Contents

Editorial Board / xi
Contributors / xiii
Foreword: How It Began / xxiii
Preface / xxv
Author and Editor Conflicts of Interest / xxvii

section A
GENERAL METHODS / 1
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: THOMAS A. FLEISHER
1 Introduction / 3
THOMAS A. FLEISHER
2 Molecular Methods for Diagnosis of Genetic Diseases Involving the Immune System / 5
AMY P. HSU
3 The Human Microbiome and Clinical Immunology / 19
FREEDRICK D. BUSHMAN
4 Protein Analysis in the Clinical Immunology Laboratory / 26
ROSHINI SARAH ABRAHAM AND DAVID R. BARNIDGE

section B
IMMUNOGLOBULIN METHODS / 47
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: DAVID F. KEREN
5 Introduction / 49
DAVID F. KEREN
6 Immunoglobulin Genes / 51
THOMAS J. KIPPS, EMANUELA M. GHIA, AND LAURA Z. RASSENTI
7 Immunoglobulin Quantification and Viscosity Measurement / 65
JEFFREY S. WARREN
8 Clinical Indications and Applications of Serum and Urine Protein Electrophoresis / 74
DAVID F. KEREN AND RICHARD L. HUMPHREY
9 Immunochemical Characterization of Immunoglobulins in Serum, Urine, and Cerebrospinal Fluid / 89
ELIZABETH SYKES AND YVONNE POSEY
10 Cryoglobulins, Cryofibrinogenemia, and Pyroglobulins / 101
PETER D. GOREVIC AND DENNIS GALANAKIS
11 Strategy for Detecting and Following Monoclonal Gammopathies / 112
JERRY A. KATZMANN AND DAVID F. KEREN

section C
COMPLEMENT / 125
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: PATRICIA C. GICLAS
12 Introduction / 127
PATRICIA C. GICLAS
13 The Classical Pathway of Complement / 129
PATRICIA C. GICLAS
14 Analysis of Activity of Mannan-Binding Lectin, an Initiator of the Lectin Pathway of the Complement System / 133
STEFFEN THIEL
15 The Nature of the Diseases That Arise from Improper Regulation of the Alternative Pathway of Complement / 138
RICHARD J. H. SMITH
section D

FLOW CYTOMETRY / 145

VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITOR: MAURICE R. G. O’GORMAN

16 Introduction / 147
MAURICE R. G. O’GORMAN

17 Polychromatic Flow Cytometry / 149
ANGÉLIQUE BIANCOTTO AND J. PHILIP McCOY, JR.

18 High-Sensitivity Detection of Red and White Blood Cells in Paroxysmal Nocturnal Hemoglobinuria by Multiparameter Flow Cytometry / 168
ANDREA ILLINGWORTH, MICHAEL KEENEY, AND D. ROBERT SUTHERLAND

19 Standardized Flow Cytometry Assays for Enumerating CD34+ Hematopoietic Stem Cells / 182
D. ROBERT SUTHERLAND AND MICHAEL KEENEY

20 Functional Flow Cytometry-Based Assays of Myeloid and Lymphoid Functions for the Diagnostic Screening of Primary Immunodeficiency Diseases / 199
MAURICE R. G. O’GORMAN

21 Acute Lymphoblastic Leukemia/Lymphoma: Diagnosis and Minimal Residual Disease Detection by Flow Cytometric Immunophenotyping / 207
JOSEPH A. DiGIUSEPPE

22 Acute Myeloid Leukemia: Diagnosis and Minimal Residual Disease Detection by Flow Cytometry / 217
BRENT WOOD AND LORI SOMA

23 Chronic Lymphocytic Leukemia, the Prototypic Chronic Leukemia for Flow Cytometric Analysis / 226
HEBA DEGHEIDY, DALIA A. A. SALEM, CONSTANCE M. YUAN, AND MARYALICE STETLER-STEVENSON

24 Plasma Cell Disorders / 235
JUAN FLORES-MONTERO, LUZALBA SANOJA, JOSÉ JUAN PÉREZ, FANNY POJERO, NOEMÍ PUIG, MARÍA BELÉN VIDRIALES, AND ALBERTO ORFAO

25 Future Cytometric Technologies and Applications / 251
HOLDEN T. MAECKER

section E

FUNCTIONAL CELLULAR ASSAYS / 259

VOLUME EDITOR: BARBARA DETRICK
SECTION EDITOR: STEVEN D. DOUGLAS

26 Introduction / 261
STEVEN D. DOUGLAS

27 Cryopreservation of Peripheral Blood Mononuclear Cells / 263
ADRIANA WEINBERG

28 Lymphocyte Activation / 269
ROSHINI SARAH ABRAHAM

29 Functional Assays for B Cells and Antibodies / 280
MOON H. NAHM AND ROBERT L. BURTON

30 Methods for Detection of Antigen-Specific T Cells by Enzyme-Linked Immunospot Assay (ELISPOT) / 290
BARBARA L. SHACKLETT AND DOUGLAS F. NIXON

31 Regulatory T Cell (Treg) Assays: Repertoire, Functions, and Clinical Importance of Human Treg / 296
THERESA L. WHITESIDE

