One Health
People, Animals, and the Environment
One Health
People, Animals, and the Environment

EDITED BY
Ronald M. Atlas
University of Louisville, Louisville, KY 40292
and
Stanley Maloy
San Diego State University, San Diego, CA 92182

ASM PRESS
Washington, DC
CONTENTS

Contributors ... vii
Preface ... xi

One Health: What Is It and Why Is It Important?

1. Combating the Triple Threat: The Need for a One Health Approach
 Lonnie J. King ... 3
2. The Value of the One Health Approach: Shifting from Emergency Response to Prevention of Zoonotic Disease Threats at Their Source
 David L. Heymann and Matthew Dixon .. 17
3. The Human-Animal Interface
 Leslie A. Reperant and Albert D. M. E. Osterhaus 33
4. Ecological Approaches to Studying Zoonoses
 Elizabeth H. Loh, Kris A. Murray, Carlos Zambrana-Torrelio, Parviez R. Hosseini, Melinda K. Rostal, William B. Karesh, and Peter Daszak 53
5. Emerging Infectious Diseases of Wildlife and Species Conservation
 G. Medina-Vogel .. 67

Zoonotic and Environmental Drivers of Emerging Infectious Diseases

6. RNA Viruses: A Case Study of the Biology of Emerging Infectious Diseases
 Mark E. J. Woolhouse, Kyle Adair, and Liam Brierley 83
7. Factors Impacting the Control of Rabies
 Louis H. Nel .. 99
8. Emergence of Influenza Viruses and Crossing the Species Barrier
 Zeynep A. Koçer, Jeremy C. Jones, and Robert G. Webster 115
9. One Health and Food-Borne Disease: *Salmonella* Transmission between Humans, Animals, and Plants
 Claudia Silva, Edmundo Calva, and Stanley Maloy 137
10. Cholera: Environmental Reservoirs and Impact on Disease Transmission
 Salvador Almagro-Moreno and Ronald K. Taylor 149
11. White-Nose Syndrome: Human Activity in the Emergence of an Extirpating Mycosis
 Hannah T. Reynolds and Hazel A. Barton 167

One Health and Antibiotic Resistance

12. Antibiotic Resistance in and from Nature
 Julian Davies .. 185
Disease Surveillance

13. Public Health Disease Surveillance Networks • Stephen S. Morse 197
14. Web-Based Surveillance Systems for Human, Animal, and Plant Diseases • Lawrence C. Madoff and Annie Li 213
15. Genomic and Metagenomic Approaches for Predicting Pathogen Evolution • Veronica Casas and Stanley Maloy 227

Making One Health a Reality

17. Defining the Future of One Health • Martyn Jeggo and John S. Mackenzie .. 255
18. Making One Health a Reality—Crossing Bureaucratic Boundaries • Carol Rubin, Bernadette Dunham, and Jonathan Sleeman 269
20. The Future of One Health • Ronald M. Atlas and Stanley Maloy 303

Index .. 307
CONTRIBUTORS

Kyle Adair • Centre for Immunity, Infection & Evolution, and Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
Salvador Almagro-Moreno • Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
Ronald M. Atlas • Department of Biology, University of Louisville, Louisville, KY 40292-0001
Hazel A. Barton • Department of Biology, University of Akron, Akron, OH 44325-3809
Liam Brierley • Centre for Immunity, Infection & Evolution, and Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
Edmundo Calva • Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
Veronica Casas • Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
David W. Chapman • Department of Organizational Leadership, Policy, and Development, University of Minnesota-Twin Cities, Minneapolis, MN 55455
Edward E. Clark • Wildlife Center of Virginia, Waynesboro, VA 22980
Peter Daszak • EcoHealth Alliance, New York, NY 10001
Julian Davies • Department of Microbiology and Immunology, Life Science Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
John Deen • Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108
Matthew Dixon • The Centre on Global Health Security, Chatham House, The Royal Institute of International Affairs, London SW1Y 4LE, United Kingdom
Bernadette Dunham • Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD 20855
Julie C. Ellis • Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA 01536
Macdonald W. Farnham • Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108
John R. Fischer • Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
Richard French • University of New Hampshire, New Hampshire Veterinary Diagnostic Laboratory, Durham, NH 03824
Carolyn Garcia • School of Nursing, University of Minnesota-Twin Cities, Minneapolis, MN 55455
Contributors

Colin M. Gillin • Wildlife Health and Population Lab, Oregon Department of Fish and Wildlife, Corvallis, OR 97330
Duncan Hannant • Department of Applied Immunology, School of Veterinary Medicine and Science, University of Nottingham Sutton Bonington Campus, Nottingham LE12 5RD, United Kingdom
David L. Heymann • The Centre on Global Health Security, Chatham House, The Royal Institute of International Affairs, London SW1Y 4LE, United Kingdom, and Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
Megan K. Hines • Wildlife Data Integration Network, Department of Surgical Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706
Parviez R. Hosseini • EcoHealth Alliance, New York, NY 10001
William D. Hueston • Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108
Martyn Jeggo • Geelong Centre for Emerging Infectious Diseases, Deakin University, Waurn Ponds Campus, Geelong, Victoria VIC 3220, Australia
Jeremy C. Jones • Department of Infectious Diseases, Division of Virology, St. Jude Children’s Research Hospital, Memphis, TN 38105
William B. Karesh • EcoHealth Alliance, New York, NY 10001
Lonnie J. King • College of Veterinary Medicine, Ohio State University, Columbus, OH 43210
Zeynep A. Koçer • Department of Infectious Diseases, Division of Virology, St. Jude Children’s Research Hospital, Memphis, TN 38105
Richard Kock • Department of Pathology & Infectious Diseases, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
Meggan E. Kraft • Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108
Annie Li • City University of Hong Kong, Department of Biology and Chemistry, Kowloon Tong, Kowloon, Hong Kong
Elizabeth H. Loh • EcoHealth Alliance, New York, NY 10001
John S. Mackenzie • Curtin University, Perth, Western Australia WA 6012, Australia, and Burnet Institute, Melbourne, Victoria VIC 3004, Australia
Lawrence C. Madoff • ProMED-mail, University of Massachusetts Medical School, Massachusetts Department of Public Health, Jamaica Plain, MA 02130
Michael Mahero • Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108
Stanley Maloy • Center for Microbial Sciences, San Diego State University, San Diego, CA 92182-1010
Cris Marsh • Wildlife Data Integration Network, Department of Surgical Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706
Patrick P. Martin • New York State Department of Environmental Conservation Wildlife Health Unit, Albany, NY 12233-4752
Robert G. McLean • Division of Biology, Kansas State University, Manhattan, KS 66506
Tracey S. McNamara • Western University of Health Sciences, Pomona, CA 91766
Contributors

