were understandable and common in the public’s and government’s response to the disease.

In the century since this novel’s setting, we have learned much about the bacterium and the disease. In this book, this information is examined in comprehensive and integrated discussions by some of the field’s preeminent microbiologic, clinical, and epidemiologic experts. The amount of knowledge that has accumulated in the last several decades is most impressive. Microbiologists have developed isolation techniques, refined the taxonomy and subtyping of the vibrios, and determined the importance and biochemistry of cholera toxin as well as the potential of a series of traditional and recombinant cholera vaccines. Clinicians have better understood the pathogenic process and established the importance of rehydration therapy as the cornerstone of treatment. Epidemiologists have defined the who, what, where, and when of disease, as well as, in the tradition of John Snow, the why, by examining the mechanisms and vehicles of transmission and the risk factors of affected persons. These data have provided the public health community with the scientific basis for developing control and prevention strategies. Nevertheless, the advances in microbiology and clinical treatment and the implementation of appropriate control measures have not led to the effective control of cholera worldwide.

In fact, cholera has remained a persistent problem for the developing and, occasionally, the developed world. The seventh pandemic had seen the spread of cholera since the 1970s throughout southeast Asia and into Africa. Although conditions in South and Central America were conducive to the transmission of cholera, except for a few cases associated with the U.S. Gulf Coast, the Western Hemisphere had remained unaffected. In January 1991, all this suddenly changed with the emergence of cholera in Peru and its subsequent spread to many countries in the hemisphere. With hundreds of thousands of cases, cholera had emerged in a few months as one of the hemisphere’s most important public health problems. As is often the case when cholera affects a new area, microbiologists, clinicians, and public health officials were frequently unprepared. Delayed or inadequate diagnosis coupled with often inappropriate treatment led to unnecessary morbidity and mortality. This occurred not only in developing countries but also among travelers who became ill after returning to developed countries that had not seen cases of cholera for almost a century. Thus, the information included in this book has become important for clinicians, researchers, clinical microbiologists, and public health officials worldwide.

Cholera has had additional surprises. In many parts of the world, strains of *Vibrio cholerae* have become resistant to multiple
antimicrobial agents, affecting both treatment and chemoprophylaxis. Perhaps the greatest surprise, however, has been the emergence in the last year of a previously unrecognized strain of epidemic *V. cholerae*, serotype O139, in India and Bangladesh. Although at the time this book was published a number of studies were under way to explain the emergence of this new strain, preliminary data suggested an evolution from epidemic *V. cholerae* O1.

The more we learn about the organism and the disease, the more we are confronted by new scientific and public health dilemmas. This greatly compounds the difficulties that already impede the general prevention and control of this disease. Barring tremendous expenditures to improve sanitation and hygiene in large parts of the world or the rapid development of an effective vaccine, it is likely that cholera will hold additional surprises and remain an important public health problem. The scientific information provided by this book is critical to confronting this challenge and defining responses that are more effective than the firing of cannons.

Mitchell L. Cohen
Division of Bacterial and Mycotic Diseases
National Center for Infectious Diseases
Centers for Disease Control and Prevention
Atlanta, Georgia
456 Index

