PRINCIPLES OF

Microbial Diversity
This book is dedicated to the memory of Elizabeth Haas.
You are missed by all who knew you.
Contents

Preface xi
Acknowledgments xiii
About the Author xv

SECTION I
Introduction to Microbial Diversity 3
1 What Is Microbial Diversity? 5
 Facets of microbial diversity 5
 The fundamental similarity of all living things 11
2 Context and Historical Baggage 15
 The evolution of evolutionary thought 15
 Taxonomy and phylogeny 21
 The false eukaryote-prokaryote dichotomy 22
3 Phylogenetic Information 25
 Deciding which organisms and sequences to use in the analysis 26
 Obtaining the required sequence data 29
 Assembling sequences in a multiple-sequence alignment 32
4 Constructing a Phylogenetic Tree 41
 Tree construction: the neighbor-joining method 42
 How to read a phylogenetic tree 51
 Example analysis 57
5 Tree Construction Complexities 63
 Substitution models 63
 Treeing algorithms 67
 Bootstrapping 69

6 Alternatives to Small-Subunit rRNA Analysis 73
 SSU rRNA cannot be used to distinguish closely related organisms 73
 Alternative sequences 74
 Alternatives to sequence-based methods 78

7 The Tree of Life 85
 Major lessons of the “Big Tree of Life” 85
 Rooting the “Tree of Life” 88
 The caveat of horizontal transfer 90

SECTION II
The Microbial Zoo 95

8 Primitive Thermophilic Bacteria 97
 Phylum Aquificae (Aquifex and relatives) 98
 Phylum Thermotogae (Thermotoga and relatives) 102
 Other primitive thermophiles 104
 Thermophilic ancestry of Bacteria 105
 Life at high temperatures 105

9 Green Phototrophic Bacteria 111
 Phylum Chloroflexi (green nonsulfur bacteria) 112
 Phylum Chlorobi (green sulfur bacteria) 117
 Phylum Cyanobacteria (blue-green algae) 120
 Other green phototrophs 128
 Bacterial photosynthesis 128
 Carbon fixation 131

10 Proteobacteria 135
 Phylum Proteobacteria (purple bacteria and relatives) 135
 Class Alphaproteobacteria 137
 Class Betaproteobacteria 143
 Class Gammaproteobacteria 148
 Class Deltaproteobacteria 154
 Class Epsilonproteobacteria 158
 The concept of “proteobacteria” 161
11 **Gram-Positive Bacteria** 165
What does being gram positive mean? 166
An alternative view of gram-positive bacteria 167
Phylum **Firmicutes** (low G+C gram-positive bacteria) 167
Phylum **Actinobacteria** (high G+C gram-positive bacteria) 176
Bacterial development 183
Bacterial multicellularity 184

12 **Spirochetes and Bacteroids** 187
Phylum **Spirochaetae** 188
Phylum **Bacteroidetes** (sphingobacteria or Bacteroides/Flavobacterium/Cytophaga group) 193
Bacterial motility 197

13 **Deinococci, Chlamydiae, and Planctomycetes** 203
Phylum **Deinococcus-Thermus** 204
Phylum **Chlamydiae** (Chlamydia and relatives) 209
Phylum **Planctomycetes** (Planctomyces and relatives) 213
Reductive evolution in parasites 219

14 **Bacterial Phyla with Few or No Cultivated Species** 221
How do we know about these organisms? 223
Phyla with few cultivated species 225
Phyla with no cultivated species 232
Phylogenetic groups at all levels are dominated by uncultivated sequences 234
How much of the microbial world do we know about? 234

15 **Archaea** 237
General properties of the **Archaea** 237
Phylum **Crenarchaeota** 240
Phylum **Euryarchaeota** 245
Phylum **Korarchaeota** 256
Phylum **Nanoarchaeota** 257
Archaea as . . . 258

16 **Eukaryotes** 261
General properties of the eukaryotes 262
Unikonta 264
Plantae 267
Chromalveolata 270
Rhizaria 274
Excavata 279
17 Viruses and Prions 285
 Viruses 285
 Prions 292

SECTION III
Microbial Populations 297
18 Identification of Uncultivated Organisms 299
19 Sequence-Based Microbial Surveys 307
20 Fluorescent In Situ Hybridization Surveys 323
 Fluorescent in situ hybridization 323
 Confocal laser scanning microscopy 324
21 Molecular Fingerprinting of Microbial Populations 329
 Denaturing gradient gel electrophoresis 330
 Terminal restriction fragment length polymorphism 333
22 Linking Phenotype and Phylotype 339
 The genomic or metagenomic approach 340
 The stable-isotope probing approach 343

