Contents

Editorial Board / xi
Contributors / xiii
Foreword: How It Began / xxiii
Preface / xxv
Author and Editor Conflicts of Interest / xxvii

SECTION A
GENERAL METHODS / 1
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: THOMAS A. FLEISHER
1 Introduction / 3
THOMAS A. FLEISHER
2 Molecular Methods for Diagnosis of Genetic Diseases Involving the Immune System / 5
AMY P. HSU
3 The Human Microbiome and Clinical Immunology / 19
FREDERIC D. BUSHMAN
4 Protein Analysis in the Clinical Immunology Laboratory / 26
ROSHINI SARAH ABRAHAM AND DAVID R. BARNIDGE

SECTION B
IMMUNOGLOBULIN METHODS / 47
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: DAVID F. KEREN
5 Introduction / 49
DAVID F. KEREN
6 Immunoglobulin Genes / 51
THOMAS J. KIPPS, EMANUELA M. GHIA, AND LAURA Z. RASSENTI
7 Immunoglobulin Quantification and Viscosity Measurement / 65
JEFFREY S. WARREN
8 Clinical Indications and Applications of Serum and Urine Protein Electrophoresis / 74
DAVID F. KEREN AND RICHARD L. HUMPHREY
9 Immunochemical Characterization of Immunoglobulins in Serum, Urine, and Cerebrospinal Fluid / 89
ELIZABETH SYKES AND YVONNE POSEY
10 Cryoglobulins, Cryofibrinogenemia, and Pyroglobulins / 101
PETER D. GOREVIC AND DENNIS GALANAKIS
11 Strategy for Detecting and Following Monoclonal Gammopathies / 112
JERRY A. KATZMANN AND DAVID F. KEREN

SECTION C
COMPLEMENT / 125
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: PATRICIA C. GICLAS
12 Introduction / 127
PATRICIA C. GICLAS
13 The Classical Pathway of Complement / 129
PATRICIA C. GICLAS
14 Analysis of Activity of Mannan-Binding Lectin, an Initiator of the Lectin Pathway of the Complement System / 133
STEFFEN THIEL
15 The Nature of the Diseases That Arise from Improper Regulation of the Alternative Pathway of Complement / 138
RICHARD J. H. SMITH
section D

FLOW CYTOMETRY / 145

VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITOR: MAURICE R. G. O’GORMAN

16 Introduction / 147
MAURICE R. G. O’GORMAN

17 Polychromatic Flow Cytometry / 149
ANGÉLIQUE BIANCOTTO AND J. PHILIP McCOY, JR.

18 High-Sensitivity Detection of Red and White Blood Cells in Paroxysmal Nocturnal Hemoglobinuria by Multiparameter Flow Cytometry / 168
ANDREA ILLINGWORTH, MICHAEL KEENEY, AND D. ROBERT SUTHERLAND

19 Standardized Flow Cytometry Assays for Enumerating CD34+ Hematopoietic Stem Cells / 182
D. ROBERT SUTHERLAND AND MICHAEL KEENEY

20 Functional Flow Cytometry-Based Assays of Myeloid and Lymphoid Functions for the Diagnostic Screening of Primary Immunodeficiency Diseases / 199
MAURICE R. G. O’GORMAN

21 Acute Lymphoblastic Leukemia/Lymphoma: Diagnosis and Minimal Residual Disease Detection by Flow Cytometric Immunophenotyping / 207
JOSEPH A. DiGIUSEPPE

22 Acute Myeloid Leukemia: Diagnosis and Minimal Residual Disease Detection by Flow Cytometry / 217
BRENT WOOD AND LORI SOMA

23 Chronic Lymphocytic Leukemia, the Prototypic Chronic Leukemia for Flow Cytometric Analysis / 226
HEBA DEGHEIDY, DALIA A. A. SALEM, CONSTANCE M. YUAN, AND MARYALICE STETLER-STEVENSON

24 Plasma Cell Disorders / 235
JUAN FLORES-MONTERO, LUZALBA SANOJA, JOSÉ JUAN PÉREZ, FANNY POJERO, NOEMÍ PUIG, MARÍA BELÉN VIDRIALES, AND ALBERTO ORFAO

25 Future Cytometric Technologies and Applications / 251
HOLDEN T. MAECKER

section E

FUNCTIONAL CELLULAR ASSAYS / 259

VOLUME EDITOR: BARBARA DETRICK
SECTION EDITOR: STEVEN D. DOUGLAS

26 Introduction / 261
STEVEN D. DOUGLAS

27 Cryopreservation of Peripheral Blood Mononuclear Cells / 263
ADRIANA WEINBERG

28 Lymphocyte Activation / 269
ROSHINI SARAH ABRAHAM

29 Functional Assays for B Cells and Antibodies / 280
MOON H. NAHM AND ROBERT L. BURTON

30 Methods for Detection of Antigen-Specific T Cells by Enzyme-Linked Immunospot Assay (ELISPOT) / 290
BARBARA L. SHACKLETT AND DOUGLAS F. NIXON

31 Regulatory T Cell (Treg) Assays: Repertoire, Functions, and Clinical Importance of Human Treg / 296
THERESA L. WHITESIDE

32 Measurement of NK Cell Phenotype and Activity in Humans / 300
SAMUEL C. C. CHIANG AND YENAN T. BRYCESON

33 Functional Assays for the Diagnosis of Chronic Granulomatous Disease / 310
DEBRA LONG PRIEL AND DOUGLAS B. KUHNS

section F

CYTOKINES AND CHEMOKINES / 321

VOLUME EDITOR: BARBARA DETRICK
SECTION EDITOR: JOHN J. HOOKS

34 Introduction / 323
JOHN J. HOOKS

35 Multiplex Cytokine Assays / 324
ELIZABETH R. DUFFY AND DANIEL G. REMICK

36 Cytokine Measurement by Flow Cytometry / 338
HOLDEN T. MAECKER

37 Chemokine and Chemokine Receptor Analysis / 343
SABINA A. ISLAM, BENJAMIN D. MEDOFF, AND
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Immunodeficiency Diseases</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>Volume Editor: Barbara Detrick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section Editors: Kathleen E. Sullivan and Howard M. Lederman</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>The Primary Immunodeficiency Diseases</td>
<td>713</td>
</tr>
<tr>
<td>74</td>
<td>Severe Combined Immune Deficiency: Newborn Screening</td>
<td>715</td>
</tr>
<tr>
<td></td>
<td>James W. Verbsky and John M. Routes</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Combined Immunodeficiencies</td>
<td>721</td>
</tr>
<tr>
<td></td>
<td>Christine Seroogy and Melissa Elder</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Antibody Deficiencies</td>
<td>737</td>
</tr>
<tr>
<td></td>
<td>Kimberley C. Gilmour, Anita Chandra, and D. S. Kumaratne</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Hereditary and Acquired Complement Deficiencies</td>
<td>749</td>
</tr>
<tr>
<td></td>
<td>Patricia C. Giclas</td>
<td></td>
</tr>
</tbody>
</table>

L	Allergic Diseases	781
	Volume Editor: Robert G. Hamilton	
	Section Editor: Pamela A. Guerrero	
80	Introduction	783
	Pamela A. Guerrero	
81	Quantitation and Standardization of Allergens	784
	Ronald L. Rabin, Lynnsey Renn, and Jay E. Slater	
82	Immunological Methods in the Diagnostic Allergy Clinical and Research Laboratory	795
	Robert G. Hamilton	
83	Assay Methods for Measurement of Mediators and Markers of Allergic Inflammation	801
	John T. Schroeder, R. Stokes Peebles, Jr., and Pamela A. Guerrero	
84	Tests for Immunological Reactions to Foods	815
	Carah B. Santos, David M. Fleischer, and Robert A. Wood	
85	Diagnosis of Rare Eosinophilic and Mast Cell Disorders	825
	Cem Akin, Calman Prussin, and Amy D. Klion	

M	Systemic Autoimmune Diseases	839
	Volume Editor: Barbara Detrick	
	Section Editor: Westley H. Reeves	
86	Introduction	841
	Westley H. Reeves	
87	Antinuclear Antibody Tests	843
	Alessandra Delavance, Wilson de Melo Cruvinel, Paulo Luiz Carvalho Francescantonio, and Luis Eduardo Coelho Andrade	
88	Detection of Autoantibodies by Enzyme-Linked Immunosorbent Assay and Bead Assays	859
	Edward K. L. Chan, Rufus W. Burlingame, and Marvin J. Fritzler	
89	Immunodiagnosis and Laboratory Assessment of	
Systemic Lupus Erythematosus / 868
WESTLEY REEVES, SHUHONG HAN, JOHN MASSINI, AND YI LI

90 Immunodiagnosis of Autoimmune Myopathies / 878
MINORU SATOH, ANGELA CERIBELLI, MICHITO HIRAKATA, AND EDMOND K. L. CHAN

91 Immunodiagnosis of Scleroderma / 888
MASATAKA KUWANA

92 Antibody and Biomarker Testing in Rheumatoid Arthritis / 897
ANN DUSKIN CHAUFFE AND MICHAEL RAYMOND BUBB

93 Antiphospholipid Antibody Syndrome: Clinical Manifestations and Laboratory Diagnosis / 905
MARTINA MURPHY AND NEIL HARRIS

94 Antineutrophil Cytoplasmic Antibodies (ANCA) and Strategies for Diagnosing ANCA-Associated Vasculitides / 909
R. W. BURLINGAME, C. E. BUCHNER, J. G. HANLY, AND N. M. WALSH

95 IgG4-Related Disease: Diagnostic Testing by Serology, Flow Cytometry, and Immunohistopathology / 917
JOHN H. STONE

96 Future Perspectives for Rheumatoid Arthritis and Other Autoimmune Diseases / 922
JEREMY SOKOLOVE

section O

ORGAN-LOCALIZED AUTOIMMUNE DISEASES / 927
VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITORS: C. LYNNE BUREK AND PATRIZIO CATUREGLI

97 Introduction / 929
C. LYNNE BUREK

98 Endocrinopathies: Chronic Thyroiditis, Addison Disease, Pernicious Anemia, Graves’ Disease, Diabetes, and Hypophysitis / 930
C. LYNNE BUREK, N. R. ROSE, GIUSEPPE BARBESINO, JIAN WANG, ANDREA K. STECK, GEORGE S. EISENBARTH, LIPING YU, LUDOVICA DE VINCENITIS, ADRIANA RICCIUTI, ALESSANDRA DE REMIGIS, AND PATRIZIO CATUREGLI

99 Myasthenia Gravis / 954
ARNO LD. I. LEVINSON AND ROBERT P. LISAK

100 Autoantibodies to Glycolipids in Peripheral Neuropathy / 961
HUGH J. WILLISON

101 Detection of Antimitochondrial Autoantibodies in Primary Biliary Cholangitis and Liver Kidney Microsomal Antibodies in Autoimmune Hepatitis / 966
P ATRIC K S. C. LEUNG, MICHAEL P. MANNS, ROSS L. COPPEL, AND M. ERIC GERSHWIN

102 Cardiovascular Diseases / 975
CHERYL L. MAIER, C. LYNNE BUREK, NOEL R. ROSE, AND AFTAB A. ANSARI

103 Celiac Disease and Inflammatory Bowel Disease / 983
MELISSA R. SNYDER

104 Autoantibodies Directed against Erythrocytes in Autoimmune Hemolytic Anemia / 990
R. SUE SHIREY AND KAREN E. KING

105 Immune Thrombocytopenia / 995
THOMAS S. KICKLER

106 Monitoring Autoimmune Reactivity within the Retina / 998
JOHN J. HOOKS, CHI-CHAO CHAN, H. NIDA SEN, ROBERT NUSSENBLATT, AND BARBARA DETRICK

section P

TRANSPLANTATION IMMUNOLOGY / 1063
VOLUME EDITOR: BARBARA DETRICK
Contents

SECTION EDITORS: ELAINE F. REED AND QIUHENG JENNIFER ZHANG

112 Histocompatibility and Immunogenetics Testing in the 21st Century / 1065
QIUHENG JENNIFER ZHANG AND ELAINE F. REED

113 Molecular Methods for Human Leukocyte Antigen Typing: Current Practices and Future Directions / 1069
MARK KUNKEL, JAMIE DUKE, DEBORAH FERRIOLA, CURT LIND, AND DIMITRI MONOS

114 Evaluation of the Humoral Response in Transplantation / 1091
PAUL SIKORSKI, RENATO VEGA, DONNA P. LUCAS, AND ANDREA A. ZACHARY

115 Non-Human Leukocyte Antigen Antibodies in Organ Transplantation / 1103
ANNETTE M. JACKSON AND BETHANY L. DALE

116 Evaluation of the Cellular Immune Response in Transplantation / 1108
DIANA METES, NANCY L. REINSMOEN, AND ADRIANA ZEEVI

117 Complement in Transplant Rejection / 1123
CARMELA D. TAN, E. RENE RODRIGUEZ, AND WILLIAM M. BALDWIN III

118 Molecular Characterization of Rejection in Solid Organ Transplantation / 1132
DARSHANA DADHANIA, TARA K. SIGDEL, THANGAMANI MUTHUKUMAR, CHOLI HARTONO, MINNIE M. SARWAL, AND MANIKKAM SUTHANTHIRAN

119 Killer Cell Immunoglobulin-Like Receptors in Clinical Transplantation / 1150
RAJA RAJALINGAM, SARAH COOLEY, AND JEROEN VAN BERGEN

120 Chimerism Testing / 1161
LEE ANN BAXTER-LOWE

Laboratory Management / 1169

VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: RONALD J. HARBECK

121 Clinical Immunology Laboratory Accreditation, Licensure, and Credentials / 1171
LINDA COOK AND RONALD J. HARBECK

122 Validation and Quality Control: General Principles and Application to the Clinical Immunology Laboratory / 1180
VIJAYA KNIGHT AND TERRI LEBO

Author Index / 1193
Subject Index / 1195
Contributors

ROSHINI SARAH ABRAHAM
Mayo Clinic, Laboratory Medicine and Pathology, Hilton
210e, 200 1st St. SW, Rochester, MN 55905

MARIA E. AGUERO-ROSENFELD
NYU Langone Medical Center, Rm. H374A, 560 First Ave.,
New York, NY 10016

CEM AKIN
Brigham and Women's Hospital, Department of Medicine,
Rheumatology, Immunology, 75 Francis Street,
Boston, MA 02115

MOHSIN ALI
Icahn School of Medicine at Mount Sinai, Department of
Medical Education, One Gustave L. Levy Place,
New York, NY 10029

BURT ANDERSON
Department of Molecular Medicine, Morsani College of
Medicine, University of South Florida, 12901 Bruce B. Downs
Blvd., Tampa, FL 33612

GIUSEPPE BARBESINO
Thyroid Unit, Massachusetts General Hospital – Harvard
Medical School, 15 Parkman St., Boston, MA 02114

DAVID R. BARNIDGE
Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, MN 55905

LEE ANN BAXTER-LOWE
Children's Hospital Los Angeles, 4650 Sunset Blvd., #32,
Los Angeles, CA 90027

ANGELIQUE BIANCOTTO
CHI/NHLBI, National Institutes of Health, 10 Center Drive,
Bldg. 10 Room 7N110a, Bethesda, MD 20892

LUCAS S. BLANTON
University of Texas Medical Branch-Galveston,
Department of Internal Medicine, 301 University Blvd.,
Galveston, TX 77555

MARY B. BROWN
Department of Infectious Diseases and Pathology, College of
Veterinary Medicine, University of Florida, P.O. Box 110880,
2015 S.W. 16th Ave., Gainesville, FL 32611

SARAH K. BROWNE
NIAID, NIH, Immunopathogenesis Section, Bldg. 10 · CRC
Rm. B3-4233, 10 Center Drive, Bethesda, MD 20014

YENAN T. BRYCESON
Center for Hematology and Regenerative Medicine,
Department of Medicine, Karolinska Institutet, Karolinska
University Hospital Huddinge, S-14186 Stockholm, Sweden,
and Institute of Clinical Sciences, University of Bergen,
N-5021 Bergen, Norway

MICHAEL RAYMOND BUBB
Division of Rheumatology, University of Florida, 1600 S.W.
Archer Rd D2-39, P.O. Box 100221, Gainesville, FL 32610

C. E. BUCHNER
Genalyte, Inc., 10520 Wateridge Circle, San Diego, CA 92121
C. LYNNE BUREK
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

RUFUS W. BURLINGAME
Genalyte, Inc., Diagnostic Assay Development, 10520 Wateridge Circle, San Diego, CA 92121

ROBERT L. BURTON
University of Alabama at Birmingham, 845 19th St. S, BBRB612, Birmingham, AL 35294

FREDERIC D. BUSHMAN
Perelman School of Medicine, University of Pennsylvania, Department of Microbiology, 3610 Hamilton Walk, Philadelphia, PA 19104

BREANNA CARUSO
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

PATRIZIO CATUREGLI
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

ANGELA CERIBELLI
Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Via A. Manzoni 56, 20089, Rozzano (Milan), Italy

CHI-CHAO CHAN
Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892

EDWARD K. L. CHAN
Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610

ANITA CHANDRA
Department of Clinical Biochemistry and Immunology, Box 109, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom

ANN DUSKIN CHAUFFE
Division of Rheumatology, University of Florida, 1600 S.W. Archer Rd D2-39, P.O. Box 100221, Gainesville, FL 32610

SAMUEL C. C. CHIANG
Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden

A. BERNARD COLLINS
Massachusetts General Hospital, Pathology, 503 Warren Bldg., 14 Fruit St., Boston, MA 02114

LINDA COOK
University of Washington, Laboratory Medicine, 1616 Eastlake Ave. E, Suite 320, Seattle, WA 98102

SARAH COOLEY
University of Minnesota, Hematology, Oncology and Transplantation, 420 Delaware St. SE, Mayo Mail Code 806, Minneapolis, MN 55455

ROSS L. COPPEL
Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia 3800

WILSON DE MELO CRUVINEL
Pontificia Universidade Católica de Goiás, School of Medical, Pharmaceutical and Biomedical Sciences, Avenida Universitária 1440, Setor Universitário, Goiânia, GO, 74.605-010, Brazil

KELLY A. CURTIS
Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

DARSHANA DADHANIA
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065

BETHANY L. DALE
Immunogenetics Laboratory, Johns Hopkins University School of Medicine, 2041 E. Monument St., Baltimore, MD 21205

DANIEL C. DANILA
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

ALESSANDRA DE REMIGIS
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

WILLIAM MARCIEL DE SOUZA
Virology Research Center, School of Medicine of Ribeirao Preto of University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

LUDOVICA DE VINCENTIS
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

HEBA DEGHEIDY
FDA, Center for Biologics Evaluation and Research, WO52/72 RM 3209, 10903 New Hampshire Ave., Silver Spring, MD 20993

ALESSANDRA DELAVANCE
Fleury Laboratories, Research and Development Department, Avenida Valdomiro de Lima 508, São Paulo, SP 04344-070, Brazil

BARBARA DETRICK
Immunology Laboratory, Department of Pathology, Johns Hopkins University, School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287

JOSEPH A. DiGIUSEPPE
Hematopathology and Special Hematology Laboratory, Department of Pathology & Laboratory Medicine, Hartford Hospital, 80 Seymour St., Hartford, CT 06102
CONTRIBUTORS

STEVEN D. DOUGLAS
The Children's Hospital of Philadelphia, University of Pennsylvania, Suite 1208 Abramson Research Building, 34th & Civic Center Blvd., Philadelphia, PA 19104

ELIZABETH R. DUFFY
Boston University School of Medicine, Pathology and Laboratory Medicine, 670 Albany St., Boston, MA 02118

JAMIE DUKE
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

BRUCE E. DUNN
Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226

GEORGE S. EISENBARTH
[Deceased]

MELISSA ELDERS
University of Florida, Pediatrics, 1600 S.W. Archer Road, Gainesville, FL 32610

DEBORAH FERRIOLO
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

LUIZ TADEU MORAES FIGUEIREIDO
Virology Research Center, School of Medicine of Ribeirao Preto of University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

DAVID M. FLEISCHER
Children's Hospital Colorado, Pediatrics, Aurora, CO 80045

MARTIN FLEISHER
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

THOMAS A. FLEISHER
Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bldg. 10 Rm. 2C306, 10 Center Drive, Bethesda, MD 20814

JUAN FLORES-MONTERO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

PAULO LUIZ CARVALHO FRANCESCANTONIO
Pontifícia Universidade Católica de Goiás, School of Medical, Pharmaceutical and Biomedical Sciences, Avenida Universitária 1440, Setor Universitário, Goiânia, GO, 74.605-010, Brazil

MARVIN J. FRITZLER
University of Calgary, Cumming School of Medicine, Calgary, Alberta T2N 4N1, Canada

DENNIS GALANAKIS
State University of New York, Stony Brook, NY 11794

M. ERIC GERSHWIN
Division of Rheumatology/Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility Suite 6510, School of Medicine, University of California at Davis, Davis, CA 95616