Bismuth subsalicylate, 248
Blood type, 276-279, 286-287, 326, 339-340, 430, 446, 450
Boiling of water, 336-337, 341, 346, 348
Bottled water, 28-29, 347, 353
Breast feeding, 248, 267-268, 275, 353, 432
Brefeldin A, 149
B-subunit-whole-cell vaccine, 339-340, 415-424
clinical trials, 418-420
composition, 418
rationale for, 416-418
recombinant B-subunit production, 420
sachet formulation, 421
toxin-coregulated pilus and MSHA fimbrial antigens, 420-421
C antigen, V. cholerae, 11, 80
Calcium
serum, 233-234
in toxin action, 161, 165
cAMP, see Cyclic AMP
Campylobacter coli, 48
Campylobacter jejuni, 48
Cannabis, 230, 275
Capsular polysaccharide, 98-99, 105, 108-109
Carbohydrates
fermentation tests, 11-12, 33, 35
profile, viable but nonculturable V. cholerae, 123
Carbon dioxide, toxin production and, 177-178
Carbonated water, 347-348
Carrier
chronic, 247, 346, 444
food preparer, 30
V. cholerae non-O1, 105
Casamino Acids-yeast extract (CAYE) medium, 54-55
Case definition, 372-373, 377
Case fatality ratio, 331-332, 428
Case-control study, transmission, 334, 345
Cataracts, 428
Cell size, bacterial, 119, 123
Cell-mediated immune response, 263-264, 274
Cellobiose-polymixin B-colistin agar, 33
Cellular vaccine, 381-382
Cellobiose-polymixin B-colistin agar, 33
Cellular vaccine, 381-382
Cep factor, 183
Cereal-based salt-containing suspension, 245-246
Cerebral spinal fluid, V. cholerae non-O1, 110
Ceviche, 31, 314, 338-339, 349-350
CFTR protein, 153, 164-165
Chaperone, 195
Chemotaxis, 213
Chinese hamster ovary cells, cholera toxin assay, 56, 137
Chloramphenicol susceptibility testing, 18
Chloride channels, 152-153, 164, 276
Chloride secretion, 152, 231
Chlorination, 336-337, 346, 348
Chlorine resistance, 449
Chlorpromazine, 154, 248
Cholecystitis, nontoxicigenic V. cholerae O1, 72, 74
Cholera
clinical features, 73-74, 99, 103-105, 235-239
diagnosis, 239
eradication, 443-447
history, 229-230, 443
pathophysiology, 230-234, 397-398, 416
therapy, 239-250, 435, 446, 450-451
Cholera cot, 243-244
Cholera DFA, 127
Cholera gravis, cholera toxin requirement, 397-398
Cholera icc, 231
Cholera SMART, 127
Cholera toxin (CT)
accessory V. cholerae enzymes affecting, 157-158
antitoxic immune response, 257-258
antitoxic antibody, 137-140
assays, 16-17, 34, 41-67
assembly and secretion, 158
binding to ETS+ and ETS- cells, 284-286
biological assays, 53, 55-56, 137
carrier protein in vaccines, 385-386
cellular response to, 152-153
in cholera gravis, 397-398
in colonization, 214-215
detection directly from stool specimens, 59-60
enzymatic activity, 148-152
enzymatic assays, 59
genes, see ctx genes
genetically cross-reactive proteins, 48
history, 145
immune system response to, 155
immunologic assays, 53, 56-59
in vitro production, 54-55, 208-212
in vivo activities, 217-218
in vivo structure and function, 279
interaction with enterocytes and other cells, 216-217
mechanism of action, 148-155
mutants, 210
production, 4
purification, 209
receptor binding and translocation, 146-148
regulation of production, 177-183, 210-212
serum antibody response, 262
structure, 42, 146, 209, 279
tissue culture assays, 34, 53, 56, 59, 137
V. cholerae non-O1, 60-62, 107
V. cholerae O1, 54-60
V. cholerae O139, 97-99
Cholera toxin (CT) element, 407
Cholera toxin probes, 44-46
oligonucleotide, 43, 45-46
PCR-generated, 45
Choleragenoid, 218-219
Cholerelike toxin, 48, 107
CholeraScreen, 20, 127
Ciprofloxacin susceptibility testing, 18
Clams, 350
Classical strains, see Vibrio cholerae O1, classical
Clinical features, 235-239
nontoxicigenic V. cholerae O1 illness, 73-74
V. cholerae non-O1 disease, 103-115
V. cholerae O139 illness, 99
Clonidine, 248
Coagglutination test, V. cholerae, 20
Coastal marsh, 312, 317
Cockles, 349-350
Coconut milk, 350, 352, 363
Encapsulated strains, see Capsular polysaccharide
Endemic cholera, 309–319
epidemic cholera versus, 426–427
Endocytosis, receptor-mediated, 148–152
Endosome, 149–150
Enrichment procedures, 5–8
inoculation of media, 8–9
ENS, see Enteric nervous system
Enteric nervous system (ENS), 154–155, 231
Enteric plating medium, 8
Enterobacteriaceae, 11
Enterochromaffin cells, 154
Enterocytes, 264
interaction with cholera toxin, 216–217
Enterotoxin-sensitive phenotype, see ETS phenotype
Environmental factors
host susceptibility, 273–276
regulation of cholera toxin expression, 177–178
Environmental reservoir, 346, 445, 449, 451
United States and Australia, 309–319
Environmental sample, viable but nonculturable V. cholerae, 117–133
Environmental strains, 27–39
Environmental surveillance, 374, 377
Enzymatic assay, cholera toxin, 59
Enzyme electrophoresis, see Multilocus enzyme electrophoresis; Zymovar analysis
Enzyme-linked immunosorbent assay, see ELISA
Epidemic, 293–295
endemic cholera versus, 426–427
history, 27
V. cholerae O139, 95–102
Epidemiology
Africa, 297–307, 363
Asia, 293–294, 363
Australia, 309–319, 361–366
historical perspectives, 293–295
Latin America, 321–344, 348–350, 357, 361–368
Mexico, 314, 316, 329–331, 333, 364
molecular, 345–346, 357–368
nontoxigenic V. cholerae O1, 70–73
United States, 293, 309–319, 350, 357, 361–366
V. cholerae non-O1, 105
V. cholerae O139, 96–97, 367
Epifluorescence microscopy, 122, 126
Epinephrine, 233
Eradication of cholera, 443–449
Erythromycin
susceptibility testing, 18
treatment of cholera, 247
Escherichia coli