SECTION IV
Conclusion: The Phylogenetic Perspective 351
23 Genomics, Comparative Genomics, and Metagenomics 353
 Genomics 353
 Comparative genomics 360
 Metagenomics 363
24 Origins and Early Evolution 367
 The timescale 367
 Ancient microbial fossils 370
 The last common ancestor 372
 The RNA world hypothesis 373
 The emergence of life 376

Index 381

Contents
Preface

Although it has been recommended that undergraduate curricula for microbiology majors require a core course on microbial diversity, microbiology programs most often lack such a course. One reason for this lack is that, unlike the other recommended core microbiology courses, there has been no appropriate textbook on microbial diversity for students at the undergraduate level. Principles of Microbial Diversity is intended to fill this gap.

This textbook is intended primarily for junior and senior undergraduate students who are majoring in microbiology or a related field. Students should already have studied a general microbiology course and should have familiarity with genetics and either biochemistry or microbial physiology. The perspective in this book is phylogenetic and organismal, from the Carl Woese school (in contrast to the approach of most general microbiology textbooks) (1). This textbook arose from an existing senior-level lecture/lab course on microbial diversity and so has been in use with success already.

The book comprises four main sections. The first section is introductory, laying out the scope of the text, defining the perspective, and providing a historical context. This is followed by a practical guide to molecular phylogenetic analysis, focusing on how to create and interpret phylogenetic trees, and an overview of “the Tree of Life.” The second section is a tour through each of the major familiar phylogenetic groups of Bacteria and Archaea (microbial eukaryotes and viruses are also covered briefly), discussing the general properties of the organisms in each group, describing some representatives in more detail, and concluding with one or two specific topics on the unique properties of these organisms.
The third section of the book is conceptually and experimentally defined (based on primary literature), beginning with identification of unknown and potentially uncultivable organisms and leading to molecular surveys of populations, linking processes with specific organisms. This sequence leads to the final section, brief discussions of various aspects of microbial genomics and origins.

The most straightforward approach for covering the two large middle sections of the textbook in class is to start with the survey of phylogenetic groups and follow this with the concept/literature chapters. An alternative approach, which I have used with great success, is to intertwine them. In my experience, each lecture begins with the discussion of a particular microbial phylum (a portion of a chapter in section two), with some discussion of general topics raised about these organisms, leading into one of the papers from sections three and four of the textbook (or a more recent paper chosen by the instructor) that highlights organisms in the group discussed in that lecture. For example, a chapter might start out with a discussion of the Chlamydiae, describing the members of the group, their phenotype, pathogenicity, and life cycle, and be followed by a discussion of reductive evolution in parasites. It would then shift gears to an introduction to genomics, exemplified by the paper describing the Protochlamydia amoebophila genome and what it teaches us about the origin of obligate pathogens. The order of topics, as would be taught in the course, would be defined by the conceptual thread (section four of the text), building in complexity.

Acknowledgments

As the sole listed author of this text, I would be negligent if I did not make it absolutely clear that it is the result of a community effort on many levels. The folks listed below all deserve the lion’s share of the credit for this work; any errors and shortcoming I claim only for myself.

This book was initiated over the course of a couple of years by the persistent encouragement of Greg Payne at the ASM Press. Once started, Ken April, Production Manager, and John Bell, Senior Production Editor, at the ASM Press made this book happen. Special thanks are also owed to the book’s interior and cover designer, Susan Brown Schmidler; Dianna Logan and Peggy Rupp at Dedicated Book Services, Clarinda, Iowa, who assembled this high-quality book from a collection of text files and images; Lindsay Williams, the diligent ASM Press Editorial and Rights Coordinator, who shepherded permissions; and the art renderer, Tom Webster of Lineworks, Inc., who created professional illustrations from what were, in some cases, little more than vague sketches.

This text is based on a course I was hired (in part) to develop and teach in the Department of Microbiology at North Carolina State University. The success of this course is owed to those who recognized its importance before my arrival and encouraged and fostered its development afterwards—especially Leo Parks, Hosni Hassan, and Gerry Luginbuhl, but also the entire faculty of the department.

This book, and the phylogenetic perspective on which it is based, owes everything to Carl Woese, the intellectual father of modern microbiology. The course on which this text is based has its origin not just in Carl’s work generally but also very specifically in his fabulously important review article from 1987
Woese CR. 1987. Bacterial evolution. Microbiol Rev 51:221–271). The importance and utility of the phylogenetic perspective have no better advocate than my postdoctoral mentor, Norm Pace, for whom no amount of thanks can suffice for his mentorship over the years.