Dave McRuer • Wildlife Center of Virginia, Waynesboro, VA 22980

G. Medina-Vogel • Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, República 440, Santiago, Chile

Stephen S. Morse • Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032

Lawrence Mugisha • Department of Wildlife and Resource Management, Makerere University College of Veterinary Medicine, Animal Resources and Biosecurity, Kampala, Uganda

Kris A. Murray • EcoHealth Alliance, New York, NY 10001

Louis H. Nel • Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0001, South Africa

Felicia B. Nutter • Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536

Serge Nzitchueng • Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108

Debra Olson • School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN 55455

Albert D. M. E. Osterhaus • Department of Viroscience, Erasmus Medical Centre, 3000 CA Rotterdam, The Netherlands, and Artemis Research Institute for Wildlife Health in Europe, 3584 CK Utrecht, The Netherlands

Amy Pekol • Department of Organizational Leadership, Policy, and Development, University of Minnesota-Twin Cities, Minneapolis, MN 55455

Katharine M. Pelican • Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108

Leslie A. Reperant • Department of Viroscience, Erasmus Medical Centre, 3000 CA Rotterdam, The Netherlands

Hannah T. Reynolds • Department of Biology, University of Akron, Akron, OH 44325-3809

Cheryl Robertson • School of Nursing, University of Minnesota-Twin Cities, Minneapolis, MN 55455

Melinda K. Rostal • EcoHealth Alliance, New York, NY 10001

Carol Rubin • National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Innocent B. Rwego • Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, and Department of Biological Sciences, Makerere University, Kampala, Uganda

Emi K. Saito • National Surveillance Unit, Centers for Epidemiology and Animal Health, USDA APHIS Veterinary Services, Fort Collins, CO 80526

Krysten L. Schuler • Animal Health Diagnostic Center, Ithaca, NY 14850

William F. Siemer • Human Dimensions Research Unit, Department of Natural Resources, Cornell University, Ithaca, NY 14853

Claudia Silva • Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico

Kurt Sladky • Wildlife Data Integration Network, Department of Surgical Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706
 Contributors

Victoria Szewczyk • Wildlife Data Integration Network, Department of Surgical Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706
Ronald K. Taylor • Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
Dominic A. Travis • Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108
Robert G. Webster • Department of Infectious Diseases, Division of Virology, St. Jude Children’s Research Hospital, Memphis, TN 38105
Peregrine L. Wolff • Nevada Department of Wildlife, Reno, NV 89512
Mark E. J. Woolhouse • Centre for Immunity, Infection & Evolution, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3JT, United Kingdom
Lisa Yon • School of Veterinary Medicine and Science, University of Nottingham Sutton Bonington Campus, Nottingham LE12 5RD, United Kingdom, and Twycross Zoo-East Midland Zoological Society, Twycross CV9 3PX, United Kingdom
Carlos Zambrana-Torrelio • EcoHealth Alliance, New York, NY 10001
One Health, the emerging discipline that brings together human, animal, and environmental health, is critical for the future control of infectious diseases. Over the past 30 years, new infectious diseases have been arising at an unprecedented frequency. Many diseases such as *Escherichia coli* O157:H7 infection, Lyme disease, hantavirus pulmonary syndrome, Nipah virus disease, and severe acute respiratory syndrome (SARS) were unknown before 1982. Other diseases that seemed to be dying out are now reemerging, including rabies and food-borne diseases. Some diseases like West Nile fever have leaped across oceans and spread across continents. Antibiotic resistance is increasing at an alarming rate. Where are the new diseases coming from? Why is the incidence of these diseases increasing? What can we do to respond to these health threats that seemingly arise suddenly? The answers to these questions lie in the One Health approach for achieving harmonized strategies for disease detection and prevention.

The vast majority of emerging infectious diseases in humans are zoonoses. The factors responsible for many of these diseases in humans often share common themes: environmental disruption by humans, exposure of microbes to a different niche that selects for new virulence traits and facilitates transmission to animals, and genetic changes that permit subsequent transmission to humans. In retrospect, this sequence is not surprising. Microbial evolution occurs rapidly. The increase in the human population has prompted the encroachment of humans into new environments, disrupting the ecology of these habitats and bringing humans and domestic animals into contact with wildlife. Exposure to wildlife facilitates the transmission of new diseases that were previously contained within localized niches.

This process is not unidirectional. Devastating infectious diseases in animals often result from human disruption of habitat. Examples include toxoplasmosis in marine mammals, leptospirosis in river otters, white-nose bat syndrome, and many other diseases that impact threatened species and reduce biodiversity.

Furthermore, as clearly demonstrated by the international spread of SARS and influenza and the impact of chytridiomycosis on amphibian populations worldwide, the emergence and re-emergence of infectious diseases are global problems. Extensive international travel and trade networks make it possible for pathogens to move from anywhere in the world to dense population centers within days.

This interdependence between human health, animal health, and environmental health underpins the concept of “One Health.” Solutions to the growing problems with infectious disease demand collaboration between experts in many disciplines, including human medicine, animal medicine, and environmental sciences. However, there remain many barriers to implementation of an interdisciplinary One Health approach. Education of physicians, veterinarians, and environmental scientists is typically done as a focused discipline with little emphasis on the other domains. Most funding sources are directed specifically at
human medicine, animal medicine, or environmental science, rather than the interfaces among these domains. Further, there is often ineffective communication between governmental agencies responsible for each of these domains within and between countries. Now, however, driven by the tremendous health and economic impact of infectious disease, the barriers are beginning to break down.

One Health is a paradigm shift in how we respond to the threat of emerging infectious diseases. The traditional approach has been to identify a sick person or animal, identify the pathogen, and apply a therapy to reduce the symptoms of disease. In contrast, the One Health approach focuses on surveillance of the environment, animals, and humans to predict an outbreak of disease before it happens, then to bring together environmental scientists, animal experts, and human physicians to develop upstream interventions that prevent the transmission of disease. This approach was not feasible before the development of computational approaches to analyze the large, complex data sets required to compile information from around the globe, evaluate the data, and pinpoint potential problems. In addition to reports from physicians and veterinarians, the data-gathering required for effective surveillance also includes social networking tools and new rapid laboratory approaches for DNA sequence analysis. Thus, although the close relationship between the environment, animals, and humans has been recognized for ages, the One Health initiative provides practical solutions that have broad implications. Interestingly, the greatest acceptance of One Health is seen in the developing world, where it is having significant impacts on control of infectious diseases.