enterotoxigenic, 44, 146–147, 155, 285–286, 419, 432
LT probes, 44
Estuarine environment, 28–31, 74, 105, 120, 122, 246, 312–313, 338, 451
ETS phenotype, 217
adenylate cyclase in cell membranes, 283–284
characteristics and mapping, 282–283
cultured cells, 283
遗传 studies, 286
response to i.v. cholera toxin, 282
toxin binding to cells, 284–286
Evolution
cholera toxin, 155
V. cholerae, 446, 449–450
Exotoxin A, Pseudomonas, 146, 148
Exported protein
disulfide bonds, 194–195
toxin-coregulated pilus, 195–197
Family studies, 274
Fasted guinea pig model, 205
Fatty acids, viable but nonculturable V. cholerae, 123
Fecal specimen
collection, 4
detection of cholera toxin, 59–60
isolation and identification of V. cholerae O1, 3–25
transport, 4–5
V. cholerae non-O1, 106–107
Fever, 111, 248
Field facilities, 242–243
supplies required, 249–250
Fimbriae, 267
Fish, 31, 299, 324, 338, 349–351
Flagella, 88–89, 187, 214, 260
Flies, 353
Flow cytometry, cholera toxin binding to ETS+ and ETS− cells, 286
Fluid loss, monitoring, 243–244
Fluid therapy, 239–246, 322, 324, 340, 435, 437, 450
intravenous, 240–243, 450
maintenance, 240, 243
oral, 243–246
rehydration, 240–243
Fluorescent-antibody staining, 121, 124, 126, 128–129
Fomite transmission, 353
Food
contamination and illness, 29–32
identification of V. cholerae, 32–35
international shipment, see International travel/shipping
isolation of V. cholerae, 32
PCR assay for V. cholerae, 48–49
toxigenic V. cholerae, 27–39
V. cholerae non-O1, 105–106, 110
viable but nonculturable V. cholerae, 117–118, 127
Food preparation practices, 30, 300, 315, 338–341, 349, 352–353, 453
Foodborne transmission, 349–354, 434–435, 445, see also specific foods
Africa, 299–305
Latin America, 334–339
United States, 312–316
Fruit, contaminated, 339, 349, 352
Fruit juice, acidic, 336–337, 346, 353
Fucose-sensitive hemagglutinin, 260, 279
Funerals, 300–301, 329–331, 351–353
Furazolidone
susceptibility testing, 18
treatment of cholera, 247
G proteins, 148–152
GA, see Gelatin agar
Gamma-interferon, 264
Gastric acidity, 230, 263, 275, 382, 389, 450
Gastroenteritis
nontoxigenic V. cholerae O1, 69–76
V. cholerae non-O1, 103–115
Gelatin agar (GA), 8–9
Gelatinase, 7–8, 33
Gene probe, 358
Germfree animals, 204, 206
Ggm-1 gene, 286
Glucagon, 233
Glucose
- fluid therapy solutions, 249
- serum, 233
Glucose-sodium cotransport, 240
GM, erythrostain, 58
ETS phenotype and, 284–286
GM, ganglioside ELISA, 57, 59
Gram stain, 34
GTP-binding proteins, 152
Guinea pig
- fasted guinea pig model, 205
- PF skin model, 206, 208–209
Gut-associated lymphoid tissue, 219, see also M cells
H antigen, 9, 136
Halophilic vibrios, 11
Handwashing, 302, 337
hap gene, 158
Health care costs, 433
Heat shock response, 182, 212
Heat-labile enterotoxin (LT), see also Cholera toxin
- enterotoxigenic E. coli, 4A, 146–147, 155, 285–286
Helicobacter pylori infection, 275, 287
Hemagglutination test, 14, 35
Hemagglutinin, 108, 187, 214, 399
- fucose-sensitive, 260, 279
- mannose-fucose-resistant, 260
- mannose-sensitive, 216, 260, 262, 266–267, 279–280, 420–421
soluble, 260–261
Hemagglutinin-protease, 158–159
Hematocrit, 237–239
Hemoglobin, 15
Hemolysis testing, 15–16, 35, 214
Herd immunity, 432
Hexamethonium, 154
Hikojima strains, 9, 77, 85, 88
hlyA gene, 15, 159–160, 164, 400–401
Home-based sugar-salt solutions, 245–246, 322
Hospital-acquired infection, 247, 302
Host susceptibility, 263, 273–289, 450–451
- blood type and, 276–279, 286–287, 326
- colonization mechanisms, 278–281
- current status, 286–287
- environmental and social factors, 273–276
ETS phenotype, 282–286
murine models, 281–282
HPLC assay, cholera toxin, 59
Hypoglycemia, 233
Hyperglycemia, 233
Hypokalemia, 233–234, 242
Hypotension, 231, 233–234
Hypovolemia, 230–232
Ice, 335, 338–339, 347–348
Identification
- biochemical methods, 11
detection of cholera toxin genes, 41–52
- food and water samples, 32–35
- serological methods, 9–11
V. cholerae from fecal specimens, 3–25
V. cholerae O139, 99
Ig, see Immunoglobulin
Immune response, 257–271
- cell-mediated, 263–264, 274
to cholera toxin, 138–139, 155
to V. cholerae infection, 218–220
Immunity, 257–271
- antibacterial, 258–260, 398, 417
- antitoxic, 257–258, 398, 416–417
- background, 427
cross-biotype, 396
herd, 432
- infection-derived, 396–397
- mucosal, 264–268, 416–417, 425, 450
- natural, 383, 445–446
- protective, 257–262, 383, 395, 417
- Immunofluorescence techniques, V. cholerae, 19–20, 33, 126
- Immunoglobulin A (IgA), 219–220, 267, 274, 281
secretory, 258, 263–267, 282, 417
- Immunoglobulin M (IgM), 264, 383
- Immunologic assay, cholera toxin, 53, 56–59
- Immunologic memory, immunoglobulin A, 264–267, 417
- In vivo expression technology, 208
- Inaba strains, 9, 34, 259, 308–312, 322, 333, 340, 357, 385
- Ogawa-Inaba switching, 77–93, 259, 357, 366
- Inactivated vaccine, oral, 403–404
- Incubation period, 230
- Indirect hemagglutination test, V. cholerae, 136–137
- Indomethacin, 217–218, 248
- Indophenol oxidase test, 12
- Infant mouse model, 56, 206
- Infant rabbit model, 55, 137, 205, 208
- Infection-derived immunity, 396–397
- Infectious dose, 230, 353, 444, 450
- Inoculation
- enrichment media, 8–9
- plating media, 9
- Insectborne transmission, 353
- Insensible fluid loss, 243
- Interleukin 1β, 218, 220
- International surveillance, 375–376
Mutant cholera toxin, 210
colonization, 214
pilus, 215