Enormous credit goes to those who captured the images of organisms used in this text. A picture is worth at least a thousand words. Photo credits are given with the images, but special thanks are warranted to a few who provided numerous images well beyond anything for which I had the right to ask: Michael Thomm and Reinhard Rachel, John Fuerst and Margaret Lindsay, and D. J. Patterson. A special thanks also goes to Howard Spero for allowing us to use his spectacular image of G. bulloides on the cover of this text.

This book also owes its existence to another James W. Brown, my father, for his patient yet persistent encouragement, and to my mother, Phyllis Brown, who nurtured my scientific interests from the earliest possible age. Finally, and most importantly, I am forever grateful for the encouragement and patience of my wife, colleague, and collaborator, Melanie Lee-Brown.
About the Author

From the beginning, Jim Brown had a keen interest in nature, including anything slow or unwary enough to be captured or observed in the woods, rivers, beach, or ocean that was always nearby. A single lecture on microbial diversity in a General Microbiology class while Jim was an undergraduate at Ball State University, and the announcement in that class of the discovery of an entirely new kind of living thing (the “archaebacteria”), sparked his lasting interest in microbiology. That led to undergraduate research examining *Beggiatoa* in a southern Indiana sulfur spring. He later earned his M.S. in Microbiology.
at Miami University and joined the MCD Biology Ph.D. program at The Ohio State University, where he worked on the molecular biology of methanogenic archaea with Professor John Reeve. He then moved to Indiana University for a postdoc in Professor Norm Pace’s lab, working on the comparative analysis of ribonuclease P RNA in Bacteria. Afterwards, Jim joined the Department of Microbiology at North Carolina State University (NCSU) and continued to work on RNase P in Archaea and the comparative analysis of RNA. Jim developed and teaches senior-level undergraduate lecture and lab courses in microbial diversity, which are the genesis of this textbook. Jim was awarded the NCSU and Alumni Outstanding Teacher awards in 2005 and the Alumni Association Distinguished Undergraduate Professor award in 2014. He has been a member of the ASM since Graduate School and is a long-time officer of the North Carolina branch of the ASM.
Index

Page numbers followed by f and t indicate figures and tables, respectively.

A

Acanthamoeba castellanii, 361–362
Acetyl-CoA pathway, 131–133, 247f, 248, 250
Acid-fast bacteria, 181
Acidobacteria, 225t, 228
Acidobacterium capsulatum, 228, 229f
Acidophiles, 243
Acridine orange-labeled FISH probe, 323, 324f
Actinobacteria
example species, 178–183
features of, 177–178
G+C content, 96, 165
outer membrane, 166, 178
phylogenetic tree, 87f, 177f
questionable members, 182
taxonomy, 176–177
Active-transport systems, 258, 357
Adams, Douglas, 303
Adenosine diphosphate (ADP), 129, 211
Adenosine triphosphatase (ATPase), 89, 103, 129, 162, 252
Adenosine triphosphate (ATP), 129–133, 162, 211, 357
Aerated digestion, 325
Aerobic digestion, 326
Aerobic endospore-forming rods, 169–170
AFLP analysis, 82

Akinetes, 125, 126
α-proteobacteria
appendaged bacteria and, 140
Caulobacter crescentus, 140–141
features of, 137–138
phylogenetic tree, 138f
purple nonsulfur phototrophs, 138–139
Rhodomicrobium vanniellii and, 139
taxonomy, 137
Alternative sequences
catenated alignments, 78
other RNAs, 74–76
protein sequence analysis, 77–78
rRNA spacer sequence analysis, 76–77
Alveolates, 263f, 272–274
Alzheimer's disease, 292
American Type Culture Collection (ATCC), 73, 223
Anabaena, 121, 122, 126
Anamnexithe thermophila, 117
Ancient microbial fossils, 370–371
Antibiotics, 174, 178, 184, 194, 195, 239
Aphids, 151, 300
API-20E strip, 83–84
Apicomplexa, 263f, 273
Aquificae
deeply branching, 97–98
example species, 100–101
features of, 99–100
representative members of, 98f
taxonomy, 99
Archaea
bacteria and eukarya and, 258–259
cell envelope, 238
Crenarchaeota, 240–244
description of, 237
discovery of, 85–86
Euryarchaeota, 245–256
features of, 238–239
horizontal transfer and, 92, 357–360
Korarchaeota, 256–257
microbial diversity, 6, 7
Nanoarchaeota, 257–258
phylogenetic tree, 20–21, 238f
primitive and modern, 259
rhodopsin, 341
sequence alignment and, 37f
taxonomy and, 89–90
Tree of life and, 89–90
Archaeal primers, 333
Archaeoglobus fulgidus, 76f, 255
Arthrobacter globiformis, 179
Asexual organisms, 234, 236
Atmospheric oxygen, 370
Autotrophs, 145, 151, 247, 345–348
Azotobacter vinelandii, 152