32 Measurement of NK Cell Phenotype and Activity in Humans / 300
SAMUEL C. C. CHIANG AND YENAN T. BRYCESON

33 Functional Assays for the Diagnosis of Chronic Granulomatous Disease / 310
DEBRA LONG PRIEL AND DOUGLAS B. KUHNS

section F

CYTOKINES AND CHEMOKINES / 321

VOLUME EDITOR: BARBARA DETRICK
SECTION EDITOR: JOHN J. HOOKS

34 Introduction / 323
JOHN J. HOOKS

35 Multiplex Cytokine Assays / 324
ELIZABETH R. DUFFY AND DANIEL G. REMICK

36 Cytokine Measurement by Flow Cytometry / 338
HOLDEN T. MAECKER

37 Chemokine and Chemokine Receptor Analysis / 343
SABINA A. ISLAM, BENJAMIN D. MEDOFF, AND
Contents

vii

section G
IMMUNOHISTOLOGY AND IMMUNOPATHOLOGY / 373

VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: R. NEAL SMITH

40 Introduction / 375
ROBERT G. HAMILTON

41 Immunofluorescence Methods in the Diagnosis of Renal and Cardiac Diseases / 376
A. BERNARD COLLINS, JAMES R. STONE, AND R. NEAL SMITH

42 Western Blot Analysis for the Detection of Anti-Glomerular Basement Membrane Antibodies and Anti-Phospholipase A2 Receptor Antibodies / 385
A. BERNARD COLLINS AND R. NEAL SMITH

section H
INFECTIOUS DISEASES CAUSED BY BACTERIA, MYCOPLASMAS, CHLAMYDIAE, AND RICKETTSIAE / 391

VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITOR: CHRISTINE M. LITWIN

43 Introduction / 393
CHRISTINE M. LITWIN

44 Diagnostic Methods for Group A Streptococcal Infections / 394
CHRISTINE M. LITWIN, SHELDON E. LITWIN, AND HARRY R. HILL

45 Diagnosis of Helicobacter pylori Infection and Assessment of Eradication / 404
BRUCE E. DUNN AND SUHAS H. PHADNIS

46 Laboratory Diagnosis of Syphilis / 412
JOHN L. SCHMITZ

47 Lyme Disease, Relapsing Fever, and Leptospirosis / 419
GUIQING WANG AND MARIA E. AGUERO-ROSENFELD

48 Immunological Tests in Tuberculosis / 433
CHRISTINE M. LITWIN

49 Mycoplasma: Immunologic and Molecular Diagnostic Methods / 444
KEN B. WAITES, MARY B. BROWN, AND JERRY W. SIMECKA

50 Chlamydia and Chlamydophila Infections / 453
ROSEMARY SHE

51 The Rickettsiaceae, Anaplasmataceae, and Coxiellaceae / 461
LUCAS S. BLANTON AND DAVID H. WALKER

52 The Bartonellaceae, Brucellaceae, and Francissellaceae / 473
CHRISTINE M. LITWIN, BURT ANDERSON, RENEE TSOLIS, AND AMY RASLEY

section I
MYCOTIC AND PARASITIC DISEASES / 483

VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: THOMAS B. NUTMAN

53 Introduction / 485
THOMAS B. NUTMAN

54 Immunological and Molecular Approaches for the Diagnosis of Parasitic Infections / 486
PATRICIA P. WILKINS AND THOMAS B. NUTMAN

55 Serological and Molecular Diagnosis of Fungal Infections / 503
MARK D. LINDSLEY

section J
VIRAL DISEASES / 535

VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITORS: RICHARD L. HODINKA AND JOHN L. SCHMITZ

56 Introduction / 537
JOHN L. SCHMITZ

57 Immunologic and Molecular Methods for Viral Diagnosis / 538
MARIE LOUISE LANDRY AND YI WEI TANG

58 Herpes Simplex Virus / 550
D. SCOTT SCHMID

59 Varicella-Zoster Virus / 556
D. SCOTT SCHMID

60 Epstein-Barr Virus and Cytomegalovirus / 563
HENRY H. BALFOUR, JR., KRISTIN A. HOGQUIST, AND PRIYA S. VERGEHE
Contents

61 Human Herpesviruses 6, 7, and 8 / 578
Richard L. Hodinka

62 Parvovirus B19 / 591
Stanley J. Naides

63 Respiratory Viruses / 598
David J. Speicher, Mohsin Ali, and Marek Snieja

64 Measles, Mumps, and Rubella Viruses / 610
Diane S. Leland and Ryan F. Relich

65 Viral Hepatitis / 620
Hubert G. M. Niester, Annelies Riezebos-Brilman, and Coretta C. Van Leer-Buter

66 Viral Agents of Gastroenteritis / 639
Gabriel I. Parra and Kim Y. Green

67 Arboviruses / 648
Robert S. Lanciotti and John T. Roehrig

68 Diagnosis of Hantavirus Infections / 658
William Marcien De Souza and Luiz Tadeu Moraes Figueredo

69 Rabies Virus / 665
D. Craig Hooper

70 Human T-Cell Lymphotropic Virus Types 1 and 2 / 674
Breaanna Caruso, Raya Massoud, and Steven Jacobson

71 Principles and Procedures of Human Immunodeficiency Virus Diagnosis / 696
Kelly A. Curtis, Jeffrey A. Johnson, and S. Michele Owen