EMANUELA M. GHIA
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92033

PATRICIA C. GICLAS
National Jewish Health, Diagnostic Complement Laboratory, 1400 N. Jackson St., Denver, CO 80206

KIMBERLY C. GILMOUR
Immunology, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom

ELIZABETH A. GODBEY
Department of Pathology, Columbia University Medical Center, New York, NY 10032

PETER D. GOREVIC
Division of Rheumatology, The Mount Sinai Medical Center, Annenberg Building; Room 21-056, Box 1244, New York, NY 10029

KIM Y. GREEN
Calcivirus Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Building 50, Room 6318, Bethesda, MD 20892

PAMELA A. GUERRERIO
Food Allergy Research Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, 4 Memorial Dr., Building 228B, MSC0430, Bethesda, MD 20892

ROBERT G. HAMILTON
Johns Hopkins University School of Medicine, Dermatology, Allergy and Clinical Immunology Reference Library, 5501 Hopkins Bayview Circle, Baltimore, MD 21224

SHUHONG HAN
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

J. G. HANLY
Dalhousie University and Nova Scotia Health Authority (Central Zone), Departments of Medicine and Pathology, Nova Scotia Rehabilitation Center, 1341 Summer St., Halifax, NS B3H 4K4, Canada

RONALD J. HARBECK
National Jewish Health, 1400 Jackson Street, Denver, CO 80206
CONTRIBUTORS

NEIL HARRIS
University of Florida, Department of Pathology, 1600 SW Archer Rd, Gainesville, FL 32610

CHOLI HARTONO
Weill Cornell Medical College, Nephrology, 505 E. 70th St., Helmsley 2nd Floor, New York, NY 10021

HARRY R. HILL
University of Utah, Department of Pathology, Pediatrics and Medicine, 50 N. Medical Drive, Room 5B-114, Salt Lake City, UT 84132

MICHITO HIRAKATA
Medical Education Center, Graduate Medical Education Center, Keio University School of Medicine, Tokyo, Japan

RICHARD L. HODINKA
University of South Carolina School of Medicine Greenville and Greenville Health System, Room 210, Health Science Administration Building, 701 Grove Rd., Greenville, SC 2960

KRISTIN A. HOGQUIST
Center for Immunology, University of Minnesota, 2-186 MBB, 2101 6th St. SE, Minneapolis, MN 55455

STEVEN M. HOLLAND
National Institutes of Health, LCID, CRC B3-4141, MSC 1684, Bethesda, MD 20892

JOHN J. HOOKS
National Institutes of Health, Immunology & Virology Section, NEI, Bldg. 10 Rm. 10N248, 10 Center Drive, Bethesda, MD 20814

D. CRAIG HOOPER
Thomas Jefferson University, Jefferson Center for Neurovirology, 1020 Locust St, Philadelphia, PA 19107

AMY P. HSU
National Institutes of Health, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, Bldg. 10 CRC Rm B3-4233, 10 Center Drive, Bethesda, MD 20892

RICHARD L. HUMPHREY
Johns Hopkins Hospital, Pathology, 600 North Wolfe St., Baltimore, MD 21287

ANDREA ILLINGWORTH
Dahl Chase Diagnostic Services, 417 State St., Suite 540, Bangor, ME 04401

SABINA A. ISLAM
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114

ANNETTE M. JACKSON
Immunogenetics Laboratory, Johns Hopkins University School of Medicine, 2041 E. Monument Street, Baltimore, MD 21205

STEVEN JACOBSON
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

ELAINE S. JAFFE
Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, 10 Center Dr./Rm. 35235, MSC-1500, Bethesda, MD 20892

JEFFREY A. JOHNSON
Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

JERRY A. KATZMANN
Mayo Clinic and Mayo Foundation, Laboratory Medicine and Pathology, 200 First St. SW, Rochester, MN 55905

MICHAEL KEENEY
Hematology/Flow Cytometry, London Health Sciences Centre, Victoria Hospital, 800 Commissioners Road E, London, Ontario, N6A3W9 Canada

DAVID F. KEREN
University of Michigan, 5228 Medical Science I, 1301 Catherine, Ann Arbor, MI 48109

THOMAS S. KICKLER
Johns Hopkins University School of Medicine, 1800 Orleans Street, Sheikh Zayed B2-120Q, Baltimore, MD 21287

KAREN E. KING
Johns Hopkins Hospital, Transfusion Medicine, 1800 Orleans St., Baltimore, MD 21287

THOMAS J. KIPPS
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92039

AMY D. KLION
National Institutes of Health, Laboratory of Parasitic Diseases, NIAID, Bldg. 4, Rm. B1-28, Bethesda, MD 20892

VIJAYA KNIGHT
National Jewish Health, National Jewish Health Advanced Diagnostic Laboratories, Division of Pathology, Department of Medicine, 1400 Jackson St., Denver, CO 80206

DOUGLAS B. KUHNS
Clinical Services Program, P.O. Box B, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702

D.S. KUMARARATNE
Department of Clinical Biochemistry and Immunology, Box 109, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom

MARK KUNKEL
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104
MASATAKA KUWANA
Department of Allergy and Rheumatology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan

ROBERT S. LANCIOTTI
Arbovirus Diseases Branch, Centers for Disease Control & Prevention, 3150 Rampart Road (CSU Foothills Campus), Fort Collins, CO 80521

MARI L. LANDRY
Yale University, Laboratory Medicine and Internal Medicine, P.O. Box 208035, New Haven, CT 06520

TERRI LEBO
National Jewish Health, Advanced Diagnostic Laboratories, 1400 Jackson St., Denver, CO 80206

HOWARD M. LEDERMAN
Pediatric Allergy & Immunology, Johns Hopkins Hospital - CMSC 1102, 600 N Wolfe St, Baltimore, MD 21287-3923

DIANE S. LELAND
Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IU Health Pathology Laboratory Building, Room 6027F; 350 W 11th St, Indianapolis, IN 46202

PATRICK S. C. LEUNG
Division of Rheumatology/Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility Suite 6510, School of Medicine, University of California at Davis, Davis, CA 95616

ARNOLD I. LEVINSON
Perelman School of Medicine, University of Pennsylvania School of Medicine, Room 316 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104

YI LI
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

CURT LIND
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

MARK D. LINDSLEY
Mycotic Diseases Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G-11, Atlanta, GA 30333

ROBERT P. LISAK
Wayne State University Medical Center, Neurology, 4201 St. Antoine St., Detroit, MI 48201

CHRISTINE M. LITWIN
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425

SHELDON E. LITWIN
Department of Medicine, Medical University of South Carolina, 114 Doughty St., Charleston, SC 29425

DONNA P. LUCAS
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

ANDREW D. LUSTER
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114

HOLDEN T. MAECKER
Stanford University, Institute for Immunology, Transplantation, & Infection, Stanford University Medical School, 299 Campus Drive, Stanford, CA 94305

CHERYL L. MAIER
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322

MICHAEL P. MANNIS
Department of Gastroenterology and Hepatology, Zentrum Innere Medizin, Medizinische Hochschule Hannover, Hannover, Germany

REBECCA MARSH
Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229

JOHN MASSINI
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

RAYA MASSOUD
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

J. PHILIP McCOY, JR.
National Institutes of Health, NHLBI, 10 Center Drive, Bethesda, MD 20892

BENJAMIN D. MEDOFF
Center for Immunology and Inflammatory Diseases, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114

DIANA METES
University of Pittsburgh Medical Center, Thomas E Starzl Transplantation Institute, BST E1549, 200 Lothrop St., Pittsburgh, PA 15213

DIMITRI MONOS
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

MARTINA MURPHY
University of Florida, Hematology/Oncology, 1600 SW Archer Rd., Gainesville, FL 32610

THANGAMANI MUTHUKUMAR
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065
MOON H. NAHM
University of Alabama at Birmingham, 845 19th St. S, BBRC 614, Birmingham, AL 35294

STANLEY J. NAIDES
Immunology, Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92675

HUBERT G. M. NIESTERS
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

TIMOTHY B. NIEWOLD
Mayo Clinic, Department of Immunology and Division of Rheumatology, 200 1st Street SW, Rochester, MN 55905

DOUGLAS F. NIXON
Dept. of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Ross Hall 736, 2300 Eye Street, NW, Washington, D.C. 20037

ROBERT NUSSENBLATT
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive, Bethesda, MD 20814

THOMAS B. NUTMAN
Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Room B1 03, Bethesda, MD 20892

MAURICE R. G. O'GORMAN
Keck School of Medicine, University of Southern California, and the Children's Hospital of Los Angeles, Pathology and Pediatrics, 4650 Sunset Blvd #43, Los Angeles, CA 90027

ALBERTO ORFAO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

S. MICHELE OWEN
National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

GABRIEL I. PARRA
Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Building 50, Room 6316, Bethesda, MD 20892

R. STOKES PEEBLES, JR.
Vanderbilt University, Medicine, T-1218 MCN, Vanderbilt University Medical Center, Nashville, TN 37232

JOSÉ JUAN PÉREZ
Departamento de Hematología, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL); Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, 37007, Spain

ROBERT B. PETERSEN
Case Western Reserve University, Department of Pathology, 5-126 Wolstein Building, 2103 Cornell Road, Cleveland, OH 44106

SUHAS H. PHADNIS
Medical College of Wisconsin, Pathology, 9200 W. Wisconsin Ave., Milwaukee, WI 53205

FANNY POJERO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

YVONNE POSEY
Beaumont Hospital – Royal Oak, Clinical Pathology, 3601 W. 13 Mile Road, Royal Oak, MI 48073

DEBRA LONG PRIEL
Clinical Services Program, P.O. Box B, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702

CALMAN PRUSSIN
Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N238, Bethesda, MD 20892-1881

NOEMÍ PUIG
Departmento de Hematología, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL); Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, 37007, Spain

RONALD L. RABIN
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

MARK RAFFEL
Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, 10 Center Dr./Rm. 3S235, MSC-1500, Bethesda, MD 20892

ALEX J. RAI
Department of Pathology, Columbia University Medical Center, New York, NY 10032

RAJA RAJALINGAM
University of California at San Francisco, Immunogenetics and Transplantation Laboratory, Department of Surgery, 45 Castro St., Main Hospital Level B, CPMC Davis Campus, San Francisco, CA 94114

AMY RASLEY
Host-Pathogen Laboratory Group, Lawrence Livermore National Laboratory, Livermore, CA 94550
ROSEMARY SHE
Keck Medical Center of USC, Pathology, 1441 Eastlake Ave., Suite 2424, Los Angeles, CA 90089

R. SUE SHIREY
Johns Hopkins Hospital, Transfusion Medicine, 1800 Orleans St., Baltimore, MD 21287

TARA SIGDEL
University of California San Francisco, Division of Transplant Surgery, 513 Parnassus Avenue, S-1268 Medical Sciences Building, San Francisco, CA 94143

PAUL SIKORSKI
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

JERRY W. SIMECKA
Department of Cell Biology and Immunology, University of North Texas Health Science Center, RES 402A 3500 Camp Bowie Blvd., Fort Worth, TX 76107

JAY E. SLATER
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

MAREK SMIEJA
McMaster University, Department of Pathology & Molecular Medicine, L424-St. Joseph's Healthcare Hamilton, 50 Charlton Ave E, Hamilton, ON L8N 4A6, Canada

RICHARD J. H. SMITH
Iowa Institute of Human Genetics, Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA 52242

R. NEAL SMITH
Massachusetts General Hospital, Pathology, 501B Warren Bldg., 14 Fruit St., Boston, MA 02114

MELISSA R. SNYDER
Mayo Clinic, Hilton 2-10D, 200 First St. SW, Rochester, MN 55905

LORI J. SOKOLL
Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205

JEREMY SOKOLOVE
VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304-1207, and Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305

LORI SOMA
University of Washington, Department of Laboratory Medicine, NW120, Box 357110, 1959 Pacific St., Seattle, WA 98195-7110

DAVID J. SPEICHER
Griffith University, Menzies Health Institute Queensland, Gold Coast Campus, Queensland 4222, Australia

ANDREA K. STECK
Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045

MARYALICE STETLER-STEVENSON
CCR, NCI, NIH, Laboratory of Pathology, Building 10, Mail Stop 1500, Room 3S 235G, Bethesda, MD 20892

JAMES R. STONE
Massachusetts General Hospital, Pathology, 185 Cambridge Street, Boston, MA 02114

JOHN H. STONE
Harvard Medical School, Division of Rheumatology, 25 Shattuck St, Boston, MA 02115

MANIKKAM SUTHANTHIRAN
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065

D. ROBERT SUITHERLAND
Laboratory Medicine Program, Toronto General Hospital/University Health Network, 200 Elizabeth St., Room 11E416, Toronto, Ontario, M5G2C4 Canada

ELIZABETH SYKES
Beaumont Hospital – Royal Oak, Clinical Pathology, 3601 W. 13 Mile Road, Royal Oak, MI 48073

CARMELA D. TAN
Department of Pathology, 9500 Euclid Ave., Cleveland, OH 44022

YI-WEI TANG
Memorial Sloan-Kettering Cancer Center, Clinical Microbiology Service, 1275 York Ave., S328, New York, NY 10065

STEFFEN THIEL
Aarhus University, Department of Medicine, Bartholin Building, Wilhelm Meyers Allé 4, Aarhus, 8000, Denmark

RENEE TSOLIS
Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616

JEROEN VAN BERGEN
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands

CORETTA C. VAN LEER-BUTER
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

PRIYANKA VASHISHT
Mayo Clinic, Department of Immunology and Division of Rheumatology, 200 1st St. SW, Rochester, MN 55905

RENAO VEGA
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205
JAMES W. VERBSKY
Department of Pediatrics and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226

PRIYA S. VERGHESE
Pediatric Kidney Transplantation, University of Minnesota, Children's Hospital, 2450 Riverside Ave., MB 687, Minneapolis, MN 55454

MARÍA BELÉN VIDRIALES
Departmento de Hematología, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL); Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, 37007, Spain

KEN B. WAITES
Department of Pathology, University of Alabama at Birmingham, WP 230, 619 S. 19th St., Birmingham, AL 35249

DAVID H. WALKER
University of Texas Medical Branch-Galveston, Department of Pathology, 301 University Blvd., Galveston, TX 77555

NOREEN M. WALSH
Dalhousie University and Nova Scotia Health Authority (Central Zone), Department of Pathology and Laboratory Medicine, Mackenzie Building, Room 721, 5788 University Ave., Halifax, Nova Scotia B3H1V8, Canada

GUIQING WANG
New York Medical College, Department of Pathology, 100 Woods Road, Westchester Medical Center Rm. 1J-04, Valhalla, NY 10595

JIAN WANG
Department of Endocrinology, Jinling Hospital, Nanjing, China

JEFFREY S. WARREN
University of Michigan, Pathology, 5242 MSI, 1301 Catherine St., Ann Arbor, MI 48109

ADRIANA WEINBERG
Department of Pediatrics, Medicine and Pathology, University of Colorado Health Sciences Center, 4200 E. Ninth Ave., Campus Box C 227, Denver, CO 80262

THERESA L. WHITESIDE
University of Pittsburgh Cancer Institute, Research Pavilion at the Hillman Cancer Center, 5117 Centre Ave. Suite 1.27, Pittsburgh, PA 15213

PATRICIA P. WILKINS
Division of Parasitic Diseases & Malaria, Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333

HUGH J. WILLISON
B330, GBRC, 120 University Place, University of Glasgow, Glasgow, Scotland, G12 8TA, United Kingdom

THOMAS WISNIEWSKI
New York University School of Medicine, Department of Neurology, Psychiatry and Pathology, Alexandria ERSP, Rm. 802, 450 E. 29th St., New York, NY 10016

BRENT WOOD
University of Washington Medical Center, Hematopathology, Seattle, WA 98109

ROBERT A. WOOD
Johns Hopkins University, Baltimore, MD 21287

LI-PING YU
Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045

CONSTANCE M. YUAN
CCR, NCI, NIH, Laboratory of Pathology, Building 10, Mail Stop 1500, Room 2A33, Bethesda, MD 20892

ANDREA A. ZACHARY
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

ADRIANA ZEEVI
University of Pittsburgh Medical Center, Clinical Laboratory Building, Room 4033, 3477 Euler Way, Pittsburgh, PA 15213

QIUHENG JENNIFER ZHANG
UCLA Immunogenetics Center, Department Pathology & Laboratory Medicine, 15-20 Rehab, 1000 Veteran Ave., Los Angeles, CA 90024

Acknowledgment of Previous Contributors
The Manual of Molecular and Clinical Laboratory Immunology is by its nature a continuously revised work which refines and extends the contributions of previous editions. Since its first edition in 1976, many eminent scientists have contributed to this important reference work. The American Society for Microbiology and its Publications Board gratefully acknowledge the contributions of all of these generous authors over the life of this Manual.
In 1971, I was working at the University of Oxford's Sir William Dunn School of Pathology in the laboratory of James Gowans, the investigator who first definitively showed that the lymphocyte was the source of specific adaptive immunity. I was busily cannulating the thoracic ducts of rats in order to harvest T lymphocytes when I was informed that a transatlantic telephone call was coming in. My first reaction was fear of bad news. Rather, it was a phone call from Earle Spaulding. I knew Earle as the chairman of microbiology at Temple and active in the Eastern Pennsylvania branch of the American Society for Microbiology (ASM). He explained that he was calling as a member of the editorial group of the Manual of Clinical Microbiology (MCM), at that time in its first edition. His particular concern was the chapter on immunology, which devoted 100 pages to various serologic tests for infectious organisms with no mention of noninfectious diseases. Earle felt strongly that the field of immunologic diagnosis was growing exponentially and deserved a separate, companion manual. The MCM editorial board agreed, providing I was willing to accept the position of Editor-in-Chief.

I was delighted to receive the invitation. I had recently chaired a “blue ribbon” committee of the American Association of Immunologists (AAI) on the future of clinical immunology. We concluded that there was no space for a new patient-centered clinical specialty, but great need for improved, expanded laboratory support. A comprehensive manual would serve as a great stimulus to the whole field of laboratory-based clinical immunology. I accepted the offer with two qualifications. First, I needed a co-editor, particularly someone well versed at a practical level in immunology related to infectious diseases. Second, I asked that such a manual be cosponsored by the AAI. Both qualifications were agreed to by the ASM Publications Board.

The person I had in mind as co-Editor-in-Chief was Herman Friedman. I knew Herman from contacts arising from our joint interest in allergy research. I knew he understood the practice of laboratory immunology and was one of the few immunologists who actually researched the immunology of infection. Herman readily agreed to partner with me on the Manual, and so began a close collaboration that continued for three subsequent editions of the Manual, ended only by his untimely death. The AAI also accepted an offer of collaboration and appointed a liaison committee to work with us.

We were off and running, but we had no idea of how to proceed. There had never been a manual describing the entire laboratory practice of immunology. Part of our mission was to include the many applications of immunology devoted to detection and analysis of a wide variety of diseases, not only those induced by microorganisms. Should we approach the subjects disease by disease or method by method? We finally decided to compromise by beginning the book with invited chapters on the common methods used in the immunology laboratory, then continuing with sections covering their application to the main categories of disease. We included a final section on laboratory administration and quality control.

Having developed particular sections, we then sought the most experienced and highly qualified individuals to serve as section editors. Because of the cross-cutting matrix arrangement, there was major concern that some topics would be dealt with twice or even three times. We therefore decided to organize a “stakeholders meeting,” at which all of the section editors met at ASM in Washington, DC, with proposed outlines of their sections. Going through each one systematically, we identified topics where overlap occurred and ensured that everything important was included once, but not more. We also made a fundamental decision that the book would be complete and free-standing. The methods would be described in sufficient detail that the laboratory worker could actually prepare the materials, perform the tests, and interpret the results without consulting other references. It should be understood that, at that time, most laboratory reagents
were prepared within the laboratory and were generally not available as commercial kits. This format required that we keep descriptions terse and the reference lists short.

When the first edition of the Manual of Clinical Immunology was published in 1976, we felt it warranted some type of celebration. Herman suggested that we should organize a meeting to mark the birth of the book and to bring together the leaders in clinical laboratory immunology, including our authors and section editors. Eventually, this led to the formation of the Association of Medical Laboratory Immunologists and the American Board of Medical Laboratory Immunology.

The Manual continues to be published at regular intervals to the present, as the editorial lineup has evolved. Barbara Detrick and Robert G. Hamilton joined me as Editors for the Sixth Edition, and Dr. Detrick has continued to lead the Manual for the Seventh and the present Eighth Edition. I hope the series will go on for many years. Although the Manual's name has changed and the format is altered, the overall aim is still to improve the care of patients with infectious malignant inflammatory and immune-mediated disorders. With the ready availability of validated kits, the job of the clinical laboratory immunologist has shifted toward working with clinical colleagues on the significance and interpretation of laboratory tests.

I'm proud to have been involved in the genesis of this Manual. It would not have been possible without the continued support of ASM, the cooperation of AAI, the persistence of succeeding volume and section editors, the contributions of hundreds of practicing clinical laboratory immunologists, and the foresight of a few visionary microbiologists of the 1970 era who realized that immunology had become a discipline and specialty of its own. It never would have happened if Herman Friedman had not joined with me in accepting the challenge. I hope that he will long be remembered for his numerous contributions to immunology.