B

Bacillus anthracis, 169, 170, 171
Bacillus cereus, 170–171
Bacteria
acid-fast, 181
archaea and eukarya and, 258–259
branches of, 95–96
development of, 183–184
eukaryotes and, 23
filamentous, 147, 325, 326
horizontal transfer and, 92, 357–360
microbial diversity, 6–9
motility, 197–201
multicellular behavior in, 184
phylogenetic tree, 222f
RNase P RNA sequences and, 76
rRNA spacer sequence analysis and, 77
with sheathed filaments, 147
thermophilic ancestry of, 105
Tree of life and, 86
Bacterial genomes, 90, 287
Bacterial photosynthesis, 128–131
Bacterial primers, 310, 332

Bacteriodes thetaiotaomicron, 195
Bacteroides
example species, 195–197
features of, 194–195
introduction to, 187
phylogenetic tree, 187f, 194f
taxonomy, 193
Bacteroidia, 193, 195
Banding patterns, 81, 82
Base composition, 79, 345, 358, 360
Bayesian inference, 69
Bdellovibrio bacteriovorans, 157, 158f
Beggiaota alba, 151
β-proteobacteria
chemolithoautotrophs and, 145–146
features of, 143–145
heterotrophs and pathogens and, 145
phylogenetic tree, 144f
sheathed filamentous, 147
taxonomy, 143
"Big Tree of Life," 85–91
Biochemical evolution, 372, 373f
"Big Tree of Life," 85–91
Blue-green algae, 120–128
Boggy acid, 181
Bolivia, 215
Botulism, 171, 172
Borrelia recurrentis, 191–192
Botulism, 171, 172
Bovine spongiform encephalopathy, 292
Branches
description of, 53
determining length of, 46–50
Brocadia anammoxidans, 216–217
Brock, Thomas, 300
Brown algae, 270, 271
Buchnera aphidicola, 216–217
Buchnera aphidicola
with sheathed filaments, 147

C

Caloranaerobacter azorensis, 61
Calvin cycle, 131–132, 146
Cambrian explosion, 370, 373
Carbon fixation
C. aurantiacus, 115
Chlorobi, 130
Chloroflexi, 129
Cyanobacteria, 130
green phototrophic bacteria and, 131–134
obtaining reducing power for, 129–130
SAR86 group and, 343
SIP process and, 346
Catenated alignments, 78
Caulobacter crescentus, 140–141
Cell envelope
Archea, 238
gram-negative, 87, 165
structure of, 166
Cells
Central Dogma, 11, 14, 91
DNA and, 11
isolation of, 304f
protein and, 11
RNA and, 11
Cell-to-cell communication, 184
Cenarchaeum symbiosum, 240, 299
Cercozoa, 263f, 274, 278, 346
Cesium tetrafluoroacetate density gradients, 344–345
CFX1223 probe, 326
Chain of being, 15, 16f, 258
Chain termination sequencing, 31f
Charge-coupled device (CCD), 320
CHECK_CHIMERA function, 312
Chemoautotrophs, 7, 136, 145
Chemosynthetic bacteria, 7
Chromalveolates
Chlorophytes, 263, 267
Chloroplasts, 21, 88, 126, 127, 262, 280
Choanoflagellates, 264, 266
Chondrus crispus, 130
Chromatium vinosum, 57, 153
Chroococcales, 120, 121, 122, 126
Chrysophytes, 270, 271
Ciliate grazers, 345–348