72 Neutropenia and Neutrophil Defects / 765
Steven M. Holland

73 The Primary Immunodeficiency Diseases / 713
Howard M. LEDERMAN

74 Severe Combined Immune Deficiency: Newborn Screening / 715
James W. Verbisky and John M. Routes

75 Combined Immunodeficiencies / 721
Christine Seroogy and Melissa Elder

76 Antibody Deficiencies / 737
Kimberly C. Gilmour, Anita Chandra, and D. S. Kumaranatne

77 Hereditary and Acquired Complement Deficiencies / 749
Patricia C. Giclas

78 Evaluation of Natural Killer (NK) Cell Defects / 774
Kimberly Risma and Rebecca Marsh

79 Neutropenia and Neutrophil Defects / 765
Steven M. Holland

80 Introduction / 783
Pamela A. Guererro

81 Quantitation and Standardization of Allergens / 784
Ronald L. Rabin, Lynsey Renn, and Jay E. Slater

82 Immunological Methods in the Diagnostic Allergy Clinical and Research Laboratory / 795
Robert G. Hamilton

83 Assay Methods for Measurement of Mediators and Markers of Allergic Inflammation / 801
John T. Schroeder, R. Stokes Peebles, Jr., and Pamela A. Guererro

84 Tests for Immunological Reactions to Foods / 815
Carah B. Santos, David M. Fleischer, and Robert A. Wood

85 Diagnosis of Rare Eosinophilic and Mast Cell Disorders / 825
Cem Akin, Calman Prussin, and Amy D. Klion

86 Introduction / 841
Westley H. Reeves

87 Antinuclear Antibody Tests / 843
Alessandra Dellavance, Wilson de Melo Cruvinel, Paulo Luiz Carvalho Francescantonio, and Luis Eduardo Coelho Andrade

88 Detection of Autoantibodies by Enzyme-Linked Immunosorbent Assay and Bead Assays / 859
Edward K. L. Chan, Rufus W. Burlingame, and Marvin J. Fritzler

89 Immunodiagnosis and Laboratory Assessment of

section K

IMMUNODEFICIENCY DISEASES / 711

Volume Editor: Barbara Detrick

73 The Primary Immunodeficiency Diseases / 713
Howard M. Lederman

74 Severe Combined Immune Deficiency: Newborn Screening / 715
James W. Verbisky and John M. Routes

75 Combined Immunodeficiencies / 721
Christine Seroogy and Melissa Elder

section M

SYSTEMIC AUTOIMMUNE DISEASES / 839

Volume Editor: Barbara Detrick

86 Introduction / 841
Westley H. Reeves

87 Antinuclear Antibody Tests / 843
Alessandra Dellavance, Wilson de Melo Cruvinel, Paulo Luiz Carvalho Francescantonio, and Luis Eduardo Coelho Andrade

88 Detection of Autoantibodies by Enzyme-Linked Immunosorbent Assay and Bead Assays / 859
Edward K. L. Chan, Rufus W. Burlingame, and Marvin J. Fritzler

89 Immunodiagnosis and Laboratory Assessment of
Contents

Section N

Organ-Localized Autoimmune Diseases / 927

Volume Editor: John L. Schmitz

**Section Editors: C. Lynne Burek and Patrizio Catruegli*

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>Introduction</td>
<td>C. Lynne Burek</td>
</tr>
<tr>
<td>98</td>
<td>Endocrinopathies: Chronic Thyroiditis, Addison Disease, Pernicious Anemia, Graves’ Disease, Diabetes, and Hypophysitis</td>
<td>C. Lynne Burek, N. R. Rose, Giuseppe Barbesino, Jian Wang, Andrea K. Steck, George S. Eisenbarth, Liping Yu, Ludovica De Vincentis, Adriana Ricciuti, Alessandra De Remigis, and Patrizio Catruegli</td>
</tr>
<tr>
<td>99</td>
<td>Myasthenia Gravis</td>
<td>Arnold I. Levinson and Robert P. Lisak</td>
</tr>
<tr>
<td>100</td>
<td>Autoantibodies to Glycolipids in Peripheral Neuropathy</td>
<td>Hugh J. Willison</td>
</tr>
</tbody>
</table>

Section O

Cancer / 1005

Volume Editor: Robert G. Hamilton

**Section Editors: Daniel Chan and Lori J. Sokoll*

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>Introduction</td>
<td>Robert G. Hamilton</td>
</tr>
<tr>
<td>108</td>
<td>Immunoassay-Based Tumor Marker Measurement: Assays, Applications, and Algorithms</td>
<td>Elizabeth A. Godbey, Lori J. Sokoll, and Alex J. Rai</td>
</tr>
<tr>
<td>109</td>
<td>Malignancies of the Immune System: Use of Immunologic and Molecular Tumor Markers in Classification and Diagnostics</td>
<td>Elaine S. Jaffe and Mark Raffeld</td>
</tr>
<tr>
<td>110</td>
<td>Monitoring of Immunologic Therapies</td>
<td>Theresa L. Whiteside</td>
</tr>
<tr>
<td>111</td>
<td>Circulating Tumor Cells as an Analytical Tool in the Management of Patients with Cancer</td>
<td>Daniel C. Danila, Howard I. Scher, and Martin Fleisher</td>
</tr>
</tbody>
</table>

Section P

Transplantation Immunology / 1063

Volume Editor: Barbara Detrick
SECTION EDITORS: ELAINE F. REED AND
QIUHENG JENNIFER ZHANG

112 Histocompatibility and Immunogenetics
Testing in the 21st Century / 1065
QIUHENG JENNIFER ZHANG AND
ELAINE F. REED

113 Molecular Methods for Human Leukocyte
Antigen Typing: Current Practices and Future
Directions / 1069
MARK KUNKEL, JAMIE DUKE,
DEBORAH FERRIOLA, CURT LIND, AND
DIMITRI MONOS

