Regulation of Bacterial Virulence
Regulation of Bacterial Virulence

EDITED BY

Michael L. Vasil
University of Colorado School of Medicine
Aurora, Colorado

Andrew J. Darwin
New York University School of Medicine
New York, New York
Michael Vasil dedicates this book to the memory of Martin Stonehouse, Ph.D., who relished science and loved life to the fullest. He left his loving wife, Carly, his sons, Ronan and Morgan, his family, and all of us much too soon, 29 October 2011.

Andrew Darwin dedicates this book to his parents, Frank and Pauline. They have never pushed but always supported.
CONTENTS

Contributors • ix
Preface • xv

I. Global Changes during and between Different States of Infections

1. Factors That Impact Pseudomonas aeruginosa Biofilm Structure and Function • 3
 Boo Shan Tseng and Matthew R. Parsek

2. Chronic versus Acute Pseudomonas aeruginosa Infection States • 21
 Barbara I. Kazmierczak and Thomas S. Murray

3. Quorum Sensing in Burkholderia • 40
 Charlotte D. Majerczyk, E. Peter Greenberg, and Josephine R. Chandler

4. Staphylococcus aureus Pathogenesis and Virulence Factor Regulation • 58
 Victor J. Torres, Meredith A. Benson, and Jovanka M. Voyich

5. Regulation of Virulence by Iron in Gram-Positive Bacteria • 79
 Allison J. Farrand and Eric P. Skaar

6. Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with Yersinia pestis as a Paradigm • 106
 Robert D. Perry and Kathleen A. McDonough

II. Adherence, Colonization, and Surface Factors

7. Uropathogenic Escherichia coli Virulence and Gene Regulation • 135
 Drew J. Schwartz and Scott J. Hultgren

8. Phasevarions: an Emerging Paradigm in Epigenetic Gene Regulation in Host-Adapted Mucosal Pathogens • 156
 Yogitha N. Srihanta, Ian R. Peak, and Michael P. Jennings

9. Regulation of Exopolysaccharide Biosynthesis in Pseudomonas aeruginosa • 171
 Yuta Okkotsu, Christopher L. Pritchett, and Michael J. Schurr

10. Regulation of Pneumococcal Surface Proteins and Capsule • 190
 Abiodun D. Oggunyi and James C. Paton

11. Regulation of Lipopolysaccharide Modifications and Antimicrobial Peptide Resistance • 209
 Erica N. Kintz, Daniel A. Powell, Lauren E. Hittle, Joanna B. Goldberg, and Robert K. Ernst

III. Toxins and Associated Virulence Factor Production

12. Toxin and Virulence Regulation in Vibrio cholerae • 241
 Karen Skorupska and Ronald K. Taylor

13. Virulence Gene Regulation in Bacillus anthracis and Other Bacillus cereus Group Species • 262
 Jennifer L. Dale and Theresa M. Koehler

14. Regulation of Extracellular Toxin Production in Clostridium perfringens • 281
 Jackie K. Cheung, Lee-Yean Low, Thomas J. Hiscox, and Julian I. Rood

15. Regulation of Toxin Production in Clostridium difficile • 295
 Glen P. Carter, Kate E. Mackin, Julian I. Rood, and Dena Lyras
16. Anthrax and Iron • 307
Paul E. Carlson, Jr., Shandee D. Dixon, and Philip C. Hanna

IV. Protein Export and Intracellular Life within the Host

17. Regulation of the Expression of Type III Secretion Systems: an Example from Pseudomonas aeruginosa • 317
Audrey Le Gouellec, Benoit Polack, Dakang Shen, and Bertrand Toussaint

18. Regulation of Bacterial Type IV Secretion • 335
Jenny A. Laverde-Gomez, Mayukh Sarkar, and Peter J. Christie

19. PrfA and the Listeria monocytogenes Switch from Environmental Bacterium to Intracellular Pathogen • 363
Bobbi Xayarath and Nancy E. Freitag

20. The SsrAB Virulon of Salmonella enterica • 386
Sandra Billig, Alfonso Felipe-López, and Michael Hensel

21. Francisella tularensis: Regulation of Gene Expression, Intracellular Trafficking, and Subversion of Host Defenses • 402
Nrusingsh P. Mohapatra, Shipan Dai, and John S. Gunn

V. Stress Response during Infection

22. Regulation of Salmonella Resistance to Oxidative and Nitrosative Stress • 425
Calvin A. Henard and Andrés Vázquez-Torres

23. Regulation of Vesicle Formation • 441
Aimee K. Wessel, Gregory C. Palmer, and Marvin Whiteley

24. Regulation of Envelope Stress Responses by Mycobacterium tuberculosis • 465
Daniel J. Bretl and Thomas C. Zahrt

VI. Emerging Regulatory Mechanisms of Special Significance

25. Regulatory Mechanisms of Special Significance: Role of Small RNAs in Virulence Regulation • 493
Kai Papenfort, Colin P. Corcoran, Sanjay K. Gupta, Masatoshi Miyakoshi, Nadja Heidrich, Yanjie Chao, Kathrin S. Fröhlich, Cynthia M. Sharma, Wilma Ziebuhr, Alex Böhm, and Jörg Vogel

26. Negative Regulation during Bacterial Infection • 528
Andrew M. Stern, Ansel Hsiao, and Jun Zhu

27. Regulation in Response to Host-Derived Signaling Molecules • 545
Charley Gruber and Vanessa Sperandio

28. Regulating the Transition of Vibrio cholerae Out of the Host • 566
EmilyKate McDonough, Evan Bradley, and Andrew Camilli

Index • 587
CONTRIBUTORS

Meredith A. Benson
Department of Microbiology
New York University School of Medicine
New York, NY 10016

Josephine R. Chandler
Department of Microbiology
University of Washington School of Medicine
1705 NE Pacific Street
Seattle, WA 98195

Sandra Billig
Department of Microbiology
University of Osnabrück
D-49076 Osnabrück, Germany

Yanjie Chao
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Alex Böhm
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Jackie K. Cheung
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Evan Bradley
Department of Molecular Biology & Microbiology
Tufts University School of Medicine
136 Harrison Avenue
Boston, MA 02111

Peter J. Christie
Department of Microbiology and Molecular Genetics
University of Texas Medical School at Houston
Houston, TX 77030

Daniel J. Bretl
Department of Microbiology and Molecular Genetics
Center for Infectious Disease Research
Medical College of Wisconsin
Milwaukee, WI 53226

Colin P. Corcoran
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Andrew Camilli
Department of Molecular Biology & Microbiology
Tufts University School of Medicine
136 Harrison Avenue
Boston, MA 02111

Shipan Dai
Center for Microbial Interface Biology
Department of Microbial Infection and Immunity
The Ohio State University
Columbus, OH 43210

Paul E. Carlson, Jr.
Department of Microbiology and Immunology
University of Michigan Medical School, Box 0620
Ann Arbor, MI 48108

Jennifer L. Dale
Department of Microbiology and
Molecular Genetics
University of Texas—Houston Medical School
Houston, TX 77030

Glen P. Carter
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Shandee D. Dixon
Department of Microbiology and Immunology
University of Michigan Medical School, Box 0620
Ann Arbor, MI 48108
Robert K. Ernst
Department of Microbial Pathogenesis
University of Maryland, Baltimore
Baltimore, MD 21201

Allison J. Farrand
Department of Pathology
Microbiology and Immunology
Vanderbilt University Medical Center
Nashville, TN 37232

Alfonso Felipe-López
Department of Microbiology
University of Osnabrück
D-49076 Osnabrück, Germany

Nancy E. Freitag
Department of Microbiology and Immunology
University of Illinois at Chicago College of Medicine
Chicago, IL 60612

Kathrin S. Fröhlich
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Joanna B. Goldberg
Department of Microbiology, Immunology, and Cancer Biology
University of Virginia
Charlottesville, VA 22908

E. Peter Greenberg
Department of Microbiology
University of Washington, School of Medicine
1705 NE Pacific Street
Seattle, WA 98195-7242

Charley Gruber
Department of Microbiology
UT Southwestern Medical Center
Dallas, TX 75390

John S. Gunn
Center for Microbial Interface Biology
Department of Microbial Infection and Immunity
The Ohio State University
Columbus, OH 43210

Sanjay K. Gupta
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Philip C. Hanna
Department of Microbiology and Immunology
University of Michigan Medical School, Box 0620
Ann Arbor, MI 48108

Nadja Heidrich
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Calvin A. Henard
Department of Microbiology
University of Colorado Denver
School of Medicine
Aurora, CO 80045

Michael Hensel
Department of Microbiology
University of Osnabrück
D-49076 Osnabrück, Germany

Thomas J. Hiscox
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Lauren E. Hittle
Department of Microbial Pathogenesis
University of Maryland, Baltimore
Baltimore, MD 21201

Ansel Hsiao
Center for Genome Sciences & Systems Biology
Washington University
School of Medicine
St. Louis, MO 63110

Scott J. Hultgren
Department of Molecular Microbiology
Washington University School of Medicine
St. Louis, MO 63110

Michael P. Jennings
The Institute for Glycomics
Griffith University
Gold Coast Campus
Parklands Drive
Southport, QLD 4222, Australia

Barbara I. Kazmierczak
Department of Medicine
Yale University School of Medicine
333 Cedar Street, Box 208022
New Haven, CT 06520-8022
Erica N. Kintz
Department of Microbiology, Immunology, and Cancer Biology
University of Virginia
Charlottesville, VA 22908

Theresa M. Koehler
Department of Microbiology and Molecular Genetics
University of Texas—Houston Medical School
Houston, TX 77030

Jenny A. Laverde-Gomez
Department of Microbiology and Molecular Genetics
University of Texas Medical School at Houston
Houston, TX 77030

Audrey Le Gouellec
TheREx, TIMC-IMAG Laboratory
UMR 5525 CNRS
Université Joseph Fourier
Grenoble, France

Lee-Yean Low
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Dena Lyras
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Kate E. Mackin
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Charlotte D. Majerczyk
Department of Microbiology
University of Washington School of Medicine
1705 NE Pacific Street
Seattle, WA 98195

EmilyKate McDonough
Department of Molecular Biology & Microbiology
Tufts University School of Medicine
136 Harrison Avenue
Boston, MA 02111

Kathleen A. McDonough
Wadsworth Center
New York State Department of Health
Albany, NY 12201-2002

Masatoshi Miyakoshi
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Nrusingh P. Mohapatra
Center for Microbial Interface Biology
Department of Microbial Infection and Immunity
The Ohio State University
Columbus, OH 43210

Thomas S. Murray
Department of Basic Medical Sciences
Quinnipiac University School of Medicine
275 Mt. Carmel Avenue, N1-HSC.
Hamden, CT 06518-1908

Abiodun D. Ogunniyi
Research Centre for Infectious Diseases
School of Molecular and Biomedical Science
University of Adelaide
Adelaide, SA 5005, Australia

Yuta Okkotsu
Department of Microbiology
University of Colorado School of Medicine
Aurora, CO 80045

Gregory C. Palmer
Institute for Cellular and Molecular Biology
The University of Texas at Austin
Austin, TX 78712