NOEL R. ROSE, MD, Ph.D.
For over 40 years, the *Manual of Clinical Laboratory Immunology* has been the leading reference source, both in the United States and abroad, to advance the field of laboratory immunology, to foster the best contemporary and most cutting-edge methodologies, and to translate basic immunologic principles into appropriate laboratory tests.

Since the publication of the 7th edition of this *Manual*, remarkable progress has been made in the field of immunology, and these notable advancements have been reflected in the clinical immunology arena as well. The scope of clinical immunology is exceptionally broad and encompasses nearly every medical specialty, including such areas as transplantation, rheumatology, oncology, infectious disease, allergy, hematology, and neurology, to name a few. Because of its strategic position in the hospital setting, it is critical that the clinical immunology laboratory should have a guide to follow with regard to accurate and appropriate laboratory procedures. As the field of clinical immunology continues to expand, we look to the laboratory director as a key person to gather the new basic information and integrate it into useful clinical procedures as well as to serve as a pivotal contact for communication with the various disciplines. In addition to keeping abreast with the most updated testing systems, the goal for this *Manual* is that it must not only serve the needs of today's clinical immunology laboratory but also look to the future, where even more dramatic progress in diagnosis and treatment can be anticipated.

In an effort to capture the new dimensions in this field and to reflect the continuous evolution of clinical immunology, significant changes have been introduced into the 8th edition of the *Manual of Molecular and Clinical Laboratory Immunology*. Several sections of the *Manual* have been notably updated to reflect the latest laboratory approaches in molecular assays as well as the shift to automated testing, kit-based diagnostics, and new technical tools: themes that are carried throughout the book. New chapters have been introduced to highlight these changes. For example, section D, Flow Cytometry, describes the latest applications of these techniques, such as polychromatic flow cytometry and mass cytometry; section F reviews fresh information on the clinical applications of cytokines and chemokines; the infectious disease sections H, I, and J include the newest strategies used in infectious disease diagnosis and treatment, including the HIV and syphilis algorithms; section K, Immunodeficiency Diseases, presents the recent newborn screening programs for severe combined immune deficiency; and section P, Transplantation Immunology, outlines the usefulness of next-generation sequencing in the human leukocyte antigen (HLA) laboratory.

Once again, this *Manual* is offered not just in print but also electronically as either an EPUB file or a PDF. This special feature will allow a larger audience to review and use the *Manual*.

As we produce the 8th edition of this *Manual*, it is appropriate to celebrate its success. Noel Rose, the *Manual*’s first Editor-in-Chief, has provided a foreword reflecting on how the field has changed over the past 5 decades.

Since the publication of this *Manual* is a joint effort of many dedicated individuals, I wish to acknowledge the outstanding commitment and invaluable support of our volume editors, section editors, and chapter authors, all of whom, as internationally renowned experts in their areas, have contributed their extraordinary experience, energy, and time to the success of this edition. Also, I would like to extend my appreciation to the ASM editorial staff, in particular Ellie Tupper, Senior Production Editor, and Christine Charlip, Director, ASM Press, who have provided their valuable experience and support to complete this edition.

BARBARA DETRICK, Ph.D.
Editor in Chief
Author and Editor Conflicts of Interest

Cem Akin (coauthor on chapter 85) has consultancy agreements with Novartis and Patara Pharma and receives research funding from Dyax.

Barbara Detrick (Editor in Chief, coauthor on chapter 106) serves as a consultant to Siemens Healthcare Diagnostics, Inc., Abbott Laboratories, and INOVA Diagnostics, Inc.

Deborah Ferriola (coauthor on chapter 113) receives royalties from Omixon. Omixon has licensed the protocol we developed for HLA typing by NGS from the Children’s Hospital of Philadelphia and makes it available as a commercial product named “Holotype HLA.” Omixon is mentioned in this chapter as a company that provides software analysis tools for the genotyping of HLAs using NGS data. It is not mentioned as a company that commercializes HLA typing products/kits, because at the time of writing Omixon had not developed this activity.

Marvin J. Fritzler (coauthor on chapter 88) has been a consultant to or received research gifts in kind from Inova Diagnostics Inc., Euroimmun GmbH, Mikrogen GmbH, Dr. Fsoke Laboratorien GmbH, ImmunoConcepts, GSK Canada, Amgen, Roche, and Pfizer. He is the Director of Mitogen Advanced Diagnostics Laboratory.

Andrea Illingworth (coauthor on chapter 18) has received unrestricted Educational Grant funding and speaker honoraria from Alexion Pharmaceuticals.

Michael Keeney (coauthor on chapters 18 and 19) is a consultant for Beckman Coulter, Canada, and Alexion Pharma, Canada. He has received unrestricted Educational Grant funding and speaker honoraria from Alexion Pharmaceuticals.

Masataka Kuwana (chapter 91) holds a patent on an anti-RNA polymerase III antibody measuring kit.

Curt Lind (coauthor on chapter 113) receives royalties from a licensing agreement between Omixon Biocomputing and the Children’s Hospital of Philadelphia and is an employee of Thermo Fisher Scientific, Transplant Diagnostics.

Robert P. Lisak (coauthor on chapter 99) is on an advisory board for Syntimmune.

Dimitri Monos (coauthor on chapter 113) receives royalties from Omixon. Omixon has licensed the protocol we developed for HLA typing by NGS from the Children’s Hospital of Philadelphia and makes it available as a commercial product named “Holotype HLA.” Omixon is mentioned in this chapter as a company that provides software analysis tools for the genotyping of HLAs using NGS data. It is not mentioned as a company that commercializes HLA typing products/kits, because at the time of writing Omixon had not developed this activity.

Stanley J. Naides (chapter 62) is a full-time employee of Quest Diagnostics Nichols Institute and receives a salary, stock, and stock options from Quest Diagnostics.

Timothy Niewold (coauthor on chapter 38) has received research grants from Janssen Inc. and EMD Serono Inc.

Maurice R. G. O’Gorman (chapter 20) is a BD Biosciences consultant and contractee.

Paul Sikorski (coauthor on chapter 114) is an employee of One Lambda, Inc., a Thermo Fisher Scientific brand.

Marek Smieja (coauthor on chapter 63) has done small studies with Copan and GenMark.

Melissa R. Snyder (chapter 103) participates on the Strategic Advisory Committee with INOVA Diagnostics.

Kathleen E. Sullivan (section editor) is a Baxter grant recipient and an Immune Deficiency Foundation consultant.

D. Robert Sutherland (coauthor on chapters 18 and 19) has received speaker fees and consulting fees from Alexion Pharmaceuticals.
Yi-Wei Tang (coauthor on chapter 57) has received research funds from Roche Molecular Diagnostics and the Luminex Corporation.

Brent Wood (coauthor on chapter 22) has received research funding and honoraria for Advisory Board participation from Seattle Genetics and Amgen and honoraria from Abbvie for Advisory Board participation.

Andrea A. Zachary (coauthor on chapter 114) is a consultant for BiologicTx and Genentech and is a Scientific Advisory Board member for Immucor.
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abraham, Roshini Sarah</td>
<td>26, 269</td>
</tr>
<tr>
<td>Aguero-Rosenfeld, Maria E.</td>
<td>419</td>
</tr>
<tr>
<td>Akin, Cem</td>
<td>825</td>
</tr>
<tr>
<td>Ali, Mohsin</td>
<td>598</td>
</tr>
<tr>
<td>Anderson, Burt</td>
<td>473</td>
</tr>
<tr>
<td>Andrade, Luis Eduardo Coelho</td>
<td>843</td>
</tr>
<tr>
<td>Ansari, Aftab A.</td>
<td>975</td>
</tr>
<tr>
<td>Baldwin III, William M.</td>
<td>1123</td>
</tr>
<tr>
<td>Balfour, Jr., Henry H.</td>
<td>563</td>
</tr>
<tr>
<td>Barbesino, Giuseppe</td>
<td>930</td>
</tr>
<tr>
<td>Barnidge, David R.</td>
<td>26</td>
</tr>
<tr>
<td>Baxter-Lowe, Lee Ann</td>
<td>1161</td>
</tr>
<tr>
<td>Biancotto, Angélique</td>
<td>149</td>
</tr>
<tr>
<td>Blandon, Lucas S.</td>
<td>461</td>
</tr>
<tr>
<td>Brown, Mary B.</td>
<td>444</td>
</tr>
<tr>
<td>Browne, Sarah K.</td>
<td>365</td>
</tr>
<tr>
<td>Bubb, Michael Raymond</td>
<td>897</td>
</tr>
<tr>
<td>Buchner, C. E.</td>
<td>909</td>
</tr>
<tr>
<td>Burek, C. Lynne</td>
<td>929, 930, 975</td>
</tr>
<tr>
<td>Burlingame, Rufus W.</td>
<td>859, 909</td>
</tr>
<tr>
<td>Burton, Robert L.</td>
<td>280</td>
</tr>
<tr>
<td>Bushman, Frederic D.</td>
<td>19</td>
</tr>
<tr>
<td>Caruso, Breanna</td>
<td>674</td>
</tr>
<tr>
<td>Caturegli, Patrizio</td>
<td>930</td>
</tr>
<tr>
<td>Ceribelli, Angela</td>
<td>878</td>
</tr>
<tr>
<td>Chan, Chi-Chao</td>
<td>998</td>
</tr>
<tr>
<td>Chan, Edward K. L.</td>
<td>859, 878</td>
</tr>
<tr>
<td>Chandra, Anita</td>
<td>737</td>
</tr>
<tr>
<td>Chauffe, Ann Duskin</td>
<td>897</td>
</tr>
<tr>
<td>Chiang, Samuel C. C.</td>
<td>300</td>
</tr>
<tr>
<td>Collins, A. Bernard</td>
<td>376, 385</td>
</tr>
<tr>
<td>Cook, Linda</td>
<td>1169</td>
</tr>
<tr>
<td>Cooley, Sarah</td>
<td>1150</td>
</tr>
<tr>
<td>Coppel, Ross L.</td>
<td>966</td>
</tr>
<tr>
<td>Crvunivel, Wilson de Melo</td>
<td>843</td>
</tr>
<tr>
<td>Curtis, Kelly A.</td>
<td>696</td>
</tr>
<tr>
<td>Dalhania, Darshana</td>
<td>1132</td>
</tr>
<tr>
<td>Dale, Bethany L.</td>
<td>1103</td>
</tr>
<tr>
<td>Davila, Daniel C.</td>
<td>1051</td>
</tr>
<tr>
<td>De Remigi, Alessandra</td>
<td>930</td>
</tr>
<tr>
<td>de Soua, William Marcel</td>
<td>658</td>
</tr>
<tr>
<td>De Vincentiis, Ludovica</td>
<td>930</td>
</tr>
<tr>
<td>Degheidy, Helba</td>
<td>226</td>
</tr>
<tr>
<td>Dellavance, Alessandra</td>
<td>843</td>
</tr>
<tr>
<td>Detrick, Barbara</td>
<td>998</td>
</tr>
<tr>
<td>DiGiuseppe, Joseph A.</td>
<td>207</td>
</tr>
<tr>
<td>Douglas, Steven D.</td>
<td>261</td>
</tr>
<tr>
<td>Duffy, Elizabeth R.</td>
<td>324</td>
</tr>
<tr>
<td>Duke, James</td>
<td>1069</td>
</tr>
<tr>
<td>Dunn, Bruce E.</td>
<td>404</td>
</tr>
<tr>
<td>Eisenbarth, George S.</td>
<td>930</td>
</tr>
<tr>
<td>Elder, Melissa</td>
<td>721</td>
</tr>
<tr>
<td>Ferriola, Deborah</td>
<td>1069</td>
</tr>
<tr>
<td>Figueiredo, Luiz Tadeu Moraes</td>
<td>658</td>
</tr>
<tr>
<td>Fleischer, David M.</td>
<td>815</td>
</tr>
<tr>
<td>Fleisher, Martin</td>
<td>1051</td>
</tr>
<tr>
<td>Fleisher, Thomas A.</td>
<td>3</td>
</tr>
<tr>
<td>Flores-Montero, Juan</td>
<td>235</td>
</tr>
<tr>
<td>Francescantonio, Paulo Luiz Carvalho</td>
<td>843</td>
</tr>
<tr>
<td>Fritzler, Marvin J.</td>
<td>859</td>
</tr>
<tr>
<td>Galanakis, Dennis</td>
<td>101</td>
</tr>
<tr>
<td>Gershwin, M. Eric</td>
<td>966</td>
</tr>
<tr>
<td>Ghia, Emanuela M.</td>
<td>51</td>
</tr>
<tr>
<td>Gielas, Patricia C.</td>
<td>127, 129, 749</td>
</tr>
<tr>
<td>Gilmour, Kimberly C.</td>
<td>737</td>
</tr>
<tr>
<td>Godbe, Elizabeth A.</td>
<td>1008</td>
</tr>
<tr>
<td>Gorevic, Peter D.</td>
<td>101</td>
</tr>
<tr>
<td>Green, Kim Y.</td>
<td>639</td>
</tr>
<tr>
<td>Guerriero, Pamela A.</td>
<td>783, 801</td>
</tr>
<tr>
<td>Hamilton, Robert G.</td>
<td>375, 795, 1007</td>
</tr>
<tr>
<td>Han, Shuhong</td>
<td>868</td>
</tr>
<tr>
<td>Hanly, J. G.</td>
<td>909</td>
</tr>
<tr>
<td>Harbeck, Ronald J.</td>
<td>1169</td>
</tr>
<tr>
<td>Harris, Neil</td>
<td>905</td>
</tr>
<tr>
<td>Hartono, Choli</td>
<td>1132</td>
</tr>
<tr>
<td>Hill, Harry R.</td>
<td>394</td>
</tr>
<tr>
<td>Hirakata, Michito</td>
<td>878</td>
</tr>
<tr>
<td>Hodinka, Richard L.</td>
<td>578</td>
</tr>
<tr>
<td>Hogueust, Kristin A.</td>
<td>563</td>
</tr>
<tr>
<td>Holland, Steven M.</td>
<td>766</td>
</tr>
<tr>
<td>Hooks, John J.</td>
<td>323, 998</td>
</tr>
<tr>
<td>Hooper, D. Craig</td>
<td>665</td>
</tr>
<tr>
<td>Hsu, Amy P.</td>
<td>5</td>
</tr>
<tr>
<td>Humphrey, Richard L.</td>
<td>74</td>
</tr>
<tr>
<td>Illingworth, Andrea</td>
<td>168</td>
</tr>
<tr>
<td>Islam, Sabina A.</td>
<td>343</td>
</tr>
<tr>
<td>Jackson, Annette M.</td>
<td>1103</td>
</tr>
<tr>
<td>Jacobson, Steven</td>
<td>674</td>
</tr>
<tr>
<td>Jaffe, Elaine S.</td>
<td>1015</td>
</tr>
<tr>
<td>Johnson, Jeffrey A.</td>
<td>696</td>
</tr>
<tr>
<td>Katzmann, Jerry A.</td>
<td>112</td>
</tr>
<tr>
<td>Keeney, Michael</td>
<td>168, 182</td>
</tr>
<tr>
<td>Keren, David E.</td>
<td>49, 74, 112</td>
</tr>
<tr>
<td>Kickler, Thomas S.</td>
<td>995</td>
</tr>
<tr>
<td>King, Karen E.</td>
<td>990</td>
</tr>
<tr>
<td>Kipps, Thomas J.</td>
<td>51</td>
</tr>
<tr>
<td>Klion, Amy D.</td>
<td>825</td>
</tr>
<tr>
<td>Knight, Vijaya</td>
<td>1180</td>
</tr>
<tr>
<td>Kuhns, Douglas B.</td>
<td>310</td>
</tr>
<tr>
<td>Kumararatne, D. S.</td>
<td>737</td>
</tr>
<tr>
<td>Kunkel, Mark</td>
<td>1069</td>
</tr>
<tr>
<td>Kuwana, Masataka</td>
<td>888</td>
</tr>
<tr>
<td>Lanciotti, Robert S.</td>
<td>648</td>
</tr>
<tr>
<td>Landry, Marie Louise</td>
<td>538</td>
</tr>
<tr>
<td>Lebo, Terri</td>
<td>1180</td>
</tr>
<tr>
<td>Lederman, Howard M.</td>
<td>713</td>
</tr>
<tr>
<td>Leland, Diane S.</td>
<td>610</td>
</tr>
<tr>
<td>Leung, Patrick S. C.</td>
<td>966</td>
</tr>
<tr>
<td>Levinson, Arnold L.</td>
<td>954</td>
</tr>
<tr>
<td>Li, Yi</td>
<td>868</td>
</tr>
<tr>
<td>Lind, Curt</td>
<td>1069</td>
</tr>
<tr>
<td>Lindsley, Mark D.</td>
<td>503</td>
</tr>
<tr>
<td>Lisak, Robert P.</td>
<td>954</td>
</tr>
<tr>
<td>Litwin, Christine M.</td>
<td>393, 394, 433</td>
</tr>
<tr>
<td>Litwin, Sheldon E.</td>
<td>394</td>
</tr>
<tr>
<td>Lucas, Donna P.</td>
<td>1091</td>
</tr>
<tr>
<td>Luster, Andrew D.</td>
<td>343</td>
</tr>
<tr>
<td>Maecker, Holden T.</td>
<td>251, 338</td>
</tr>
<tr>
<td>Maier, Cheryl L.</td>
<td>975</td>
</tr>
<tr>
<td>Manns, Michael P.</td>
<td>966</td>
</tr>
<tr>
<td>Marsh, Rebecca</td>
<td>775</td>
</tr>
<tr>
<td>Massini, John</td>
<td>688</td>
</tr>
<tr>
<td>Massoud, Raya</td>
<td>674</td>
</tr>
<tr>
<td>McCoy, Jr., J. Philip</td>
<td>149</td>
</tr>
<tr>
<td>Medoff, Benjamin D.</td>
<td>343</td>
</tr>
<tr>
<td>Metes, Diana</td>
<td>1108</td>
</tr>
<tr>
<td>Monos, Dimitri</td>
<td>1069</td>
</tr>
<tr>
<td>Murphy, Martina</td>
<td>905</td>
</tr>
<tr>
<td>Muthukumar, Thangamani</td>
<td>1132</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

Nahm, Moon H., 280
Naides, Stanley J., 591
Nieters, Hubert G. M., 620
Niewold, Timothy B., 357
Nixon, Douglas F., 290
Nussenblatt, Robert, 998
Nunman, Thomas B., 485, 486

O’Gorman, Maurice R. G., 147, 199
Orfao, Alberto, 235
Owen, S. Michele, 696

Parra, Gabriel I., 639
Peebles, Jr., R. Stokes, 801
Pérez, José Juan, 235
Petersen, Robert B., 682
Phadnis, Suhas H., 404
Pojero, Fanny, 235
Posey, Yvonne, 89
Priel, Debra Long, 310
Prussin, Calman, 825
Puig, Noemí, 235

Rabin, Ronald L., 784
Raffeld, Mark, 1015
Rai, Alex J., 1208
Rajalingam, Raja, 1150
Rasley, Amy, 473
Rassenti, Laura Z., 51
Reed, Elaine F., 1065
Reeves, Westley H., 841, 868
Reinsmoen, Nancy L., 1108
Relich, Ryan F., 610
Remick, Daniel G., 324
Renn, Lynnesey, 784
Ricciuti, Adriana, 930
Riezebos-Brilman, Annelies, 620

Risma, Kimberly, 775
Rodriguez, E. Rene, 1123
Roehrig, John T., 648
Rose, Noel R., 930, 975
Routes, John M., 715
Rubenstein, Richard, 682

Salem, Dalia A. A., 226
Sanaja, Luzalba, 235
Santos, Carah B., 815
Sarwal, Minnie M., 1132
Sato, Minoru, 878
Scher, Howard L., 1051
Schmid, D. Scott, 550, 556
Schmitt, John L., 412, 537
Schroeder, John T., 801
Sen, H. Nida, 998
Serogy, Christine, 721
Shacklett, Barbara L., 290
She, Rosemary, 453
Shirley, R. Sue, 902
Sigdel, Tara K., 1132
Sikorski, Paul, 1091
Simecka, Jerry W., 444
Slater, Jay E., 784
Snieja, Marek, 598
Smith, Richard J. H., 138
Smith, R. Neal, 376, 385
Snyder, Melissa R., 983
Sokoll, Lori J., 1008
Sokolove, Jeremy, 922
Soma, Lori, 217
Speicher, David J., 598
Steck, Andrea K., 930
Sterler-Stevenson, Maryalice, 226
Stone, James R., 376
Stone, John H., 917
Suthanthiran, Manikam, 1132
Sutherland, D. Robert, 168, 182

Sykes, Elizabeth, 89
Tan, Carmela D., 1123
Tang, Yi-Wei, 538
Thiel, Steffen, 133
Tsolis, Renee, 473