This book presents core concepts, compelling evidence, successful applications, and the remaining challenges of One Health approaches to thwarting the threat of emerging infectious disease. The scientific insights described are timeless, and the potential solutions are timely. The One Health approach is simply too important to ignore.

Ronald M. Atlas and Stanley Maloy
November 2013
INDEX

Acanthamoeba castellanii, 149, 158
Acanthamoeba polyphaga, 158
Actinobacteria, resistance genes in, 190
Adhesins, of *Salmonella*, 143–145
AFENET (African Field Epidemiology Network), 296
Africa, 285–302; see also individual countries
challenges to change in, 297–298
One Health case studies in, 292–295
One Health community-based capacity in, 295–297
Ubuntu leadership style in, 298–299
universities in, 286–290
zoonotic disease prevention in, 290–292
Africa Rabies Expert Bureau, 107
African Field Epidemiology Network (AFENET), 296
African Mokola virus, 101
African Research Consortium on Ecosystem and Population Health, 288
African Union Interafrican Bureau for Animal Resources, 291
Agency for International Development Emerging Pandemic Threats RESPOND Program, 279–280
Agriculture
animal expansion in, 7
aminal-human interface and, 36–43, 256–257
antibiotic use in, 189–190
Air travel, emerging infections and, 258–259
Albatross, 68
Algae, *Vibrio cholerae* interactions with, 158
Alien species, in fragmented habits, 72–73
Alliance for Rabies Control, 107
Altizer temporal distribution model, 58
Amantadine, for influenza virus, 130
American Association of Wildlife Veterinarians, 279
American Society for Microbiology, 262
American Veterinary Medical Association, 262, 279
Amphibians, *Batrachochytrium dendrobatidis* in, 68–69
Anabaena, 149
Animal and Plant Health Inspection Service (APHIS), 242–243, 246, 271–273
Animal Domain, of One Health approach, 7, 255–257
Animal feed, antibiotics in, 189–190
Animal husbandry
intensification of, 46–48
origin of, 37
Antarctic, wildlife pathogens in, 68
Antibiotic(s)
history of, 185–186
overuse of, 26–27, 48, 189–190
as research tools, 191
toxicity of, 192
Antibiotic resistance, 48, 185–194
control and prevention of, 191–192
emergence of, 186–187
genes for, 186–187
historical view of, 185–186
mechanisms of, 187–188
in *Mycobacterium tuberculosis*, 188–189
origin of, 190–191
spread of, 188
Antigenic drift, in influenza virus, 117–118
Antigenic shift, in influenza virus, 117–118
ArboNET database, 249
Argus system, 214
Arctic, wildlife pathogens in, 68
Arctic Research Consortium on Ecosystem and Population Health, 288
Asia Rabies Expert Bureau, 107
Asian Development Bank, 287
Asia-Pacific Economic Cooperation, 263–265
Association of Fish and Wildlife Agencies, 240, 246
Association of Zoos and Aquariums, 249
Athens, Plague of (430 B.C.), 41
Australia, Prime Minister’s Science, Engineering and Innovation Council, 259–260
Babylon, urbanization of, 40
Bacteriophages, for *Vibrio cholerae*, 158–159
Basic reproduction number, 57–58, 87
Bat(s)
rabies virus in, 101
white-nose syndrome in, 10–11, 46, 167–181
Batrachochytrium dendrobatidis, 10–11, 56
extinction due to, 69
spread of, 46
transmission of, 68–69
Baylisascaris procyonis, 42
Behavioral innovations
by hunter-gatherers, 36–39
in urbanization, 41
Berkelman, Ruth, 197–198
Biodiversity
alien species and, 72–73
definition of, 67
emerging infections and, 69–70
landscape structure and, 70–72
Biofilms
Salmonella in, 144
Vibrio cholerae in, 155–156
Biogeography, 60–62, 68–69
Biological weapons, plague as, 43
Bioterrorism, food crops targeted in, 214
Birds
H5N1 virus in, 271–273
influenza virus in, 118–122
Vibrio cholerae interactions with, 155–156
West Nile virus in, 237–242, 244–245, 248–249
Black Death, see Yersinia pestis
Blood-brain barrier, rabies virus entry into, 104
Blue Paw Trust, 109
Blue Ribbon Panel on Influenza Research, 271
Bocavirus, origin of, 37
Bonobos, human diseases transferred to, 292–293
Bordetella bronchiseptica, 40–41
Bordetella pertussis, 37, 40–41
Borrelialosis, see Lyme disease
Bovine spongiform encephalopathy, 258
economic burden of, 19
emergence of, 26
spread of, 47–48
Broad-host-range pathogens, Salmonella, 139–142
Bronx Zoo, 249
Brucella, 46
Brundtland, Gro Harlem, 5
Bubonic plague, see Yersinia pestis
Bunyaviridae, 99–100
Bureaucratic boundaries, crossing, 269–283
Bursa disease virus, 68
Bush meat
demand for, 42
pathogens in, 38–39, 45
Canada, Public Health Agency of, 262
Canine distemper virus, transmission of, 57
Canine hepatitis C virus, 37
Canine parvovirus, 38
Capture-mark-recapture method, 59–60
Carlsbad Caverns, 174
Cats, influenza virus in, 125
Caves, white-nose syndrome in, 169, 173–176, 178
Centers for Disease Control and Prevention, 54
avian influenza research in, 270–271
data collection from, 215
Emerging Infections Program, 275
influenza virus surveillance by, 130–131
One Health office in, 304
public health surveillance function of, 197–199, 203
Salmonella information from, 138–139
West Nile virus outbreak and, 238
Centers for Excellence for Influenza Research and Surveillance, 270–271
Chagas disease, land use changes and, 59
Children's Hospital Boston, 219
Chile, Leptospira in, 73–74
Chiropeters
rabies virus in, 100–101
white-nose syndrome in, 10–11, 46, 167–181
Chitin, Vibrio cholerae interactions with, 155–156
Cholera, see Vibrio cholerae
Cholera toxin, 149, 152
Chronic wasting disease, 42
Chytridiomycosis, see Batrachochytrium dendrobatidis
Civil disturbance, disease outbreaks due to, 24
Climate change
disease emergence in, 25–26
emerging infections and, 258–259
industrialization and, 48
pathogen distribution patterns and, 48
pathogen evolution and, 227–229
Coleman, James, 286
Collaborating Centers, for surveillance, 198–199
Collaboration
among disciplines, 55
case study of, 277–278
Colobus, in fragmented habitats, 72
Colombo Municipal Council, 109
Colonization, human-animal interface and, 43–46
Commensals, urbanization effects on, 42
Communication
disorganized, in influenza epidemic, 273–274
facilities for, 271
for One Health programs, 297
Community-based capacity, in Africa, 295–297
Competition
alien species and, 73
terrestrial, 69–70
Connecting Organizations for Regional Disease Surveillance (CORDS), 205
Conservation & Ecosystem Health Alliance, 296
Conservation through Public Health, 296
Consortium for Advanced Research Training in Africa, 288
Cooperation, interagency, case study of, 275
Coordinating Committee for Pandemic Influenza Preparedness, 272–273
Copepods, *Vibrio cholerae* interactions with, 155–156
CORDS (Connecting Organizations for Regional Disease Surveillance), 205
Cornell University, 246
Coronaviruses, 20–21
Corynebacterium diphtheriae, 37
Craft model, for pathogen transmission, 57
Creutzfeldt-Jakob disease, variant, 19, 47–48
Crowd diseases, 40, 43, 87, 90
Crows, West Nile virus in, 237–242, 244–245, 248–249
Crustaceans, *Vibrio cholerae* interactions with, 155–156
Cryptococcus gattii, 10–11
Cryptococcus neoformans, 10–11
Cysticercosis Working Group in Eastern and Southern Africa, 288
Daptomycin resistance, 188
Daszak, Peter, 305
Data collection, for surveillance, 215–217
Deer die-off study, 244–245
Deltavirus, 84
Dengue virus, 258
transmission of, 45, 87
virulence of, 91–92
Density-dependent transmission, 56–57
Department of Agriculture (U.S.), 54, 238
Department of Wildlife and National Parks, Malaysia, 198
Dictyostelium discoideum, 159
Dilution effect, loss of, 70
Dingle-Johnson Act, 241–242
Disease Emergence and Resurgence, 239
Division of Vector-Borne Diseases, 238
DNA viruses
evolution of, 35
vs. RNA viruses, 83
Dog rabies
control of, 104–110, 294–295
evolution of, 100–101
pathogenicity of, 102–104
Domestication, of plants and animals, 36–43
DT104 phage, *Salmonella*, 140
Ducks, influenza virus in, 118–119
Dynein light chain, in rabies pathogenicity, 103
East Africa Integrated Disease Surveillance Network, 204
Ebola virus, 296
emergence of, 93
in great apes, 292
origin of, 26, 38–39
outbreaks of, 25
EcoHealth Alliance, 204, 279
Ecological approaches, to studying zoonoses, 53–66
biogeography, 60–62
capture-mark-recapture, 59–60
host-pathogen, 55–56
land use changes, 58–59
occupancy modeling, 60
spatial structure, 58
temporal structure, 58
transmission, 56–58
Economic burden
of false pandemic information, 274
of zoonoses, 18–20, 46
Edinburgh University, 263
Education, see also Universities
new approaches to, 298
Ehrlich, Paul, 185
Einstein, Albert, 187
Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE II), 207
Emergency Center for Transboundary Animal Diseases, 271
Emergency response, vs. preventive approach, 17–21
Emerging infections, see also specific infections
definition of, 18
determinants of, 21–27
examples of, 18
factors causing, 258–259
RNA viruses in, 5
in wildlife, species conservation and, 67–79
Emerging Infections Program, 275
Emerging Pandemic Threats program, 201, 205
EMPRES Global Animal Disease Information System, 200, 220
Endemic viruses, 87
Enter-Net, 138
Environment, disruption of, pathogen evolution due to, 231–232
Environmental domain, of One Health approach, 9–11
EpiSPIDER, 214
Equine influenza virus, 124
Erysipelothrix, 68
Escherichia coli
food contamination by, 258
outbreaks of, 139
310 Index