Kai Papenfort
Department of Molecular Biology
Princeton University
Princeton, NJ 08544

Matthew R. Parsek
Department of Microbiology
University of Washington
Seattle, WA 98195

James C. Paton
Research Centre for Infectious Diseases
School of Molecular and Biomedical Science,
University of Adelaide
Adelaide, SA 5005, Australia

Ian R. Peak
The Institute for Glycomics
Griffith University
Gold Coast Campus
Parklands Drive
Southport, QLD 4222, Australia
Robert D. Perry
Department of Microbiology, Immunology, and Molecular Genetics
University of Kentucky
Lexington, KY 40536-0298

Benoit Polack
TheREx, TIMC-IMAG Laboratory
UMR 5525 CNRS
Université Joseph Fourier
Grenoble, France

Daniel A. Powell
Department of Microbial Pathogenesis
University of Maryland, Baltimore
Baltimore, MD 21201

Christopher L. Pritchett
East Tennessee State University
Department of Health Sciences
Johnson City, TN 37614

Julian I. Rood
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Mayukh Sarkar
Department of Microbiology and Molecular Genetics
University of Texas Medical School at Houston
Houston, TX 77030

Michael J. Schurr
Department of Microbiology
University of Colorado School of Medicine
Aurora, CO 80045

Drew J. Schwartz
Department of Molecular Microbiology
Washington University School of Medicine
St. Louis, MO 63110

Cynthia M. Sharma
Research Centre of Infectious Diseases
University of Würzburg
Würzburg, Germany

Dakang Shen
School of Cellular and Molecular Medicine
University of Bristol
University Walk
Bristol BS8 1TD, United Kingdom

Eric P. Skaar
Department of Pathology, Microbiology and Immunology
Vanderbilt University Medical Center
Nashville, TN 37232

Karen Skorupski
Department of Microbiology and Immunology
Dartmouth Medical School
Hanover, NH 03755

Vanessa Sperandio
Department of Microbiology
UT Southwestern Medical Center
Dallas, TX 75390

Yogitha N. Srikhanta
Department of Microbiology and Immunology
The University of Melbourne
Royal Parade, Parkville
Melbourne, VIC 3010, Australia

Andrew M. Stern
Department of Microbiology
Perelman School of Medicine
University of Pennsylvania
Philadelphia, PA 19104

Ronald K. Taylor
Department of Microbiology and Immunology
Dartmouth Medical School
Hanover, NH 03755

Victor J. Torres
Department of Microbiology
New York University School of Medicine
New York, NY 10016

Bertrand Toussaint
TheREx, TIMC-IMAG Laboratory
UMR 5525 CNRS
Université Joseph Fourier
Grenoble, France

Boo Shan Tseng
Department of Microbiology
University of Washington
Seattle, WA 98195

Andrés Vázquez-Torres
Department of Microbiology
University of Colorado Denver School of Medicine
Aurora, CO 80045
Jörg Vogel
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Jovanka M. Voyich
Department of Immunology and Infectious Diseases
Montana State University
Bozeman, MT 59718

Aimee K. Wessel
Section of Molecular Genetics and Microbiology
The University of Texas at Austin
Austin, TX 78712

Marvin Whiteley
Institute for Cellular and Molecular Biology and Section of Molecular Genetics and Microbiology
The University of Texas at Austin
Austin, TX 78712

Bobbi Xayarath
Department of Microbiology and Immunology
University of Illinois at Chicago College of Medicine
Chicago, IL 60612

Thomas C. Zahrt
Department of Microbiology and Molecular Genetics
Center for Infectious Disease Research
Medical College of Wisconsin
Milwaukee, WI 53226

Jun Zhu
Department of Microbiology
Perelman School of Medicine
University of Pennsylvania
Philadelphia, PA 19104

Wilma Ziebuhr
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

IN THE TIME FOLLOWING THOSE KEY DISCOVERIES, THERE HAVE BEEN THOUSANDS OF PUBLICATIONS DIRECTLY RELATING TO THE TOPIC OF THIS BOOK (>8,000 REFERENCES FOUND IN A PUBMED SEARCH FROM 1980, WITH THE QUERY “REGULATION OF BACTERIAL VIRULENCE”). CLEARLY, THIS FIELD IS ADVANCING AT A REMARKABLE PACE. AS A CONSEQUENCE, WE FEEL THAT IT WOULD BE WORTHWHILE AT THIS TIME TO ASSEMBLE A COMPREHEND OF MANY OF THE MORE FASCINATING AND CONTEMPORARY INSIGHTS RELATING TO THIS TOPIC, FROM OUTSTANDING AUTHORITIES IN THE FIELD, WITH THE WISH TO STIMULATE FURTHER RESEARCH EFFORTS.

THESE CHANGES, IN THE BIOLOGY FIELD WE HAVE ATTEMPTED TO PROVIDE A WIDE RANGE OF TOPICS THAT REPRESENT A BALANCE BETWEEN THE NEWEST INFORMATION ALONG MORE ESTABLISHED LINES OF INVESTIGATION (E.G., IRON, CHAPTERS 5, 6, AND 16), AS WELL AS INFORMATION DESCRIBING REFRESHING NEW PARADIGMS THAT HAVE BEEN INVESTIGATED WITHIN ONLY THE PAST FEW YEARS (E.G., VESICLE FORMATION AND HOST SIGNALING, CHAPTERS 23 AND 27). IT IS TRUE THAT THE BOOK DEVOTES SIGNIFICANT FOCUS TOWARD SOME AREAS, SUCH AS THE EFFECTS OF IRON ON BACTERIAL VIRULENCE. MOST LIKELY THIS IS A CONSEQUENCE OF BOTH ITS EARLY DISCOVERY IN RELATION TO THE REGULATION OF BACTERIAL VIRULENCE (SEE ABOVE) AND THE INCREASING REALIZATION THAT THE ROLE OF ENVIRONMENTAL IRON LEVELS IN VIRULENCE IS MAGNIFICENTLY COMPLEX, FROM THE STANDPOINT OF BOTH THE PATHOGEN AND THE HOST. THAT IS, IRON HAS AN IMPACT THAT REACHES FAR BEYOND SIMPLY REGULATING THE EXPRESSION OF VIRULENCE DETERMINANTS. ALTHOUGH IRON WAS SUBSEQUENTLY DISCOVERED TO AFFECT THE EXPRESSION OF OTHER MAJOR BACTERIAL TOXINS (E.G., SHIGA TOXIN AND PSEUDOMONAS AERUGINOSA EXOTOXIN A), ENVIRONMENTAL IRON LEVELS HAVE ALSO BEEN SHOWN TO HAVE AN EXTRAORDINARY IMPACT ON INCREASINGLY INTRICATE PROCESSES RELATING TO BACTERIAL VIRULENCE, INCLUDING BIOFILM FORMATION, BASIC PHYSIOLOGICAL PROCESSES, RESISTANCE TO OXIDATIVE STRESS, AND BASIC INTERMEDIARY METABOLISM (SEE CHAPTERS 1, 5, 6, 9, 16, AND 22).

WE HAVE ALSO PROVIDED CHAPTERS (SEE CHAPTERS 2, 27, AND 28) FROM OUTSTANDING AUTHORS WHO ARE INVESTIGATING THE REGULATION OF EXTREMELY COMPLEX BEHAVIORS OF BACTERIAL PATHOGENS. THESE INCLUDE DESCRIPTIONS OF HOW SOME BACTERIA (E.G., P. AERUGINOSA) CONTROL GENE REGULATION BEFORE, DURING, AND AFTER THEIR TRANSITION FROM AN ACUTE INFECTION TO A MORE CHRONIC ONE. ALONG SIMILAR LINES, ALSO INCLUDED IS A CHAPTER (CHAPTER 28) THAT PROVIDES NEW INSIGHTS ABOUT THE REGULATORY TRANSITION OF V. CHOLERAE FROM INSIDE A HUMAN HOST TO ITS MORE NATURAL ENVIRONMENTS, SUCH AS ESTUARIES, WHERE
it exists in planktonic form as well as in biofilms, and then back into a human host.

Last, but not least, we gratefully acknowledge all the other outstanding chapters we were not able to mention above, due to space constraints of this preface. The omission of any chapter in this book would most certainly diminish its value. As the editors, we offer our sincere thanks to all of the authors for their dedication and hard work toward the production of this book.

It is hoped that the exciting discoveries described by all of the wonderful authors of this book will be as inspirational to both young and more seasoned investigators, as the early observations about the regulation of diphtheria toxin were to scores of scientists for decades. We can only hope that this will most certainly be so.