Van Bergen, Jeroen, 1150
Van Leer-Buter, Coretta C., 620
Vashisth, Priyanka, 357
Vega, Renato, 1091
Verbisky, James W., 715
Verghese, Priya S., 563
Vidriales, María Belén, 235

Waites, Ken B., 444
Walker, David H., 461
Walsh, Noreen M., 909
Wang, Guiqing, 419
Wang, Jian, 930
Warren, Jeffrey S., 54
Weinberg, Adriana, 263
Whiteside, Theresa L., 296, 1036
Wilkins, Patricia P., 486
Willison, Hugh J., 961
Wisniewski, Thomas, 682
Wood, Brent, 217
Wood, Robert A., 815

Yu, Liping, 930
Yuan, Constance M., 226

Zachary, Andrea A., 1091
Zeevi, Adriana, 1108
Zhang, Quiheng Jennifer, 1065
Antibody assays
asparaginase, 515
blastomycosis, 517
candidiasis, 518
in cryoglobulinemia, 105
Antibody avidity
human herpesvirus-6, 583
varicella-zoster virus, 559–560
Antibody deficiencies, 737–746
absent B cells, 738
clinical manifestations, 737
common variable immune deficiency (CVID), 740
defect in immunoglobulin isotype switching, 739–740
evaluation of patients, 737–741
genetic analysis, 745–746
direct sequencing, 745
MPLA and ACGH, 745–746
IgA deficiency, 740–741
IgG subclass deficiency, 741
inheritance of, 739
laboratory investigation, 741–745
CD40L (CD154) expression for diagnosis of X-linked hyper IgM syndrome (HIGM), 742–743
diagnosis of X-linked antibody deficiency (XLA), 743–745
diagnosis of X-linked lymphoproliferative syndrome 1 (XLP1), 743–745
diagnosis of X-linked lymphoproliferative syndrome 2 (XLP2), 743–745
extended B-cell immunophenotyping, 742–743
flow cytometry, 741
next-generation sequencing, 746
phenotypes, 738
Antibody-dependent cellular cytotoxicity (ADCC), NK cell-mediated, 1156
Antibody detection
African trypanosomiasis, 489
amebiasis, 489
arboviruses, 648, 650–652
babesiosis, 490–491
cryptosporidiosis, 491–492
cyclosporiasis, 492
cytisicercosis, 492–493
cytochrome b-245, 572–573
echinococcosis, 493
Epstein-Barr virus, 567–568
fascioliasis, 494
fungal infections, 504–505
giardiasis, 495
human herpesvirus-6, 581–582
leishmaniasis, 495
paragonimiasis, 496
parasitic infections, 486–488, 492
schistosomiasis, 496
strongyloidiasis, 496–497
toxocariasis, 497
 toxoplasmosis, 497–498
trichinellosis, 498
Antibody-mediated rejection (AMR), 1123–1129
Antibody microarrays, 29
Antibody screens, in evaluation of humoral response to transplantation
advantages and disadvantages of, 1093
assay characteristics, 1093
interpretation, 1097
overview, 1093
quality control, 1095–1096
Antibody-secreting memory B cells, 615
Antibody titration, with polychromatic flow cytometry, 159, 161
Anti-C5a peptidase antibodies, 401
Anti-calpastatin antibody, 899
Anticardiolipin assay, 907
Anticellular antibody, 843
Anticomplementarity molecule antibody (ACA), 888–889
Anticoagulant, choice in cryoglobulinemia, 108, 109
Anticomplementary immunofluorescence assay (ACIF), for human herpesvirus-6, 582–583
Anticyclic citrullinated peptide, in rheumatoid arthritis, 347
Anti-cyclic citrullinated peptide antibody (ACPA), 897–902, 923
clinical significance, 899
combined ACPA and RF testing, 902
Anticytokine autoantibodies, 323, 365–370
detection, 365–368
enzyme-linked immunosorbent assay (ELISA), 365, 367–368
immunoblotting, 367–368
luciferase immunoprecipitation systems (LIPS), 367–368
Luminox, 367–368
protein array, 367–368
radioimmunoprecipitation assay (RIPA), 367–368
diseases associated with, 365–366
functional assays, 369
isotype and subclass analysis, 369
titer, 369
Anti-deaminated glial antibodies, 984–985
Anti-DNase B test, 399–400
Anti-dsDNA antibodies, 868, 873–874
Antierythropoietin autoantibodies, 323
Anti-FBG (fibrin binding globulin), 899
Anti-Fbg (fibrin binding globulin), 899
Anti-IFN-γ autoantibodies and opportunistic infection, 323
Anti-Ku antibody, 891
Anti-La (SS-B) antibodies, 869
Anti-MCV (mutated citrullinated vimentin), 899
Antinuclear antibodies, 868
Antinuclear antibodies, in scleroderma/systemic sclerosis, 888–895
Antinuclear antibody tests, 843–845
IIIF-ANA patterns, 849–857
decision-tree algorithm for classification, 856
disease associations, 854
interpretation of IIIF-ANA test, 852–857
LE cell test, 843–844
limitations, 855
methodological platforms, 843–845
automated readers for IIIF-ANA assay, 844
enzyme-based HEP-2 cell ANA, 844
indirect immunofluorescence assay on HEP-2 cells, 843–845
solid-phase ANA, 844–845
negative test, meaning of, 852
positive test
meaning of, 852–853
without clinical evidence of systemic autoimmunity, 853–855
quality control, 855, 859
reading IIIF-ANA slides, 849–852
report of IIIF-ANA test, 849, 852–857
strategy for ordering, 855
technical recommendations, 846–849
assay procedure, 846–849
cell substrate, 846
controls, 846
dark room, 849
first washing, 847
incubation with conjugate, 847–848
microscopy, 848–849
primary antibody incubation, 847
primary sample dilution, 846
samples, 846
second washing and coverslip mounting, 848
standard operating procedure, 846
workspace, 846
when to order, 852
Rosetta bacteria for production of large recombinant proteins, 861
depletion of natural autoantigens, 860
use of peptide antigens, 860
Anti-glaucoma antibodies, 984–985
Anti-glomerular basement disease, 911
Anti-glomerular basement membrane antibodies, Western blot analysis of, 385–387
Antiglycolipid antibodies, 961–964
Anti-GM1 ganglioside IgM antibodies, 961–962, 964
Anti-granulocyte-macrophage colony stimulating factor autoantibodies and pulmonary alveolar proteinosis, 323
Anti-hyaluronidase test, 400
Anti-IgG-γ autoantibodies and opportunistic infection, 323
Anti-keratin antibody, 898–899
Anti-Ku antibody, 891
Anti-La (SS-B) antibodies, 869
Antinuclear antibodies, 868
Antinuclear antibodies, in scleroderma/systemic sclerosis, 888–895
Antinuclear antibody tests, 843–845
IIIF-ANA patterns, 849–857
decision-tree algorithm for classification, 856
disease associations, 854
interpretation of IIIF-ANA test, 852–857
LE cell test, 843–844
limitations, 855
methodological platforms, 843–845
automated readers for IIIF-ANA assay, 844
enzyme-based HEP-2 cell ANA, 844
indirect immunofluorescence assay on HEP-2 cells, 843–845
solid-phase ANA, 844–845
negative test, meaning of, 852
positive test
meaning of, 852–853
without clinical evidence of systemic autoimmunity, 853–855
quality control, 855, 859
reading IIIF-ANA slides, 849–852
report of IIIF-ANA test, 849, 852–857
strategy for ordering, 855
technical recommendations, 846–849
assay procedure, 846–849
cell substrate, 846
controls, 846
dark room, 849
first washing, 847
incubation with conjugate, 847–848
microscopy, 848–849
primary antibody incubation, 847
primary sample dilution, 846
samples, 846
second washing and coverslip mounting, 848
standard operating procedure, 846
workspace, 846
when to order, 852

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Mon, 10 Dec 2018 23:33:15
Anti-perinuclear factor, 898–899
Anti-phospholipase A2 receptor antibodies, Western blot analysis of, 387–388
Antiphospholipid antibody syndrome (APS), 905–907
anticardiolipin assay, 907
clinical manifestations, 905
considerations when testing, 907
diagnostic criteria, 905–906
laboratory testing, 906–907
lupus anticoagulant testing, 906–907
whom to test, 907
Anti-PM-Scl antibody, 891
Anti-proliferating cell nuclear antigen (PCNA) antibodies, 870
Anti-RA33 antibody, 899
Antiretroviral therapy (ART), 545–546
Anti-ribosomal P antibodies, 870
Anti-RNA helicase A autoantibodies, 870
Anti-RRN3 III antibody, 899–900
Anti-RNP antibodies, 868–869, 873, 890–891
Anti-Ro (SS-A) antibodies, 869
Anti-RuVBL1/2 antibody, 891
Anti-Su, 898–899
Anti-Sm antibodies, 868–869
Anti-streptokinase test, 401
Anti-streptolysin O (ASO), 395, 397–401
Anti-Tg/Tpo antibody, 890
Anti-Tg/Tpo I antibody, 889
Anti-tTG antibodies, 984–985
Anti-Topo I antibody, 889
Anti-Th/To antibody, 890
Anti-streptolysin O (ASO), 395, 397–401
Anti-Sm antibodies, 868–869
Antigen detection, 652–653
immunohistochemical staining, 652–653
hemagglutination inhibition, 651
influenza virus, 606
respiratory viruses, 606
AOA (American Osteopathic Association), 1172
APCs. See Antigen-presenting cells
APECED (autoimmune polyendocrinopathy- candidiasis-ectodermal dysplasia), 365
APL (acute promyelocytic leukemia), 220
Aplastic anemia, paroxysmal nocturnal hemoglobinuria (PNH) and, 168
Apoptosis assays, 733
APS. See Antiphospholipid antibody syndrome
APTIMA HIV-1 qualitative assay, 701, 704
APTT (activated partial thromboplastin time), 906–907
Arboviruses, 648–656
antibody detection, 648, 650–652
complement fixation, 651
hemagglutination inhibition, 651
IgG ELISA, 651
IgM ELISA, 648, 650–651
immunoassay, 651
neutralization test, 651–652
antigen detection, 652–653
antigen capture ELISA, 652
immunohistochemical staining, 652–653
characteristics of medically important, 649
genomic sequence detection, 653–655
in situ hybridization, 653
nucleic acid amplification tests (NAAT), 653
nucleic acid sequence-based amplification (NASBA), 654
real-time 5’-exonuclease fluorogenic assays, 654
reverse transcription loop-mediated isothermal amplification (RT-LAMP), 654–655
RNA extraction and purification, 653–654
RT-PCR, 654
testing algorithms, 654
interpretation of test results, 655–656
rapid diagnosis, 539
identification and sequence of tests, 655
Array comparative genomic hybridization (aCGH), 745
Arrays. See also Microarrays
chemokine/chemokine receptor assays, 348
cytokine assays
head array assays, 332–334
membrane-bound antibody arrays, 331
microarrays, 327–330
protein analysis, 29–31
anticytokine autoantibody detection, 367–368
tissue rejection, 1144–1145
Arrestin, 998
ART (antiretroviral therapy), 545–546
Arrhenius giant cell, 911
polyarteritis nodosa, 911
Tokayasu’s, 911
Arthritis, Lyme, 421
ASHI (American Society for Histocompatibility and Immunogenetics), 1075, 1172, 1177
ASO test, 398–399
Aspergillosis, 504, 506, 515–516
allergic bronchopulmonary, 80, 515, 516
Exacerbation by respiratory viruses, 601
Australian bat lyssavirus, 666
Autoantibodies
to adrenal antigens, 931–932
anti-acetylcholine receptor antibodies, 954–958
antiendomysial, 966–969
antinuclear antibody, 843–857
biodmarkers of rheumatic diseases, 923
detection, 859–865
in diabetes mellitus, 935–946
to erythrocytes, 990–993
to glycoprotein, 961–964
interference in transplantation, 1099
liver kidney microsomal, 969–972
in myasthenia gravis, 954–959
myositisspecific, 878–878
parietal cell antibodies, 932–933
in peripheral neuropathy, 961–964
platelet, 995–997
in scleroderma/systemic sclerosis, 888–895
in systemic lupus erythematosus (SLE), 868–874
thyroglobulin antibodies, 930–931
thioperoxidase antibodies, 930–931
Autoantibody detection, 859–865
production of recombinant proteins, 860–861
purification of autoantibodies, 860
purification of recombinant proteins, 861
Rosetta bacteria for production of large recombinant proteins, 861
use of natural autoantibodies, 860
use of peptide antigens, 860
bead-based immunoassays, 862–865
addressable laser bead immunoassay (ALBIA), 862–863
advantages of, 864
challenges of multiplexed immunoassays of, 865
chemiluminescence immunoassay (CIA), 863–864
overview, 859
Autoantigens
putative antibodies, 946–949
purification, 860
use in autoantibody detection, 860
Autoimmune diseases. See also specific disorders
antineutrophil cytoplasmic antibodies (ANCA) associated vasculitis, 909–914
ATRAX
(1198)
antinuclear antibody tests, 843–857
antiphospholipid antibody syndrome, 905–907
autoantibody detection, 859–865
autoimmune hemolytic anemia, 990–993
biomarkers, 922–924
cardiovascular diseases, 975–980
cell line disease, 983–986, 988
chronic thyroiditis, 930–931
cryoglobulins and, 101
diabetes, 935–946
diagnosis of, 932–933
Graves’ disease, 933–935
hemolytic anemia, 990–993
hepatitis, 969–972
hypophysitis, 946–949
immune thrombocytopenia, 995–997
inflammatory bowel disease, 985–988
myasthenia gravis, 954–959
myopathies, 878–887
organ-localized, 927–1003
peripheral neuropathy, 961–964
primary biliary cholangitis, 966–969
retinal, 998–1002
rheumatoid arthritis, 897–902, 922–924
scleroderma/systemic sclerosis, 888–895
systemic lupus erythematosus (SLE), 868–876, 923
Autoimmune hemolytic anemia, 990–993
differential diagnosis, 993
laboratory investigation, 990–993
organ-specific, 992–993
DAT battery, 991
direct antiglobulin test, 991
direct test, 993
eluate studies, 991–992
overview, 990
serological characteristics, 991
serological finding, interpretation of, 992
Autoimmune lymphoproliferative syndrome, 10
Autoimmune pancreatitis, 767
Autoimmune polyclonal dysproteinemia type 1, 931
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), 365
Autoimmune retinopathy, 999–1000, 1002
Automated liquid-handling systems, 1189–1190
Avian influenza, 338
Babesia, 490–491
Babesial infection, 474–477
Babesia infection, 474–477
Bacille Calmette-Guérin (BCG) vaccination, 280
Bacillary angiomatosis, 474–477
Bacillary peliosis, 474–475
Bacillary angiomatiso, 474–477
B. bacilliformis
B. alsatica
B. henselae, 476
B. burgdorferi, 476
B. quintana, 473–477
B. rochalimae
B. taylori, 476
B. strissoi, 476
B. strissoi subsp. arupensis, 473
B. strissoi subsp. berkholtsii, 473
clinical manifestations, 474–475
epidemiology, 473–474
laboratory diagnosis, 475–477
culture, 475
molecular diagnosis, 477
serology, 475–477
serology, 475–477
ELISA, 476
indirect fluorescent antibody (IFA), 475–476
taxonomy, 473–474
Bartonellae, 473–474
Basophil activation marker (BAM) assays, 806–803
allergen extract potency testing, 802–803
as skin testing alternative, 802, 808
test procedure, 802–803
Basophils
basophil activation and allergen extract potency testing, 791
clinical indications for measuring, 802
food allergy, 802–803
as skin testing alternative, 802, 808
test procedure, 802–803
Basophil activation and allergen extract potency testing, 802–803
as skin testing alternative, 802, 808
test procedure, 802–803
Basophil activation marker (BAM) assays, 806
Basophil activation test (BAT), 806, 821
Basophil histamine release assay, 799, 802–803
allergen extract potency testing, 791
clinical indications for measuring, 802
food allergy, 802–803
as skin testing alternative, 802, 808
test procedure, 802–803
B-cell(s)
absent, 738
antibody deficiencies, 737–746
associations with deficiencies, 281
differentiation stages, 1021
extended B-cell immunophenotyping, 742
functional assays, 280–288
antibody function assessment, 282–283
immunoglobulin measurement, 280–281
multipleplex oncoposphagocytic killing assay (MOPAA) for functional antibodies against Streptococcus pneumoniae, 285–288
pneumococcal ELISA, 283
serum bactericidal assay for functional antibodies against Haemophilus influenzae type b, 284
in vitro B-cell function, 281–285
in vitro whole-blood lymphocyte proliferation assay, 283–284
in vivo B-cell function, 280–281
functional cellular assays, 261, 280–288
cryopreserved peripheral blood mononuclear cells (PBMC), 266–267
human herpesvirus-8, 586–587
IgG4-related disease, 918
immunoglobulin gene rearrangement, 56–60
immunophenotypic patterns of maturation, 207–208
markers used in flow cytometry, 281
neoplasia
chronic lymphocytic leukemia (CLL), 226–232
cytokines and, 101
diffuse large B-cell lymphoma (DLBCL), 226–227, 1020
free light chain assay, 68–69, 71
lymphoblastic lymphoma, 1020–1022
small mature B cell lymphoma, 1023–1025
plasma cell disorders, 235–247
B-cell receptor (BCR), 280
BCG (Bacille Calmette-Guérin) vaccination, 434
BCL2 gene/protein, 1017, 1023–1025
BCL6 gene/protein, 1025
BCL10 gene, 1024
BCR-ABL translocation, 922
BDG (β-d-glucan), 514–515
aspergillosis, 516
anti-HLA antibodies, 1104–1106
Bence-Jones protein
cryoglobulins and, 101
monoclonal gammopathy, 113
pyroglobulins and, 110
quantification, 69, 71
Benign chronic neutropenia, 767
Benign hypergammaglobulinemia purpura of Waldenström’s macrogammaglobulinemia (BHPW), 113
Benzoic acid, 264
Beta2 glycoprotein I, antibodies against, 907
Beta globulins, 65, 74–77
β Lipoprotein, electrophoresis of, 79
β-Pleated sheet, 74
BHPW (benign hypergammaglobulinemia purpura of Waldenström’s macrogammaglobulinemia), 113
Biolonal gammopathy, 93
Biliary cholangitis, primary, 966–969
Binding immunoglobulin proteins (BiP), 899
Bioanalyzer, 1133
Biocomputer, 340
Bioequivalent allergen units (BAUs), 785, 789
Bioplex (B-pleated glucan), 514–515
specimen requirements, 45
theory, 514
Bead-based assay
antimicrotubulin autoantibodies, 968–969
autoantibody detection, 862–865
cytokine assays, 332–334
humoral response in transplantation, 1093
non-HLA antibodies, 1104–1106
Bence-Jones protein
cryoglobulins and, 101
monoclonal gammopathy, 113
pyroglobulins and, 110
quantification, 69, 71
Benign chronic neutropenia, 767
Benign hypergammaglobulinemia purpura of Waldenström’s macrogammaglobulinemia (BHPW), 113
Benzoic acid, 264
Beta2 glycoprotein I, antibodies against, 907
Beta globulins, 65, 74–77
β Lipoprotein, electrophoresis of, 79
β-Pleated sheet, 74
BHPW (benign hypergammaglobulinemia purpura of Waldenström’s macrogammaglobulinemia), 113
Biolonal gammopathy, 93
Biliary cholangitis, primary, 966–969
Binding immunoglobulin proteins (BiP), 899
Bioanalyzer, 1133
Biocomputer, 340
Bioequivalent allergen units (BAUs), 785, 789
Biofire Diagnostics FilmArray, 113
Biohazard, respiratory viruses as, 603
Biohazard, respiratory viruses as, 603
Biologics, 93