114 Evaluation of the Humoral Response in
Transplantation / 1091
PAUL SIKORSKI, RENATO VEGA,
DONNA P. LUCAS, AND ANDREA A. ZACHARY

115 Non-Human Leukocyte Antigen Antibodies in
Organ Transplantation / 1103
ANNETTE M. JACKSON AND BETHANY L. DALE

116 Evaluation of the Cellular Immune Response in
Transplantation / 1108
DIANA METES, NANCY L. REINSMOEN, AND
ADRIANA ZEEVI

117 Complement in Transplant Rejection / 1123
CARMELA D. TAN, E. RENE RODRIGUEZ, AND
WILLIAM M. BALDWIN III

118 Molecular Characterization of Rejection in
Solid Organ Transplantation / 1132
DARSHANA DADHANIA, TARA K. SIGDEL,
THANGAMANI MUTHUKUMAR,
CHOLI HARTONO, MINNIE M. SARWAL, AND
MANIKKAM SUTHANTHIRAN

119 Killer Cell Immunoglobulin-Like Receptors in
Clinical Transplantation / 1150
RAJA RAJALINGAM, SARAH COOLEY, AND
JEROEN VAN BERGEN

120 Chimerism Testing / 1161
LEE ANN BAXTER-LOWE

section Q

LABORATORY MANAGEMENT / 1169

VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: RONALD J. HARBECK

121 Clinical Immunology Laboratory
Accreditation, Licensure, and
Credentials / 1171
LINDA COOK AND RONALD J. HARBECK

122 Validation and Quality Control: General
Principles and Application to the Clinical
Immunology Laboratory / 1180
VIJAYA KNIGHT AND TERRI LEBO

Author Index / 1193
Subject Index / 1195
EDITORIAL BOARD

C. LYNNE BUREK (section N)
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

PATRIZIO CATUREGLI (section N)
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

DANIEL CHAN (section O)
Department of Pathology, Johns Hopkins University, SOM, Clinical Chemistry, CRB 11 3M 05, Baltimore, MD 21287

STEVEN D. DOUGLAS (section E)
The Children's Hospital of Philadelphia, University of Pennsylvania, Suite 1208 Abramson Research Building, 34th & Civic Center Blvd., Philadelphia, PA 19104

THOMAS A. FLEISHER (section A)
Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bldg. 10 Rm. 2C306, 10 Center Drive, Bethesda, MD 20814

PATRICIA C. GICLAS (section C)
National Jewish Health, Diagnostic Complement Laboratory, 1400 N. Jackson St., Denver, CO 80206

PAMELA A. GUERRERIO (section L)
Food Allergy Research Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, 4 Memorial Dr., Building 4, Room 228B, MSC0430, Bethesda, MD 20892

RONALD J. HARBECK (section Q)
National Jewish Health, 1400 Jackson Street, Denver, CO 80206

RICHARD L. HODINKA (section J)
University of South Carolina School of Medicine Greenville and Greenville Health System, Room 210, Health Science Administration Building, 701 Grove Rd., Greenville, SC 2960

JOHN J. HOOKS (section F)
National Institutes of Health, Immunology & Virology Section, NEI, Bldg. 10 Rm. 10N248, 10 Center Dr, Bethesda, MD, 20814

DAVID F. KEREN (section B)
University of Michigan, 5228 Medical Science I, 1301 Catherine, Ann Arbor, MI 48109

HOWARD M. LEDERMAN (section K)
Pediatric Allergy & Immunology, Johns Hopkins Hospital - CMSC 1102, 600 N Wolfe St, Baltimore, MD 21287-3923

CHRISTINE M. LITWIN (section H)
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425

THOMAS B. NUTMAN (section I)
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425

MAURICE R. G. O’GORMAN (section D)
Keck School of Medicine, University of Southern California, and the Children’s Hospital of Los Angeles, Pathology and Pediatrics, 4650 Sunset Blvd #43, Los Angeles, CA 90027

ELAINE F. REED (section P)
UCLA, Pathology, Rehab 1520, 1000 Veteran Avenue, Immunogenetics Center, Los Angeles, CA 90095

WESTLEY H. REEVES (section M)
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

R. NEAL SMITH (section G)
Massachusetts General Hospital, Pathology, 501B Warren Bldg., 14 Fruit St., Boston, MA 02114

LORI J. SOKOLL (section O)
Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205

KATHLEEN E. SULLIVAN (section K)
University of Pennsylvania, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104

QIUHENG JENNIFER ZHANG (section P)
UCLA Immunogenetics Center, Department Pathology & Laboratory Medicine, 15-20 Rehab, 1000 Veteran Ave., Los Angeles, CA 90024
CONTRIBUTORS

ROSHINI SARAH ABRAHAM
Mayo Clinic, Laboratory Medicine and Pathology, Hilton 210e, 200 1st St. SW, Rochester, MN 55905

MARIA E. AGUERO-ROSENFELD
NYU Langone Medical Center, Rm. H374A, 560 First Ave., New York, NY 10016

CEM AKIN
Brigham and Women’s Hospital, Department of Medicine, Rheumatology, Immunology, 75 Francis Street, Boston, MA 02115

MOHSIN ALI
Icahn School of Medicine at Mount Sinai, Department of Medical Education, One Gustave L. Levy Place, New York, NY 10029