Michael L. Vasil
Andrew J. Darwin
INDEX

Acclerator gene regulator. See Agr
Acetyl-CoA, and type III secretion system regulation, in
Pseudomonas aeruginosa, 324
in Yersinia enterocolitica, 324
Acid phosphatases, in Francisella tularensis, 413
Acid tolerance response, 95
Actinomyces, iron-dependent virulence regulation in, 95–96
Actinomyces naeslundii, 95–96
Acyl homoserine lactone receptors, LuxR protein from Vibrio fischeri and, 41
Acyl homoserine lactones, 557–559
encoded by Pseudomonas aeruginosa, 548
in mammalian signaling, 557–559
Proteobacteria and, 40–41
quorum sensing-regulated processes of, in Pseudomonas aeruginosa, 41
to regulate virulence factors, 40, 42
signaling by, 40–42
in Pseudomonas aeruginosa, 43–44
in Vibrio fischeri, 42–43
synthesis and response of, 40–42
Acyltrehaloses, of Mycobacterium tuberculosis outer membrane, 467
Adenosine, and enteropathogenic Escherichia coli, 554–555
and Pseudomonas aeruginosa, 555
Aeromonas, 567
Aggregatibacter actinomycetemcomitans, leukotoxin produced by, 452
in outer membrane vesicles, 452
Agr, and pathogenesis of Staphylococcus aureus, 68–69
types of, and Agr interference, 67
Agr locus, expression of, regulators and environmental stresses on, 67–68
Agr system, autoinducing peptide of, Staphylococcus aureus and, 62, 64
autoinducing peptides of, 62, 64
interference, types of agr and, 67
of Staphylococcus aureus, 62–63
effector molecule of, as RNAIII, 63–65
two component system, regulatory RNA as main effector of, 63–65
Agrobacterium tumefaciens, 555
as model type IV secretion system, 334
and plasmid R388 type IV secretion system, 348
and transformed plant cell, chemical signaling between, 337
virulence mechanism of, QS system and, 556
Agrobacterium tumefaciens VirA, activation of, 556
Agrobacterium tumefaciens VirB/VirD4, as effector translocator, 336–339
AHQ family, quorum sensing signals and, 326
AlgB, in regulation of alginate production, 177–178
Alginate, 12
in biofilms, 174
biosynthesis of, fructose-6-phosphate for, 172–173
produced by Pseudomonas aeruginosa, 171
production of, AlgR and AlgZ in regulation of, 175–177
DNA-binding proteins regulating, 178–180
histidine kinases in, 178
KinB and AlgB in regulation of, 177–178
posttranscriptional regulators of, 180–183
posttranslational regulatory system for, 181–182
regulation of, 173–178
regulation of, c-di-GMP in, 183
Alginate biosynthetic genes, transcriptional regulation of, 176
Alginate expression, regulators of, and Vfr, links between, 28–29
AlgP, in regulation of alginate production, 179
AlgR, in regulation of alginate production, 175–177
AlgZ, in regulation of alginate production, 175–177
Amino acids, type III secretion systems and, 325
Aminoglycoside antibiotics, cell surface disruption by, 446
outer membrane vesicle formation and, 456
AmrZ, in regulation of alginate production, 179–180
Animals, domestic, Clostridium perfringens as pathogen in, 282
Anthrax disease, Bacillus anthracis and, 262–263
and iron, 307–313
iron acquisition during, 307–310
Anthrax toxin, produced by Bacillus anthracis, 267–268
Antibiotic resistance, influence of core structural modifications on, 221–222
Antibiotics, outer membrane vesicle formation and, 456
Pseudomonas aeruginosa and, 14–15
Staphylococcus aureus resistance to, 58
to treat urinary tract infection, 149
Antimicrobial peptide resistance, and lipopolysaccharide modifications, regulation of, 209–238
Antioxidant defenses, regulatory networks coordinating, 428–431
Antivirulence compounds, to treat urinary tract infections, 149
AphA, as regulatory protein, in Vibrio cholerae, 245–246
AphB, and acid survival, in Helicobacter pylori, 247
as regulatory protein, in Vibrio cholerae, 246–247
apo-Fur regulation, 114
ApsS histidine sensor kinase, 554
AtxA, as regulator of Bacillus anthracis, 265–266
Autoinducers, 319
Autoinducing peptides, of Agr system, 62, 64
Bacilli, iron-dependent virulence regulation in, 90–91
Bacillibactin, 309
Bacillibactin biosynthetic machinery, genes encoding, 311
Bacillus, RNA regulators in, 511–512
Bacillus anthracis, 90–91, 262, 270–272, 511
and anthrax disease, 262–263, 458
during anthrax infections, 307
anthrax toxin produced by, 267–268
capsule synthesis by, 272–273
iron acquisition in, mechanisms of, 307–308
regulation of, 310–311
iron research in, future of, 311
membrane vesicles produced by, 458
S-layer protein BsLA and, 273
siderophores, 309–310
virulence gene regulation in, 262–280
Bacillus cereus, 90–91, 511
membrane vesicles produced by, 458
Bacillus cereus G9241, encapsulated, anthrax-like illness
and, 273
Bacillus cereus group species, cholesterol-dependent
cytosins of, 270
metalloproteases and, 271–272
as pathogens, 262–264
virulence arsenal of, 267–273
virulence gene regulation in, 262–280
virulence plasmid content of, 263–264
Bacillus cereus sensu stricto, 262, 270–271
and diarrheal disease, 263
emetox production by, 270–271
food poisoning caused by, enterotoxins and, 268–270
as opportunist, 263
PlcR as regulon of, 266–267
Bacillus species, SigH alternative sigma factor and, 300
transcriptional factor CcpA and, 301–302
Bacillus subtilis, 3, 90, 511
catecholamines in, 545
Fur and, 111
membrane vesicles produced by, 458
outer membrane vesicles transfer and, 450
Bacillus subtilis ICEBs1, inducible transfer of, 341–342
Bacillus thuringiensis, 262, 270–272
entomopathogenesis of, 268
food poisoning caused by, enterotoxins and, 268–270
as insect pathogen, 263
as opportunist, 263
vegetative insecticidal protein of, 268
Bacillus thuringiensis, PlcR as regulon of, 266–267
Bacillus weihenstephanensis, emetic toxin production
by, 270–271
Bacteria. See Gram-negative bacteria; Gram-positive
bacteria
Bacteriophage exchange, natural transformation and,
160–161
Bacterium-derived molecules, sensing of, by host, 557–559
Bacteroides fragilis, outer membrane vesicle formation
and, 456
Bartonella, coregulation of two type IV secretion
systems, 348–349
type IV secretion system and, 334–335
Bartonella effector proteins, Bartonella VirB/VirD4
and, 348–349
Bartonella henselae, 348
Bartonella VirB/VirD4, Bartonella effector proteins
and, 348–349
coregulation by BatR/BatS system, 348–349
Bile, enteric bacteria and, 249
resistance, genes contributing to, PrfA and, 366
Vibrio cholerae and, 249
Bile salts, sensing of, 554
Biofilm, alginate, Pal and Pel in, 174
carbon sources and, 8–10
cell motility and, 5–14
chemotaxis and, 7
description of, 3–4
development and structure of, in Pseudomonas
aeruginosa, 4–5
development in bacterial infections, 96–97
exopolysaccharides and, 11–12, 13
extracellular DNA and, 14
flagella and, 6–7
flat, formation of, 6
formation of, c-di-GMP and, 15–16
signaling determinants regulating, 15–16
two component systems and, 16
in Vibrio cholerae, 244–245, 554, 579–580
iron levels and, 10
matrix structured proteins and, 13–14
microbiology of, 3
mode of growth of, chronic infections and, 3
nutrition and, 8–10
outer membrane vesicles produced in, 456–458
resistant, formation by Pseudomonas, 547–548
rhamnolipids and, 7–8
structure of, factors influencing, 5–14
structured, formation of, 6
type IV pilus and, 6, 7
Bladder invasion, type 1 pilus-dependent, by
urapathogenic Escherichia coli, 140–142
Bladder tissue, reservoirs of uropathogenic
Escherichia coli in, 143
Bordetella, BvgAS two-component system of, 530
RNA regulators of, 506
Bordetella bronchiseptica, 530, 531, 546
Bordetella flagellin, 531
Bordetella parapertussis, 531
Bordetella pertussis, 506, 530, 531, 546
phase variation and, 156
Borrelia, RNA regulators in, 508–509
Borrelia burgdorferi, 110, 508–509, 549
zoonotic cycle of transmission of, 528–529
Brucella, cross-regulation of motility and type IV
secretion, 348–349
type IV secretion system and, 334–335
Brucella melitensis, 50
Brucella VirB, modulation of type IV secretion
system, 344–346
type IV secretion system genes, in phagosome,
344–346
Burkholderia, Bptm group of, quorum sensing in, 45–47
quorum sensing in, 40–57, 45–51
Burkholderia cepacia, 551
Burkholderia mallei, as bioweapon, 46
Burkholderia pseudomallei, 551
Burkholderia thailandensis, quorum sensing in, 47, 49–50
Buruli ulcers, 458–459
Campylobacter jejuni, cytokine response to, 550
Cereulide, produced by Bacillus cereus sensu stricto and Bacillus weihenstephanensis, 270–271
Chaperone-usher pathway. See CUP
Chitin, 578–580
Chlamydia, RNA regulators in, 509–510
Chlamydia pneumoniae, 201
Chlamydia trachomatis, RNA regulators in, 509–510
Cholera, 532, 554, 567, 578, 580–581
Cholera toxin, 241, 501, 532, 569–570
Cholesterol-dependent cytolysins, of Bacillus cereus group species, 270
Choline-binding proteins, of Streptococcus pneumoniae, 201
ChoP, C-reactive protein and, 220
platelet-activating factor and, 220
ChvG/ChvI regulatory system, transcriptional
regulation by sRNA molecules, 285–287
Clostridia, iron-dependent virulence regulation in, 95
RNA regulators in, 517
Clostridium botulinum, 303, 517
Clostridium difficile, alternative sigma factor
TcdR of, 297
anti-sigma factor TsdC of, 297–298
as cause of antibiotic-associated diarrhea, 295
global regulator SpoOA and, 299–300
global transcriptional regulator CodY and, 300–301
pathogenicity locus of, 296–297
SigH alternative sigma factor and, 300
toxin A and toxin B in, regulators of, 298–299
toxin production by, environmental influences on,
296–297
molecular mechanisms controlling, 296–304
toxin production in, bacteriophage-mediated
regulation of, 302–303
toxic, regulation of, 303–304
regulation of, 295–306
transcriptional factor CcpA and, 301–302
Clostridium difficile-associated disease, 295
Clostridium difficile infections, 295
as toxin-mediated disease, 295–296
Clostridium difficile transferase, 303
Clostridium perfringens, 303, 517
diseases caused by, 281–282
extracellular toxin production in, regulation of,
281–289
food poisoning, CPE and, 290
as global VirSR two-component signal transduction
system, 282–285
as pathogen in domestic animals, 282
regulation by sRNA molecules, 285–287
regulation of toxin production by, alternative
mechanisms for, 289–290
cell density and quorum sensing in, 288–289
host cell contact and, 289
TcdR protein and, 297
type B, and lamb dysentery, 282
type D, enterotoxemia of sheep and, 282
VR-RNA in, 286–287, 290
Clostridium perfringens gas gangrene strain 13, 289
Clostridium perfringens genome, VirR boxes in, 284–285
Clostridium sproforme, 303
Clostridium tetani, 517
CO₂/bicarbonate, AtxA activity and, 265–266
Clostridium spiroforme
Clostridium perfringens genome, VirR boxes in, 284–285
gas gangrene strain 13, 289
Diphtheria toxin regulator. DtxR
Diphtheria, 86–87
sensu
Bacillus cereus
Diarrheal disease cholera, 554
Bacillus cereus
Diarrheal disease, 546–547
Escherichia coli
Pseudomonas aeruginosa
Cystitis, chronic, immune response during urinary tract
Cystic fibrosis, 171
Cyclic AMP, and
Pseudomonas aeruginosa
Cup, overview of, 136–139
CUP pili, 136–139
distribution in uropathogenic Escherichia coli
genomes, 136–139
subunits of, 137
type 1, biogenesis of, 138
Cystic fibrosis, 171
mutations in Vfr in, 24, 28
peristence of Pseudomonas aeruginosa in, 171, 180–181
Pseudomonas aeruginosa adaption during, 327
Pseudomonas aeruginosa and, 21, 23, 24, 25
Cystitis, chronic, immune response during urinary tract
infection predisposes to, 143–144