Nalidixic acid susceptibility testing, 18

Nalidixic acid susceptibility testing, 18
Neuraminidase, see Neuraminidase

NanH gene, 157–158
Natural vibriocidal antibodies, 383
New cholera toxin, 54, 60, 166–167

4-NH₂-4-deoxy-L-arabinose, 80
Nicotine, 275

Nonhuman primate model, 207
Norfloxacin, treatment of cholera, 247–248
Normal saline solution, 242
Nutrition/nutritional support, host, 249–250, 273–276

Nutritional stress, V. cholerae, 117–133

O antigen, 9, 78, see also Serotype agglutination tests, 136
properties and composition, 79–80
V. cholerae non-O1, 104
V. cholerae O1, 77–93
V. cholerae O139, 95–96

in virulence, 88–89
Ogawa strains, 9, 35, 259, 298, 311, 333, 357, 385
Ogawa-Inaba switching, 77–93, 259, 357, 366
Oil rig workers, 313, 352

Oligonucleotide CT probe, 43, 45–46

CT-ENLOP, 46
OMP proteins, 178, 183, 215, 220, 259–260, 266, 399
OmpR-homologous domain, 179–182
Oral rehydration therapy (ORT), 111, 204, 232, 240–246, 322, 332, 435, 450

sachet formulation, 245
Oral vaccine, 218–220, 437
administration, 430–432
B-subunit–whole-cell, 415–424
inactivated, 403–404
live, 395–413
Oral vaccine cocktail, 402–403