resistance genes in, 190
surveillance for, 138–139
Escherichia coli O157:H7
emergence of, 26
genomic analysis of, 230
interagency cooperation concerning, 275
ESSENCE II (Electronic Surveillance System for the Early Notification of Community-Based Epidemics), 207
European External Action Service, 262
European Union, Salmonella surveillance by, 138
Eurosurveillance journal, 139
Evolution, of pathogens in humans, 35–36
pathogen, prediction of, 227–235
Exotoxin genes, detection of, 229–231
Extinction
host, 56–57
pathogens causing, 69
rate of, 60–62
FAO (Food and Agriculture Organization), 7, 54, 200, 263, 270–271, 290
Farming, see also Agriculture
Salmonella persistence in, 142–143
Faustino mark-recapture model, 60
Federation of American Scientists, 200
Feline leukemia virus, 37
Feline panleukopenia virus, 37–38
Field Epidemiology and Laboratory Training Program, 203
Field epidemiology training programs, 264–265
Finland, Maxwell, 186
Fish and Wildlife Health Committee, 240
Fish and Wildlife Service, 241–242
Fish, Vibrio cholerae interactions with, 157
Flooding, pathogen impact of, 238
Food and Agriculture Organization (FAO), 7, 54, 200, 263, 270–271, 290
Food and Drug Administration, food safety surveillance by, 275–276
Food production, human-animal interface and, 39–43
Food safety, 8–9, 258
Food Safety and Inspection Service (FSIS), 275–276
FoodNet (Foodborne Diseases Active Surveillance Network), 9, 275–277
Foot-and-mouth disease, spread of, 45–47
Force of infection, 57
Foreign and Emergency Disease Surveillance Training Program, 244
Four Corners outbreak, of hantavirus, 238
Fragmentation, of habitats, 70–73
Frequency-dependent transmission, 57
Friend, Milton, 239–240
Fruit, Salmonella in, 143–145
FSIS (Food Safety and Inspection Service), 275–276
Fungal infections, 10–11, 46; see also White-nose syndrome
G gene, in rabies pathogenicity, 103–104
Gates Foundation, see Bill & Melinda Gates Foundation
GDD (Global Disease Detection) network, 201, 203
GEIS (Global Emerging Infections Surveillance and Response System), 201, 203
Gene transfer, phages for, 231
Genomes, analysis of, 229–231
Geological Survey (U.S.), West Nile virus outbreak and, 238
Geomyces, species in, 167
Geomyces destructans, see also White-nose syndrome
detection of, 170
epidemiology of, 170–171
pathology of, 167–170
spread of, 46
transmission of, 171, 173–175
Geomyces pannorum var. pannorum, 168
Giardiasis, outbreaks of, 24
GISRS (Global Influenza Surveillance and Response System), 198
GLEWS (Global Early Warning System for Major Animal Diseases), 201–202, 208, 270–271
Global Alliance for Rabies Control (GARC), 107–110
Global Disease Detection (GDD) network, 201, 203
Global Early Warning System for Major Animal Diseases (GLEWS), 201–202, 208, 270–271
Global Emerging Infections Surveillance and Response System (GEIS), 201, 203
Global food systems, One Health approach and, 7–9
Global Health and Security Initiative, 204
Global Influenza Surveillance and Response System (GISRS), 198
Global Livestock Production and Health Atlas, 220
Global Outbreak Alert and Response Network (GOARN), 201–202, 208, 214, 217
Global Public Health Intelligence Network (GPHIN), 202, 214, 219
Global Salm-Surv Salmonella surveillance program, 138
Globalization, human-animal interface and, 46–48
GOARN (Global Outbreak Alert and Response Network), 201–202, 208, 214, 217
Google Trends, 222
Gorillas
human diseases transferred to, 292–293
pathogen transmission to, 54
H7N7, 124
H10N4, 125
H13N2, 125
H13N9, 120
H17N7, 125
highly pathogenic, 127–129
mechanisms of, 90
origin of, 37, 115–116, 125–127
reservoirs for, 118–120
risk assessment and risk management for, 130–131
spread of, 44–45
subtypes of, 126–127
surveillance systems for, 198
transmission of, 17
type A
reservoirs for, 118–120
risk assessment and risk management for, 130–131
type B, 114
type C, 114
Insects
bat consumption of, 175–176
disease transmission by, 10, 45
Salmonella in, 142–143
Vibrio cholerae interactions with, 156–157
Institut Pasteur International Network, 204, 215
Integrated Disease Surveillance and Response guidelines, 290–291
Interagency Strategic Plan for the Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Birds, 271–273
Internal proteins, in influenza virus, 116–118
International Association of Fish and Wildlife Agencies, 271–273
International Committee for the Taxonomy of Viruses, Ninth Report of, 84
International Emerging Infections Program, 203
International Health Regulations, 19, 199, 217, 277
International Livestock Research Institute, 6
International Ministerial Conference on Animal and Pandemic Influenza, 202–203, 263
International Molecular Subtyping Network for Foodborne Disease Surveillance, 138
International One Health Congress, 262
International Society for Infectious Diseases, 214
Irkut virus, 92
Justian plague, 43
Kenya, zoonoses surveillance in, 277–278
Keratin, Geomyces destructans growth in, 169
Koch, Robert, 256, 303
Koell model, for pathogen transmission, 58
Kuhn, Thomas, 12
Kuris pathogen island theory, 61–62
Lachish occupancy model, 60
Land use, changes in, 58–59
Langmuir, Alexander, 197
Lascaux Cave, 178
Lassa fever, outbreaks of, 24, 25
Latin-America National Rabies Directors Network, 107
Lederberg, Joshua, 11–12
Leishmaniasis, land use changes and, 59
Leptospira, 73–74
Lincoln Park Zoo, 249
Livestock, diseases in, 6–7
Logging, disease origins in, 25
Low-pathogenicity avian influenza viruses, 118, 121–122, 127
Lyme disease, 9–10
biodiversity and, 70
habitat changes and, 58–59
origin of, 42
Lyssaviruses, 99–101; see also individual viruses, e.g., Rabies virus
Macroparasites, 56
Mad cow disease
economic burden of, 19
emergence of, 26
spread of, 47–48
Makeure University, 296
Malaria, epidemics of, 43–44
Malaysia, surveillance systems for, 198
Mammoth Cave, 174
Manhattan principles, 256
Marburg virus, 296
Marine otters, 70–72
Massey University, 263
Measles virus
as biological weapon, 43
epidemics of, 45
immunity to, 40
origin of, 36
Meat and bone meal, prion contamination of, 47–48
Médecins Sans Frontières, data collection from, 216
Medical doctors, animal health concerns of, 279
Medical Emergency Relief International, 216
MedISys, 214
Mekong Basin Disease Surveillance system, 201, 204
Mérieux Foundation, 204
Meru National Park, 294
Metagenomics, pathogen evolution prediction with, 227–235
Index 313