type 1 pili and, 145–148
Cytokines, 551
Cytolysins, cholesterol-dependent, Bacillus cereus group
species and, 270
delta producing nanopods, outer membrane vesicle
secretion and, 449, 455
Diarrhea, antibiotic-associated, Clostridium difficile as
cause of, 295
secretory, 569
watery, 554
Diarrheal disease, Bacillus cereus sensu stricto and, 263
Diarrheal disease cholera, 554
Diarrheal food poisoning, caused by Bacillus cereus sensu
stricto and Bacillus thuringiensis, 268–270
Diphtheria, 86–87
Diphtheria toxin regulator. See DtxR
DNA, extracellular, biofilm and, 14
foreign, H-NS global repressor protein and, 535–536
repression of horizontally acquired virulence
genes as, 535–537
in outer membrane vesicles of Escherichia coli, 453
in outer membrane vesicles of Pseudomonas
aeruginosa, 453
plasmid, in Neisseria gonorrhoeae, 453
DNA binding sites, of Fur- and DtxR-like
metalloregulators, 86
DNA methylation, and gene regulation, in bacterial
pathogens, 159, 160
Donor strand exchange, in CUP pili, 137, 139
Dopamine, in bacteria, 545
in body, 546
Drosophilae melanogaster, 530–531
DtxR family, 111–113
DtxR orthologs, 111–113
Duodenal ulcers, 550
Effector translocator, Agrobacterium tumefaciens
VirB/VirD4 as, 336–339
Effector translocator systems, regulation of, 344–349
EIIANtr, and virulence of Salmonella, 395–396
Emetic toxin, produced by Bacillus cereus sensu stricto
and Bacillus weihenstephanensis, 270–271
Endocarditis, 91–92
Endotoxin, biosynthesis of, 209–215, 216
biosynthetic enzymes of, 210–213
constitutively active, 210–213
regulated, 213–215
modification of, enzymes responsible for, 209, 211
synthesis and attachment of Kdo to, 216–217
terminal residues of, modifications of, 210, 212
Enterococcus faecalis pCF10, Ti plasmid transfer, 339
transfer of, pheromone-inducible regulation of, 339–341
Enterococcus faecalis pCF10/pAD1, as model plasmid
transfer system, 334
Enterotoxemia of sheep, Clostridium perfringens
type D and, 282
Enterotoxins, and food poisoning caused by Bacillus
cereus sensu stricto and Bacillus thuringiensis, 268–270
Entomopathogenic toxins, of Bacillus thuringiensis, 268–270
to, 467–470
Envelopment, effects on outer membrane vesicles,
454–458
Epinephrine, 545–546
in enterohemorrhagic Escherichia coli, sensing of,
546–547
Escherichia coli, 546, 552
cell envelope stress response and, 448
discovery of RyhB in, 115–116
DNA in outer membrane vesicles of, 453
enterohemorrhagic, 567
interkingdom regulation of, 547–548
Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Thu, 13 Jun 2019 23:50:17
quorum sensing in, 547
sensing of epinephrine and norepinephrine in, 546–547
enteropathogenic, 554–555
and adenosine, 554–555
ftnA, direct transcriptional activation of, by Fur, 112–113
Fur, 109–111
Fur locus, genetic organization of, 111
H-NS global represser protein in, 536
iron limitation in, biofilm formation and, 96
outer membrane of, 441, 442
overexpression of Mycobacterium tuberculosis pknA or pknB in, 480
pathogenic, 551
RNA regulators in, 510–511
pathogens, classifications of, 135–136
phase variation and, 156
RNA regulators in, 495–500
RyhB as regulator in, 115–116
RyhB promotion of iron acquisition in, 126
synthesis of, genes in, 219–220
in treated effluent of wastewater facilities, 566
treatment with nitrogen, 435
uropathogenic, dissemination to kidneys, 144–145
host and bacterial responses triggered by, 140–142
intracellular bacterial community formation and, 140, 142
pilus cross-regulation, 146, 148–149
type 1 pili, cross-regulation between, 146, 148
regulation of, 145–148
and type 1 pilus-dependent bladder invasion, 140–142
urinary tract infection, 136
pathogenesis of, 140–141
population dynamics governing, 140
virulence and gene regulation, 135–155
virulence of, 139–140
QseBC and, 547
use of virulence factors, 34
Escherichia coli F, as model plasmid transfer system, 334
Escherichia coli F plasmid factor, transfer of, 342, 343
Eukaryotic cells, interaction of outer membranes cells with, 441–442
Exopolysaccharides, and biofilms, 11–12, 13
biosynthesis of, in Pseudomonas aeruginosa, regulation of, 171–189
produced by Pseudomonas aeruginosa, 171, 172–174
PSL and PEL, 12–13
ExsA, as key regulator of type III secretion systems, 320–321
ExsA regulation, 321–322
Extracytoplasmic function sigma factors, 471
F plasmid transfer, regulation of, 342–344
Fenton reaction, 109
Ferric dicitrate, 97
Ferric uptake regulator, sensing of nitrogen by, 435
FevR/PigR, in Francisella, 411–412
FimL protein, 28
and Vfr-cAMP regulon, links between, 28
Firmicutes, 317
Flagella, repression of, to evade immune recognition, 529–532
type IV secretion systems and, 349
Flagellar motility, of Vibrio cholerae, 253–255
Flagellin, 530
Flavobacterium psychrophilum, vesiculating cells and, 456
Food-borne illness, Campylobacter jejuni and, 549–550
Food poisoning, caused by Bacillus thuringiensis, 268–270
human bacterial, caused by Clostridium perfringens, 281
Francisella, in complement resistance, 407–408
infection of macrophages, and macrophage proinflammatory response, 409
intracellular trafficking and replication, 406–407
live virus strain, 403
LPS in outer membrane of, modification of, 415
MigR/CiaC regulator of, 412–413
in modulation of host immune responses, 407–408
RNA polymerase, 411–412
RNA regulators of, 413, 506
transcription regulatory factors and, 410–411
type B, 403
virulence factors in, 413–415
and regulation of virulence genes in, 413, 414
virulence regulation and, 410–412, 506
Francisella capsular polysaccharides, 415
Francisella-containing phagosomes, 407
Francisella novicida, 403, 407–408, 409
identification of genes in regulation and, 411–412
Francisella pathogenicity island, pharocytosis, intracellular trafficking, and host immune responses during, 408–410
virulence genes in, 408–410
Francisella tularensis, acid phosphatases in, 413
environmental stimuli of, 404–405
in Francisella-containing phagosomes, 407
Hfq mutation in, 413
and intracellular components in bacterial virulence, 406
and iron, 404–405
lack of two-component regulatory systems in, 412–413
live virus strain, capsule-like complex in, 415
pathogenesis of, and vaccine development, monkeys in studies of, 403
in regulation of gene expression, intracellular trafficking, and subversion of host defenses, 402–421
response to temperature changes, 404
responses to oxidative, pH, and nutrient stresses, 405–406
studies of, in Drosophila melanogaster, 403–404
subspecies of, 402
and tularemia, 402–403
Francisella tularensis infection, animal models for, 403–404
environmental stimuli of, 404–405
phagocytosis, intracellular trafficking, and host immune responses during, 408
 type A, 403
type B, 403
Francisella tularensis live vaccine strain, 409
FrhA, as modulator of virulence in Vibrio cholerae, 253
Fructose-6-phosphate, for alginate biosynthesis, 172–173
Fumarate/nitrate reduction, 428, 429
sensing of nitrogen by, 434–435
sensing of oxygen and superoxide anion by, 431
Fur, amino acid sequences, alignment of, 109–111
 box motifs, and Fe-Fur transcriptional repression, 109
direct activation by, 112–113
direct transcriptional activation of Escherichia coli fnmA by, 112–113
discovery of, and naming of, 108–109
 and transcriptional repression by Fe-Fur, 98–99
Escherichia coli, 109–111
indirect inhibition of translation by RyhB, 117–118
 and iron, regulation of oxidative stress defenses, 123
 iron-free, regulation of, 86
properties of, 109–111
 and regulatory mechanisms of, 108–114
 as regulator of iron homeostasis, 511
 and RyhB, 119
 as global regulators, 119–120
 transcriptional repression by, 112
 in Yersinia pestis, 112
Fur family, 111
Fur/iron regulation, and enhancement of expression of adhesins and invasins, 95
Fur locus(i), Escherichia coli, genetic organization of, 111
 and their regulation, 111–112
Fur regulation, and RyhB regulation, 115
GacA, in Pseudomonas aeruginosa, direct targets of, 30–32
GacS/A, interaction of RetS and LadS with, 32–33
two component system, genes associated with acute infection by, 30–31, 32
Gamma-aminobutyric acid, 556–557
Gas gangrene, caused by Clostridium perfringens, 281
Gastric cancer, 550
Gastrin, 550
Gastritis, 506
Gastroenteritis, bacterial foodborne, 508
GbpA, as modulator of virulence in Vibrio cholerae, 252–253
Gene expression, intracellular trafficking, and subversion of host defenses, Francisella tularensis in, 402–421
Gene regulation, and DNA methylation, in bacterial pathogens, 159, 160
 iron-dependent, in gram-positive bacteria, 111–186
 by phase variable restriction-modification systems, 166
 phase-variable type III systems and, 161–162
 through methylation of DNA sequences, 162
Gene repression, to establish intracellular niche, 534–535
 of horizontally acquired virulence genes, 535–537
 to maintain commensality, 537–539
to mediate transitions from environment to host and back, 532–534
Genetic exchange, natural transformation and, 160–161
Gentamicin, 446–447, 456
Gingipains, 452
Glycogen storage, in Vibrio cholerae, 577
Glycopeptidolipids, hyperglycosylated, and Mycobacterium tuberculosis SigB, 472
Gram-negative bacteria, interaction of outer membranes with, 441–442
 sensing of host signals by, 535–535
Gram-negative pathogens, RNA regulators of, 495–511
Gram-positive bacteria, interaction of outer membrane cells with, 441–442
 iron-dependent gene regulation in, 111–186
 iron-dependent metalloregulators in, virulence determinants and, 107, 109
 iron-dependent regulators in, consensus sequences and, 86
 regulation of virulence by iron in, 107–105
Gram-positive membrane vesicles, 458–459
Gram-positive pathogens, RNA regulators of, 511–517
 toxin production by, 122–123
H-NS, as modulator of virulence in Vibrio cholerae, 250
H-NS global repressor protein, 535
 in mediated repression of transcription of foreign DNA, 535, 536
 in pathogenic Escherichia coli, 536
 in Shigella, 536
 in Yersinia, 536
Haemophilus influenzae, lipooligosaccharide, ChoP modification of, 220–221
 outer membrane vesicles and, 455
 as phasevarion, 156, 162, 163
Heat, induction of outer membrane vesicles and, 448
Helicobacter, RNA regulators in, 506–508
Helicobacter pylori, 550, 567
 AphB and, 247
cis-encoded antisense RNAs in, 507
 outer membrane vesicles of, 453, 455
 as phasevarion, 156, 165
 type II restriction-modification system in, 166
Helicobacter pylori Cag, type IV secretion system, 351, 352
Heme, tetrapyrrrole, as iron source of Staphylococcus aureus, 88
Heme-iron acquisition, during anthrax infection, 307–310
Hfq-binding small RNAs, 494, 501
Hfq mutation, in Francisella tularensis, 413
Histidine kinase PhoQ, 552–553
Histidine kinases, in alginate production, 178
Histidine sensor kinase ApsS, 554
Histidines, 200–201
Histone-like proteins, regulating alginate production, 176, 178–179, 180
Histone-like proteins, regulating alginate production, 176, 178–179, 180
Hormones, host-derived, sensing of, 545–551
 peptide, sensing of, 550–551
Iron-free Fur regulation, 86
Iron homeostasis, RyhB in, 125–126
Iron or Fur, in regulation of transcriptional regulators, 119
Iron-regulated genes, in intracellular and extracellular pathogens, 126
Iron regulation, and virulence, in *Yersinia pestis*, Gram-negative bacterial pathogens with, 107–110
Iron research, in *Bacillus anthracis*, future of, 311