Biosafety, hantaviruses and, 658, 660–661
Birbeck granule, 1028
Birdshot chorioretinopathy, 998
Bisaluminemia, 77
BK virus nephropathy, 347, 1135, 1143
Bland-Altman plots, 1184
Blastomyces, 504, 516–517
antibody assays, 517
clinical indications and diagnostic rationale, 516–517
complement fixation, 517
enzyme immunosassay (EIA), 517
immunodiffusion, 517
Bluetongue virus, 653
B lymphocyte. See B cell
BLyS, 923
Bocaparvovirus (genus), 599
Bocavirus, 591, 640. See also Human bocavirus
Bone marrow
in myeloproliferative hypereosinophilic syndromes, 827
plasma cells, 235–238, 240–247
Bone marrow transplantation
for mastocytosis, 834
for myeloproliferative hypereosinophilic syndromes, 828
Bordetella pertussis, 600
Borrelia
B. afzelii, 419–422
B. balantardii, 420
B. bavariensis, 419–420
B. bissetti, 419–420
B. burgdorferi, 419–426
B. cancanica, 420
B. coritaeae, 420, 426
B. crocidurae, 420, 427
B. duttonii, 420, 426–427
B. garini, 419–420, 422
B. guingieri, 420
B. hermsi, 420, 426–427
B. hispanica, 420, 426–427
B. laryschevii, 420
B. lonestari, 420, 426
B. lusitaniae, 419–420
B. mazzottii, 420
B. microti, 426
B. miyamotoi, 420, 426–427
B. murinii, 426
B. parkeri, 420, 427
B. persica, 420, 427
B. recurrentis, 420, 426–427
B. spielmanii, 419–420
B. turicatae, 420, 427
B. valaisiana, 419–420
B. venezuelensis, 420
Lyme disease, 419–426
relapsing fever, 420, 426–428
taxonomy, 419
Borrelia burgdorferi
clinical manifestations, 421
epidemiology, 419, 421
laboratory diagnosis, 421–426
antigens important in immunodiagnosis, 421–422
clinical applications and limitations, 424
direct detection, 424
ELISA, 422–423
indirect fluorescent antibody (IFA), 422
recombinant or peptide antigen use in serology, 423
test interpretation and practical considerations, 425–426
two-tier serologic testing algorithm, 423
Western blot, 422–423, 425
taxonomy of Lyme Borrelia, 419–420
transmission, 421
Borrelomib, 1066, 1099
Bovine spongiform encephalopathy (BSE), 682, 684–686, 691
Bowtie alignment program, 1086
Boydén chamber, 349
B-prolymphocytic leukemia, 226
Brachyspiraceae, 419
BRAF gene, 1028
Brain-abundant membrane-attached signal protein 1 (BASP1), 1137–1138
Breast cancer biomarkers, 922
circulating tumor cells, 1052, 1054, 1056–1057
Breastfeeding, human T-cell lymphotropic virus transmission by, 673
Brefeldin A, 160, 339
Brevicepsnaecacae, 419
Brill-Zinsser disease, 462
Brochiolitis, viral, 601
Bronchitis, viral, 601
Bromochaveolar lavage fluid, complement activation soluble products in, 1127–1128
Brucella
B. abortus, 473–475, 477–478
B. canis, 473, 475
B. ceti, 473
B. inophitana, 473
B. melitensis, 473–475, 478
B. microti, 473
B. ovis, 473
B. pestis, 473, 477–478
B. suis, 473–475, 478
clinical manifestations, 475
epidemiology, 474
laboratory diagnosis, 477–478
culture, 477
molecular diagnosis, 478
serology, 477–478
serology, 477–478
Coombs test, 478
ELISA, 478
Rose Bengal test, 477–478
serum agglutination test (SAT), 477
taxonomy, 473–474
Brucellacapact, 478
Brucellaeae, 473–474
Bruguia, 494
Brunton’s agammaglobulinemia, 65, 70
Brunton’s tyrosine kinase, 32–33
BSE (bovine spongiform encephalopathy), 682, 684–686, 691
BTK deficiency, 738
B-type natriuretic peptides, 976
Bungarotoxin, 955, 958
Bunyaviridae, 638
Bunyaviruses, 649, 653, 656
Burkholderia cepacia, chronic granulomatous disease (CGD), and, 770
Burkitt’s lymphoma, 227, 563, 1017, 1020, 1025
BWA alignment program, 1086
C1 complex, 129
C1-INH, 129–130, 134, 138
deficiency, 127, 132, 754, 757–758
recombinant, 761
C1q, 129–131, 133–134, 749, 1100
deficiency, 755–756
C1r, 129–132, 749
deficiency, 755
C1s, 129–132, 749
deficiency, 755
C2, 129–133, 749
deficiency, 132, 755–756
C2a, 130–131, 755
C2b, 131, 755
C3, 133, 138–143, 749, 760
deficiency, 1124–1126
deficiency, 760
electrophoresis, 75–76, 79, 82–83, 86
glomerulopathy, 142–143
receptor for, 749
C3a, 131, 138, 142
C3b, 131, 133, 138–140, 749, 758, 1124–1125, 1128
C3c, 142, 1126
C3d, 142, 758, 1124–1129
C4, 129–134, 137, 749
deficiency, 1124–1125
anti-C4 antibodies, 135
deficiency, 754–755
receptor for, 749
C4a, 129–131, 755
C4b, 129–131, 134, 755, 1123–1124, 1128
C4BP (C4 binding protein), 130–131, 138, 758, 1124
C4BP deficiency, 758
C4c, 131
C4d, 131, 758, 1100
deficiency, 1123–1124, 1126
staining of renal allografts, 377–378, 1137
C5, 131–132, 138–140, 142–143, 749, 760
deficiency, 132, 760
monoclonal anti-C5 antibody, 127
C5a, 131, 138–139, 142–143
anti-C5a peptidase antibodies, 401
C5b, 131, 139, 142
anti-C5b antibodies, 1126
C6, 131, 142, 749
deficiency, 760
C7, 131, 142, 749
deficiency, 760
C8, 131, 142, 749
deficiency, 761
C9, 131, 142, 749
anti-C9 antibodies, 1126
deficiency, 760–761
Ca++ flux assays, in combined immunodeficiency (CID), 732–733
flow cytometry, 733
fluorometric assay, 733
protein tyrosine phosphorylation by immunoblotting, 733
CA125, 1012
CagA protein, Helicobacter pylori, 404–405, 407–409
Cage effects in mouse models, 22
Calculated panel-reactive antibody (cPRA), 1065
Calcidiol, 632, 640
Calcitriol (genus), 632
California, clinical immunology laboratory certifying program, 1176
Calpastatin, 899
Calprotectin, 987
CD11c (continued)
B-cell chronic lymphoproliferative disorders, 227
cronic lymphocytic leukemia (CLL), 226
haire cells, 1028
Langerhans cells, 1028

CD13
acute lymphoblastic leukemia, 211–212
acute myeloid leukemia, 217–220
cronic lymphocytic leukemia (CLL), 226

CD14
acute lymphoblastic leukemia, 212
acute myeloid leukemia, 217–218, 220
in assays for PNH, 172, 174–175, 177
Langerhans cells, 1028

CD15
acute lymphoblastic leukemia, 212
acute myeloid leukemia, 217–220
in assays for PNH, 171–172, 175, 177–178
Hodgkin's lymphoma, 1027–1028

CD15s deficiency

CD16
acute myeloid leukemia, 217–218
in assays for PNH, 172–173
NK cell defects, 776, 779
NK cells, 300–301, 305–306
T-cell chronic lymphoproliferative disorders, 228

CD18, 150, 749
deficiency, 201
leukocyte adhesion deficiency (LAD), 770–771

CD19
acute lymphoblastic leukemia, 207–208, 210, 212–213
acute myeloid leukemia, 217–219
B-cell chronic lymphoproliferative disorders, 227

CD20
acute lymphoblastic leukemia, 207–208, 210, 212–213
B-cell chronic lymphoproliferative disorders, 227

CD21, 563, 1028

CD22
acute lymphoblastic leukemia, 208–210, 212
B-cell chronic lymphoproliferative disorders, 227
chronic lymphocytic leukemia (CLL), 226, 229

CD23
B-cell chronic lymphoproliferative disorders, 227
B-cell lymphomas, 1023

CD24, in assays for PNH, 172–173, 175, 177
CD25
acute lymphoblastic leukemia, 212
B-cell chronic lymphoproliferative disorders, 227
chronic lymphocytic leukemia (CLL), 226
dacarbazine (anti-CD25 antibody), 299
deficiency, 723, 727–728
mast cells, 811–833
T-cell chronic lymphoproliferative disorders, 228
T-cell lymphomas, 1026
Treg cells, 296–298

CD25dih, 275, 298

CD27
B cells, 281
lymphocytic variant hypereosinophilic syndrome, 828
plasma cells, 239–242, 245–246

CD28, plasma cells, 239–240, 242, 244

CD30
Hodgkin's lymphoma, 1028
T-cell lymphomas, 1027

CD33
acute myeloid leukemia, 217–220, 223
in assays for PNH, 171–172
cronic lymphocytic leukemia (CLL), 226
plasma cells, 239–240

CD34/CD34+ cells, 147
acute lymphoblastic leukemia, 207–211
acute myeloid leukemia, 217–219, 222–223
flow cytometry quantification, 150
hematopoietic stem cells enumeration, 182–196

CD34 Count Kit (Dako), 188–189

CD35, 130–131, 138, 749

CD36, acute myeloid leukemia, 218, 220

CD38
acute lymphoblastic leukemia, 207, 209
acute myeloid leukemia, 217, 219–220, 222–223
B-cell lymphomas, 1024
chronic lymphocytic leukemia (CLL), 226, 232

CD39, Treg cells, 296–298

CD40
X-linked hyper IgM syndrome (XHIM)

CD40L
expression for diagnosis of X-linked hyper IgM syndrome (HIGM), 742–744
as marker of T cell activation, 269–270, 275

CD40 ligand deficiency screens, 201–203

CD43, chronic lymphocytic leukemia (CLL), 226, 229

CD45
acute lymphoblastic leukemia, 207–214
acute myeloid leukemia, 217–222
in assays for PNH, 175, 178

B-cell lymphomas, 1024
chronic lymphocytic leukemia (CLL), 226, 229

in flow cytometry of hematopoietic stem cells, 183–195
plasma cells, 239–242, 245–246

CD46, 130–131, 138–139, 141, 580, 749, 770, 1124

CD54, 150, 238–240, 239

CD55, 131, 138–139, 141, 749
absence in PNH, 168–169
in assays for PNH, 170
flow cytometry quantification, 150

CD56
acute myeloid leukemia, 218–219, 223
NK cell defects, 777
NK cells, 300–301, 305
plasma cells, 239, 242
T-cell chronic lymphoproliferative disorders, 228
T-cell lymphomas, 1027

CD56dih, 300

CD56dim, 300, 303–305

CD57, T-cell chronic lymphoproliferative disorders, 228

CD57dih, 305

CD59, 131, 138, 1126
absence in PNH, 168–169
in assays for PNH, 169–172, 174, 180
deficiency, 761
flow cytometry quantification, 150

CD61, acute myeloid leukemia, 220

CD62L, 155
in cryoprotected peripheral blood mononuclear cells, 266
NK cells, 300

CD63, as basophil surface activation marker in allergy, 791, 806, 821

CD64, 32–33
acute lymphoblastic leukemia, 212
in assays for PNH, 171–172, 175, 177–178

CD65, in acute lymphoblastic leukemia, 211

CD66b, in assays for PNH, 172–173

CD68, 1127

CD69
as basophil surface activation marker in allergy, 806
as marker of T cell activation, 269, 275
NK cells, 301, 305
X-HIGM screening, 731–732

CD71, acute myeloid leukemia, 217–218, 220

CD73, 298

CD79a, 52, 209, 212
B-cell lymphomas, 1024
T-cell lymphoblastic lymphoma, 1021

CD79b, 52
B-cell chronic lymphoproliferative disorders, 227
chronic lymphocytic leukemia (CLL), 226, 229
Delta heavy chain, 66–67
Delseavirus (genus), 674
Dendritic cells, 1023
in allergic conditions, 801, 807
follicular, 1028
interdigitating, 1028
interferon alpha production, 807
Langerhans cells, 1028
proliferative histiocytic lesions, 1028
Dengue virus, 648–653
Denileukin diftitox, 299
Dermatitis herpetiformis, 984
Density gradients, in polychromatic flow
Electrophoresis, 74–87
Electropherotyping, of rotaviruses, 639–640
Dendritic cells, 1023
(Del) taxonomy, 461–462
pathobiology, 464
Dendritic cells, (genus), 674
Delta heavy chain, 66–67
Diphtheria toxin, 299
Dermal microvascular biopsy, 975–976
Dilute Russell Viper Venom time assay, 906
Dimethyl sulfoxide (DMSO), as
cryoprotectant, 263
Direct antiglobulin test, for autoimmune
hemolytic anemia, 991
Detection
epitope, 945
interpretation, 945–946
radioassay, 939–942
autoantibodies, 935–946
carboxypeptidase H autoantibodies, 936–937
glutamic acid dehydrogenase autoantibodies, 936–946
insulin autoantibodies (IAA), 935–938,
941–945
insulinoma antigen-2 (IA-2) autoantibodies, 936–941
insulinoma antigen-2B (IA-2B) autoantibodies, 936–937
islet cell autoantibodies (ICA), 935–939
subclass and isotope determination, 945
zinc transporter-8 (ZnT8)
autoantibodies, 936–938, 941–942
categories, 935–936
Diagnostic accuracy, 1183–1184
Diagnostic (clinical) sensitivity, 1186–1187
Diagnostic (clinical) specificity, 1187
Dichlorofluorescein diacetate, 204
Dideoxynucleotides (ddNTPs), 5
Dicer, 227, 1020, 1024–1025
DiGeorge syndrome, 713
Dihydrothorodamine
analysis of FMN H2O2 production by flow
cytometry of dihydrothorodamine 123
staining, 310–312
interpretation and limitations, 312
principle, 310
procedure, 311–312
reagents, 310–311
range and normal range, 312
oxidation in oxidative metabolism
disorders, 772–773
Dilated cardiomyopathy, 975–978
Dilute Russell Viper Venom time assay, 906
Dimethyl sulfoxide (DMSO), as
cryoprotectant, 263
Direct fluorescence antibody (DFA)
adenoassociates, 603
Chlamydia trachomatis, 454
cryptosporidiosis, 491–492
enterovirus, 603
Francisella, 479
giardiasis, 495
herpes simplex virus, 552
human metapneumovirus, 603
influenza virus, 603
parainfluenza viruses, 603
Pneumocystis jirovecii, 527
rabies virus, 666, 671
respiratory syncytial virus, 603
respiratory viruses, 603
trichomoniasis, 498
varicella-zoster virus, 558
viral infections, 542
Disease, animal models of chemokines and
chemokine receptors in development
Disseminated tumors, 1051–1052
Disulfide bonds, immunoglobulin, 66–67
DLCL, See Diffuse large B-cell lymphoma
D-L test, for immune hemolytic anemia, 993
DMSO (dimethyl sulfoxide), as
cryoprotectant, 263
DNA
circular DNA (covalently closed circular DNA), 624
cDNA, 8, 335. See also cDNA microarray
concentration measurement, 1074
detection
Epstein-Barr virus, 569
parvovirus B19, 595
double-stranded (dsDNA), antibodies to
isolation, 7
DNA barcoding. See Barcoding
DNA-dependent protein kinase (DNA-PK), 58
DNA microarray
cDNA microarray in transplant rejection,
1134, 1137
lymphoma, 1020, 1024–1025
DNA polymerase, 1132–1133
DNA repair and recombination, T-cell defects
ataxia telangiectasia, 722, 725
Omenn syndrome, 722, 725
DNase(s), 264
DNase B
anti-DNase B test, 399–400
DNA sequencing. See Sequencing
Dobrava-Belgrade virus, 660–661, 663
DOCK8 deficiency, 10, 724, 729
donor-specific antibodies, 1091, 1097,
1100–1101, 1126–1127
Dot ELISA, for arboviruses, 651
Double-blind, placebo-controlled food
Double- stranded DNA
Double-strand breaks (DSBs), 57–58
double-stranded DNA
anti-dsDNA antibodies, 873–874
preparation, 874
Doublet exclusion, 163
Downy cells, 564, 566
DQβ1, 1071, 1081
DRB1 locus, 1066
Droplet digital PCR, for human T-cell
lymphotrophic virus, 678
Drug-induced vasculitis, 913
Duck hepatitis virus, 624
DuraClone, 159
Dystrophin, 798
Early T-cell precursors (ETPs), 207, 210–211
Eastern equine encephalitis (EEE), 648–656
EBERs (Epstein-Barr virus-encoded RNA
transcripts), 567
EBNA (Epstein-Barr virus nuclear antigens),
563–564, 566–567
Ebola virus, 651
EBV. See Epstein-Barr virus
E-cadherin, 1051
EC (endothelial cell) crossmatch, 1105
Echinococcus
diagnosis, 486–487, 493
E. granulosus, 493
E. multilocularis, 493
ECL assay, See Electrochemiluminescence
(ECL) assay
Ecuälzahum, 169, 761
Edrophonium, 957
EDTA, in cryopreservation testing, 108–109
Educ (5-ethyl-2′-deoxyuridine), 270, 271, 277
EEE (eastern equine encephalitis), 648–656
EFI (European Federation of
Immunoge netics), 1075
EFLM (European Federation of Clinical
Chemistry and Laboratory Medicine), 1179
EGID. See Eosinophilic gastrointestinal
diseases
EGPA (eosinophilic granulomatosis with
polyangiitis), 829
Ehrichia, 461–468
E. chaffeensis, 462–464, 466, 468
E. ewingii, 462–463, 468
E. muris-like agent, 462–463, 468
epidemiology, 462
laboratory diagnosis, 465–468
immunodiagnosis, 466
interpretation, 468
molecular diagnosis, 467–468
pathobiology, 464
taxonomy, 461–462
EIA. See Enzyme immunoassay
EITB (enzyme-linked immunoelectrotransfer
blot), for cysticercosis, 492–493
Electrochemiluminescence (ECL) assay,
942–945
glutamic acid dehydrogenase autoantibodies,
944–945
insulin autoantibodies (IAA), 943–944
protein biomarker validation, 1145
Electron microscopy
amebiasis, 489
astroviruses, 642
herpes simplex virus, 551
parvovirus B19, 593–594
rotaviruses, 659
varicella-zoster virus, 558
Electropherogram, 75–76, 90–93, 115–117,
119–120
Electrophoresing, of rotaviruses, 639–640
Electrophoresis, 74–87
acuhe-plate reaction, 81–82
agarose gel. See Agarose gel electrophoresis
Epstein-Barr virus, 563–570
Epsilon heavy chain, 66–67
Epitope testing, of autoantibodies in diabetes,
Epithelial-mesenchymal transition (EMT),
Epithelial cell adhesion molecule (EpCAM),
Epidemic typhus, 461, 463
Eosinophilic gastrointestinal diseases (EGID),
Eosinophilic gastroenteritis, 829–830
Eosinophilic esophagitis, 829–830
Eosinophilia
Enzyme-linked immunosorbent spot (ELISPOT) assay (continued)
cellular immune response in transplantation, evaluation of,
clinical significance, 1114
pitfalls and troubleshooting, 1114
for circulating tumor cells, 1054
cytomegalovirus, 573
data analysis methods, 293
detection of antigen-specific T cells, 261,
290–293
enhancement methods, 291–293
establishing background levels, 292
positive controls, 291–292
Epstein-Barr virus, 569
herpes simplex virus, 553
identifying positive responses, 292
immunologic monitoring, 1045
intraocular disease, 453
intracellular cytokine staining (ICS) assay compared, 338–339
protocol, 290–291
quantifying cytokine-producing cells, 265
validation, 292, 1180, 1184–1187
Eosinophilia
eosinophilic gastrointestinal diseases (EGID), 783, 829–831
hyper-eosinophilic syndromes (HES), 783,
825–829
IgE and IgG serology in, 796
validation, 292, 1180, 1184–1187
hypereosinophilic syndromes (HES), 783, 829–831
hypereosinophilic syndrome, 783
IgA detection, 568
heterophile antibody test, 565–567
IgG detection, 568
IgM detection, 543
immunoblotting, 568–569
in immunocompromised host, 567
immunohistochemistry (IHC), 567–568
indicators for laboratory tests, 564–567
indirect fluorescent antibody (IFA), 564
in situ hybridization (ISH), 568
latency, 563
lymphomas, 1020
neutralization assay, 569
past infection, documentation of, 564
PCR, 568
pharyngitis, 600
prevalence, 564
primary infections, 564–567
rapid diagnosis, 539
reactivation, 563
T-cell lymphomas, 1026–1027
T lymphocytes, EBV-specific, 569
T or NK cell lymphoproliferative diseases, 567
transmission, 564
viral capsid antigen, 564–568
viral loads, 567
viremia, 565
Epstein-Barr virus-encoded RNA transcripts (EBERs), 567
Epstein-Barr virus nuclear antigens (EBNA),
Epstein-Barr virus-encoded RNA transcripts (EBERs), 567
Epstein-Barr virus nuclear antigens (EBNA),
epidermolysis bullosa, 690–691
Farr assay, 874
Factor B, 749, 755
Factor D, 749
deficiency, 758
Factor H, 127, 138–141, 282, 1125
age-related macular degeneration (AMD)
and, 127
autoantibodies, 140
deficiency, 739, 761
Factor I, 130–131, 138–141
deficiency, 759
Factor XII, 690–691
Fallon assay screening test (FAST)-ELISA,
Fascioliasis, 494
FAS protein, 10
Fast atom bombardment mass spectrometry, in ganglioside studies, 962
FASTQ, 1085
Fatal familial insomnia (FFI), 682, 687,
690–691
FAVN (fluorescent-antibody virus neutralization), for rabies virus,
669–670
Fc domain, 51, 66–67
FcεRI receptor, 791, 801, 803, 808, 821
FCGR3A, 500, 506
Fc receptor, 159
Ferricytochrome c, quantitative analysis of
Ferricytochrome c, quantitative analysis of
O2•− generation using SOD-inhibitable ferricytochrome c reduction, 314–315
interpretation and limitations, 315
principle, 314–315
procedure, 315
reagents, 315
results and normal range, 315
FEV1 (forced expiratory volume in 1 second), 810–811
FFI (fatal familial insomnia), 682, 687,
690–691
FHL (familial hemophagocytic lymphohistiocytosis), 204
Fibrin, cryothyriogenemia and, 106–110
Fibrin binding globulin, 899
Fibrinogen
cryothyriogenemia, 106–110
electrophoresis, 79, 86–87
Fibronectin, cryothyriogenemia and, 106–107
Ficolins, 133–134, 756
Ficol-Hypaque density-gradient separation, 153–156
Fifth disease, 591–592
Filaria, 494–495
FilmArray Respiratory Panel, 605–606
Filatiria, 494–495
FISH. See Fluorescent in situ hybridization
Fit-for-purpose, 1182
Fluorescent-antibody virus neutralization (FAVN), for rabies virus, 669–670
Fluorescent in situ hybridization (FISH), chimerism testing, 1164–1165
lymphoma, 1019–1020, 1024–1025, 1027
myeloproliferative hypereosinophilic syndromes, 827
Fluorescent treponemal antibody absorption (FTA-ABS) test, 414–417
Fluorochromes
polychronic flow cytometry, 149–150, 158–160
table of common, 157
Fluorognost HIV-1 IFA, 703
Food allergy, 783, 815–822
Follicular lymphoma, 227, 1017, 1023–1024
Focus reduction neutralization test (FRNT), 300, 305–306, 775–776
FNKD (functional NK cell deficiency), 300, 305–306, 775–776
FMO (fluorescence-minus-one), 164, 165
Fluorochrome(s)
quantification of food-specific IgE antibodies, 819–820
quantification of food-specific IgG antibodies, 821
specific epitope analysis, 821–822
trypsin, serum, 821
in vitro tests, 816–819
basophil responses, 821
component resolved diagnostics, 820–821
in vitro tests, 816–819
atopy patch tests, 817–818
elimination diets, 818
fresh food skin prick tests, 817
intradermal skin tests, 817
oral food challenges, 818–819
skin prick tests, 816–817
Food and Drug Administration (FDA)
analyte specific reagents regulation, 1175
Good Laboratory Practices (GLP)
Regulations, 1175
laboratory-developed tests regulation, 1175
test system premarket approval process, 1172
Food challenges
double-blind, placebo-controlled, 815–822
oral, 818–819
Forced expiratory volume in 1 second (FEV1), 810–811
Fourier transform ion cyclotron resonance (FTICR) MS, 1143
FOX3, 13, 275, 296, 1046
CD25 deficiency and, 727
detection in intracellular cytokine staining (ICS) assay, 339
flow cytometry, 731
Franciscella
clinical manifestations, 475
epidemiology, 474
F. novicida, 473
F. philomiraga, 473–474, 479
F. tularensis, 473–475, 479
F. tularensis subsp. holarctica, 473–475
F. tularensis subsp. mediastina, 473–474
F. tularensis subsp. novicida, 473–474, 479
F. tularensis subsp. tularensis, 473–475
immunological methods, 479
laboratory diagnosis, 478–479
culture, 478
immunological methods, 479
molecular methods, 479
serology, 478–479
serology, 478–479
ELISA, 478–479
microagglutination, 478–479
tube agglutination, 478–479
taxonomy, 473–474
Franciscella, 473–474
Free light chain(s)
clearance/metabolism of, 89
diseases, 94
electrophoresis, 94
kappa-to-lambda ratio, 113, 116, 119–120
monoclonal. See Monoclonal free light chains
monoclonal gammopathies, 112–116, 118–121
multiple myeloma, 113
Free light chain assay, 68–69, 71, 98
quantitative, 115–116
screening for M protein detection, 116, 118
Fresh food skin prick tests, 817
Frozen-tissue sectioning, 377
FTA-ABS (fluorescent treponemal antibody absorption) test, 414–417
FTICR (Fourier transform ion cyclotron resonance) MS, 1143
Functional cellular assays
for B cells and antibodies, 261, 280–288
chronic granulomatous disease diagnosis, 262, 310–320
cryopreservation of peripheral blood mononuclear cells, 261, 263–267
enzyme-linked immunosorbent spot (ELISPOT) assay, 261, 290–293
lymphocyte activation, 261, 269–278
NK cell assays, 262, 300–307
overview, 261–262
regulatory T cell (Treg) assays, 261–262, 275, 296–299
Functional NK cell deficiency (FNKD), 300, 306
Fungal infections, 485, 503–528
Fungi
serology, 478–479
molecular methods, 479
immunological methods, 479
Fungi globulins, electrophoresis of, 74–77
Fungitell assay, 515
Fungus ball, 515
GAE (granulomatous amebic encephalitis), 489
Gain-of-function variants, in interferon regulatory factors, 359
Gajdusek, Carlton, 687
Gamma interferon (IFN-γ), 810–811
Gamma heavy chain, 66–67
Gamma globulins, electrophoresis of, 74–77
Gain-of-function variants, in interferon regulatory factors, 359
Gastroenteritis, viral, 639–645
adenoviruses, 644–645
astroviruses, 642–644
noroviruses, 640–642
rotaviruses, 639–640
sapoviruses, 642
Gastroesophageal reflux, 830
GATA2, 15–16, 300, 305–306, 775–776
GATA2 deficiency, 10, 767
GATK (Genome Analysis Toolkit), 7–8, 1087
Genenius HIV1/2 supplemental assay, 703–704
Gene expression profiles in allografts, techniques for characterization, 1132–1135
absolute quantification of mRNA levels by PCR, 1133
competitive quantitative PCR, 1133
next-generation sequencing, 1134–1135
PCR, 1132–1133
preamplification-enhanced real-time PCR assay, 1133–1134
real-time quantitative PCR, 1133
Gene therapy, for severe combined immunodeficiency (SCID), 715
Genetic diseases, molecular methods of diagnosis, 5–17
analysis of variations, 9–11
arrays, 8–9
diagnosis process, 12–17
framework for diagnosis in immunocompromised patients, 16–17
next-generation sequencing, 7–8
PCR, 5–6
quantitative RT-PCR (qPCR), 8–9
RT-PCR, 8
trees, 5
Sanger sequence analysis, 6–7
TagMan, 8
T-cell excision circles (TRECs), 8
Genetic prion diseases, 690–691
Genome Analysis Toolkit (GATK), 7–8, 1087
Genome size, 19
Genomics, 3
Genomics, 3
See also Metagenomics
immunologic monitoring, 1046
Genotyping
HLA typing, 1074
human immunodeficiency virus (HIV), 706
killer cell immunoglobulin-like receptors (KIRs), 1154, 1157–1158
mumps virus, 614
virulent infections, 544, 546
German measles, 615
Germant Sträussler-Scheinker (GSS) syndrome, 682, 687, 690
Giant cell arteritis, 911