382 Index
Gram-negative bacteria, see also
Proteobacteria
Bacteria and, 87
microbial diversity and, 6–7
outer membrane, 166, 178
Gram-negative envelopes, 114, 166, 175, 207
Gram-positive bacteria, see also
Actinobacteria; Firmicutes
an alternative view of, 167
Bacteria and, 87
green photosynthetic, 175
introduction to, 165
microbial diversity and, 6–7
outer membrane, 166
Gram stain, 84, 165, 171f, 232f
Green algae, 261, 262f, 263f, 267
Greenhouse gases, 248, 370
Green nonsulfur bacteria, 112–117
Green phototrophic bacteria
bacterial photosynthesis and, 127–131
carbon fixation and, 131–134
Chlorobi, 117–120
Chloroflexi, 114
Cyanobacteria, 120–128
other, 127
phylogenetic groups, 111–112
Green sulfur bacteria, 117–120, 153
Gut communities, 318, 319
Habitat
Actinobacteria, 177
Alphaproteobacteria, 138
Aquificae, 100
Bacteroidetes, 194–195
Betaproteobacteria, 145
Chlamydiae, 211–212
Chlorobi, 118
Chloroflexi, 114
cultivated crenarchaea, 242
Cyanobacteria, 122
Deinococcus, 205–206
Deltaproteobacteria, 155
Epsilonproteobacteria, 159
Euryarchaeota, 248–249
Firmicutes, 169
Gammaproteobacteria, 150
halophilic organisms, 252
Planctomycetes, 215
Spirochaetes, 189
Thermales, 208
Thermotogae, 103
Haeckel, Ernst, 17, 277f
Hairpin ribozyme, 290f
Halobacterium salinarum, 252–253
Halophilic archaea, 7, 131, 251, 252, 253f
Halobacterium salinarum, 252–253
Halorhodopsin, 341
Hammerhead ribozyme, 290f
Helicobacter pylori, 159, 160f
Heleliaeae, 167, 175
Helobacterium chlorum, 175
Herpetosiphon aurantiacus, 116
Heterocysts, 121, 125, 126, 184
Heterokonts, see Stramenopiles
Heterolobosea, 263f, 279, 280
Heterotrophs
aerobic, 140
Chloroflexi and, 113
habitats, 114
pathogens and, 145
proteobacteria and, 162
Hexacontium gigantheum, 277, 278f
High-throughput sequencing technology, 319–320
History of life, timescale of, 369f
Homo sapiens, 12f, 369t
Honeycomb arrays, 200f
Honeycomb picotiter plate, 320
Horizontal transfer
absence of, 27
catenated alignments and, 78
caveat of, 90–92
genome sequencing and, 358–360
impact of, 91–92
marine bacteria and, 343
origin of domains and, 92–93
protein sequence analysis and, 78
Hormogonia, 125, 126
Host chromosomes, 143, 288f
Hot springs, 105, 106f, 114, 242f
Hugenholtz, Philip, 223
Human-associated microbial communities, 312–319
Human microbiomes analysis, 308–312, 315
Human stages, 282f
Hydrogenic syntrophs, 155
Hydrothermal vent-associated species, 160, 254, 255, 370
Hydroxypropionate pathway, 131, 133
Hyphae, 179, 180, 181
Illumina sequencing, 319, 354
Indian Ocean, 308, 309f
Infantile botulism, 171
Informal clone names, 303
In situ synthesis, 376–377
Internal branches, solving lengths of, 48
Internal nodes, 52
Intestinal symbionts, 159
Intracytoplasmic membrane (ICM), 214, 216, 217
Isosphaera pallida, 216
Jakobids, see Loukozoans
Jukes and Cantor method, 43, 51, 63, 64
K
Karenia brevis, 273–274
3-kbp span, 355
Kimura two-parameter model, 64
Koch, Robert, 181
Kolbeinsey Ridge, 100
Korarchaeota, 256–257
Korarchaeum cryptophilum, 257
K-T impact, 369
L
Labyrinthulids, 263f, 270, 271
Lactic acid bacteria (LAB), 172
Landfills, 248
Large impacts, 369
Large-subunit rRNA, 74, 76, 77, 78
Last common ancestor, 372–373
Lateral gene transfer, 357–360, 372
Legionella, 149f, 291
Leptospira biflexa, 192–193
Leptospirillum ferrooxidans, 230
Leptospiriosis, 192
Leuconostoc mesenteroides, 172, 173f
Life cycle
actinobacteria, 180
alveolates, 273
amoeba phenotype, 264
bacteriophage/transposon Mu, 288f
Bdellovibrion bacteriovorans, 158f
Caulobacter crescentus, 140f
Chlamydiae, 210, 211f
cyanobacteria, 122
dermocarpas, 124
Nostocales, 125
trypanosomes, 281, 282f
Life on Earth
emergence of, 376–379
existence of, 369
Line segments, 49, 50
Lipid profiling, 80–81
Living things
eukaryote-prokaryote dichotomy and, 22–23
evolutionary groups of, 85–86
similarity of, 11, 14
Log-phase growth, 183, 194, 196
Long-branch attraction, 66–67
Loukozoans, 279–280
Lowland chimps, 55
Lyme disease, 191
Lowland