Iron transport systems, 120–122
Iron uptake regulation protein. See Fur
iscRSUA, selective degradation of mRNA, 118
Ixodes ticks, 528–529
Kdo, biosynthesis of, regulation of, 217–219
synthesis and attachment of, to lipid A, 216–217
Kidneys, uropathogenic *Escherichia coli* dissemination to, 144–145
KinB, in regulation of *Escherichia coli* dissemination, 177–178
Koch’s postulates, 465
L-DOPA, 545
Lactoferrin, 546
and transferrin, sequestration of iron by, 93
Lamb dysentery, *Clostridium perfringens* type B and, 282
Legionella, in aquatic environment, 566–567
RNA regulators in, 508
Legionella-containing vacuoles, 346–347
expression of genes in, signals regulating, 346, 347
Legionella pneumophila replication in, 346
Legionella pneumophila, 567
cross-regulation of motility and type IV secretion, 348, 349
replication in *Legionella*-containing vacuoles, 346
type IV secretion system and, 334–335
Legionella pneumophila Dot/Icm, 346–347
Lipid A, biosynthesis of, 209–215, 216
biosynthetic enzymes of, 210–215
constitutively active, 210–213
regulated, 213–215
modification of, enzymes responsible for, 209, 211
synthesis and attachment of Kdo to, 216–217
terminal residues of, modifications of, 210, 212
Lipids, bacterial vesiculation and, 441
of outer membranes, interaction with small molecules in environment, 454
Lipoarabinomannan, of *Mycobacterium*, 467
Lipobox motif, 198
Lipomannan, of *Mycobacterium*, 467
Lipopoligosaccharide, 215
of *Neisseria*, ChoP modification of, 221
phosphorylcholine modification of, by phase variation, regulation of, 220–221
regulation of, by PhoP/PhoQ in *Yersinia pestis*, 221
Lipopolysaccharide, anionic charge repulsion of, and outer leaflet expansion, 446–447
core biosynthesis, regulation of, 217
core of, genetic organization and transport genes of, 217–219
structures of, 217, 218
core oligosaccharide, 215
inner core, biosynthesis of, 215
regulation of, 219–220
modifications of, and antimicrobial peptide resistance, regulation of, 209–238
outer core, biosynthesis of, 216–217
regulation of, 219–220
packing of, Pseudomonas quinolone signal and, 447
phospholipids of outer membrane vesicles and, 453–454
production by Pseudomonas aeruginosa, 446
structural domains of, 209
structure and visualization of, 222, 223
structure of, bacterial vesiculation and, 441
Pseudomonas aeruginosa outer membrane vesicles and, 446
transport of, 230–231
LptA assistance in, 230, 231
regulation of, 231
Lipoproteins, 198–200
diverse functions of, 198
Listeria, iron-dependent virulence regulation in, 94–95
RNA regulators in, 512–513
Listeria flagellin, 531–532
Listeria innocua, 513
Listeria ivanovii, 513
Listeria monocytogenes, 94–95, 512, 531–532
bacterial survival and replication promotion by, 363–364
gene products of, promoting bacterial infection, 364–365
pathogenesis of, and PrfA activation, 376–380
PrfA as key to, 365–366
protein secretion by, PrfA activation and, 374
repression of flagellar synthesis in, 532
switch from environmental bacterium to intracellular pathogen, PrfA and, 363–385
transition from environmental bacterium to intracellular pathogen, 364, 365
transition from outside environment to inside of host, PrfA regulation during, 376, 377
viability of, PrsA2 and, 374, 375
wide distribution of, 363–364
Listeria monocytogenes infection, in healthy individuals, 363–364
route of, 364
Listeriosis, 94, 512
Long-chain fatty acids, type III secretion systems and, 325
LptA, in lipopolysaccharide transport, 230–231
LpxR, 214
LuxO transcription factor, 501–503
LuxR homologs, synthesis of, plant-derived opines
inducing, 338
Lyme disease, 110, 528, 549
Lysobacter, outer membrane vesicles formation and, 450
Mannose-sensitive hemagglutinin, type IV, 531
repression of, 531
Mannosides, to treat urinary tract infections, 149
Meliodosis, 46, 551
Membrane vesicles, factors affecting, 441
gram-positive, 458–459
production of, 441
Meningitis, 91
Metabolites, host-derived, sensing of, 554–555
Metal ion-dependent gene regulation systems, 193–194
Metalloproteases, Bacillus cereus group species and, 271–272
Metalloregulators, Fur- and DtxR-like, DNA binding sites of, 86
gram-positive, structural characteristics of, 113
transcriptional regulation mechanisms, 85–86
iron-dependent, in gram-positive bacteria, virulence determinants and, 107, 109
Methicillin-resistant Staphylococcus aureus (MRSA), 58
Methylation, differential, P type 1 pili regulation and, 148
MglA, as virulence regulator, in Francisella tularensis, 410–411
MglA-Spa, in Francisella, 411–412
MgtE magnesium transporter, in Pseudomonas aeruginosa, 325
Mycobacteria, iron-dependent virulence regulation in, 96–97
Microbial pathogens, waterborne, importance of, 566
MigR/CiaC regulator, of Francisella, 412–413
Misfolded proteins, in periplasm, outer membrane and, 445–446
Mn-Fur, repression of iron/Fur-regulated promoters of Escherichia coli by, 113–114
mRNA, selective degradation by iscRDUA, 90
MucA, as anti-sigma factor, 181, 182
Mucosal escape response, 532
Mucosal pathogens, host-adapted, epigenetic gene regulation in, 156–170
MucR, as regulator of alginate production, 183
Mycobacterial cell envelope, 466, 468–469
Mycochromobacterium, outer membrane of, mannosylated constituents of, 467
RNA regulators of, 516–517
Mycobacterium bovis, 516
overexpression of Mycobacterium tuberculosis pknA or pknB in, 480
Mycobacterium leprae, 471
Mycobacterium marinum, transport of Mycobacterium tuberculosis and, 466
Mycobacterium smegmatis, overexpression of Mycobacterium tuberculosis pknA or pknB in, 480
sensitivity to SDS, 476
Mycobacterium tuberculosis, 96–97, 516–517
cell envelope, 469
cell envelope stress response network of, 473
characteristics of, 465
exposure to envelope stress, 467–470
exposure to environmental stressors, 467–469
integration of cell envelope damage response in, 482–483
internalization into phagosome, 470
life cycle of, 466–467
as member of actinomycete family, 465
PbpA penicillin-binding protein of, 480
PknA and PknB as essential serine-threonine protein kinases in, 477–481
PknA or PknB, overexpression of, 480
regulation of envelope stress responses by, 465–489
regulatory determinants of, 465
replication of, 466
during infection, 474, 475
response to cell envelope in, 470
sensitivity to SDS, 476
serine-threonine protein kinases, 477–482
in regulation of AG synthesis, 481
in regulation of mycolic acid synthesis, 481–482
spread of, 466
two-component signal transduction systems, regulating expression of cell envelope products, 477
Mycobacterium tuberculosis complex, 465
Mycobacterium tuberculosis genome, 467
Mycobacterium tuberculosis SigB, 472–474
and hyperglycosylated glycopeptidolipids, 472
Mycobacterium tuberculosis SigE, 471–472
binding to cognate anti-sigma factor RseA, 472
gene regulation in, 472
Mycobacterium ulcerans, membrane vesicles produced by, 458
Myonecrosis, clostridial, caused by Clostridium perfringens, 281
NADPH phagocyte oxidase, oxyradicals generated by, 426
reactive oxygen species produced by, 426
resistance to salmonellosis, 425
Salmonella evasion of, by, 425
reactive oxygen species produced by, 426
Nutritional immunity, limitation of iron availability, 546–547
Nutrient and metabolic state systems, 194–195
Nutrient stresses, Francisella tularensis response to, 405–406
Nutrients, outer membrane vesicle formation and, 455
Nutritional immunity, limitation of iron availability, 108–110
response of bacterial pathogens to, 110–111
O antigen, biosynthesis genes, regulation of, 225–226
biosynthesis of, 222–230
chain length of, regulation by Wzz proteins, 228–230
general structure of, 222–223
loci containing genes of, 223–224
loci from different gram-negative bacteria, 224
locus, regulation of, 226–227
modification genes, regulation of, 227–228
serotype, conversion from one to another, 227–228
side chains of, generation of, 224–225
gram-negative bacteria attachment to, 222–223
synthesis of, ABC transporter-dependent pathway for, 225
synthesis and transfer of, Wzy-dependent pathway for, 224, 225
Wzy-dependent pathway of, Wzz chain length regulators and, 227–228
Oligosaccharide, core, of lipopolysaccharide, 215
OmpR/EnvZ two-component system, in regulatory control of SsrAB expression, 393–395
Opioids, sensing of, 550
Outer leaflet, expansion of, anionic charge repulsion of lipopolysaccharide, 446–447
Outer membrane, anchored to peptoglycan, 443–445
of Escherichia coli, 441, 442
and misfolded proteins in periplasm, 445–446
of Mycobacterium, 467
of Vibrio cholerae, 441, 442
Outer membrane proteins, interaction with small molecules in environment, 454
protein banding patterns of, 451–453
Outer membrane vesicle-banding molecules, 446–447
Outer membrane vesicles, 441–442
bacteria producing, 441
components of, 453
Nitrosative stress, Salmonella resistance to, 425–440
sensors of, 428–429
Norepinephrine, in bacteria, 545
in body, 546
in enterohemorrhagic Escherichia coli, sensing of, 546–547
exposure of Campylobacter to, 550
host hormone, Pseudomonas sencis, 548
sensing of, by Pseudomonas, 547–549
NorR, nitrosylated, 433–434
sensing of nitrogen by, 433–434
NsR, as dedicated nitrogen sensor, 433–434
direct sensing of nitrogen by, 433–434
Nucleic acids, outer membrane vesicle transfer and, 453
Nucleoid-associated proteins, in control of SsrAB expression, 396–397
Nutrient and metabolic state systems, 194–195
Nutrient stresses, Francisella tularensis response to, 405–406
Nutrients, outer membrane vesicle formation and, 455
Nutritional immunity, limitation of iron availability, 108–110
response of bacterial pathogens to, 110–111
Nitrogen, production in gastrointestinal tract, host defense against Salmonella and, 432
sensing of, dedicated, 433
by ferric uptake regulator, 435
by fumarate/nitrate reduction, 434–435
by oxidative stress response, 434
by superoxide response, 434
Nitrogen sensors, dedicated, 433
indirect, 434–435
formation of, cell envelope stress and, 448–449
environmental effects on, 454–458
heat and, 448
molecular mechanism of, 442–447
proteins in regulation of, 449
Pseudomonas putida and, 449
quinoline signal and, 450–451
regulation of, 447–451
sRNA molecules and, 450
of Helicobacter pylori, 453
interaction with eukaryotic cells and gram-negative and
Gram-positive bacteria, 441–442
phospholipid and fatty acid content of, in Pseudomonas
aeruginosa, 454
phospholipids of, lipopolysaccharides and, 453–454
produced in biofilms, 456–458
protein banding patterns of, 451–453
proteins and lipids packaged in, 451–454
of Pseudomonas aeruginosa, lipopolysaccharide
structure and, 446
substrates packaged by, 454
toxins in, 452
virulence factors in, 452
Outer membrane vesicles-secreting organelle,
Comamonadaceae and, 450
Outer membranes, lipids and proteins of, interaction with
small molecules in environment, 454
Outer surface protein A, in tick movement of Borrelia
burgdorferi, 529
Outer surface protein C, in tick movement of Borrelia
burgdorferi, 529
Oxidative stress, endogenous sources of, 425–426
and intracellular survival, 95
Salmonella resistance to, 425–440
sensors of, 428, 429
Oxidative stress response, 428, 429
sensing of hydrogen peroxide by, 430–431
sensing of nitrogen by, 434
Oxidative stresses, Francisella tularensis response to,
405–406
Oxygen, and superoxide anion, sensing by fumarate/
nitrate reduction, 431