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Mon, 10 Dec 2018 23:33:15
Hematopoietic stem cell transplantation (HSCT), 182–183
chimerism testing after, 1161–1165
Epstein-Barr virus and, 563–564
graft assessment by CD34+ cell enumeration, 183
killer cell immunoglobulin-like receptors (KIRs) in, 1154–1156
augmenting NK cell-mediated benefits after transplant, 1156
control of viral infections after transplant, 1155–1156
determination of donor NK cell alloreactivity, 1154–1155
donor selection based on KIR genotype, 1155
mismatching, 1155
measuring graft adequacy, 182
mismatching, 1066, 1155
for severe combined immunodeficiency (SCID), 715
Hemoglobinuria. See Paroxysmal nocturnal hemoglobinuria
Hemolysin, 510
Paroxysmal nocturnal
Hepatitis B virus, 624–626
molecular detection methods, 625–626
mutation detection, 626
polyarteritis nodosa, 911
prevalence, 620, 624
quantitative assays, 546
rapid diagnosis, 539
sequencing, 626
serology, 625
transmission, 624
typing, 626
vaccine, 620
virological profiles, 625
Hepatitis C virus, 626–630
after liver transplantation, 1157
algorithm for detection, 629
antigen detection, 628–629
antiviral resistance, 630
characteristics, 621
copy number, 105
cryoglobulins and, 107
cryoglobulins and, 101, 105–106, 911
discovery, 626
genome, 627
genotypes, 629–630
genotyping, 546
IgM detection, 543
rapid diagnosis, 543
rheumatoid factor (RF) and, 898
serology, 628–629
testing for viral RNA, 629
treatment, 630
viral load, 629
virological profile, 627
Hepatitis delta virus, 630–632
algorithm for detection, 632
characteristics, 621, 632
course of virological and immunological manifestations of, 622
epidemiology, 623–624
genome, 622
IgM detection, 543–544
molecular detection methods, 623–624
pathogenesis, 622
prevalence, 620
rapid diagnosis, 539
serology, 622–623
transmission, 622–624
vaccine, 620
Hepatitis B virus, 624–626
algorithm for detection, 626
characteristics, 621, 624
clinical parameters, 624–625
discovery, 624
epidemiology, 626
genome, 624
genotypes, 625–626
HbsAg, 624–626
IgM detection, 543
measurement of HBV DNA, 625–626
molecular detection methods, 625–626
mutation detection, 626
polyarteritis nodosa, 911
prevalence, 620, 624
quantitative assays, 546
rapid diagnosis, 539
sequencing, 626
serology, 625
transmission, 624
typing, 626
vaccine, 620
virological profiles, 625
Herpes simplex virus, 550–553
clinical indications, 550–551
commercially available type-specific assays, 552–553
direct detection methods, 551–552
direct fluorescent antibody (DFA) assay, 552
electron microscopy, 551
ELISA, 552
ELISpot assay, 553
enzyme immunoassay (EIA), 552–553
IgG avidity, 553
immunoblotting, 552
immunodot EIA, 552
neutralization assay, 553
overview, 550
PCR, 544, 551
rapid diagnosis, 539
serodiagnosis, 552–553
specimen collection, 551
Tzanck (Giemsa) smear, 551
virus isolation, 551
HES. See Hypereosinophilic syndromes
Heterophile antibody test, for Epstein-Barr virus, 565–567
H-ficolin, 133
HFRS (hemorrhagic fever with renal syndrome), 658, 661
HGA (human granulocytotropic anaplasmosis), 462–463, 466, 468
HHV-4. See Epstein-Barr virus
HHV-5. See Cytomegalovirus
HHV-6. See Human herpesvirus-6
HHV-7. See Human herpesvirus-7
HHV-8. See Human herpesvirus-8
Highlands J virus, 650
High-mobility group (HMG) proteins, 58
High-performance liquid chromatography, in ganglioside studies, 962
HiGOM3, 202
HiSeq instruments, 20
Histamine
basophil histamine release, 799, 802–803, 808
commercial and laboratory assays
ELISA, 801–802
enzyme immunoassay (EIA), 801–802
fluorescent assays, 801–802, 811–812
radioenzymatic assay (REA), 802
standards for fluorimetry, 812
Histiocytic cells
proliferative histiocytic lesions, 1028–1029
subsets, 1028
Histocytic sarcoma, 1028–1029
Histocompatibility, 1063–1067
Histocompatibility testing standards, American Society for Histocompatibility and Immunogenetics (ASHI), 1177
Histograms, 153
Histopathology, of cytomegalovirus, 572
Histoplasmosis, 505, 524–526
clinical indications and diagnostic rationale, 524
complement fixation, 524–525
direct fluorescent antibody assay (EIA), 525–526
fluorescent antibody assay (EIA), 524
latex agglutination, 525
HIV. See Human immunodeficiency virus
HLA (human leukocyte antigen)
gene polymorphism, 1065
humoral response in transplantation, evaluation of, 1091–1101
mismatching, 1066
Subject Index
method, 435–436
reproducibility, conversions, and reversions, 437
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
variability and quality control issues, 437
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
IgM
class switching, 58–59
measurement of, 67–68
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
polyclonal, 93
pyroglobulins, 110
structure, 52, 66–67
subclasses, 67
IgA vasculitis, 911
IgD
characteristics, 66–67
class switching, 58–59
electrophoresis, 80
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
polyclonal, 93
pyroglobulins, 110
structure, 52, 66–67
surface, 280–281
IgD myeloma, 85
IgE
allergen potency testing, 790–791
in allergic diseases
allergen-specific IgE, 795–798
total serum IgE, 796–797, 798–800
basophil histamine release assay for demonstration of activity, 802
characteristics, 66–67
class switching, 58–59
electrophoresis, 80
eosinophilic gastrointestinal diseases (EGID), 829–830
food allergy, 815–816
quantification of food-specific IgE antibodies, 819–820
specific epitope analysis, 821–822
total IgE, 821
function, 280
hyper gammaglobulinemia E syndrome, 795–796
in lymphocytic variant hypereosinophilic syndrome, 828
measurement of, 68
monoclonal, 93–94
omalizumab (anti-IgE), 795
pyroglobulins, 110
structure, 52, 66–67
total serum IgE assay, 796–797, 798–800
IgE myeloma, 80, 85
IgG
-allergen-specific, 796–797, 799
-anti-acetylcholine receptor antibodies, 955
-anticytokine autoantibodies, 369
-antimyeloma autoantibodies, 369
-antimyelomocytic autoantibodies, 966
Baronella, 476
Brugia, 494
class switching, 58–59
complement activation, 129
Coxiella, 466–467
cryoglobulins, 101–102
electrophoresis, 79
Epstein-Barr virus, 565–569
food-specific IgG antibodies, quantification of, 821
function, 280
hantaviruses, 658, 660–662
-heavy chain disease, 94
-hepatitis delta virus, 631
-hepatitis E virus, 633
-herpes simplex virus, 553
-human herpesvirus-6, 584
-human herpesvirus-8, 587–588
-hyperviscosity and, 71
-immunofixation electrophoresis, 79, 90–91
-immunosubtraction, 91–92
Loa loa, 495
measles viruses, 611–614
measurement of, 67–68
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
mumps virus, 614–615
onchocerciasis, 494
polyclonal, 93
pyroglobulins, 110
structure, 52, 66–67
surface, 280–281
varicella-zoster virus, 557, 559–560
IgG4
-allergen-specific, 797, 799
-characteristics of molecule, 918
-food-specific antibodies, 821
-serum concentrations in IgG4-related disease, 919–920
IgG4-related disease, 917–920
-clinical features, 917–918
-abdomen, 917
-chest, 917
-head and neck, 917
-retroperitoneum, 917–918
-flow cytometry, 920
-immunodiagnosis, 919
-pathology, 918
-pharyngitis, 918–919
-B-cell lineage, 918
-CD4 killer cell, 919
-IgG4 molecule, 918
-immunoglobulin class switch, 918–919
-T-cell pathways, 919
-serum IgG4 concentrations, 919–920
-treatment, 919
-IgG avidity
cytomegalovirus, 572–573
herpes simplex virus, 553
human herpesvirus-6, 583
measles viruses, 611
rubella virus, 616
toxoplasmosis, 498
-IgG ELISA, for arboviruses, 651
-IgG index, 99
-IgG myeloma, 89
-IGH gene, 1024, 1028
-IgM
-Baronella, 476
-characteristics, 66–67
-Chlamydia pneumoniae and, 457
class switching, 58–59
-complement activation, 129
-Coxiella, 466
cryoglobulins, 101–103
-electrophoresis, 79
-fundamental, 918–919
-IgG4 molecule, 918
-CD4 killer cell, 919
-Bartonella lineage, 918
-hyperviscosity and, 71
-immunofixation electrophoresis, 79, 90–91
-immunosubtraction, 91–92
-measles viruses, 611–613
-measurement of, 67–68
-in monoclonal gammopathies, 114
-monoclonal, 93
-M protein electrophoresis, 82
-mumps virus, 614–615
-onchocerciasis, 494
-polyclonal, 93
-pyroglobulins, 110
-response measurement to viral infection, 541, 543–544
-Rocky Mountain spotted fever, 465
-rubella virus, 616–617
-strategy, 52, 66–67
-surface, 280–281
-toxoplasmosis, 497–498
-varicella-zoster virus, 557, 559–560
-subject index
-1217
by flow cytometry
acute lymphoblastic leukemia/
lymphoma, 207–214
acute myeloid leukemia (AML),
217–223
B-cell chronic lymphoproliferative
diseases, 227
chronic lymphocytic leukemia (CLL),
226–232, 235–247
cryopreserved peripheral blood
mononuclear cells (PBMC), 265–266
plasma cell disorders, 235–247
T-cell chronic lymphoproliferative
diseases, 228
Immunoprecipitation. See also
Radioimmunoprecipitation
autoimmune myopathies
analysis of proteins, 878–883
analysis of small RNAs, 883–886
in immunofixation electrophoresis, 89–90
in immunosubtraction electrophoresis,
89, 91
LIIS (luciferase immunoprecipitation
system) assay for anti-RNP, 873
putituary antibodies, 947
systemic lupus erythematosus (SLE),
870–873
Immunopurification, for mass spectrometry, 41
Immunostaining of tissue, in IgG4-related
disease, 235–247
ImmunoSorbent Allergen Chip (ISAC), 798
Immunoturbidimetric assays, for
immunoglobulin measurement, 67–68
immunoprecipitation and, 89, 91
in clinical disorders, 92–95
to avoid false-positive results, 86
in clinical disorders, 92–95
description, 91–92
immunoprecipitation and, 89, 91
monoclonal immunoglobulin increases,
93–94
M protein detection, 76, 82–84, 86
oligoclonal banding, 94–95
polyclonal immunoglobulin increases, 92
Immunosubtraction (ISUB) electrophoresis
advantages and disadvantages, 92
to avoid false-positive results, 86
in clinical disorders, 92–95
description, 91–92
immunoprecipitation and, 89, 91
monoclonal immunoglobulin increases,
93–94
M protein detection, 76, 82–84, 86
oligoclonal banding, 94–95
polyclonal immunoglobulin increases, 92
Immunosubtraction (ISUB/ISE)
electrophoresis, 112, 120
Immunoturbidimetric assays, for
immunoglobulin measurement, 67–68
inAT Flu A/B assay, 605–606
Indels (insertions/deletions), 7
Indian tick typhus, 461
Indirect fluorescent antibody (IFA)
antineutrophil cytoplasmic antibodies
(ANCA), 909–911
antirenal antibodies, 999–1001
arboviruses, 651
babesiosis, 490–491
Baronella, 475–476
Borrelia burgdorferi, 422
candidiasis, 518
Coxiella, 466
Epstein-Barr virus, 564
hantaviruses, 660
human herpesvirus-6, 582
human herpesvirus-7, 586
human herpesvirus-8, 587–588
human immunodeficiency virus (HIV), 703
leishmaniasis, 495
malaria, 496
measles viruses, 611–612
monoclonal antibody-enhanced IFA
(mIFA), 587–588
mumps virus, 615
Mycoplasma pneumoniae, 446
Orientia tsutsugamushi, 465
Pneumocystis jiroveci, 527
Rocky Mountain spotted fever, 465
rubella virus, 616–617
toxoplasmosis, 497
Trypanosoma cruzi, 491
Indirect hemaggltination assay (IHA)
Entamoeba histolytica, 489
Trypanosoma cruzi, 491
Indirect immunofluorescence
gastric parietal cell antibodies, 932–933
islet cell autoantibodies (ICA), 938–939
liver kidney microsomai antibodies,
970–971
pituitary antibodies, 947–949
thyroglobulin antibodies, 930
Indirect immunofluorescence antinuclear
antibody (IF/ANA) assay, 843–857
Inducible costimulating receptor (ICOS), 740
Infectious mononucleosis, 563–564
Inflammation, allergic, 783, 801–812
assays for measurement of mediators/ markers, 801–812
airway challenges, 810–811
basophil IL-4 and IL-13 secretion,
804–806
basophil surface activation markers, 806
dendritic cells, 807
histamine, 801–803
interferon alpha production, 807
leukotriene C4, 803–804
mast cell specific, 806–807
prostaglandin D2, 807
quality assurance of in vitro assays,
807–808
skin testing, 808–810
tryptase, 806–807
Influenza, 598–607
clinical characteristics, 987
diagnosis, 985, 987–988
epidemiology, 987
pathology, 986–987
quality assurance for clinical testing, 988
treatment with cytokine inhibitors, 357,
362
Infliximab, 361
Influenza-like illness, 600–601
Influenza virus, 598–607
antigen assays, 604
antiviral susceptibility testing, 606
avian influenza, 538
biobazard, 603
clinical significance, 600–602
culture, 603, 606
description of agents, 599
direct fluorescent antibody (DFA), 603
epidemiology, 600
H1N1, 538, 601, 604–606
H3N2, 601, 606
H5N1, 538, 602
H7N9, 538, 602
immunochromatography, 603–605
molecular tests, 605–606
pathogenesis, 600
rapid influenza diagnostic tests (RDT),
538–539, 543, 545, 604–605
taxonomy, 599
transmission, 600
vaccination, 601
viremia, 602
when to test, 602
whom to test, 602
InMAD (in vitro microbial antigen discovery),
479
Interleukin-2 (IL-2)
Interleukin-1 (IL-1)
Interferon-stimulated exonuclease gene 20
Interferon regulatory factor 5 (IRF5), 359
Interferon (IFN)
Integrin conformation change, measurement
β
Insulinoma antigen-2 (IA-2) autoantibodies,
Insulin autoantibodies (IAA), 935–938,
In situ
In situ hybridization (ISH)
In situ hybridization (ISHAGE)
In situ hybridization (ISHAGE) protocol
Inositol polyphosphate-5-phosphatase
Inno-LIA HIV I/II Score test, 703
Innate immunity, NK cells and, 1150
International Myeloma Working Group,
International Organization for Standardization (ISO), 1177–1179,
International Clinical Cytometry Society
International Council for Standardization in Immunochemistry and Laboratory Medicine (IFCC), 1178–1179
International Society for Heart & Lung Transplantation (ISHLT), 1137
International Workshop and Conference on Human Leukocyte Differentiation Antigens (HLDA), 158
Interphotoreceptor retinal binding protein (IRBP), 998, 1001
Intracellular antigen detection, by
polychromatic flow cytometry, 160
Intracellular ATP synthesis assay, 1116–1119
expected values, 1119
interpretation of results, 1118–1119
overview, 1116–1117
procedure, 1117–1118
Intracellular cytokine staining (ICS) assay,
290, 338–340
cell processing, 339–340
for cellular immune response in transplantation, 1114–1116
data acquisition, 1116
data analysis, 1116
procedure, 1114–1116
troubleshooting, 1116
Intracranial pressure, 96–99
Intradermal skin testing, 795–796, 809
See also Skin testing
Intranasal challenge, 810–811
Intravenus immunoglobulin (IVIG), 1066
Intravitral microscopy (IVM), 350, 352–354
Intrinsic factor, antibodies to, 932
Intracellular antigen detection, by
enzyme-linked immunosorbent spot (ELISPOT) assay,
compared, 338–339
resting prior to stimulation, 338
secretion inhibitors, 339
specimen types, 338
stimulating antigens, 339
stimulation kinetics, 339
stimulation vessels, 338
workflow of, 340
Intradermal skin testing, 795–796, 809
See also Skin testing
Intranasal challenge, 810–811
Intravenous immunoglobulin (IVIG), 1066
Intravitral microscopy (IVM), 350, 352–354
Intrinsic factor, antibodies to, 932
Intracellular antigen detection, by
enzyme-linked immunosorbent spot (ELISPOT) assay,
compared, 338–339
resting prior to stimulation, 338
secretion inhibitors, 339
specimen types, 338
stimulating antigens, 339
stimulation kinetics, 339
stimulation vessels, 338
workflow of, 340
Ion Torrent, 7, 16, 20, 1085
IPA. See Immunoperoxidase assay
IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked), 13, 727
IRBP (interphotoreceptor retinal binding protein), 998, 1021
IRF5 (interferon regulatory factor 5), 359
IRF7 (interferon regulatory factor 7), 359
IRGM gene, 986
Iron deficiency, Helicobacter pylori and, 410
ISETs (intracranial splicing enhancers), 10
ISH. See In situ hybridization
ISHAGE. See International Society of Hematology and Transplantation (ISHAGE)
protocol
ISHLT (International Society for Heart & Lung Transplantation), 1137
Islet cell autoantibodies, 935–939
ISO (International Organization for Standardization), 1177–1179, 1182
Isoelectric focusing (IEF), 98–99, 791–792
Isoelectric point (pI), 74
Isoelectric focusing (IEF), 98–99, 791–792
Isolecitic point (pl), 74
Israel tick typhus, 461
ISSs (intracellular splicing silencers), 10
Leukemia (continued)
 myelogenous leukemia, BCR-ABL translocation in, 922
 plasma cell, 235–237, 240
 IMWG diagnostic criteria, 237
 monoclonal gammopathy, 113
 pyroglobulins and, 110
 Leukotriene C4, assays for, 803–804
 Levey-Jennings chart, 77–78, 153–154, 1188–1189
 L-ficolin, 133
 Liat HIV Quant VL assay, 702
 Licensure of clinical immunity laboratory, 1176–1177
 Light-chain deposition disease, in monoclonal gammopathy, 113, 115–116, 118
 Light-chain multiple myeloma, 94
 Light chains, immunoglobulin electrophoresis, 80
 free. See Free light chain gene complexes, 53–56
 kappa, 53–56
 lambda, 55–56
 immunofixation electrophoresis, 80–82
 prominent studies in transplant rejection, 1142–1143
 Liquid chromatography coupled with mass spectrometry (LC-MS), 38
 LightCycler HA V quantitation assay, 623
 Light chains, immunoglobulin electrophoresis, 80–82
 lambda, 55–56
 pyroglobulins and, 110
 IMWG diagnostic criteria, 237
 kappa, 53–56
 lambda, 55–56
 Light chains, immunoglobulin electrophoresis, 80–82
 lambda, 55–56
 pyroglobulins and, 110
 IMWG diagnostic criteria, 237