ORF-H peptide, 84
Organic acids, oral rehydration preparations, 246

ORT, see Oral rehydration therapy
Osmolarity, cholera toxin production and, 177
O-specific polysaccharide, 384
Outer membrane proteins, see OMP proteins

Oxidase test, 11–12, 34

Pandemic, 293–295, 443–444
seventh, 297–299, 346–348, 359, 361–363

Paracholera, 103
Parenteral vaccine, 415, 421–422, 425–426, 437
Passive hemagglutination test, cholera toxin, 56, 137

Passive immune hemolysis test, cholera toxin, 58
Pathophysiology of cholera, 230–234, 397–398, 416
V. cholerae non-O1, 107–108

V. cholerae O139, 97–99
Peanut sauce, 300, 351
Penetration of intestine, 212–214
Peristalsis, 389
Permeability factor test, 137
PF skin model, 206, 208–209
Peroxamine, 79–81
Peroxamine synthetase, 81, 83
Personal hygiene, 273–276, 302, 339, 353, 434
Person-to-person transmission, 302–303, 352–353, 444
Peru, appearance of cholera, 322–326
PFGE, see Pulsed-field gel electrophoresis

pH effect, cholera toxin production, 209
Phase CP-T1, 86
susceptibility test, 14–15, 35
treatment of cholera, 248
typing, 17
V. cholerae O139, 96
Vca1, 358–359
Vca3, 358, 364

Phase variation, 108
Phase-contrast microscopy, 19
Phosphatase, serum, 233–234
Phospholipase A₂, 153
Phospho-manno-mutase, 81, 83
Phospho-mannose isomerase, 81, 83
Pigeon peas, 350–351
Plin, 187–190, 215
disulfide bond, 194–195
processing, 195–196
type IV, 190–194
Pilus, 187, 399
mutant, 215
toxin-coregulated, see Toxin-coregulated pilus
Plasmid, 305, 447

profile analysis, 17, 358–359
Plate hemolysis test, 15–16
Plating medium
inoculation, 9
nonselective, 8
selective, 6–8

Plesiomonas shigelloides, 11
Polyclonal antiserum, 258
Polyelectrolyte solution, 242
Polymerase chain reaction (PCR)
cholera toxin gene assay, 46–49
diagnosis of V. cholerae, 20, 35–36
PCR-generated CT probes, 45
viable but nonculturable V. cholerae, 127
Polymixin B sensitivity, 14, 33
Polymixin mannose tellurite agar, 6
Polyvalent antisera, presumptive identification with, 10
Potassium secretion, 232
Prawns, 105, 310
Pregnancy, cholera in, 234, 428
Premune serum, 262
Prepilin, 195–196
Prevention of cholera, 341, 434–435
Africa, 304–305
V. cholerae O139 disease, 100
Primer, PCR assay, 46–47
Procholeragenoid, 218–219
Promoter, ctx, 180
Index