PagL, 214
PagP, 214
PAO578, affecting mucoid phenotype, 183
Pathogen-associated molecular patterns, 530
PbpA, of Mycobacterium tuberculosis, 480
Pel, in biofilms, 174
polysaccharide synthesis of, 172
regulation of, c-di-GMP in, 183, 184
in virulence control, 514
PepO, as virulence regulator, in Francisella
tularensis, 411
Peptide hormones, sensing of, 550–551
Peptides, antimicrobial, sensing of, by gram-negative
bacteria, 552–553
by gram-positive bacteria, 553–554
autoinducing, of Agr system, 62, 64
Peptidoglycan, bacterial vesiculation and, 441
outer membrane anchored to, 443–445
Periplasm, misfolded proteins in, outer membrane and,
445–446
Periplasmic thio/disulfide oxidoreductase, gene dshA
and, 325
PerR, as iron- and manganese-dependent repressor, 89
Petrobactin, 309–310
pH, environmental, Francisella tularensis response to,
405–406
Phagocytes, response of virulence factors of
Staphylococcus aureus to, 69–72
Phagocytosis, during Francisella tularensis infection,
407–408
Phase variation, 156, 195–196
differences in properties of contingency genes, 157, 158
DNA sequence and/or DNA structure, 156
homopolymeric tracts and, 195–196
mechanisms of, 157
in slipped-strand mispairing, 157, 158
via simple tandem repeats, 157–158
Phasevarions, 156–170
common features of, 165–166
epigenic gene regulation in host-adapted mucosal
pathogens, 156–170
elements of, 162–165
mechanism of action of, 166
PhoB, as modulator of virulence in Vibrio cholerae,
251–252
PhoP/PhoQ-regulated lipid A biosynthesis, 213–215
PhoPQ two-component system, as globulatory regulatory
system, 395, 534
PhoQ, 552–553
PhoR/PhoB-regulated lipid A biosynthesis, 213
Phosphatidyl-mylo-inositol mannosides, of
Mycobacterium, 467
Phosphoenolpyruvate-phosphotransferase system,
378–379
Phospholipases, secreted by Bacillus cereus group
species, 271
Phospholipids, of outer membrane vesicles,
lipopolysaccharides and, 453–454
Phosphorylcholine modification, of lipooligosaccharide by
lipopolysaccharides and, 453–454
Phase variation, regulation of, 220–221
Phosphotransferase system, 379
Pilibides, to treat urinary tract infections, 149
Pilus(i), repression of, to evade immune recognition,
529–532
toxin-coregulated, 569
type IV, and type IV secretion systems, coregulation of,
348, 349–350
PknA, and PknB phosphorylate proteins in biosynthesis
and maintenance of Mycobacterium tuberculosis
cell envelope, 478–479
PknB, and PknA phosphorylate proteins in biosynthesis
and maintenance of Mycobacterium tuberculosis
cell envelope, 478–479
Plague, Yersinia pestis and, 107
Plants, sensing of host-derived signals in, 555–557
Plasmid transfer, inducible, 339–341
Pleiotropic control systems, for virulence gene expression, 264–267
PmrA/PmrB-regulated lipid A biosynthesis, 215
Pneumococcal disease, management of, 190
Pneumococcal gene expression patterns, 190–191
Pneumococcal regulation of expression of, during transition
Listeria monocytogenes
Pneumococcal regulatory systems, 191–196
Pneumococcal viability and, 374, 375
PmrA/PmrB-regulated lipid A biosynthesis, 215
Production of, in outer membrane vesicles, lipopolysaccharide structure
Pseudomonas aeruginosa
Pseudomonas viability and, 374, 375
PrsA2, Listeria monocytogenes pathogenesis, 348, 350
Pseudomonas aeruginosa, as causative agent of infections, 171
Pseudomonas aeruginosa enclosing, in outer membrane vesicles, 452, 453
Pseudomonas aeruginosa, encoding of virulence factors by, 547–549
Pseudomonas aeruginosa, acyl homoserine lactones, 40
Pseudomonas aeruginosa, acyl homoserine lactone quorum sensing processes in, 42
PrsA2, Listeria monocytogenes viability and, 374, 375
Pseudomonas aeruginosa, acyl homoserine lactones, 557
Pseudomonas aeruginosa, acyl homoserine lactone signaling in, 43–44
Pseudomonas aeruginosa, as causative agent of infections, 171
Pseudomonas aeruginosa, cystic fibrosis, 23, 24, 25
Pseudomonas aeruginosa, DNA in outer membrane vesicles of, 453
Pseudomonas aeruginosa, encoding of acyl homoserine lactone systems, 548
Pseudomonas aeruginosa, encoding of virulence factors by, 547–549
Pseudomonas aeruginosa, exopolysaccharide biosynthesis in, regulation of, 171–189
Pseudomonas aeruginosa, exopolysaccharides produced by, 171, 172–174
Pseudomonas aeruginosa, flat biofilms in, 4–5
GacA in, direct targets of, 30–32
host reaction sensing and, 327
infected Caenorhabditis elegans, 456–458
iron levels in, and biofilm development, 96–97
Las and Rhl QS systems in, 10–11
lipopolysaccharide production by, 446
magnesium transporter MgtE, 325
matrix components of, 11–14
nutrition of, 8–10
outer membrane vesicle formation and, 455
outer membrane vesicles, lipopolysaccharide structure and, 446
PAI-1 pathogenicity island, 348, 350
persistence of, in cystic fibrosis, 171, 180–181
phospholipid and fatty acid content of outer membrane vesicles in, 454
regulation of expression of, 317–333
interaction with small molecules in environment, 454
protein banding patterns of, 451–453
pneumococcal surface, regulation of, 190–208
regulatory circuits impacting expression of, 199, 200
polyhistidine triad, 200–201
production of, bacterial vesiculation and, 441
in regulation of outer membrane vesicle formation, 449
sortase-dependent surface, 201–202
virulence cascade activator, 245–249
Proteobacteria, and acylated homoserine lactones, 40
bacterial communication by, 40
PrsA2, Listeria monocytogenes viability and, 374, 375
Pseudomonas aeruginosa, acyl homoserine lactones, 557
formation of resistant biofilms by, 547–548
quinolone signaling molecule produced by, 548
repression of virulence factors by, 549
RNA regulators of, 503–505
sensing of norepinephrine by, 547–549
Pseudomonas aeruginosa, 3, 21, 503–504, 547–549, 567
acylated homoserine lactone quorum sensing processes in, 42
acylated homoserine lactone signaling in, 43–44
adaptation during cystic fibrosis, 327
adenosine and, 555
alginate produced by, 171
anaerobiosis sensing in, 324
biofilm development and structure in, 4–5
biofilm structure of, and antibiotic tolerance of, 14–15
factors influencing, 5–14
and function of, factors that impact, 3–20
biofilm formation in, signaling determinants regulating, 15–16
as causative agent of infections, 171
cystic fibrosis and, 21, 23, 24, 25
DNA in outer membrane vesicles of, 453
encoding of acyl homoserine lactone systems, 548
encoding of virulence factors by, 547–549
exopolysaccharide biosynthesis in, regulation of, 171–189
exopolysaccharides produced by, 171, 172–174
flat biofilms in, 4–5
GacA in, direct targets of, 30–32
host reaction sensing and, 327
infected Caenorhabditis elegans, 456–458
iron levels in, and biofilm development, 96–97
Las and Rhl QS systems in, 10–11
lipopolysaccharide production by, 446
magnesium transporter MgtE, 325
matrix components of, 11–14
nutrition of, 8–10
outer membrane vesicle formation and, 455
outer membrane vesicles, lipopolysaccharide structure and, 446
PAI-1 pathogenicity island, 348, 350
persistence of, in cystic fibrosis, 171, 180–181
phospholipid and fatty acid content of outer membrane vesicles in, 454
regulation of expression of, 317–333
interaction with small molecules in environment, 454
protein banding patterns of, 451–453
pneumococcal surface, regulation of, 190–208
regulatory circuits impacting expression of, 199, 200
polyhistidine triad, 200–201
production of, bacterial vesiculation and, 441
in regulation of outer membrane vesicle formation, 449
sortase-dependent surface, 201–202
virulence cascade activator, 245–249
Proteobacteria, and acylated homoserine lactones, 40
bacterial communication by, 40
PrsA2, Listeria monocytogenes viability and, 374, 375
Pseudomonas, 551
acyl homoserine lactones, 557
formation of resistant biofilms by, 547–548
quinolone signaling molecule produced by, 548
repression of virulence factors by, 549
RNA regulators of, 503–505
sensing of norepinephrine by, 547–549
Pseudomonas aeruginosa, 3, 21, 503–504, 547–549, 567
acylated homoserine lactone quorum sensing processes in, 42
acylated homoserine lactone signaling in, 43–44
adaptation during cystic fibrosis, 327
adenosine and, 555
alginate produced by, 171
anaerobiosis sensing in, 324
biofilm development and structure in, 4–5
biofilm structure of, and antibiotic tolerance of, 14–15
factors influencing, 5–14
and function of, factors that impact, 3–20
biofilm formation in, signaling determinants regulating, 15–16
as causative agent of infections, 171
cystic fibrosis and, 21, 23, 24, 25
DNA in outer membrane vesicles of, 453
encoding of acyl homoserine lactone systems, 548
encoding of virulence factors by, 547–549
exopolysaccharide biosynthesis in, regulation of, 171–189
exopolysaccharides produced by, 171, 172–174
flat biofilms in, 4–5
GacA in, direct targets of, 30–32
host reaction sensing and, 327
infected Caenorhabditis elegans, 456–458
iron levels in, and biofilm development, 96–97
Las and Rhl QS systems in, 10–11
lipopolysaccharide production by, 446
magnesium transporter MgtE, 325
matrix components of, 11–14
nutrition of, 8–10
outer membrane vesicle formation and, 455
outer membrane vesicles, lipopolysaccharide structure and, 446
PAI-1 pathogenicity island, 348, 350
persistence of, in cystic fibrosis, 171, 180–181
phospholipid and fatty acid content of outer membrane vesicles in, 454
regulation of expression of, 317–333
response to host stress, 550
sensing of cytokine, 552
structured biofilms in, 4
transduction pathways of, cyclic AMP and, 324
two-component regulatory systems and small RNAs in, 322–323
type III secretion systems in, 319–327
aspects of regulation of, 320
biostability of, 322
ExsD and ExsA in, 321–322
transcriptional and posttranscriptional regulation of, 320
use of virulence factors, 34
Vfr regulatory pathway and, 324
virulence factor expression, 21–22
regulators implicated in, 35
Pseudomonas aeruginosa infection, chronic versus acute, 21–39
strains causing, 22–25
virulence factor expression in, regulatory “switches” for, 26–36
Pseudomonas fluorescens, 505
Pseudomonas fragi, outer membrane vesicles and, 455
Pseudomonas putida, outer membrane vesicle formation and, 449
Pseudomonas quinolone signal, 548
interacting with lipopolysaccharide packing, 447
Pseudomonas syringae, 557
Pseudouridinase enzyme, gene truA and, 325
PsI, in biofilm formation, 174
in biofilms, 174
polysaccharide synthesis of, 172
regulation of, c-di-GMP in, 183, 184
Pulpy kidney disease, *Clostridium perfringens* type D and, 282
Pyrroloquinoline quinone, 10
Quinolone signal, outer membrane vesicles formation and, 450–451
studies of, *Pseudomonas aeruginosa* and, 450–451
Quorum sensing, 191–192
in *Burkholderia*, 40–57, 45–51
in *Burkholderia mallei*, 47, 50–51
in *Burkholderia pseudomallei*, 47, 48–49
in *Burkholderia thailandensis*, 47, 49–50
common themes in, 44–45
in enterohemorrhagic *Escherichia coli*, 547
in *Pseudomonas aeruginosa*, 504
in regulation of toxin production by *Clostridium perfringens*, 288–289
in regulation of virulence factors, 548
in *Shigella flexneri*, 319
type III secretion systems and, 319
in *Vibrio cholerae*, 242, 244, 570, 571
virulence gene expression and, 244
in *Yersinia enterocolitica*, 319