Lithium
 in situ
 immunohistochemistry, 1017–1018
 flow cytometry, 1017
 immunohistochimistry, 1017–1018
 in situ hybridization, 1019
 molecular cytogenetics, 1019–1020
 PCR, 1018–1020
 diffuse large B-cell lymphoma (DLBCL), 226–227, 1024–1025
 Epstein-Barr-associated, 1020
 follicular, 227, 1017, 1023–1024
 human herpesvirus 8-associated, 1020
 human T-cell leukemia virus-associated, 1020
 immunophenotypes of T-cell chronic lymphoproliferative disorders, 228
 lymphoblastic, 1020–1022
 lymphoplasmacytic, 227, 1023–1024
 mantle cell lymphoma (MCL), 226–227, 1024–1025
 Hodgkin's lymphoma, 1025, 1028
 peripheral T-cell lymphoma, 1020
 splenic marginal zone, 227, 1023
 T-cell-rich large B-cell lymphoma, 1024–1025
 translocations in, 1019–1020, 1022–1024
 nodular lymphocyte-predominant
 Hodgkin's lymphoma, 1025, 1028
 peripheral T-cell lymphoma, 1020
 small lymphocytic, 226, 1023–1024
 small mature B cell lymphoma, 1023–1025
 splenic marginal zone, 227, 1023
 T-cell-rich large B-cell lymphoma, 1024–1025
 translocations in, 1019–1020, 1022–1024
 Lymphoplasmacytic lymphoma, 226, 1023–1024
 Lymphoproliferative disease
 Epstein-Barr virus-associated, 567
 monoclonal gammopathy, 113
 percentage of plasma cell proliferative disorders, 90
 Lymphoreticulosis, 159
 Lymphocyte cultures from allograft biopsy specimens, 1112–1113
 concept, 1112–1113
 pitfalls and troubleshooting, 1113
 procedure, 1113
 Lymphocyte proliferation assay (LPA), 732
 for B-cell analysis, 281–282
 cryopreserved peripheral blood mononuclear cells (PBMC), 264–265
 secretion of soluble mediators, 282
 stimulation index, 282
 using Euh-iso-based flow cytometry, 271, 277
 in vitro whole-blood, 283–284
 Lymphocyte separation medium, 1109
 Lymphocyte-specific protein kinase (LCK), 1138
 Lymphogranuloma venereum, 453–455
 Lupus.
 See Systemic lupus erythematosus
 Lysates
 for anti-RNP, 873
 anticytokine autoantibody detection, 367–368
 for anti-RNP, 873
 anticytokine autoantibody detection, 367–368
Gerstmann-Sträussler-Scheinker (GSS) syndrome, 682, 687, 690
iatrogenic Creutzfeldt-Jakob disease (iCJD), 682, 687, 691
kuru, 682, 687–688
sporadic Creutzfeldt-Jakob disease (sCJD), 682–683, 687–690
variant Creutzfeldt-Jakob disease (vCJD), 682, 684, 687, 691
strains of prions, 683
transmission, 683–685
variably protease-sensitive prionopathy (VPSPr), 682, 687, 689
Western blot, 686, 690
ProSight 2.0 software, 1143
Prostate cancer
circulating tumor cells, 1052, 1054, 1056–1057
tumor markers, 1012–1013
Prostate-specific antigen (PSA), 1009–1010,
Prostate cancer
Prostate biomarker validation platforms, 114–115
Protein arrays, 1144
Prostate-specific antigen (PSA), 1009–1010,
Prostate cancer
Prostate- specific antigen (PSA), 1009–1010,
Prostate cancer
Programmed death 1 (PD-1), 1026
Progenitor B cells, 56
Profile testing, 34, 1120, 1172, 1176–1177, 1184
Progenitor B cells, 56
Programmed death 1 (PD-1), 1026
Proliferating cell nuclear antigen (PCNA), 870
Pronase treatment of cells, 1099
Properdin, 142
Propidium iodide, 158
ProSightPC 2.0 software, 1143
Prostaglandin D2, radioimmunoassay and,
Prostate cancer
Prostate-specific antigen (PSA), 1009–1010,
Prostate cancer
Programmed death 1 (PD-1), 1026
Progenitor B cells, 56
Profile testing, 34, 1120, 1172, 1176–1177, 1184
Progenitor B cells, 56
Programmed death 1 (PD-1), 1026
Proliferating cell nuclear antigen (PCNA), 870
Pronase treatment of cells, 1099
Properdin, 142
Propidium iodide, 158
ProSightPC 2.0 software, 1143
Prostaglandin D2, radioimmunoassay and,
Prostate cancer
Prostate-specific antigen (PSA), 1009–1010,
Prostate cancer
Programmed death 1 (PD-1), 1026
Progenitor B cells, 56
Profile testing, 34, 1120, 1172, 1176–1177, 1184
Progenitor B cells, 56
Programmed death 1 (PD-1), 1026
Proliferating cell nuclear antigen (PCNA), 870
Pronase treatment of cells, 1099
Properdin, 142
Propidium iodide, 158
ProSightPC 2.0 software, 1143
Prostaglandin D2, radioimmunoassay and,
Prostate cancer
Prostate-specific antigen (PSA), 1009–1010,
Prostate cancer
Programmed death 1 (PD-1), 1026
Progenitor B cells, 56
Profile testing, 34, 1120, 1172, 1176–1177, 1184
Progenitor B cells, 56
Programmed death 1 (PD-1), 1026
Proliferating cell nuclear antigen (PCNA), 870
Pronase treatment of cells, 1099
Properdin, 142
Propidium iodide, 158
ProSightPC 2.0 software, 1143
Prostaglandin D2, radioimmunoassay and,
Prostate cancer
Prostate-specific antigen (PSA), 1009–1010,
Prostate cancer
Programmed death 1 (PD-1), 1026
Progenitor B cells, 56
Profile testing, 34, 1120, 1172, 1176–1177, 1184
Progenitor B cells, 56
Programmed death 1 (PD-1), 1026
Proliferating cell nuclear antigen (PCNA), 870
Pronase treatment of cells, 1099
Properdin, 142
Propidium iodide, 158
ProSightPC 2.0 software, 1143
Prostaglandin D2, radioimmunoassay and,
Quantitative reverse transcription-PCR
(qRT-PCR), 8–9
astroviruses, 644
hantaviruses, 660, 663
noroviruses, 641
rabies virus, 667–668
rotaviruses, 640
saposviruses, 642
Quant-IT PicoGreen dsDNA Assay, 1074
Quantum dots (Qdots), 29, 150
Quasi-quantitative assays, 1181
QuIC (quaking-induced conversion), 686–687, 690, 692
RAD27A, 301, 307, 776, 778–779
Rabies virus, 667–668
RAC2 deficiency, 767–771
Radial immunodiffusion (RID), 67–68
Radioassay
See Radial immunodiffusion (RID)
Radioenzymatic assay (REA), for histamine, 665
Radioimmunoprecipitation assay, 860–861
Radiolabeling, in immunoprecipitation analysis in autoimmune myositis, 879
RAG1/2 mutations, 725
RAG (recombination activating gene) endonuclease, 57–58
Raji cells, 659
Rapid antigen detection tests (RADTs), for group A streptococci, 396–397
Rapid diagnostic tests
Leptospira, 429–430
malaria, 496
Rapid fluorescent-focus inhibition test (RFFIT), rabies virus, 669–670
Rapid immunoassays, for human immunodeficiency virus (HIV), 539, 699–701
Rapid immunoblot strip assay, 661
Rapid influenza diagnostic tests (RIDT), 503–505, 538, 543, 545
Rapid rabies enzyme immunodiagnostics (RREID), 669
RAST (radioallergosorbent test) allergen potency testing, 790–791
food allergy, 817, 819
Raynaud's phenomenon, 101–102, 889–891
RCA (regulators of complement activation), 138–140, 757
RCF (responder cell frequency), 264
RCU1 (refractory cytopenia with unilineage dysplasia), 168
Reactive airway disease, 601
Reactive oxygen species (ROS), 310, 314–316
Reaginic activity, 66
Relative quantitative assays, 1181
Relative light units, 1118
Regulatory T cell (Treg) assessment of function, 275
disease correlation, 299
functional cellular assays, 261–262, 296–299
immunologic monitoring, 1046
lymphocyte activation, 275
nomenclature, 296
phenotyping, 296–299
suppressor assays, 298–299
Relapsing fever, 420, 426–428
clinical indications and test interpretation, 427–428
culture, 427
direct microscopic examination of spirochete in blood, 427
disease spectrum, 426–427
epidemiology, 426–427
molecular detection and genotyping, 427
serology, 427
taxonomy, 426
Relative light units, 1118
Relative quantitative assays, 1181
Remission, 1051
Renal disease
acute glomerulonephritis, poststreptococcal, 394–395, 397, 399–401
immunofluorescence in diagnosis of, 376–384
Renilla luciferase, 873
Reostrinase, 640
Replication reduction neutralization test (RRNT), for hantaviruses, 660
Respiratory syncytial virus, 598–607
antigen assays, 604
clinical significance, 600–601
description of agents, 599
direct fluorescent antibody (DFA), 603
epidemiology, 600
immunochromatography, 603–605
RT-PCR. See Reverse transcription-PCR (RT-PCR).

Rubella virus, 615–616
clinical manifestations, 615–616
complement fixation, 616–617
culture, 616
diagnostic strategies, 616
enzyme immunoassay (EIA), 616–617
false-positives, 617
hemagglutination inhibition, 616–617
indirect fluorescence antibody (IFA), 616–617
interpretation of testing, 617
latex agglutination, 616–617
molecular methods, 616–617
multiplex bead fluorescence immunoassays (FIA), 616–617
passive hemagglutination inhibition, 616–617
rapid diagnosis, 540
reverse-transcriptase (RT)-PCR, 616–617
reverse transcription-loop-mediated isothermal amplification (RT-LAMP), 616
serology, 616–617
technology for testing, 617
transmission, 615
vaccination, 615
virus isolation, 616
Rubeola, 610. See also Measles virus
Rubivirus (genus), 599, 610
Runt-related transcription factor 3 (RUNX3), 1138
RuvB1/2 antibody against, 891
Ryanodine receptors, 959

S100 protein, 1028
Sa antigen, antibodies to, 898–899
Saa rems virus, 660
Saccharomyces cerevisiae
Saaremma virus, 660
Sa antigen, antibodies to, 898–899
S100 protein, 1028
Ryanodine receptors, 959

SARS (severe acute respiratory syndrome) coronavirus, 538, 599, 602
SAT (serum agglutination test), for Brucella, 477
Scarlet fever, 394
Scleroprotein, 131
Scleroderma, 868–869, 888–895
antinuclear antibodies (ANAs), 888–895
anticentromere antibody (ACA), 888–889
anti-Ku antibody, 891
anti-PMiSC antibody, 891
anti-RNAP III antibody, 899–901
anti-RuvB1/2 antibody, 891
anti-ThyTo antibody, 890
anti-Topo I antibody, 889
anti-U1 RNP antibody, 891
anti-U3 RNP antibody, 890
anti-U1/U1R2 RNP antibody, 890–891
clinical significance, 890, 895
detection methods, 891–894
screening for, 891
structure and function, 889
criteria for classification, 895
Scleromyxedema, 113
Sclerosing cholangitis, 79
Scapie, 682, 685
Scapie-associated fibrils, 685
Scrab papilloma virus, 682
Scrub typhus, 462–464, 466
SDF1 (stromal cell-derived factor 1), 765
SDS-PAGE, for immunoprecipitation analysis
Sedoheptulose 1,7-bisphosphatase, 657
Seoul virus, 660–661, 663
Segmental ELISA, 326–327
Severe combined immunodeficiency (SCID), 1152
Sequence-specific primers (SSPs), HLA
Sequence-specific probes (SSPs), HLA
Sequence-Specific Primer (SSP), 1152
Sequence-specific probes (SSPs), HLA
typing, 1069, 1072–1074, 1076–1077
analysis of data, 1076
applications, 1076
interpretation of results, 1076
principle of the technology, 1076
reverse SSO (SSRO), 1076–1077
strengths and weaknesses, 1076–1077
troubleshooting and technical issues, 1076–1077
Sequence-specific primers (SSPs), HLA
typing, 1069, 1072–1074, 1077–1078
analysis of data, 1078
applications, 1077–1078
interpretation of results, 1078
principle of the technology, 1077–1078
strengths and weaknesses, 1077–1078
troubleshooting and technical issues, 1078
Sequence tagging analysis, 20
Sequence-Specific Primer (SSP), 1152
Sequencing
antibody deficiencies, 745
capillary, 1028
chipmerism testing, 1165
clinical application of molecular characterization of human allografts, 1140
deep sequencing, 19–20
hepatitis B virus, 626
Hepatitis C virus, 628–629
hepatitis delta virus, 631
hepatitis E virus, 633
erpes simplex virus, 552–553
human herpesvirus-6, 583
human herpesvirus-7, 586
human herpesvirus-8, 587–588
human immunodeficiency virus (HIV), 698–701
Leptospira, 429–430
Loa loa, 495
measles viruses, 612–613
mumps virus, 615
Mycoplasma genitalium, 448
Mycoplasma hominis, 449
Mycoplasma pneumoniae, 444–446
parasitic infections, 486–487
Pneumocystis jirovecii, 527
rabies virus, 660–670
relapsing fever, 427
rubella virus, 616–617
sporotrichosis, 528
strongyloidiasis, 497
syphilis, 413–415
toxoplasmosis, 497–498
Treponema pallidum, 413–415
trichinellosis, 498
Trypanosoma cruzi, 491
tuberculosis, 441
Ureaplasma, 449
varicella-zoster virus, 558–560
viral hepatitis, 621
Serratia marcescens, in chronic granulomatous disease (CGD), 767
Sequencing
antibody deficiencies, 745
capillary, 1028
chipmerism testing, 1165
clinical application of molecular characterization of human allografts, 1140
deep sequencing, 19–20
hepatitis B virus, 626

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Mon, 10 Dec 2018 23:33:15

1234

Subject Index
Subject index

Serum free light chain (sFLC) assay, 69, 71
electrophoresis of, 82, 86, 94
Serum neutralization test. See Neutralization assay
Serum proteins, electrophoresis of, 65–66, 69–71, 76–84
M protein detection, 82–83
M protein quantification, 83–84
pattern interpretation, 80–84
proteins identified, 77–80
specimen requirements, 76–77
Severe acute respiratory syndrome (SARS) coronavirus, 538, 599, 602
Severe combined immunodeficiency (SCID) genetic molecular analysis, 12–13
leaky, 13, 716, 725
newborn screening, 261, 715–719
criteria for screening, 716
follow-up algorithm, 717
limitations with SCID and non-SCID probes (SISCAPA), 718
purpose and benefit of screening, 715
results of screening in Wisconsin, 717–718
T-cell receptor-excision circle (TREC), 715–719
NK cells, 701
treatment, 715

SH2D1A, 729, 731, 775–776

SLE. See Systemic lupus erythematosus (SLE)
Small intestine transplantation, complement activation products in, 1127
Small lymphocytic lymphoma (SLL), 226, 1023–1024
Smallpox, 557
Small RNAs, immunoprecipitation analysis in
Small- passes filter, 152–153
Shewart control chart, 1188
Shingles, 556
Short-pass filter, 152–153
Short tandem repeat (STR), 1161–1164
Shotgun sequencing, 20
SHP-2, 115, 120
Shwachman- Diamond syndrome, 767
Shwartzman reaction, 122
SIIg, plasma cells, 239–240
Sm antigen, antibodies to, 868–869
SmIg, plasma cells, 239–240
SMP, 557
Smaller RNAs, immunoprecipitation analysis in
Smoldering myeloma, 89–90
SMRs (soluble mesothelin-related peptides), 1013
SMRT (Single Molecule Real Time) chip, 1088
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), 305
SSP. See Single nucleotide polymorphism
SOAP-HLA software, 1087
SOD (superoxide dismutase), 314, 316
Sons Oligonucleotide, 802, 808
Somatic hypermutation, 59
Solid organ transplantation
rejection, molecular characterization of, 1132–1146
rejection, molecular characterization of, 1132–1146