Prostaglandins, 153–154, 217–218, 231
Protease, 158–159, 187, 194, 209, 214, 260–261
Protective antigen, 88
Protective immunity, 257–262, 383, 395, 417
Protein kinase A, 149, 152–153
Protein kinase C, 161
Protein, serum, 237–239, 243
Public health considerations, 341, 446
laboratory capacities, 447–448
vaccine usage, 425–440
Pulmonary edema, 234
Pulsed-field gel electrophoresis (PFGE), 18, 358, 363–366
PWT medium, 5
Quality control, antisera, 10–11
Quarantine, 332, 340, 371, 446
Quinovosamine, 79–80
R antigen, V. cholerae, 9
Rabbit infant rabbit model, 55, 137, 205, 208
ligated ileal loop model, 137, 204–205, 208, 257
cholera toxin, 53, 55, 59
viable but nonculturable V. cholerae, 126–127
RITARD model, 56, 207, 258
skin permeability factor test, 137, 206, 208
Radioimmunoassay, cholera toxin, 58
Rapid diagnostic methods, V. cholerae, 19–20, 35–36, 49, 127, 239
RDEL sequence, 148
recA gene, 400–402, 408
Receptor-mediated endocytosis, 148–152
Recombinant vaccine, 395–413, see also CVD 103–HgR vaccine approaches to development, 399–402
strain transmissibility, 408
Rectal swab, 4, see also Fecal specimen
Recurrent cholera, 369–376
Refugee camps, 303–305, 321, 348, 351, 362, 428–429
Rehydration, see Fluid therapy
Renal insufficiency, 234, 450
Reporting, surveillance data, 374–377
Research animal models, 203–226
cholera patients, 450–451
environmental persistence, 451
transmission of cholera, 451–452
V. cholerae, 449–450
vaccine, 452–453
Reservoir, 346, 427, see also Environmental reservoir cholera in United States and Australia, 309–319
V. cholerae non-O1, 105
V. cholerae O139, 97
Restriction fragment length polymorphisms (RFLP), 17–18, 358–359, 362–366
Australian strains, 311
United States strains, 316
Reversed passive latex agglutination (RPLA) test cholera toxin, 57–60, 62
V. cholerae, 17, 46
rfb genes, 77–84, 96, 104, 366
RfbT protein, 86–88
RFLP, see Restriction fragment length polymorphisms
Rhizoclonium fontanum, 125
Rhs element, 83–84, 88
Ribotyping, 96, 311, 316, 358, 360, 363, 365–366
Rice, 300, 313, 339, 350–352
Rice water stool, 245
RITARD rabbit model, 56, 207, 258
Riverine reservoir, 309–311, 317, 336, 346, 347, 365
Rounding-up phenomenon, 119, 122–123
RPLA test, see Reverse passive latex agglutination test
RSI sequence, 156–157, 183, 408
S49 mouse lymphosarcoma cells, cholera toxin assay, 56
Sachet formulation
B-subunit–whole-cell vaccine, 421
CVD 103–HgR vaccine, 402
oral rehydration therapy, 245
Salinity effect, viable but nonculturable V. cholerae, 124–125
Salmonella typhi, attenuated strains expressing V. cholerae O1 antigens, 408–409
Salt requirement, 13, 34, 125
Salt tolerance test, 34
SAM model, see Sealed adult mouse model
Sandwich ELISA, cholera toxin, 57
Screening media, 33–34
Screening test, biochemical, 11
Sealed adult mouse (SAM) model, 207, 211–212, 282
Seasonality of cholera, 444–445
Australia, 311
Latin America, 329–330
nontoxigenic V. cholerae O1 infections, 73
United States, 315
V. cholerae non-O1 gastroenteritis, 105–106
viable but nonculturable V. cholerae, 124–125
See proteins, 196
Secreted antigens, 260–261
Selective medium, 6–8, 33
Sepsis nontoxigenic V. cholerae O1, 72, 74
V. cholerae, 234
Septicemia
V. cholerae non-O1, 108, 110
V. cholerae O139, 99
Serogroups, 3–4, 9
Serologic diagnosis, 9–11, 135–141
based on antibacterial antibodies, 135–137
based on antitoxin antibody, 137–140
surveillance program, 373
Serotonin, 154
Serotype, 4, 9–10, 346, 357
as epidemiologic marker, 88
V. cholerae non-O1, 104
Serotype conversion, 84–88, 259
history, 85–86
molecular basis, 86–88
Serum antibody assays, 135–141
Serum resistance phenotype, 178
Serum specific gravity, 237–239, 243
Sewage
surveillance, 374