Reactive nitrogen species, enzymatic production of, 431–432
exposure of *Salmonella* to, 431–432
molecular targets of, 432, 435
in anti-*Salmonella* activity, 427
nonenzymatic production of, in stomach, 431–432
reaction with redox active sulphydryls, 432
redox sensors, of *Salmonella*, 425
sensing by *Salmonella* pathogenicity island 2 response regulator, 434
Reactive oxygen intermediates, internalization of *Mycobacterium* and, 470
Reactive oxygen species, exposure of *Salmonella* to, 425–426
molecular targets of, 435
in anti-*Salmonella* activity, 426–428
produced by NADPH phagocyte oxidase, 426
redox sensors, of *Salmonella*, 425
Regulation, negative, during bacterial infection. See Infection, bacterial, negative regulation during
Restriction-modification systems, 156
phase-variable, 160–162
gene regulation by, 166
methylation of genome and, 161–162
mod switching and, 161–162
type III, 162
Rhamnolipids, 547–548
biofilms and, 7–8
Rhizobium, 557
Riboswitches, 493–494
thermosensitive, 494
Rice water stool, 569, 576, 577
RipA, as mitogen-activated protein kinase, 407
RNA polymerase, in
Francisella, 411–412
RNA regulators, bacterial, regulatory mechanisms employed by, 502
RNA thermometers, 494
RNAIII, and AgrA regulation of gene expression, 66–67
amplification of Agr signal and, 66
as effector molecule of
Staphylococcus aureus, 63–65
as regulatory RNA molecule, 515
structure and mechanism of action of, 66
RNAs, antisense-encoded, 494
CRISPR, 494–495
small, in *Bacillus*, 511–512
in bacterial pathogens, 495–500
in *Bordetella*, 506
in *Borreliia*, 508–509
in *Campylobacter*, 506–508
in *Chlamydia*, 509–510
in *Escherichia coli*, 495–500
expansion of model organisms in, 517–518
in *Francisella*, 413, 506
in Gram-negative pathogens, 495–511
in Gram-positive and Gram-negative pathogens, and virulence control, 493
in Gram-positive pathogens, 511–517
in *Helicobacter*, 506–508
Hfq-dependent, 494, 501
in *Legionella*, 508
in *Listeria*, 512–513
molecules of, and outer membrane vesicles formation, 450
in Mycobacterium, 516–517
in Neisseria, 509
in pathogenic Escherichia coli, 510–511
in Pseudomonas, 503–505
as regulators of protein activity, 495
role in virulence regulation, regulatory mechanisms and, 493–527
in Salmonella, 495–501
SgrS core genome-encoded, 500–501
in Shigella, 510–511
in Staphylococcus, 514–516
in Streptococcus, 513–514
trans-acting, 494
in Vibrio, 501–503
in Yersinia, 505–506
RseA cognate anti-sigma factor, binding of SigE to, 472
RsmA, posttranscriptional control by, and virulence of Pseudomonas aeruginosa, 504–505
regulation of type III secretion system gene expression by, 322–323
RyHB, description of, 108, 115
direct negative regulation of sodB by, 116–117
direct positive regulation of shiA, 118
discovery of, in Escherichia coli, 87–88
and Fur, as global regulators, 119–120
Fur and, 119
indirect inhibition of translation of Fur, 117–118
in iron homeostasis, 97–98
promotion of iron acquisition in Escherichia coli, 98
as regulator in Escherichia coli, 87–88
regulatory mechanisms of, 88, 89
Shigella species and, 91–92
in various species, 88
in Vibrio species, 88
RyHB properties, and regulatory mechanisms, 115–118
RyHB regulation, and Fur regulation, 115
S-layer protein BslA, Bacillus anthracis and, 273
SacR/S, and Staphylococcus aureus, two component system, 70–72
and Staphylococcus aureus neutrophil interaction, 69–70
two component system, relationship to Staphylococcus aureus regulatory systems, 71–72
Salicylic acid, 97
Salmonella, 552
adaptation to superoxide anion and water, 428–429
antioxidant defenses of, 426
evasion of NADPH phagocyte oxidase by Salmonella pathogenicity island 2, 431
exposure to reactive nitrogen species, 431–432
exposure to reactive oxygen species, 425–426
functions of PhoPQ in, 395
general host sensing in, 318
host defense against, nitrogen production in gastrointestinal tract and, 432
as invasive facultative intracellular pathogen, 386
redox sensors of reactive nitrogen species and, 425
redox sensors of reactive oxygen species and, 425
regulatory networks of, and defenses against reactive nitrogen species, 432–433
resistance to oxidative and nitrosative stress, 425–440
RNA regulators of, 495–501
sensors of oxidative stress and, 428–431
SlyA regulator and, 395
in treated effluent of wastewater facilities, 566
treatment with nitrogen, 435
type III secretion system, RsmA and, 322–323
virulence of, EIIAntr and, 395–396
SsrAB in, 388
Salmonella-containing vacuole, 386
Salmonella enterica, 546
Fur and, 83
gene regulation in, H-NS in, 535–536
gene repression in, 534
infections by, pathogenesis of, 386–401
SsrAB virulon of, 386–401
two-component system SsrAB, 387, 388
virulence genes activation and, 535
Salmonella enterica serovar, Typhimurium, 552
activation of, 552–553
Salmonella infections, as common food-borne diseases, 386
control of, burst of phagocytes in, 426
Salmonella pathogenicity island 1, during Salmonella invasion, 534
Salmonella pathogenicity island 2, 387–388
regulators of expression of, nucleoid-associated proteins and, 396
Salmonella evasion of NADPH phagocyte oxidase by, 431
sensing of reactive nitrogen species by, 434
SsrAB target genes outside, 389
SsrAB target genes within, 388
Salmonella pathogenicity islands, 386–387
Salmonellosis, NADPH phagocyte oxidase resistance to, 425
Salt, outer membrane vesicle formation and, 455–456
SDS, Mycobacterium tuberculosis and Mycobacterium smegmatis sensitivity to, 476
Secretion systems, type III. See Type III secretion systems
type IV. See Type IV secretion systems
Self-DNA degradation, autolytic, for uptake by cells, 161
Sensor kinase LadS (PA3974), 29–30
Sensor kinase RetS, 29
Sensor kinase RetS/GacS/LadS, signals regulating, 33–34
Sensor kinases GacS/RetS/LadS and sRNA, in mediated regulation of virulence factor expression, 29–34
Septicemia, 91
Serine-threonine protein kinases, Mycobacterium tuberculosis, 477–482
in regulation of AG synthesis, 481
in regulation of mycolic acid synthesis, 481–482
Mycobacterium tuberculosis and, 465
posttranslation modification of anti-sigma factors by, 482
Serratia marcescens, catecholamines in, 545
Serratia marcescens, catecholamines in, 545
Serum, transferrin in, 546
sbiA, direct positive regulation by RyhB, 118
Shigella, 552
 general host sensing in, 318
 H-NS global repressor protein in, 536
 RNA regulators in, 510–511
 in treated effluent of wastewater facilities, 566
 type III secretion system regulation in, 319
Shigella flexneri, 552
 quorum sensing in, 319
Shigella species, as direct targets of RyhB, 120
Shigella typhimurium, general host sensing in, 318
Sideromycins, 98
Siderophores, Bacillus anthracis, 309–310
 Bordetella and, 546
SigB, Mycobacterium tuberculosis, 472–474
 and hyperglycosylated glycoprotein lipids, 472
 and SigE, mediate transcriptional regulation in cell envelope damage, 470–483
SigE, Mycobacterium tuberculosis, 471–472
 binding to cognate anti-sigma factor RseA, 472
 gene regulation in, 472
 and SigB, mediate transcriptional regulation in cell envelope damage, 470–483
SigH alternative sigma factor, Clostridium difficile and, 300
Sigma factors, classification of, 470–471
 extracytoplasmic function, 471
 sporulation-associated, 471
Signaling molecule(s), host-derived, regulation in response to, 545–565
 produced by Pseudomonas, 548
SlyA, as MarR-type regulator, 395
 and survival of Salmonella, 395
sodB, direct negative regulation by RyhB, 116–117
Sortase-dependent surface proteins, of sodB, direct negative regulation by RyhB, 116–117
 as two-component sensor gene, 390–392
 structure and function of, 390–392
Spermidine, as inducer for type III secretion systems, 325
Spermine, 406
Spo0A global regulator, Bacillus species and, 299
 Clostridium difficile and, 299–300
 Clostridium perfringens and, 299
Sporulation, in Bacillus, small RNAs and, 511–512
Sporulation-associated sigma factors, 471
sRNA molecules, regulation of Clostridium perfringens by, 285–287
SspA, as virulence regulator, in Francisella tularensis, 411
SsrA, sensor kinase, 390
 and SsrB, domain organization of, 390–391
 structure and function of, 390–392
 as two-component sensor gene, 390–392
SsrAB, activation of, potential signals for, 398–399
 expression of, control of, nucleoid-associated proteins and, 396–397
 core genome-encoded regulators of, 392–393, 394
 regulation of, and binding specificity of SsrB, 392, 393
 regulatory control of, 392–397
host factors acting on, 397–398
 regulation of horizontally acquired regulators, 397
 in Salmonella virulence, 388
SsrAB operon, autoregulation of, 392, 393
SsrAB-regulated genes, 389
 expression levels of, 389–390
 as SsrAB virulon, 388
SsrAB regulatory system, 388
SsrAB target genes, outside Salmonella pathogenicity island 2, 389
 within Salmonella pathogenicity island 2, 388–389
SsrAB virulon, expression of, nitric oxide and, 397–398
 gene products of, and intracellular lifestyle of Salmonella, 399
 regulation of, OmpR/EnvZ two-component system and, 393–395
 PhoPQ two-component system and, 395
 regulatory circuits of, 392–393, 394
 of Salmonella enterica, 386–401
SsrB, binding specificity of, and regulation of ssrAB expression, 392–393
 promoter specificity of, 392
 as response regulator, 391–392
 and SsrA, domain organization of, 390, 391
 structure and function of, 390–392
Staphylococci, iron-dependent virulence regulation in, 88–89
 sensing of host signals by, 555
Staphylococcus, RNA regulators in, 514–516