Spectra Analyser tools, 1116
SPEP (serum protein electrophoresis), 65–66, 69–71
Spn amplification shell vial assay, for human herpesvirus-6, 581–582
Sporothrix, 419
Sporotriches, 419–430
Splenic marginal zone lymphoma, 227, 1023
Splicing alternative, 58
analysis programs, 11
conserved splicing motifs, 10
Splicing regulatory elements (SREs), 10
Spradic Creutzfeldt-Jakob disease (sCJD), 682–683, 687–690
Sporotrichosis, 505, 528
SREs (splicing regulatory elements), 10
SRM (selected reaction monitoring), 1144–1145
SSOs. See Sequence-specific oligonucleotide probes (SSOs), HLA typing
SSPE (subacute sclerosing panencephalitis), 611–612
SSPs. See Sequence-specific primers (SSPs), HLA typing
Stable isolate standard and capture by antipeptide antibodies (SISCAPA), 41
Stain index, 156–158
Standard curve preparation, from multiplex cytokine assay, 328–329
Staphylococcus aureus in Chédiak-Higashi syndrome patients, 771
in chronic granulomatous disease (CGD); 767
neutropenia and, 765
ST1 (flow cytometry assays
gain-of-function alleles in CMCD (chronic mucocutaneous candidiasis), 200–201
phosphorylation levels as signal for type 1 cytokine signaling abnormalities, 200 phosphorlated, 369
ST2 (gene), 13
STAT3 deficiency, 721, 728
STB gene, 13–14
STAT4, 359–360
STAT5, 359–360
STAT5b deficiency, 723, 728
STAT5 deficiency, 723, 728
STAT5 gene, 301, 306
Statistical data analysis
from cellular assays, 1119–1120
from immunologic monitoring, 1047
Stauroporine, 201
Stem Cell Enumeration Kit, 189
Stem CXP, 188–189, 191
Stem-Kit (Beckman-Coulter), 187–189
Stems cells, hematopoietic. See Hematopoietic stem cells
Stiff-man syndrome, 937, 945
STIM1, 301, 305, 307
Stimulation index, lymphocyte proliferation assay, 282
Stinging-insect assessment, 808
Stokes shift, 156
Stomach flu, 640
STR (short tandem repeat), 1161–1164
Streptococcus C5a peptidase, 401
Streptococcal group A, 394–401
Streptococcus pneumoniae C-reactive protein and, 79
multiplexed opsonophagocytic killing assay (MOPAA) for functional antibodies against, 285–288

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Mon, 10 Dec 2018 23:33:15
Streptococcus pneumoniae (continued) pneumococcal ELISA, 283 pneumococcal vaccine, 281, 283 Streptococcus pyogenes. See Streptococci, group A Streptokinase test, 401 Streptolysin O screening test, 398 Strain typing methods, 959 Stromal cell-derived factor 1 (SDF1), 765 Strongyloidiasis, 496–497

Superoxide dismutase (SOD), 314, 316

Sunitinib, 299

Sulfated glucuronyl paragloboside, 961, 964

Sugar-hemolysis test, 168

Subacute sclerosing panencephalitis (SSPE), 301, 306–307, 776, 778–779

Stromal cell-derived factor 1 (SDF1), 765

Striational-antibody assays, 959

Streptokinase test, 401

See Streptococci, Streptococcus pyogenes.

Streptococcus pneumoniae (continued) 1236

Systemic lupus erythematosus (SLE), 868–876

Sympathetic ophthalmia, 998

Sylvatic typhus, 463

Surround optical fiber immunoassay (SOFIA), 1142–1143

Suicide gene therapy, 285

SureTyper software, 1079

Suppressor cell functions, immunologic selection of informative loci, 1163–1164 PCR and electrophoresis, 1162–1163 donor chimerism calculations, 1164 DNA templates, 1161–1162 cell subsets, 1164

Sugar-hemolysis test, 168

Sulfated glucuronyl paragloboside, 961, 964

Sugar- hemolysis test, 168

Subacute sclerosing panencephalitis (SSPE), 301, 306–307, 776, 778–779

Surround optical fiber immunoassay (SOFIA), 1142–1143

SureTyper software, 1079

Surface-enhanced laser desorption ionization-time of flight mass spectrometry (SELDI-TOF MS), 1142–1143

Systemic lupus erythematosus (SLE), 868–876

Sympathetic ophthalmia, 998

Sylvatic typhus, 463

Surround optical fiber immunoassay (SOFIA), 686, 690, 692

SYBR Green dye, 8

Syichtic typhus, 463

Sympathetic ophthalmia, 998

Syphilis, 412–417

clinical manifestations, 412–413
congenital, 412–414
epidemiology, 412
incidence, 412
microbiology, 412
natural history, 412–423

testing algorithms, 416–417
direct detection, 413
indications for, 413
nontreponemal tests, 413–414
quality control and assurance, 415–416
rapid point-of-care tests, 415
serology, 413–415
treponemal antibody tests, 414–415

Systemic lupus erythematosus (SLE), 868–876

autoantibodies, 359
autoantibody detection and quantification, 868–874
anti-dsDNA antibodies, 873–874
anti-La (SS-B) antibodies, 869
anti-proliferating cell nuclear antigen (PCNA) antibodies, 870
anti-rubisomol P antibodies, 870
anti-RNA helicase A autoantibodies, 870
anti-RNP antibodies, 868–869
anti-Ro (SS-A) antibodies, 869

anti-Sm antibodies, 868–869
LIPS (luciferase immunoprecipitation system) assay for anti-RNP, 873
prevalence by disease, 870
radioimmunoprecipitation, 870–873
complement deficiency and, 794–795, 761
complement evaluation, 874–875
acquired deficiency in SLE, 875
assays of function, 875
classical pathway, importance of, 874–875
lab collection techniques, 875
levels of individual components, 875
monitoring activation in SLE, 875
testing for activation products, 875
diagnosis, 358
interferon-α (IFN-α) in, 323, 358–359
secondary antiphospholipid antibody syndrome, 905

Type 1 interferon gene expression signature, 875–876

Systemic-onset juvenile idiopathic arthritis, 359

Systemic sclerosis, 868–869, 888–895

TACI (transmembrane activator and calcium modulator and cyclophilin ligand interaction), 745
Tacrolimus, 1121

T alpha-1+ bone marrow cells in, 339

T cell(s)

autoimmune retinopathy, 1001–1002
CD107a as surrogate of degranulation process in T cell cytotoxicity, 204–205
differentiation stages, 1021
early T-cell precursors (ETPs), 207, 210–211
Epstein-Barr virus-specific, 569
human herpesvirus-6, 580
human herpesvirus-7, 585
IgG4-related disease, 919

immunologic monitoring epitope-specific T cells, 1042
subtyping of T cells, 1042

immunophenotypic patterns of maturation, 207, 209
lymphomas
adult T-cell leukemia/lymphoma, 1026
angioimmunoblastic T-cell lymphoma (AILT), 1020, 1026
lymphoblastic lymphoma, 1020–1022
peripheral T-cell lymphoma, 1020, 1025–1026
subtyping, 1042
T-cell excision circles (TRECs), 8, 713, 715–719

T cell activation and function, 269–275
cytokine production, 270–275
cytotoxicity assays, 275
defects, 722, 726
direct measurement of T cell activation by using functional assays, 270–275
flow cytometric measurement of T cell activation, 731–732
of T cell proliferation, 270

Ki-67 assay, 270, 272
measurement of T cell proliferation by using 3H-thymidine, 270

T-cell defects
development defects, 721–722, 725
cartilage hair hypoplasia, 722, 725
CORA mutation, 725
MHC class I and II deficiencies, 721–722
MST1 mutation, 725
in DNA repair and recombination, 725
ataxia telangiectasia, 722, 725
Ommen syndrome, 722, 725
in proximal T-cell activation, 722, 726
in signal transduction pathways, 722, 726–727
Lck deficiency, 722, 726–727
Unc119 deficiency, 722, 727
ZAP-70 deficiency, 722, 727
in survival, 723, 728
PNF deficiency, 723, 728

T cell lymphoproliferative diseases, Epstein-Barr virus-associated, 567

T-cell precursor frequency determination by limiting dilution assays, 1110–1111

T-cell proliferation assays, 732

T cell receptor (TCR) defects, 726

rearrangement, 828–829, 1026

T cell activation, 269

VB repertoire assay in cryopreserved peripheral blood mononuclear cells (PBMC), 266

T-cell receptor-excision circle (TREC), 8, 713, 715–719

T-cell-rich large B-cell lymphoma, 1025

TCR. See T cell receptor

Teff cells, 298

Terminal deoxynucleotidyl transferase (TdT), 207, 209–210

Termination codon, 10

TESA blotting, 491
Tests, antibodies to, 932

Tetanus toxoid, T cell response to, 272, 275

T follicular helper (Thf) cells, 1026

TOB (transforming growth factor β), 339

Th17 cells, in autoimmune retinopathy, 998

Thawing of frozen PBMC, 263–264

T helper cells

limiting dilution assay (LDA), 1110

T follicular helper (Thf) cells, 1026

Thin-layer chromatography, in ganglioside studies, 962, 964

Thrombocytopenia. See Immune thrombocytopenia

Thrombotic microangiopathy (TMA), 140

Th/Ts antibody against, 890

1H-thymidine, measurement of T cell proliferation by using, 270

Thymoma, 957, 959

Thymopoiesis abnormalities, 721–725

Thymus, role in myasthenia gravis, 957

Thymus-and activation-regulated chemokine (TARC), 828–829

Thyroglobulin, antibodies to, 930–931

Thyroid antibodies, 930–931

Thyroid gland chronic thyroiditis, 930–931
hypothyroidism, 933–935

Thyroiditis, 79, 930–931

Thyroid-stimulating hormone receptor, 933–933
Treponema pallidum passive particle agglutination (TP-PA) test, 414–417
Treponema phagedenis, 414
TRFIA (time-resolved fluorescence immunoassay), 559
Trichinellosis, 498
Trichomoniasis, 498
Triple-quadrupole mass spectrometer, 35–36
Tropheo coreceptor tropism assay, 707
Tropism assays, for human immunodeficiency virus (HIV), 707
Tropions, 975–976
TRPM1 (transient receptor potential 1), 976–977
Troponins, 975–976
Trofile coreceptor tropism assay, 707
Tryptase, 491
Trypic peptides, MS/MS analysis of, 38
Trypanosoma cruzi, 489
TRFIA (time-resolved fluorescence immunoassay), 413
Tuberculosis (TB), 433–441
Tuberculin skin test (TST), 433–434
Tube agglutination, for TST. Tuberculin skin test See T- SPOT. TB assay, 435, 437–441
Tuberculosis (TB), 433–441
in children, 441
in immunocompromised people and HIV-infected patients, 440–441
inhibition criteria, 439
method, 435, 437–439
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
TST. See Tuberculin skin test
Tube agglutination, for Francisella, 478–479
Tuberculin skin test (TST), 433–434
booster effect, 434
in children, 441
cost, 439
in HIV-infected patients, 440–441
interpretation, 434
sensitivity and specificity, 439–440
Tuberculosis (TB), 433–441
diagnosis, 433
epidemiology, 433
IFN-γ release assays, 435–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and HIV-infected patients, 440–441
interpretation, 439
Quantiferon-TB Gold In-Tube assay (QFT-GIT), 435–437, 439–441
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
T-SPOT.TB assay, 435, 437–441
immunology, 433
mode of spread, 433
risk increase with TNF-α inhibitors, 360–361
risk of infection, 433
risk of progression to active disease, 433
screening tests for latent TB infection, 433–441
IFN-γ release assays, 435–441
tuberculin skin test (TST), 433–434
serologic tests for active TB infection, 441
urine antigen testing for active TB infection, 441
Tubulointerstitial nephritis, 917–918
Tumor-infiltrating lymphocytes, 298
Tumor markers
evaluation of assays, 1008
examples, 1012–1013
mesothelioma, 1013
ovarian cancer, 1012
prostate cancer, 1012–1013
FDA-approved, 1009
future of, 1014
immunoassay
identification of appropriate antibodies, 1011
interferences, 1011–1013
types, 1010–1011
new developments, 1013
utilization, 1008–1010
detection of disease recurrence, 1010
diagnosis, 1029
monitoring of treatment, 1010
screening, 1008–1009
therapy selection, 1010
Tumor necrosis factor (TNF) anti-TNF therapy for juvenile idiopathic arthritis, 359
biomarker of chronic myocardial injury, 976–977
cytomegalovirus and, 573
elevation in rheumatoid arthritis, 357
human herpesvirus-6, 580
NK cells, 300–301, 305
Tumor necrosis factor-α (TNF-α)
elevation in SLE, 358
inhibition in treatment of inflammatory bowel disease, 362
rheumatoid arthritis, 360–361
vasculitis, 913
inhibitors, 360–361
adverse effects, 360–361
clinical efficacy, 361
mechanism of action, 360
table of commercial biologics, 361
Tumor necrosis factor-β (TNF-β), 360
Two-color immunofluorescence, 378
Two-dimensional gel electrophoresis (2DE), 103, 1140, 1142–1143
Two-photon microscopy (2-PM), 352–353
Typhus
epidemic, 461, 463
Indian tick, 461
Isaeli tick, 461
Kenya tick, 461
murine, 463
scrub, 462–464, 466
sylvatic, 463
Tyrosine kinase inhibitors, 299
Tyrosine phosphorylation (phosphoepitope analysis), 732
Tzanck (Giems) smear
herpes simplex virus, 551
variella-zoster virus, 558
UCSC Genome Browser, 16
UDP-glucuronosyltransferases, 969–970
Ulcerative colitis, 362, 985–988
Umbilical cord blood, 182, 1066
UNCI3D gene, 301, 306–307, 776, 778
Unc119 deficiency, 722, 727
UniFrac, 20
United Network for Organ Sharing (UNOS), 1065, 1075, 1097
Uracil-DNA glycosylase (UNG), 59, 740
Urea breath testing, Helicobacter pylori and, 405, 407, 410
Urea-PAGE, for immunoprecipitation analysis in autoimmune myopathies
gel preparation, 884–885
procedure, 884–885
RNA sample preparation for, 884
Ureaplasma, 444, 449–451
molecular biology-based techniques, 449–450
recommended diagnostic approach, 450–451
serology, 449
U. parvum, 449–451
U. urealyticum, 449–451
Urine
complement activation soluble products in, 1128
concentration, 97
immunochemical characterization of immunoglobulins, 96–98
monoclonal free light chains (MFLC) in, 84–85, 87, 96–98
Urinalysis, 444, 449–451
Urinary protein, electrophoresis of, 76–77
Urinary bladder, 360–361
Urea breath testing, 84–86
immuno fixation, 96–98
M protein detection, 84–85
sample requirements, 77
Urticaria pigmenteda, 831
USR test, 413
VacA (vacuolating cytotoxin) protein, Helicobacter pylori, 404–405, 407
Vaccine(s)
hepatitis A virus, 620
hepatitis B virus, 620
immunoglobulin titers against vaccine antigens, 281
influenza virus, 601
MMR (measles/mump/rubella), 610–611, 614
rabies virus, 665, 671
rotaviruses, 639
varicella, 556–557
Validation, 1180–1187, 1190
assay classification, 1180–1182
according to performance characteristics, 1181–1182
according to regulatory status, 1183–1181
FDA-approved, modified assays, 1181
FDA-approved assays, 1181
laboratory-developed tests, 1181
qualitative assays, 1181
quantitative assays, 1181
quasi-quantitative assays, 1181
relative quantitative assays, 1181
semi-quantitative assays, 1181
assay development and validation
CLIA requirements, 1181
considerations prior to validation, 1182
flowchart of steps, 1183
guidelines for, 1180
automated liquid-handling systems, 1189–1190
cellular immune response in transplantation, evaluation of, 1119–1120
Vasculitis

Vascular cellular adhesion molecule 1, as
varicella-zoster virus, 556–560

Variant Creutzfeldt-Jakob disease (vCJD),
Variable (V) region, immunoglobulin, 53,
Variable-number tandem repeat (VNTR),
types
cryofibrinogenemia and, 107

antineutrophil cytoplasmic antibodies
virus isolation, 557–558
specimen collection, 557
rapid diagnosis, 557–558
PCR, 556–558
neutralization assays, 559
overview, 556–557
FLISA, 558–560
enzyme immunoassay (ELISA), 559
fluorescent antibody to membrane antigen
antibody avidity, 559–560
cytopathic effect (CPE), 557
direct examination from skin lesions, 558
direct fluorescent antibody (DFA), 558
electron microscopy, 558

Vasculitis

Vasculitis, antineutrophil cytoplasmic antibodies
(ANCA)-associated, 909–914
disease diagnosis, 909
neutrophil extracellular traps and, 914
tests for ANCA, 909–911
treatment, 913–914
types, 911–913
cryoglobulinemia and, 107
cryoglobulins and, 101–102, 104, 106, 911
nomenclature, 911
types
anti-glomerular basement disease, 911
drug-induced vasculitis, 913
eosinophilic granulomatosis with
polyangiitis (EGPA), 913
giant cell arteritis, 911
granulomatosis with polyangiitis, 912–913
IgA vasculitis, 911
Kawasaki disease, 911
large vessel vasculitis, 911
medium vessel vasculitis, 911
microscopic polyangiitis, 913
polyarteritis nodosa, 911
small vessel vasculitis, 911
Takayasu's arteritis, 911

VCF file, 8
Venereal Disease Research Laboratory
(VDRL) assay, 413–416
Venezuelan equine encephalitis (VEE), 650, 652, 656
Verification, 1181
Verruca peruana, 475
Viability dyes, in polychromatic flow
cytometry, 149–150, 158–160
Vimentin, 899, 1051, 1103

Voltage pulse, 152–153

Waconnovar, 10–11
Washington state, clinical immunology
laboratory certifying program, 1175
WASP (Wiskott-Alldrich syndrome protein), 729, 731
WASPALM (World Association of Societies of
Pathology and Laboratory Medicine), 1178
Wells-Brookfield viscometer, 71
Western blot
anti-glomerular basement membrane
(anti-GBM) antibodies, 385–387
anti- phospholipase A2 receptor antibodies,
387–388
antiretinal antibodies, 1000
Borreia burgdorferi, 422–423, 425
hantaviruses, 660–661
human herpesvirus-6, 583
human herpesvirus-7, 586
human immunodeficiency virus (HIV), 703
human T-cell lymphotropic virus, 676–677
Mycoplasma pneumoniae, 445
papillomavirus, 947
prion diseases, 686, 690
Western equine encephalitis (WEE),
649–652, 654, 656
Westgard, James O., 1188
West Nile virus, 648–649, 652–656
WHIM (warts, hypogammaglobulinemia,
infestations, and myelokathexis)
syndrome, 765–767
White blood cells, paroxysmal nocturnal
hemoglobinuria (PNH), 168–180
WHO. See World Health Organization
Whole-exome sequencing, 1088
Whole-genome sequencing, 1088
Whole-lung antigen challenge, 811
Whooping cough, 600
Winter vomiting disease, 640
WHIL, 358
Wiskott-Alldrich syndrome, 281, 713, 723, 729, 795–796
Wolbachia, 461–462
Woodchuck hepatitis virus, 624
World Association of Societies of
Pathology and Laboratory Medicine
(WASPALM), 1178
World Health Organization (WHO)
classification of lymphoid neoplasia,
1015–1017
laboratory quality assurance,
1178
Nomenclature Committee for Factors of the
HLA System, 1072
Wuchereria bancrofti, 494
WU polyomavirus, 598, 600

X(C) chemokines, 343
Xenopsylla cheopis, 462
XIAP/BIRC4, 729, 775–776
X-linked chromosomal inactivation,
1018–1019

Xtal, 494
X-linked disorders
 - agammaglobulinemia, 32–33
 - anhidrotic ectodermal dysplasia with immunodeficiency, 723, 728
 - antibody deficiency, 743–745
 - hyper IgM syndrome, 201, 281, 726, 742–744
 - lymphoproliferative disease, 724, 729, 775–776
 - lymphoproliferative syndrome 1, 743–745
 - lymphoproliferative syndrome 2, 743–745

X-linked inhibitor of apoptosis (XIAP), 724, 729, 731

Xpert Flu assay, 605
Xpert HIV-1 Qual, 702
Xpert HIV-1 viral load assay, 702
Xpert MTB/RIF assay, 433
xTAG Respiratory Virus Panel, 605–606

Yellow fever virus, 648–656

Zanamivir, 602
Zap-70 (zeta chain-associated protein kinase), 226–227, 229–232, 1024
ZAP-70 deficiency, 722, 727
Zinc transporter-8 (ZnT8) autoantibodies, 936–938, 941–942
Zombie stains, 149
Zone electrophoresis, 75–76
Zoonoses, hantaviruses as, 658
Zoster, 556. See also Varicella-zoster virus