BURT ANDERSON
Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612

LUI S EDUAR DO COELHO ANDRADE
Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rheumatology Division, Rua Botucatu 740, Vila Clementino, Sao Paulo, SP 04023-062, and Fleury Laboratories, Immunology Division, Av. Valdomiro de Lima 508, Sao Paulo, SP 04344-070, Brazil

AFTAB A. ANSARI
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322

WILLIAM M. BALDWIN III
Department of Immunology, 9500 Euclid Ave., Cleveland, OH 44022

HENRY H. BALFOUR, JR.
University of Minnesota Medical School, Laboratory Medicine & Pathology, and Pediatrics, MMC 609, 420 Delaware St. SE, Minneapolis, MN 55455

GIUSEPPE BARBESINO
Thyroid Unit, Massachusetts General Hospital – Harvard Medical School, 15 Parkman St., Boston, MA 02114

DAVID R. BARNIDGE
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905

LEE ANN BAXTER-LOWE
Children's Hospital Los Angeles, 4650 Sunset Blvd., #32, Los Angeles, CA 90027

ANGELIQUE BIANCOTTO
CHI/NHLBI, National Institutes of Health, 10 Center Drive, Bldg. 10 Room 7N110a, Bethesda, MD 20892

LUCAS S. BLANTON
University of Texas Medical Branch-Galveston, Department of Internal Medicine, 301 University Blvd., Galveston, TX 77555

MARY B. BROWN
Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, 2015 S.W. 16th Ave., Gainesville, FL 32611

SARAH K. BROWNE
NIAID, NIH, Immunopathogenesis Section, Bldg. 10 - CRC Rm. B3-4233, 10 Center Drive, Bethesda, MD 20014

YENAN T. BRYCESON
Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden, and Institute of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway

MICHAEL RAYMOND BUBB
Division of Rheumatology, University of Florida, 1600 S.W. Archer Rd D2-39, P.O. Box 100221, Gainesville, FL 32610

C. E. BUCHNER
Genalyte, Inc., 10520 Wateridge Circle, San Diego, CA 92121
C. LYNNE BUREK
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

RUFUS W. BURLINGAME
Genalyte, Inc., Diagnostic Assay Development, 10520 Wateridge Circle, San Diego, CA 92121

ROBERT L. BURTON
University of Alabama at Birmingham, 845 19th St. S, BBRB612, Birmingham, AL 35294

FREDERIC D. BUSHMAN
Perelman School of Medicine, University of Pennsylvania, Department of Microbiology, 3610 Hamilton Walk, Philadelphia, PA 19104

BREANNA CARUSO
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

PATRIZIO CATUREGLI
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

ANGELA CERIBELLI
Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Via A. Manzoni 56, 20089, Rozzano (Milan), Italy

CHI-CHAO CHAN
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive, Bethesda, MD 20892

EDWARD K. L. CHAN
Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610

ANITA CHANDRA
Department of Clinical Biochemistry and Immunology, Box 109, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom

ANN DUSKIN CHAUFFE
Division of Rheumatology, University of Florida, 1600 S.W. Archer Rd D2-39, P.O. Box 100221, Gainesville, FL 32610

SAMUEL C. C. CHIANG
Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden

A. BERNARD COLLINS
Massachusetts General Hospital, Pathology, 503 Warren Bldg., 14 Fruit St., Boston, MA 02114

LINDA COOK
University of Washington, Laboratory Medicine, 1616 Eastlake Ave. E, Suite 320, Seattle, WA 98102

SARAH COOLEY
University of Minnesota, Hematology, Oncology and Transplantation, 420 Delaware St. SE, Mayo Mail Code 806, Minneapolis, MN 55455

ROSS L. COPPEL
Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia 3800

WILSON DE MELO CRUVINEL
Pontifícia Universidade Católica de Goiás, School of Medical, Pharmaceutical and Biomedical Sciences, Avenida Universitária 1440, Setor Universitário, Goiânia, GO, 74.605-010, Brazil

KELLY A. CURTIS
Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

DARSHANA DADHANIA
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065

BETHANY L. DALE
Immunogenetics Laboratory, Johns Hopkins University School of Medicine, 2041 E. Monument St., Baltimore, MD 21205

DANIEL C. DANILA
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

ALESSANDRA DE REMIGIS
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

WILLIAM MARCIEL DE SOUZA
Virology Research Center, School of Medicine of Ribeirao Preto of University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

LUDOVICA DE VINCENTIIS
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

HEBA DEGHEIDY
FDA, Center for Biologics Evaluation and Research, WO52/72 RM 3209, 10903 New Hampshire Ave., Silver Spring, MD 20993

ALESSANDRA DELAVANCE
Fleury Laboratories, Research and Development Department, Avenida V Valdomiro de Lima 508, São Paulo, SP 04344-070, Brazil

BARBARA DETRICK
Immunology Laboratory, Department of Pathology, Johns Hopkins University, School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287

JOSEPH A. DiGIUSEPPE
Hematopathology and Special Hematology Laboratory, Department of Pathology & Laboratory Medicine, Hartford Hospital, 80 Seymour St., Hartford, CT 06102
STEVEN D. DOUGLAS
The Children's Hospital of Philadelphia, University of Pennsylvania, Suite 1208 Abramson Research Building, 34th & Civic Center Blvd., Philadelphia, PA 19104

ELIZABETH R. DUFFY
Boston University School of Medicine, Pathology and Laboratory Medicine, 670 Albany St., Boston, MA 02118

JAMIE DUKE
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

BRUCE E. DUNN
Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226

GEORGE S. EISENBARTH
[Deceased]