Staphylococcus aureus, 552–553
 Agr system of, 62–63, 64
 autoinducing peptide and, 62, 64
 autoinducing peptide produced by, 515
 description of, 58, 514–515
 Fur and, 83
 interaction with neutrophils, 69–72
 iron and, 88–89
 iron-dependent virulence gene in, 88–89
 methicillin-resistant (MURSA), 58
 pathogenesis of, Agr and, 68–69
 and virulence factor regulation, 58–78
 resistance to antibiotics, 58
 response to host-derived molecules, 555
 and SacR/S, neutrophil interaction, 69–70
 SacR/S and, two component systems of, 70–72
 strains and growth conditions, microarray analysis of, 59, 60
 two-component systems of, 61
 virulence factors, 59–61
 growth phase-dependent expression of, 62
 in response to phagocytes, 69–72
 virulence of, SacR/S two component system and, 70–72
 virulence regulation of, 555
 virulon, regulation of, 61–69
Staphylococcus aureus infections, treatment of, inhibitors to target regulatory networks for, 72
Staphylococcus epidermidis, 89, 552, 553
Stomach, nonenzymatic production of reactive nitrogen species in, 431–432
Streptococcus, group A, invasive mutants in, 537, 538
RNA regulators in, 513–514
Streptococcus agalactiae, 93
Streptococcus group A, 92–93, 513, 514
Streptococcus mutans, 93
Streptococcus pneumoniae, 91–92, 513–514
CodY regulon of, 195
Streptococcus pyogenes, 92–93, 514, 537, 538
Streptococcus suis, 569
Substrate-T4CP, docking reactions of, regulation of, 350–352
Superoxide anion, and oxygen, sensing by fumarate/nitrate reduction, 431
sensing of, by superoxide response, 428, 429–430
Superoxide response, 428, 429
sensing of nitrogen by, 434
TcdC, anti-sigma factor, of Clostridium difficile, 297–298
TcdR protein, and Clostridium difficile, 297
Tcplp, as transcriptional activator, in Vibrio cholerae, 247–248
Temperature, outer membrane vesicle formation, 455
Temperature changes, Francisella tularensis response to, 404–405
Tetrapyrrole heme, as iron source of Staphylococcus, 531–532
Tobramycin, Pseudomonas aeruginosa and, 14–15
Two-component signal transduction systems, of animal pathogens, 318
bacterial metabolic/stress status sensing and, 324–325
cell contact and secretion/activation coupling in, 319
ExsA-dependent secretion/activation coupling and, 320–321
general host sensing of, 318–319
host environment sensing and, 322–323
linkage to metabolic status of bacterium, 319
long-chain fatty acids and, 325
in Pseudomonas aeruginosa, 319–327
quorum sensing and, 319
regulation of, common aspects of, among pathogenic bacteria, 317–319
regulation of expression of, 317–333
spermidine as inducer for, 325
stress and metabolic signals in, 319
Type IV secretion systems, adaption by mammalian pathogens, 344–349
architectures of, in Gram-negative and -positive bacteria, 335
Bartonella coregulation of, 348–349
biogenesis or function of, posttranscriptional control of, 350–352
Brucella VirB modulation of, 344–346
contact-mediated suppression or activation of, 351, 352
coordinated regulation of, 348–349
and surface organelles, 349–350
and Flagella, 349
function of, 336
Helicobacter pylori Cag, 351–352
regulation of, 334–362
structure of, 335–336
and type IV pili, coregulation of, 348–350
Tyrosine, 545
Urinary tract infections, 135–136
antivirulence compounds to treat, 149
immune response during, predisposes to chronic cystitis, 143–144
uropathogenic Escherichia coli, 136, 140, 141
pathogenesis of, 140, 141
Valinomycin, 270
Vancomycin, 553
VarS/A two-component system, Vibrio and, 503
Vegetative insecticidal protein, of Bacillus thuringiensis, 268
Tryptophan, in bacterial cell-to-cell communication, 325–326
TsrA, as modulator of virulence in Vibrio cholerae, 252
Tuberculosis, 465–466
Tularemia, Francisella tularensis and, 402–403
pathogenesis of, 409
Tumor necrosis factor α, 552
Tyrosine, 545
Vesicles, formation of, regulation of, 441–464
membrane, production of, 441
outer membrane. See Outer membrane vesicles
VirA, as global regulator of virulence factors, 26–27
in regulation of alginate production, 180
Vibrio, RNA regulators of, 501–503
TarA and TarB, 503
Vibrio cholerae, 531, 532–534
biofilm formation by, 554, 579–580
bistable switch of, 582
c-di-GMP concentration during infection, 575–576
c-di-GMP signaling and biofilms in, 244–245
carbon sources for, 578–579
cells in vomitus, 575
cholera and, 241, 501
disease-causing biotypes of, virulence cascade and, 247
dissemination of, 577–578
fates of, in environment, 577–582
flagellar breakage in, and virulence gene expression, 533
flagellar motility of, 253–255
glycogen storage in, 577
H-NS in mediation of virulence gene repression, 536
hyperfertile, 581
infectivity of, chemotaxis and, 254–255
late genes, 575–577
late stage of infection and, 573–577
as model waterborne pathogen, 567–569
O1 serogroup of, 567–569
O139 serogroup of, 569
outer membrane of, 441, 442
quorum sensing in, 242, 244, 570, 571
regulating transition of, out of host, 566–585
RpoS- and HapR-mediated transition of cells from,
573–575
serogroups of, cholera and, 241
shed bacteria of, 582
toxigenic, life cycle of, 568, 569
toxin and virulence regulation in, 241–261, 570–573
transcriptional changes of, during infection, 573–574
transmission to new host, 580–581
two-component in, regulation of, 576–577
viable but nonculturable state of, 578–579, 580
virulence cascade, 241–243
activator proteins in, 245–249
virulence factors in, in late infection, bistable expression
of, 570–573
virulence gene expression in, environmental factors
influencing, 243–244
flagellar influence on, 254
during infection, 255–256
virulence in, modulators of, 250–255
regulation of, 570
Vibrio cholerae CmDOT, inducible transfer of, 341–342
Vibrio cholerae SXT, inducible transfer of, 341–342
Vibrio cholerae Tn916, inducible transfer of, 341–342
Vibrio fischeri, acylated homoserine lactone signaling
in, 42–43
Vibrio parahaemolyticus, 567
Vibrio pathogenicity island, 241
Vibrio species, RyhB in, 116
Vibrio vulnificus, 91
VieSAB, as modulator of virulence in Vibrio cholerae, 251
VirA/VirG regulatory system, transcriptional activation
of, 337–338
VirAG two-component system, 555–556
VirSR regulon, two groups of genes in, 284–285
VirSR two-component signal transduction system,
Clostridium perfringens as, 282–285
gene expression by, regulation of, 283
Virulence, factors influencing, 135
iron-dependent, regulation in Actinomyces, 95–96
regulation in Bacilli, 90–91
regulation in Clostridium, 95
regulation in Corynebacterium, 86–88
regulation in Listeria, 94–95
regulation in mycobacteria, 96–97
regulation in staphylococci, 88–89
regulation in streptococci, 91–94
iron regulation and, in Gram-positive bacteria,
107–155
in Yersinia pestis, gram-negative bacterial pathogens
with, 107–132
modulators of, in Vibrio cholerae, 250–255
regulation of, role of small RNAs in, regulatory
mechanisms and, 493–527
of uropathogenic Escherichia coli, 139–140
Virulence-associated genes, regulators of, 36
Virulence-associated plasmids, Bacillus cereus group
species and, 263–264
Virulence cascade activator proteins, 245–249
Virulence factor expression, GacS/RetS/LadS and
sRNA-mediated regulation of, 29–34
metabolic signals influencing, 33–34
in Pseudomonas aeruginosa infection, 26–36
Vf-cAMP dependent regulation of, 26–27
Virulence factor regulation, and Staphylococcus aureus
pathogenesis, 58–78
Virulence factor regulator, 26–29
and FimL protein, links between, 28
mutations in, in cystic fibrosis, 24, 28
and regulators of alginate expression, links between,
28–29
regulatory pathway, and Pseudomonas aeruginosa, 324
and type IV pilus, links between, 27–28
Virulence factors, acylated homoserine lactones in
regulation of, 40, 42
encoded by Pseudomonas aeruginosa, 547–549
in Francisella, 413–415
in outer membrane vesicles, 452
repressed by Pseudomonas, 549
Staphylococcal, secreted, 61
surface, 59–61
Staphylococcus aureus, growth phase-dependent
expression of, 62
in response to phagocytes, 69–72
SacSR two component system and, 70–72
Virulence gene expression, AtxA and PlcR control of, 264–267
environmental factors influencing, 243–244
pleiotropic control systems for, 264–267
quorum sensing systems and, 244
during Vibrio cholerae infection, 255–256
Virulence gene regulation, in Bacillus anthracis and
Bacillus cereus group species, 262–280
in Vibrio cholerae, 570–573
Virulence genes, horizontally acquired, repression of, as
foreign DNA, 535–537
primary, and their regulation, 569–570
Virulence program, 569–573
VR-RNA, in Clostridium perfringens, 286, 287, 290
Waterborne microbial pathogens, importance of, 566
Waterborne pathogens, aquatic reservoir in transmission of, 566–567
Whooping cough, 506, 530, 546
Wzz proteins, formation of homo-oligomers by, 229
overexpression in Yersinia enterocolitica, 229–230
regulation of O-antigen chain length by, 228–230
Yersinia, general host sensing in, 318
H-NS global repressor protein in, 536
RNA regulators of, 505–506
Yersinia enterocolitica, 505, 546, 567
overexpression of Wzz proteins in, 229–230
quorum sensing in, 319
Yersinia pestis, 505, 551–552
Fur in, 112
iron deprivation and, 97
iron regulation and virulence in gram-negative bacterial pathogens with, 107–132
iron transport systems of, 92–93
PhoP/PhoQ in, regulation of lipooligosaccharide by, 221
plague and, 107
promoter regions of, Fur boxes of, 113–115
virulence of, bubonic plague and, 94
Yersinia pseudotuberculosis, 505–506
iron starvation and, 92
Zoonotic transmission, vector-host, negative regulation to promote, 528–29