Metapneumovirus, origin of, 37, 46–47
Metapopulations, 70–72
Methicillin resistance, 188
Microparasites, 56
Middle East and Central Eastern Europe Rabies Expert Bureau, 107
Middle East Consortium on Infectious Disease Surveillanee, 204–205
Middle East respiratory syndrome, 95
Migration, human-animal interface and, 43–46
Mining, disease origins in, 25
Ministry of Livestock Development (Kenya), 277
Ministry of Public Health and Sanitation (Kenya), 277
Minks
influenza virus in, 125
Leptospira in, 74
Molecular clocks, in virus evolution, 100–101
Monarch butterflies, pathogen transmission in, 58
Mongol army, biological weapons of, 43
Monkeypox virus, 24, 38, 45
Morbilliviruses, 40
Mortality, transmission and, 56
Mosquitoes
climate change effects on, 238
disease transmission by, 10, 45
Mumps virus, 37
Mycobacterium bovis, 37, 46
Mycobacterium tuberculosis, antibiotic resistance in, 188–189
Mycoplasma gallisepticum, 56–57
NAHLN (National Animal Health Laboratory Network), 241, 249
Naïve populations, pathogen transmission to, 58
NARMS (National Antimicrobial Resistance Monitoring System), 276
National Animal Health Laboratory Network (NAHLN), 241, 249
National Antimicrobial Resistance Monitoring System (NARMS), 276
National Caves Association, 174, 176
National Center for Emerging and Zoonotic Infectious Diseases, 238
National Fish and Wildlife Health Initiative Toolkit, 240
National Fish and Wildlife Health Initiative, 240–241
National Fish and Wildlife Health Network, 273
National Food Safety Initiative, 275
National Influenza Centers, 198
National Influenza Task Force (Kenya), 277–278
National Institute of Allergy and Infectious Diseases, 271
National Institutes of Health, 200, 305
National Molecular Subtyping Network for Foodborne Disease Surveillance (PulseNet), 138, 216, 275–277
National Park Service, 279
National parks, great ape studies in, 292–293
National Science Foundation, 305
National Strategy for Biosurveillance, 198
National Task Force for Epidemic Preparedness and Response (Uganda), 291–292
National Veterinary Services Laboratories, 274
National Wildlife Disease Program (NWDP), 243–244
National Wildlife Health Center (NWHC), 238, 242–244
Ndelele, Dumisani, 298
Nelson Bay orthoreovirus, 92
Neolithic evolution, human-animal interface during, 37
Neuraminidase, in influenza virus, 116–118
Neuronal cell adhesion molecule, in rabies pathogenicity, 102
Neurotrophin, in rabies pathogenicity, 102
Neurotropism, of rabies virus, 99, 102–104
New Hampshire Veterinary Diagnostic Lab, 246
New York State Department of Environmental Conservation, 238–239, 243
NEWEDC (Northeast Wildlife Disease Cooperative), 245–246
Nicotinic acetylcholine, in rabies pathogenicity, 102
Nielsen, Svend, 245
Nipah virus, 25, 39, 46, 53, 83, 231
Nodaviridae, 85
Nodding disease, 291
Northeast Research Center for Wildlife Diseases, 245
Northeast Wildlife Disease Cooperative (NEWEDC), 245–246
Novel Technologies for Surveillance of Emerging and Re-emerging Infections of Wildlife (WildTech), 249
Nuclear Threat Initiative, 204
NWDP (National Wildlife Disease Program), 243–244
NWHC (National Wildlife Health Center), 238, 242–244
Occupancy modeling, 60
Occupation, disease origins in, 25
Office International des Epizooties (OIE), 54, 249
database of, 200, 221
eye detection by, 259
rabies virus focus by, 106–107
surveillance by, 200
syndromic surveillance by, 206–207
training workshops of, 290