M
M13 bacteriophage, 287
Magnetobacterium bavaricum, 230
Magnetotactic bacteria, 8, 230, 299
Major outer membrane protein (MOMP), 210
Mammalian sequences, 50
Marine amoeboids, 275, 276
Marine phototrophy, 340–343
Maximum-likelihood method, 68–69
Membrane-defined compartmentalization, 214
Membrane fluidity and integrity, 106
Messenger RNAs (mRNAs), 11, 74
Membrane-defined evolutionary groups of, 85–86
eukaryote-prokaryote dichotomy and, 102–103
Mother cells, 123, 124, 140, 141
Mu bacteriophage, 287, 288f
Mycobacterium szulgai, 81f
Mycobacterium ulcerans, 181–182
Mycoplasma, 168f, 169, 172–173, 199, 201
Mycoplasma hominis, 174
Mycoplasma mobile, 173f
Mycobacterium, 156, 198, 199
Mycoplasma xanthus, 9, 10f, 156, 157f

N
Nanoarchaeota, 257–258
Nanoarchaeum equitans, 258, 324f
Navicula, 271–272
Neighbor-joining method, 42–50, 68
Nicotinamide adenine dinucleotide (NADH), 118, 129, 132, 133, 153, 162
Nitrogen fixation cyanobacteria, 121
plant symbionts, 141–142
Nitrosira, 229f, 230
Non-Watson-Crick base pairs, 98
Nososomes, 120, 125
Nuclear envelope, 215, 217, 219, 264

O
Obligately intracellular parasites, 142–143
Obsidian Pool, 106f, 233f, 256f
Octopus Spring, 101f, 208f, 301f, 304
Oil deposits, 248
Old-growth tree community, 314f
Oligonucleotide probe, 81, 323, 324
Oomycetes, 270, 271, 272
OP11 phylum, 232, 233f
Oparin ocean hypothesis, 376, 378
Open reading frames (ORFs), 356, 357
Opisthokonts, 263f, 264, 265–266
Opitutus terrae, 228
Oral microbial profiles, changes in, 337–338
Organic material, sources of, 376–377
Organisms
cultivated species, 223, 224–225t
developmental cycles, 8–9
evolutionary distance between, 53, 55
horizontal transfer and, 91–92
phylogenetic analysis and, 26–29
phylogenetic tree, 10f, 20f, 86f
similarity between, 14
SSU rRNA analysis and, 73–74
viruses and, 286
Origin of Species, The (Darwin), 17f, 74, 91, 234
Oscillatoria, 124, 125f
Outgroup sequence, 50
Oxidation-reduction reaction, 161, 162
Oxygen concentrations, 370
Oxymonads, 282–283