treatment, 27, 452–453

Sex-related incidence, \textit{V. cholerae} O139, 97

Shipping, see International travel/shipping

Shooting star motility, 19

Shr mutant, 214

Shrimp, 31, 49, 105, 314, 327, 349–350

Signal sequence, 196–197

Slide agglutination test, \textit{V. cholerae}, 10, 20

Snow, John, 346

Social factors

host susceptibility, 273–276

vaccine acceptance, 430–431

Sodium absorption, 231–232

Sodium channel inhibitor, 166–167

Solar inactivation, \textit{V. cholerae}, 337

Solid-phase radioimmunoassay, cholera toxin, 58

Somatic antigens, 136–137

Somatostatin, 248

Somatostatin, 248

Somatostatin, 248

Sorai, see Water storage containers

Southern blot analysis, 42–43, 357–359

SPDP, 387

Specimen, see Fecal specimen

Spectrophotometric assay, cholera toxin, 59

Sputum, \textit{V. cholerae} non-O1, 110

SpvB protein, 164–165

Squid, 349–350

Starvation response, bacterial, 117–133

Stool culture, 5

Stool specimen, see Fecal specimen

Storage of isolates, 19

Street-vended food/beverages, 335, 339, 341, 347–348, 353, 445, 453

\textit{Streptococcus faecium} SF68, 248

String test, 11–12, 34

Stuart transport medium, 5

Sucrose tellurite teepol medium, 6

Suckling animals, 204

Suckling mouse assay, 258

NAG-ST, 61

Sucrose tellurite teepol medium, 6

Surface antigens, \textit{V. cholerae} O1, 399

Surveillance, 371–378, 447–448

Case definitions, 372–373, 377

communication, analysis, reporting, 374–377

components of system, 372–376

cutoff age, 372

environmental, 374, 377

international, 375–376

labatory confirmation, 373, 377

purposes and objectives, 371–372

stages, 373–374, 377

Syncase medium, 54–55

T cells, 258, 264, 417

tag genes, 178–179

TCBS agar, see Thiosulfate-citrate-bile salts-sucrose agar

TCP, see Toxin-coregulated pilus

tcp genes, 178–179

tcpA gene, 98, 187–194, 400–401, 405

functional domains, 190–194

homology to type IV pilins, 190–194

tcpBCDEF genes, 190–191

tcpC gene, 198

TcpC protein, evasion of bactericidal activity in gut, 198

tcpE gene, 196–197

TcpE protein, 196–197

tcpF gene, 196–197

TcpF protein, 196–197

tcpG gene, 190–195

TcpG protein, 193

in disulfide bond formation, 194–195

tcpH gene, 190–191

tcpI gene, 190–191, 199

tcpJ gene, 190–191, 195–196

TcpJ protein, 196–197

in toxin-coregulated pilus export, 195–196

TcpT protein, 197

TCY medium, 54

TDH, see Thermostable direct hemolysin

Tellurite taurocholate gelatin agar (TTGA), 6–9, 33, 99

Tellurite taurocholate-peptone (TTP) medium, 5

Temperature effect

cholera toxin production, 177, 209

viable but nonculturable \textit{V. cholerae}, 124–125

Tetracycline resistance, 305

susceptibility testing, 18

treatment of cholera, 246–247

in \textit{V. cholerae} non-O1 disease, 111

in \textit{V. cholerae} O139 disease, 100

Tetrodotoxin, 154, 166

Tetronate, 81–84

Tetronyltransferase, 83–84

Therapy, see Treatment of cholera

Thermostable direct hemolysin (TDH), 166–167

Thiol:disulfide interchange proteins, periplasmic, 194

Thioredoxin, 194

Thiosulfate-citrate-bile salts-sucrose (TCBS) agar, 6–7, 9, 33, 99

Thymine-dependent auxotroph, 401

Tight junction, intestinal, 160–161

Tissue culture, ETS phenotype, 283

Tissue culture assay

cholera assay, 137

cholera toxin, 53, 56, 59

Tomato sauce, 300, 351

Toronja juice, 336, 353

Toxin, see specific toxins

biogenesis genes, 196–198

in colonization, 189, 193

export, 195–197

identification, 187–189

regulatory cascade, 198–199

Toxoid, formalized, 218–219

Toxoid vaccine, 415

ToxR protein, 177–185, 189, 198–199, 212
Index

regulation at conformational level, 181–182
transcriptional regulation, 182
ToxR regulon, 177–185, 212–214, 404
toxS gene, 179
ToxS protein, 179
toxT gene, 179, 183–189, 198–199, 404
ToxT protein, 179, 189, 198–199
Trade routes, see International travel/shipping
Transcription regulators, 179, 182
Translocation of cholera toxin, 146–148
Transmission of cholera, see also specific modes
in Africa, 299–303
case-control studies, 334, 345
prevention, 434
research, 451–452
V. cholerae non-O1, 105–106
V. cholerae O1, 345–356
vaccine strains, 408
Transport medium, 4–5
Travel, see International travel/shipping
Treatment of cholera, 239–250, 435, 446
improvement, 450–451