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Tue, 12 Feb 2019 19:23:59
“Off-the-shelf” viruses, 89
OIE, see Office International des Epizooties (OIE)
One Health Action Plan, 263
One Health Alliance of South Asia, 204
One Health approach
animal domain of, 7
in Asian-Pacific countries, 263–265
background of, 4–5
crossing bureaucratic boundaries with, 269–283
definition of, 22–23
environmental domain of, 9–11
evolution of, 261–263
flow chart for, 22–23
future of, 255–267, 303–306
global food systems and, 7–9
human domain of, 5–7
human-animal interface in, 33–52
infectious disease component of, 257–261
need for, 11–13
One Medicine evolution into, 54
overview of, 11–13
preventive approach in, 17–31
One Health Central and Eastern Africa (OHCEA)
university network, 287–290
One Health Commission, 262
One Health Global Network, 262–263
One Health Initiative-African Research Consortium
on Ecosystem and Population Health, 288
One Health Interagency Working Group, 279
One Health National Networks for Enhanced
Research in Infectious Diseases, 288
One Health Virtual Centre Model, 262
“One Medicine” concept, 53, 256
Ophryocystis elektroscirrha, 58
Oropouche virus, 95
Oseltamivir, for influenza virus, 130
Osler, Sir William, 303–304
Otters, 70–72, 73–74
Outbreaks, 223, 257–258
“Outbreaks Near Me,” 219
Oysters, Vibrio cholerae interactions with, 156
Pan American Health Organization, 107
Parasites, evolution of, 35
Partners for Rabies Prevention, 108, 110
Paroviruses, origin of, 38
Pasteur, Louis, 11, 99, 104–105, 107, 256, 303
Pasteurella multocida, 68
Pathogen islands, 61–62
Pathogen pyramid, for RNA viruses, 86–89
PCR (polymerase chain reaction), for Geomyces
destructans, 170
Penguins, 68
Penicillin resistance, 188, 189
People, Pathogens, and Our Planet, 262
Pets

disease transmission from, 24
pathogens origin in, 38
Phages, sequencing of, 230–231
Phocine distemper virus, 68
Photobacterium, 151
Phylogeny, of pathogens, 36
Pig(s)

farming of pathogen transmission in, 46–47
influenza virus in, 122–124
Pitman-Robertson Act, 241–242
Plague, see Yersinia pestis
Plants, Vibrio cholerae interactions with, 158
Plasmodium, 43–44, 60
Policy, evidence for, 27–28
Polynesian tree snail, 69
Population