MELISSA ELDER
University of Florida, Pediatrics, 1600 S.W. Archer Road, Gainesville, FL 32610

DEBORAH FERRIOLA
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

LUIZ TADEU MORAES FIGUEREIDO
Virology Research Center, School of Medicine of Ribeirao Preto of University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

DAVID M. FLEISCHER
Children's Hospital Colorado, Pediatrics, Aurora, CO 80045

MARTIN FLEISHER
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

THOMAS A. FLEISHER
Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bldg. 10 Rm. 2C306, 10 Center Drive, Bethesda, MD 20814

JUAN FLORES-MONTERO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosoanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

PAULO LUIZ CARVALHO FRANCESCANTONIO
Pontifícia Universidade Católica de Goiás, School of Medical, Pharmaceutical and Biomedical Sciences, Avenida Universitária 1440, Setor Universitário, Goiânia, GO, 74.605-010, Brazil

MARVIN J. FRITZLER
University of Calgary, Cumming School of Medicine, Calgary, Alberta T2N 4N1, Canada

DENNIS GALANAKIS
State University of New York, Stony Brook, NY 11794

M. ERIC GERSHWIN
Division of Rheumatology/Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility Suite 6510, School of Medicine, University of California at Davis, Davis, CA 95616

EMANUELA M. GHIA
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92037

PATRICIA C. GICLAS
National Jewish Health, Diagnostic Complement Laboratory, 1400 N. Jackson St., Denver, CO 80206

KIMBERLY C. GILMOUR
Immunology, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom

ELIZABETH A. GODBEY
Department of Pathology, Columbia University Medical Center, New York, NY 10032

PETER D. GOREVIC
Division of Rheumatology, The Mount Sinai Medical Center, Annenberg Building; Room 21-056, Box 1244, New York, NY 10029

KIM Y. GREEN
Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Building 50, Room 6318, Bethesda, MD 20892

PAMELA A. GUERRERIO
Food Allergy Research Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, 4 Memorial Dr., Building 12B, MSC0430, Bethesda, MD 20892

ROBERT G. HAMILTON
Johns Hopkins University School of Medicine, Dermatology, Allergy and Clinical Immunology Reference Library, 5501 Hopkins Bayview Circle, Baltimore, MD 21224

SHUHONG HAN
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

J. G. HANLY
Dalhousie University and Nova Scotia Health Authority (Central Zone), Departments of Medicine and Pathology, Nova Scotia Rehabilitation Center, 1341 Summer St., Halifax, NS B3H 4K4, Canada

RONALD J. HARBECK
National Jewish Health, 1400 Jackson Street, Denver, CO 80206
CONTRIBUTORS

NEIL HARRIS
University of Florida, Department of Pathology, 1600 SW
Archer Rd, Gainesville, FL 32610

CHOLI HARTONO
Weill Cornell Medical College, Nephrology, 505 E. 70th St.,
Helmley 2nd Floor, New York, NY 10021

HARRY R. HILL
University of Utah, Department of Pathology, Pediatrics and
Medicine, 50 N. Medical Drive, Room 5B-114, Salt Lake City,
UT 84132

MICHITO HIRAKATA
Medical Education Center, Graduate Medical Education
Center, Keio University School of Medicine, Tokyo, Japan

RICHARD L. HODINKA
University of South Carolina School of Medicine Greenville
and Greenville Health System, Room 210, Health Science
Administration Building, 701 Grove Rd., Greenville, SC 2960

KRISTIN A. HOGQUIST
Center for Immunology, University of Minnesota, 2-186 MBB,
2101 6th St. SE, Minneapolis, MN 55455

STEVEN M. HOLLAND
National Institutes of Health, LCID, CRC B3-4141, MSC
1684, Bethesda, MD 20892

JOHN J. HOOKS
National Institutes of Health, Immunology & Virology
Section, NEI, Bldg. 10 Rm. 10N248, 10 Center Drive,
Bethesda, MD 20814

D. CRAIG HOOPER
Thomas Jefferson University, Jefferson Center for
Neurovirology, 1020 Locust St, Philadelphia, PA 19107

AMY P. HSU
National Institutes of Health, Laboratory of Clinical
Infectious Disease, National Institute of Allergy and Infectious
Diseases, Bldg. 10 CRC Rm B3-4233, 10 Center Drive,
Bethesda, MD 20892

RICHARD L. HUMPHREY
Johns Hopkins Hospital, Pathology, 600 North Wolfe St.,
Baltimore, MD 21287

ANDREA ILLINGWORTH
Dahl Chase Diagnostic Services, 417 State St., Suite 540,
Bangor, ME 04401

SABINA A. ISLAM
Center for Immunology and Inflammatory Diseases, Division
of Rheumatology, Allergy and Immunology, Massachusetts
General Hospital, Boston, MA 02114

ANNETTE M. JACKSON
Immunogenetics Laboratory, Johns Hopkins University
School of Medicine, 2041 E. Monument Street, Baltimore,
MD 21205

STEVEN JACOBSON
National Institute of Neurological Disorders and Stroke,
National Institutes of Health, 9000 Rockville Pike,
Rockville, MD 20892

ELAINE S. JAFFE
Laboratory of Pathology, Center for Cancer Research,
National Institutes of Health, 10 Center Dr./Rm. 3S235,
MSC-1500, Bethesda, MD 20892

JEFFREY A. JOHNSON
Division of HIV/AIDS Prevention, National Center for HIV/
AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for
Disease Control and Prevention, Atlanta, GA 30329