V. cholerae non-O1 disease, 111
Trimethoprim-sulfamethoxazole
resistance, 305
susceptibility testing, 18
transmission of cholera, 247
Triple sugar iron (TSI) agar, 11–12, 34
TSI agar, see Triple sugar iron agar
TTGA, see Tellurite taurocholate gelatin agar
TTP medium, see Tellurite taurocholate-peptone medium
TTTGTGAT repeat motif, 180
Tube hemolysis test, 16
Typing, 357
V. cholerae non-O1, 104–105
United States
cholera before 1978, 311–312
cholera, 1982–1992, 313–315
crabs versus oysters as vehicles, 315
epidemiology, 293, 309–319, 350, 357, 361–366
nontoxigenic V. cholerae infections, 69–76
outbreak in Louisiana, 1978, 312
seasonal and year-to-year variation, 315
worldwide relationship of strains, 315–316
Unpreserved specimen, 5
Ussing chamber, 204–205
Vaccine, 259, 445–446, 450
gainst V. cholerae O139 disease, 410
cellular, 381–382
for children, 382, 388–389, 395, 422, 430
clinical acceptability, 430
clinical effectiveness, 430–432
conjugate, 381–394
cost-benefit and cost-effectiveness analysis, 432–437
cross-protection against noncholera pathogens, 432
cultural acceptability, 430–431
as deterrent to cholera control, 435–436
development, 210, 212, 218–220
duration of protection, 429
efficacy, 359–340, 429–430, 452
“real life” modifiers, 452
epidemiologic setting for vaccination, 426–427
experimental, 452
Latin American, 339–340
lipopolysaccharide, 381–394
logistical requirements of program, 431–432
oral, 218–220, 395–413, 437
parenteral, 218–220, 415, 421–422, 425–426, 437
protective characteristics, 429–430
public health considerations, 425–440
recombinant live, 395–413
side effects, 430, 433
storage, 431–432
vaccine strains, 408
Vascular permeability factor assay, 55–56
Vasoactive intestinal peptide (VIP), 154
Venipuncture, 242
Venkatraman-Ramakrishnan sea salt medium, 4–5
Venous access site, 242
Vaccine, 210, 218
S. typhi expressing V. cholerae O1 antigens, 408–409
transmissibility, 408
V. cholerae O1
CVD 103 and CVD 103–RM, 401–402
CVD 103–HgR, 402–408
first and second generation, 399–401
newer attenuated strains, 407–408
Vascular permeability factor assay, 55–56
Vasoactive intestinal peptide (VIP), 154
V. cholerae Ol
classical, 4, 13–16, 35, 49–50, 54–55, 77, 156–159,
189, 199, 214, 258, 260, 267, 277–280, 287,
294, 316, 357–361, 396–397, 420, 443–444,
447
El Tor, 4, 13–16, 33, 35, 49–50, 54–55, 70, 77,
156–159, 189, 198, 214, 216, 258, 260, 267,
277–280, 287, 294, 298, 309, 312, 316, 322,
Index 465

Vibriophage, see Phage
Vibriostatic compound O/129 susceptibility test, 13, 35
V. cholerae O139, 99
VIP, see Vasoactive intestinal peptide
Virulence cassette, 166, 211, 400, 407
Virulence factors, 397–398, 449, see also Cholera toxin capsule, 98–99
O antigen, 88–89
regulation of expression, 177–185
secretory systems, 196–198
toxin-coregulated pilus, see Toxin-coregulated pilus toxins, see specific toxins
V. cholerae non-O1, 107
Voges-Proskauer (VP) test, 11–12, 14, 34–35
Vomiting, 235, 245
VP test, see Voges-Proskauer test

Water
contamination and outbreaks of cholera, 28–29
identification of *V. cholerae*, 32–35
isolation of *V. cholerae*, 27–39
toxigenic *V. cholerae*, 27–39
V. cholerae non-O1, 105–106
V. cholerae O139, 97
viable but nonculturable *V. cholerae*, 117–133

Vibrio cholerae O139, 4, 95–102, 119, 294, 377, 446–452
antimicrobial susceptibility, 18
classification, 95–96
clinical syndromes, 99
diagnosis, 99
epidemiology, 96–97, 367
illness associated with, 103
isolation, 9
O/129 resistance, 13
pathophysiology, 97–99
prevention of disease, 100
therapy in illness, 100
vaccine, 410

Vibrio cincinnatiensis, 104

Vibrio damsela, 104

Vibrio fluvialis, 34, 104, 212

Vibrio furnissii, 34, 104

Vibrio gazogenes, 3

Vibrio hollisae, 104, 212

Vibrio metchnikovii, 3, 104

Vibrio mimicus, 11, 13, 46, 104, 212

Vibrio parahaemolyticus, 6, 8, 34, 104, 166, 276

Vibrio vulnificus, 104, 315

Vibriocidal antibodies, 258, 261–262
serum, 274, 381–395, 398–399
age distribution, 383
assay and characterization, 382–384
baseline titer, 405–406
basis of protective action, 389
natural, 383
Vibriocidal antibody tests, 136, 139

Vibriocidae, 3

Vibrio cincinnatiensis, 104
differentiation from *Enterobacteriaceae*, 11

Vibrio cholerae non-O1, 104

Vibrio cincinnatiensis,