P
Pace, Norman, 223
Parabasalia, 279, 282
Parasites, see also Organisms
obligately intracellular, 142–143
of other bacteria, 157
reductive evolution in, 219–220
viruses as degenerate, 290–291
Parsimony method, 68
Partial sequences, 65
Paryphoplasm, 214, 215f, 216–217, 218f, 219
Pathogens
E. coli, 150
enterics, 150
heterotrophs and, 145
pseudomonads, 152
Ralstonia solanacearum, 145
PCR primers, 57, 331, 332, 335, 355
Pelodictyon phaeoclathratiforme, 119–120
Periodontal disease, 337–338
Periplasm, 195, 219
Periplasmic filaments (PF), 189f, 190, 192, 200, 201
Periplasmic space, 157, 166
Permian impact, 369
Phaeophytes, 270, 271
Phenotype
crenarchaeaa, 241
δ-proteobacteria and, 154
euryarchaeaa, 246
linking phylotype and, 298, 339–348
markers, 83–84
metabolic, 163
Proteobacteria and, 135
sulfur-metabolizing thermophiles, 253
Photoautotrophs, 7, 130, 131
Photoheterotrophs, 7, 129
Phophorylation
Chloroflexi and, 113
cyanobacteria and, 121
cyclic, 128–130, 139, 153, 175
Photosynthesis
carbon fixation and, 129–130
cyanobacteria and, 121
cyclic photophosphorylation and, 128–130
purple nonsulfur phototrophs and, 138–139
purple sulfur bacteria and, 153
rhodopsin phototrophy and, 131
Phototrophy
marine, 340–343
rhodopsin, 131
Phylogenetic analysis
of Chloroflexi, 326
components of, 25
description of, 25, 297
need for, 25
organisms and sequences to use in, 26–29
PCR and, 307
sequence alignment and, 32–38
sequence data for, 29–32
steps in, 41
uncultivated species and, 299–300
Phylogenetic distance, 53, 55f
Phylogenetic perspective, 351
Phylogenetic probes, 297, 323, 326
Phylogenetic survey, 223, 224t, 307
Phylogenetic tree, see also Tree of life
Acidobacteria, 228f
Actinobacteria, 87f, 177f
algorithms, 67–69
Alphaproteobacteria, 138f
Archaea, 20–21, 238f
Bacteria, 222f
bacterial phyla, 87f, 96f, 136f
Bacteroidetes, 187f, 194f
Betaproteobacteria, 144f
bootstrap analysis, 69–71
chimeras, 312
Chlamydiae, 203f, 210f
Chlorobi, 111f, 117f
Chloroflexi, 111f, 113f
Crenarchaeota, 240f
cultivated species, 222f
Cyanobacteria, 121f
Deinococcus-Thermus, 203f, 204f
Deltaproteobacteria, 155f
dNA sequencing and, 50
early, 16–20
Enterobacteriaceae, 235f
Epsilonproteobacteria, 158f
ES-2 organism, 61f
Eukarya, 20f, 21
eukaryotes, 262–263f
Euryarchaeota, 244f
evolutionary distance and, 20, 42, 54f
example analysis, 57–61
Firmicutes, 111f, 136f, 168f
Fusobacteria, 231f
Gammaproteobacteria, 149f
great apes, 52–54f
how to read, 51–57
molecular, 20–21
neighbor-joining method for, 42–50
Nitrospira, 229f
OP11, 233f
organisms, 10f, 20f, 86f
Planctomycetes, 87f, 166f, 203f
Proteobacteria, 136f
representations of, 53, 54f, 55
RNase P RNA sequences and, 76f
Spirochaetes, 187f, 188f
SSU rRNA, 20, 360
substitution methods, 63–67
taxonomy and, 22
with Thermotogae and Aquificae, 98f, 102f
Verrucomicrobia, 226f
Phylogeny
description of, 21–22
importance of understanding, 22
Phylotype
linking phenotype and, 298, 339–348
of pink filamentous organism, 300–303
Phylum, see specific groups
Phylum OP11, 232, 233f
Phylum SR1, 234, 235f
Physarum polycephalum, 265
Phytophthora infestans, 272
Pink filaments of Yellowstone Park,
299–305
Planctomycetes
description of, 96
eexample species, 215–218
features of, 213–215
introduction to, 203
paryphoplasm and, 219
phylogenetic tree, 87f, 166f, 203f, 213f
taxonomy, 213