JERRY A. KATZMANN
Mayo Clinic and Mayo Foundation, Laboratory Medicine and
Pathology, 200 First St. SW, Rochester, MN 55905

MICHAEL KEENEY
Hematology/Flow Cytometry, London Health Sciences
Centre, Victoria Hospital, 800 Commissioners Road E,
London, Ontario, N6A5W9 Canada

DAVID E. KEREN
University of Michigan, 5228 Medical Science I, 1301
Catherine, Ann Arbor, MI 48109

THOMAS S. KICKLER
Johns Hopkins University School of Medicine, 1800 Orleans
Street, Sheikh Zayed B2-120Q, Baltimore, MD 21287

KAREN E. KING
Johns Hopkins Hospital, Transfusion Medicine, 1800 Orleans
St., Baltimore, MD 21287

THOMAS J. KIPPS
UCSD, Moores Cancer Center, 3855 Health Science Drive,
M/C 0820, La Jolla, CA 92093

AMY D. KLION
National Institutes of Health, Laboratory of Parasitic Diseases,
NIAID, Bldg. 4, Rm. B1-28, Bethesda, MD 20892

VIJAYA KNIGHT
National Jewish Health, National Jewish Health Advanced
Diagnostic Laboratories, Division of Pathology, Department of
Medicine, 1400 Jackson St., Denver, CO 80206

DOUGLAS B. KUHNS
Clinical Services Program, P.O. Box B, Leidos Biomedical
Research, Inc., Frederick National Laboratory for Cancer
Research, Frederick, MD 21702

D.S. KUMARARATNE
Department of Clinical Biochemistry and Immunology, Box
109, Addenbrooke’s Hospital, Hills Road, Cambridge CB2
0QQ, United Kingdom

MARK KUNKEL
The Children’s Hospital of Philadelphia, 3401 Civic Center
Blvd., Philadelphia, PA 19104
MASATAKA KUWANA
Department of Allergy and Rheumatology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan

ROBERT S. LANCIOTTI
Arbovirus Diseases Branch, Centers for Disease Control & Prevention, 3150 Rampart Road (CSU Foothills Campus), Fort Collins, CO 80521

MARIE LOUISE LANDRY
Yale University, Laboratory Medicine and Internal Medicine, P.O. Box 208035, New Haven, CT 06520

TERRI LEBO
National Jewish Health, Advanced Diagnostic Laboratories, 1400 Jackson St., Denver, CO 80206

HOWARD M. LEDERMAN
Pediatric Allergy & Immunology, Johns Hopkins Hospital - CMSC 1102, 600 N Wolfe St, Baltimore, MD 21287-3923

DIANE S. LELAND
Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IU Health Pathology Laboratory Building, Room 6027F, 350 W 11th St, Indianapolis, IN 46202

PATRICK S. C. LEUNG
Division of Rheumatology/Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility Suite 6510, School of Medicine, University of California at Davis, Davis, CA 95616

ARNOLD I. LEVINSON
Perelman School of Medicine, University of Pennsylvania School of Medicine, Room 316 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104

YI LI
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

CURT LIND
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

MARK D. LINDSLEY
Mycotic Diseases Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G-11, Atlanta, GA 30333

ROBERT P. LISAK
Wayne State University Medical Center, Neurology, 4201 St. Antoine St., Detroit, MI 48201

CHRISTINE M. LITWIN
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425

SHELDON E. LITWIN
Department of Medicine, Medical University of South Carolina, 114 Doughty St., Charleston, SC 29425

DONNA P. LUCAS
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

ANDREW D. LUSTER
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114

HOLDEN T. MAECKER
Stanford University, Institute for Immunity, Transplantation, & Infection, Stanford University Medical School, 299 Campus Drive, Stanford, CA 94305

CHERYL L. MAIER
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322

MICHAEL P. MANNS
Department of Gastroenterology and Hepatology, Zentrum Innere Medizin, Medizinische Hochschule Hannover, Hannover, Germany

REBECCA MARSH
Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229

JOHN MASSINI
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

RAYA MASSOUD
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

J. PHILIP McCoy, JR.
National Institutes of Health, NHLBI, 10 Center Drive, Bethesda, MD 20892

BENJAMIN D. MEDOFF
Center for Immunology and Inflammatory Diseases, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114

DIANA METES
University of Pittsburgh Medical Center, Thomas E Starzl Transplantation Institute, BST E1549, 200 Lothrop St., Pittsburgh, PA 15213

DIMITRI MONOS
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

MARTINA MURPHY
University of Florida, Hematology/Oncology, 1600 SW Archer Rd., Gainesville, FL 32610

THANGAMANI MUTHUKUMAR
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065
CONTIBUTORS

MOON H. NAHM
University of Alabama at Birmingham, 845 19th St. S, BBRR
614, Birmingham, AL 35294

STANLEY J. NAIDES
Immunology, Quest Diagnostics Nichols Institute, 33608
Ortega Highway, San Juan Capistrano, CA 92675

HUBERT G. M. NIESTERS
University Medical Centre Groningen, Department of
Medical Microbiology, Division of Clinical Virology,
Hanzeplein 1, Groningen, The Netherlands

TIMOTHY B. NIEWOLD
Mayo Clinic, Department of Immunology and Division of
Rheumatology, 200 1st Street SW, Rochester, MN 55905

DOUGLAS F. NIXON
Dept. of Microbiology, Immunology and Tropical Medicine,
School of Medicine & Health Sciences, The George
Washington University, Ross Hall 736, 2300 Eye Street, NW,
Washington, D.C. 20037