growth of, human-animal interface and, 39–43
movement of, 6
Poultry

H5N1 influenza in, 270–271
influenza virus in, 121–122, 127–129
pathogen spread in, 46–47
Poverty, 6
Prairie dogs, diseases in, 72
Predators, role in food chain regulation, 69
PREDICT program, 201, 205–206
Preventive approach, vs. emergency response, 17–21
Primate(s), viruses transmitted from, 91–92
Primate T-lymphotropic virus 3, 92
Prime Minister’s Science, Engineering and
Innovation Council, 259–260
Produce, Salmonella in, 143–145
ProMED (Program for Monitoring Emerging
Diseases), 200–202, 206, 214, 218–219
Protozoa, Vibrio cholerae interactions with,
157–159
Pseudogenes, Salmonella, 139–140
Public health surveillance, 197–211
description of, 197–199
for emerging diseases, 205–206
H5N1 impact on, 202–203
history of, 200–202
international reporting systems for, 199–200
networks for, 203–205
purpose of, 198
syndromic, 206–207
types of, 198
Pufferfish toxins, 151
PulseNet, 138, 216, 275–277
Queen Elizabeth National Park, 291
Rabies in Asia Foundation, 107
Rabies in Eurasia, 107
Rabies in the Americas Association, 107
Rabies virus, 99–114
 blood-brain barrier penetration by, 102–104
 control of, 99, 104–110, 294–295
 emergence of, 100–101
 evolution of, 100–101
 human burden of, 105
 immune evasion by, 102–104
 misdiagnosis of, 105
 mortality in, 106
 opportunist nature of, 102
 organizations focused on, 107–109
 pathogenicity of, 102–104
 prevention of, 294–295
 transmission of, 45, 89, 102
 virulence of, 91–92
in wildlife, 104–105
Ramses V, Pharaoh, 40
Red colobus, in fragmented habitats, 72
Red Crescent, data collection from, 216
Red Cross, data collection from, 216
Regional Economic Communities, 291
Regional Emergency Animal Disease Eradication Organization, 245
Reperant approach, to disease emergence, 62
Reproduction number, basic, 57–58
Reptiles, Salmonella in, 138
Research
 in avian influenza outbreak, 270–271
 in universities, see Universities
Resistance, antibiotic, 48, 185–194
Reward systems, for One Health programs, 297
Rhabdoviridae, 100
Rhabdoviruses, 99–100; see also individual viruses, e.g., Rabies virus
Rhinovirus C, 92
Rift Valley fever, 25, 26, 277
Rimantadine, for influenza virus, 130
Rinderpest, 40, 45, 293–294
Risk assessment
 for influenza virus, 130–131
 for RNA viruses, 94–95
River otters, Leptospira in, 73–74
RNA viruses, 83–97; see also specific viruses
 conceptual model for, 93–95
 diversity of, 84–85
 vs. DNA viruses, 83
 emergence of, 5, 84–85, 92–93
 evolution of, 35, 85
 human-adapted, 89–90
 humans vs. nonhumans, 85
 mechanisms of, 90–91
 mutation of, 18
 pathogen pyramid for, 86–89
 transmission of, 86–91
 unrecognized, 85
 virulence of, 91–92
Rockefeller Foundation, 279
Rodents, hantaviruses in, 38
Rodolphe Mérieux Laboratories, 204
Saliva, rabies virus in, 102
Salmonella, 137–148
 climate change effects on, 238
 distribution of, 137–138
 evolution of, 140–141
 food contamination by, 258
 genomes of, 139
 host specificity of, 139–140
 identification of, 138–139
 nonmammalian vectors for, 141–143
 origin of, 37, 38
 plant interactions with, 143–145
 surveillance for, 138–139
Salmonella enterica, epidemics of, 41
Salmonella enterica serovar Abortusequis, 137, 140
Salmonella enterica serovar Abortusovis, 137, 140–141
Salmonella enterica serovar Choleraesuis, 137, 140
Salmonella enterica serovar Dublin, 137, 140–141
Salmonella enterica serovar Enteritidis, 138, 140–142, 144
Salmonella enterica serovar Gallinarum, 137, 141
Salmonella enterica serovar Montevideo, 144
Salmonella enterica serovar Newport, 144
Salmonella enterica serovar Paratyphi, 137, 140
Salmonella enterica serovar Pullorum, 137, 141
Salmonella enterica serovar Sendai, 137, 140
Salmonella enterica serovar Thompson, 143
Salmonella enterica serovar Typhi, 137
Salmonella enterica serovar Typhimurium, 138, 140, 144
Salmonella enterica serovar Typhisus, 137
Salmonella virulence plasmid pSV, 139–140
Sanofi Pasteur, 107
Sari filtration method, for Vibrio cholerae, 156
SARS (severe acute respiratory distress syndrome), 20–21, 23, 25
 emergence of, 92–93
 origin of, 38, 45
 outbreaks of, 43
 recognition of, 214
 spread of, 44
 surveillance for, 199
 virulence of, 91–92
SCDDS (Southeastern Cooperative Deer Disease Study), 244–245
Schmallenberg virus, 95
Schwabe, Calvin, 53, 256, 303–304
SCT integrative conjugative element, Vibrio cholerae, 154