Index 387
<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>388</td>
<td>Index</td>
</tr>
</tbody>
</table>
lipid profiling, 80–81
phenotypic markers, 83–84
RFLP methods, 81–82
scaly snail analysis and, 308–312
serology, 79–80
Sequence data, obtaining, 29–32
Sequence information, availability of, 27
Sequences
long branches and, 67
partial, 65
phylogenetic analysis and, 26–29
Serological method, 79–80
Simple RNA world scenario, 374–375
Sphaerotilus natans
Sphyraena barracuda
Sphingobacteria, 193, 194, 196
Sphaeraena barracuda, 266
Spirilla, 138, 144, 150, 198
Spirochaetae
example species, 191–193
features of, 188–189
flagella and, 189–190
introduction to, 187
phylogenetic tree, 187f, 188f
taxonomy, 188
Spirochete motility, 200–201
Spiroplasma motility, 201
SR1 phylum, 234, 235f
SSU rDNA, 301, 311, 330, 333, 334, 337
Stable-isotope probing (SIP) approach, 343–348
Stationary-phase cells, 104, 183
Stigonematales, 120, 122, 126
Stramenopiles, 221
Streptococcus pyogenes
Strep throat testing, 79, 80f
Subgingival plaque, 337
Submarine microbial communities, 94–95
Submarine microbes, 25–26
Submarine sediments, 25–26
Sulfate reducers, 104, 133, 155
Sulfur respiration, 241, 243
Sulfur-oxidizing endosymbionts, 299, 308, 311, 371
Sulfur-oxidizing bacteria, 308, 311, 371
Sulfur-oxidizing endosymbionts, 299, 308, 311, 371
Sulfur oxidizers, 145–146, 151, 241, 243
Sulfur-oxidizing bacteria, 308, 311, 371
Sulfur-oxidizing endosymbionts, 299, 308, 311, 371
Sulfur reduction, 241, 243
Sulfur respiration, 241, 243
Surface metabolism hypothesis, 378–379
Symbionts
Enterobacteriaceae, 28f
obligately intracellular, 142
plant, 141
scaly snail, 311
Symbiosis
Chlorobi, 118, 119f
Cyanobacteria, 122
scaly snail, 161
T
Taxonomy
Actinobacteria, 176–177
Alphaproteobacteria, 137
Aquificae, 99
Bacteroidetes, 193
Betaproteobacteria, 143
Chlamydiae, 209
Chlorobi, 117
Chloroflexi, 112
chromalveolates, 270
Crenarchaeota, 240
Cyanobacteria, 120
Deinococcus-Thermus, 204
Deltaproteobacteria, 154
description of, 21
Epsilonproteobacteria, 158
eukaryotes, 262, 263f
Euryarchaeota, 245
evades, 279
Firmicutes, 167–168
Gammaproteobacteria, 148–149
phenotypic markers for, 83
phylogeny and, 21–22
Planctomycetes, 213
plantes, 267
rhizaria, 274
Spirochaetae, 188
Thermotogae, 102
unikonta, 264
Tenericutes, 172–173
Terminal nodes, 51, 52, 53
Terminal restriction fragment length polymorphism (t-RFLP)
description of, 331
introduction to, 329
procedure, 333–335
study and analysis and, 337–338
Termesites, 189, 190f
Texas Red-labeled FISH probe, 323, 324f
Thalassia testinum, 268
Thermotogae
example species, 208–209
features of, 206–208
Thermal pool, 296f
Thermal stress, 331–333
Thermocrinis ruber, 100–101, 305
Thermodesulfobacteriales, 104
Thermophilum album, 182, 183f
Thermomicrobiurn roseum, 104, 113
Thermophilic bacteria
Aquificae, 98–101
introduction to, 97–98
life at high temperatures and, 105–108
primitve, 104–105
Thermotogae, 102–104
Thermoplasmatale acidophilum, 255–256
Thermoproteus tenax, 243
Thermosiphon africanus, 104
Thermotogae
example species, 103–104
features of, 102–103
taxonomy, 102
Thermotoga maritima, 103, 357–360

Index
Thermus aquaticus, 206, 208, 209f, 300
Thiobacillus thioparus, 146
Thiotrichs, 151
Thraustochytrids, 270, 271
Three-domain tree, see Tree of life
Tobacco ringspot virus satellite RNA-S replication, 290f
Trachoma, 212
Transcription and translation in archaea, 237, 239
link between, 219 reverse, 11f
Transfer RNAs (tRNAs), 11, 74, 77, 291, 358
Transmissible spongiform encephalopathies (TSEs), 292–295
Transposons, 287, 288f
Tree construction, see Phylogenetic tree
Tree of life by Ernst Haeckel, 18f horizontal transfer and, 90–93 last common ancestor and, 372 major lessons of, 85–88 rooting, 88–90 schematic view of, 90f
Treponema denticola, 189, 191
Treponema pallidum, 189, 191
Tricarboxylic acid (TCA) cycle, 113, 132, 211, 241, 255, 362
Trichomonas vaginalis, 174
Trypanosoma brucei, 281, 282f
Tssete fly stages, 282f
T-tracts, 301, 302
Twitching motility, 199–200
Two-parameter model, 64
Type III secretion systems, 239, 362
Uncultivated sequences, 234
Uncultivated species, 299–300
Unifrac, 315, 317f
Unikonta example species, 266 subgroups, 264–266 taxonomy, 264
UV lights, 205, 249
UWE25 organism, comparing genome sequences of, 361–363
Veillonella atypica, 175
Veillonellaceae, 169, 175
Venter, Craig, 364
Verrucomicrobia, 60f, 210, 213, 226
Verrucomicrobium spinosum, 227
Vibrios, 150, 198
Vorticella spp., 273
Wächtershäuser’s hypothesis of surface metabolism, 378–379
Wastewater sludge, 345–348
Wastewater treatment, 116, 117, 147, 251, 325
Weighbor algorithm, 64
Whittaker five-kingdom tree, 17, 19f
Wickham, Gene, 301
Woese, Carl, 221
Wolbachia pipientis, 142–143