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Tue, 12 Feb 2019 19:23:59
Sea otters, *Leptospira* in, 73–74
Seabird Ecological Assessment Network (SEANET), 248
Seals, 68, 125
SEANET (Seabird Ecological Assessment Network), 248
Search terms, for surveillance, 221–222
Sentinel physicians, 199
Sentinel surveillance for RNA viruses, 94–95
in zoos, 248–249
Seoul virus, spread of, 45
Serengeti National Park, 294–295
Shellfish, *Vibrio cholerae* interactions with, 156
Siemer survey, on wildlife disease surveillance, 240–241
Simian foamy virus, 24, 87
Simian immunodeficiency virus, 292
Simplification, ecological, 69–70
Sin Nombre virus, 238
Smallpox virus as biological weapon, 43
immunity to, 40
origin of, 36–38, 40
Snails, 69
Soil, *Salmonella* in, 142–143
Southeastern Cooperative Deer Disease Study (SCDDS), 244–245
Southeastern Cooperative Wildlife Disease Study (SCWDS), 244–245
Southern African Centre for Infectious Disease Surveillance, 204, 262, 288
Southern African Development Community Transboundary Animal Diseases, 288
Southern and Eastern African Rabies Group, 107
Spatial structure, zoonoses and, 58
Species barrier pathogens crossing, 33–36, 40, 42
RNA viruses, 90–91
Species conservation, emerging infections and, 67–79
spv region, *Salmonella*, 140
Staphylococcus aureus, antibiotic resistance in, 186
Steinhausia, 69
Stone Mountain, Georgia, One Health meeting at, 262–263, 279–280
“Strategic Framework for Reducing Risks of Infectious Diseases at the Animal-Human-Ecosystems Interface,” 263
Streptomycin, resistance to, 189, 191
Surveillance for influenza virus, 130–131
Kenya system for, 277–278
overview of, 215
public health networks for, 197–211
for RNA viruses, 94–95
for *Salmonella*, 138–139
web-based systems for, 213–225
for wildlife diseases, 237–251
Surveillance and Emergency Response System, 243
Surveillance for West Nile Virus in Zoological Institutions program, 249
Susceptible, infectious, recovered (SIR) model, for pathogen transmission, 57
Swine, *see* Pig(s)
Taenia, origin of, 37
“Tailor-made” viruses, 89
Tanzania, rabies control in, 294–295
Team building, 279–280
Telemetry, for wildlife studies, 57
Temporal structure, zoonoses and, 58
Terrestrial Animal Health Code, 202
Thacker, Stephen, 197–198
“The Disease Daily,” 219
Threshold density, in transmission, 56
Thucydides, 41
Ticks, Lyme disease and, 9–10
Tissue tropism, RNA viruses, 91
Toxin(s), *Vibrio cholerae*, 149, 151–152, 154
Toxin-coregulated toxin, 149
ToxT, 152–153
Trade, human-animal interface and, 43–46
Transmission, *see also specific pathogens and vectors*
of RNA viruses, 86–91
study approaches for, 56–58
Travel, pathogen transmission in, 44–45
Trichinella spiralis, spread of, 45
Tripartite agreement, 202–203, 291
Tropism, RNA viruses, 91
Tuberculosis, antibiotic-resistant, 188–189
Tufts University, 246
Tutu, Archbishop Desmond, 298–299
Twitter, 222
Typhoid fever, 41
Typhus, origin of, 39
Ubuntu leadership, 298–299
Uganda emerging diseases in, 291–292
surveillance systems in, 198
UNESCO, 287
United Kingdom Health Protection Agency, 138
United Nations Children’s Fund, 259
United Nations Framework Convention on Climate Change, 26
United Nations Human Development Index, 285
United Nations System Influenza Coordination (UNSIC), 202, 259
United States Agency for International Development, 201–202, 208, 287
United States Geological Survey, 271–273
Universities, see also individual universities in Africa, 286–290, 296–297
One Health programs at, 264–265
University of California Davis, 263
University of Connecticut, 245, 246
University of Georgia, 244
University of Maine, 246
University of Minnesota, 279
University of Nottingham, 249
University of Wisconsin, 248
UNSIC (United Nations System Influenza Coordination), 202, 259
Urban communities and urbanization
animal populations in, 24–25
human-animal interface and, 39–43
pathogen transmission in, 56
Vaccination
influenza virus, 129–130
rabies, 294–295
Value systems, for One Health programs, 297–298
Vancomycin resistance, 187–188
Vector(s)
geography and, 62
for RNA viruses, 87
Vegetables, Salmonella in, 143–145
Veterinarians
collaboration with, 279
importance of, 238, 241–243, 248
VetNet, 276
Vibrio anguillarum, 151
Vibrio cholerae, 10, 149–165
carriers of, 153–154
classical, 151–152
climate change effects on, 238
conditionally viable environmental cells, 153
distribution of, 149
ecology of, 152–154
El Tor, 151–152
epidemiology of, 152–154
evolution of, 154–155
foes of, 158–159
genome of, 154–155
hosts of, 153–158
infectious dose of, 149–151
life cycle of, 149
noncholeragenic, 152
O1, 149, 151–152, 154–155, 157
O139, 149, 154–155
pathogenicity islands of, 154
pathogenicity of, 149, 151–152
serogroups of, 149
toxins of, 149, 151–152, 154
transmission of, 57–58
viable but not culturable, 153
virulence factors of, 149, 154–155
Vibrio corallilyticus, 151
Vibrio fischeri, 151
Vibrio harveyi, 151
Vibrio mediterranei, 151
Vibrio parahaemolyticus, 151
Vibrio shiloi, 151
Vibrio tubiashi, 151
Vibrio vulnificus, 151
Vibrionaceae, 149, 151
Vibriophages, 158–159
Virchow, Rudolph, 256, 303–304
Virulence and virulence factors, 55–56
detection of, 229
of RNA viruses, 91–92
Vibrio cholerae, 149, 154–155
Virulence plasmid, Salmonella, 139–140
Volcanoes National Park, Rwanda, 292
VPI pandemic islands, Vibrio cholerae, 154
VSP pandemic islands, Vibrio cholerae, 154
WAHIS (World Animal Health Information System), 220–221
Water supplies, climate changes effects on, 238
WDIN (Wildlife Data Integration Network), 248
Web-based surveillance systems, 213–225
advantages of, 214
data collection for, 215–217
early example of, 214
examples of, 217–221
search terms for, 221–222
vs. traditional surveillance systems, 213
Twitter for, 222
West Nile virus, 42
emergence of, 93
outbreak of
early events in, 237–240
federal assistance with, 242–244
state level action in, 240–242, 244–245
in zoos, 248–249
transmission of, 45, 57
Wet markets, pathogen transmission in, 42
Whales, influenza virus in, 125
WHER (Wildlife Health Event Reporter), 247–248
White-nose syndrome, 10–11, 46, 167–181
behavioral characteristics of, 169–170
detection of, 170

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Tue, 12 Feb 2019 19:23:59
epidemic, 170–172
history of, 167–168
impact of, 175–176
pathophysiology of, 168–169
response to, 176–178
transmission of, 171, 173–175
Wildlife
disease origins in, 25
disease surveillance in, 237–251
federal assistance with, 242–244
history of, 237–240
importance of, 239–240
initiatives for, 245–246
outside United States, 249
private sector involvement in, 246–247
public involvement in, 247–248
at state level, 240–242, 244–245
in zoo population, 248–249
domestic animals interaction with, 46–48
emerging infections in, species conservation and, 67–79
fungal infections in, 46
inadequate focus on, 278–279
influenza virus in, 118–122
pathogens in, 38–39, 53–66
rabies virus in, 104–105
rehabilitation centers for, 246–247
surveillance systems for, 198, 208
in urban environments, 42
Wildlife Authority, Uganda, 198, 208
Wildlife Center of Virginia, 247
Wildlife Conservation Society, 256, 279
Wildlife Data Integration Network (WDIN), 248
Wildlife Health Event Reporter (WHER), 247–248
Wildlife Incident Log/Database and Online Network (WILD-ONE), 247
Wildlife Seminar for Emergency Animal Disease Preparedness, 244
WILD-ONE (Wildlife Incident Log/Database and Online Network), 247
WildTech (Novel Technologies for Surveillance of Emerging and Re-emerging Infections of Wildlife), 249
Wind Cave, 174
Wolfe, Nathan, 305
World Animal Health Information Database, 106–107, 200
World Animal Health Information System (WAHIS), 220–221
World Bank, 54, 262
World Health Assembly, 199
World Health Organization
African activities of, 290–291
data collection from, 216
on emerging diseases, 5
health definition of, 11
International Health Regulations, 277
public health surveillance definition of, 198
rabies virus focus by, 106–110
Salmonella information from, 138
World Organisation for Animal Health, See Office International des Epizooties (OIE)
World Rabies Day, 107–108
World Society for the Protection of Animals, 109
Yale University, 245
Yellow fever virus
epidemics of, 44
land use changes and, 59
outbreaks of, 291
transmission of, 87
virulence of, 91–92
Yersinia pestis
climate change effects on, 238–239
historical epidemics of, 41, 43–45
origin of, 38–39
in prairie dogs, 72
Yersinia pseudotuberculosis, 39
Zanamivir, for influenza virus, 130
Zoo surveillance, 248–249
Zoonoses, see also specific infections
asymptomatic, 18
definition of, 85
detection of, in animal population, 21
ecological approaches to studying, 53–66
emergency response to, 17–21
human-animal interface and, 33–52
pathogens causing evolution of, 35–36
species barrier crossing and, 33–34, 40, 42
prevention of, 21–28
RNA viruses in, see RNA viruses
Zoonotic Technical Working Group, 277–278