ROBERT NUSSENBLATT
Laboratory of Immunology, National Eye Institute, National
Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive,
Bethesda, MD 20814

THOMAS B. NUTMAN
Laboratory of Parasitic Diseases, National Institute for Allergy
and Infectious Diseases, National Institutes of Health,
4 Center Drive, Room B1 03, Bethesda, MD 20892

MAURICE R. G. O’GORMAN
Keck School of Medicine, University of Southern California,
and the Children’s Hospital of Los Angeles, Pathology and
Pediatrics, 4650 Sunset Blvd #43, Los Angeles, CA 90027

ALBERTO ORFAO
Centro de Investigación del Cáncer (Instituto de Biología
Molecular y Celular del Cáncer, CSIC-USAL), Instituto
Biosanitario de Salamanca (IBSAL), Servicio General
de Citometría (NUCLEUS-Universidad de Salamanca),
Salamanca, 37007, Spain

S. MICHELE OWEN
National Center for HIV/AIDS, Viral Hepatitis, STD, and
TB Prevention, Centers for Disease Control and Prevention,
Atlanta, GA 30329

GABRIEL I. PARRA
Caliciviruses Section, Laboratory of Infectious Diseases,
National Institute of Allergy and Infectious Diseases,
9000 Rockville Pike, Building 50, Room 6316, Bethesda,
MD 20892

R. STOKES PEEBLES, JR.
Vanderbilt University, Medicine, T-1218 MCN, Vanderbilt
University Medical Center, Nashville, TN 37232

JOSE JUAN PEREZ
Departamento de Hematología, Hospital Universitario de
Salamanca, Instituto Biosanitario de Salamanca (IBSAL);
Centro de Investigación del Cáncer (Instituto de Biología
Molecular y Celular del Cáncer, CSIC-USAL), Salamanca,
37007, Spain

ROBERT B. PETERSEN
Case Western Reserve University, Department of Pathology,
5-126 Wolstein Building, 2103 Cornell Road, Cleveland,
OH 44106

SUHAS H. PHADNIS
Medical College of Wisconsin, Pathology, 9200 W. Wisconsin
Ave., Milwaukee, WI 53205

FANNY POJERO
Centro de Investigación del Cáncer (Instituto de Biología
Molecular y Celular del Cáncer, CSIC-USAL), Instituto
Biosanitario de Salamanca (IBSAL), Servicio General
de Citometría (NUCLEUS-Universidad de Salamanca),
Salamanca, 37007, Spain

YVONNE POSEY
Beaumont Hospital – Royal Oak, Clinical Pathology,
3601 W. 13 Mile Road, Royal Oak, MI 48073

DEBRA LONG PRIEL
Clinical Services Program, P.O. Box B, Leidos Biomedical
Research, Inc., Frederick National Laboratory for Cancer
Research, Frederick, MD 21702

CALMAN PRUSSIN
Laboratory of Allergic Diseases, National Institute of Allergy
and Infectious Diseases, National Institutes of Health,
Building 10, Room 11N238, Bethesda, MD 20892-1881

NOEMI PUIG
Departmento de Hematología, Hospital Universitario
de Salamanca, Instituto Biosanitario de Salamanca
(IBSAL); Centro de Investigación del Cáncer (Instituto de
Biología Molecular y Celular del Cáncer, CSIC-USAL),
Salamanca, 37007, Spain

RONALD L. RABIN
Center for Biologics Evaluation and Research, U.S. Food and
Drug Administration, 10903 New Hampshire Avenue, Silver
Spring, MD 20993

MARK RAFFELD
Laboratory of Pathology, Center for Cancer Research,
National Institutes of Health, 10 Center Dr./Rm. 3S235,
MSC-1500, Bethesda, MD 20892

ALEX J. RAI
Department of Pathology, Columbia University Medical
Center, New York, NY 10032

RAJA RAJALINGAM
University of California at San Francisco, Immunogenetics
and Transplantation Laboratory, Department of Surgery, 43
Castro St., Main Hospital Level B, CPMC Davis Campus, San
Francisco, CA 94114

AMY RASLEY
Host-Pathogen Laboratory Group, Lawrence Livermore
National Laboratory, Livermore, CA 94550
LAURA Z. RASSENTI
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92039

ELAINE F. REED
UCLA, Pathology, Rehab 1520, 1000 Veteran Avenue, Immunogenetics Center, Los Angeles, CA 90095

WESTLEY H. REEVES
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 10221, Gainesville, FL 32610-0221

NANCY L. REINSMOEN
HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars-Sinai Health Systems, HLA and Immunogenetics Lab-SSB 197, 8723 Alden Drive, Los Angeles, CA 90048

RYAN F. RELICH
Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IU Health Pathology Laboratory Building, Room 6027E, 350 W 11th St, Indianapolis, IN 46202

DANIEL G. REMICK
Boston University School of Medicine, 670 Albany St., Boston, MA 02118

LYNNSEY RENN
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

ADRIANA RICCIUTI
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

ANNEILIES RIEZEBOS-BRILMAN
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

KIMBERLY RISMA
Division of Allergy/Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229

E. RENE RODRIGUEZ
Department of Pathology, 9500 Euclid Ave., Cleveland, OH 44022

JOHN T. ROEHRRIG
Centers for Disease Control and Prevention, Atlanta, GA (Retired)

NOEL R. ROSE
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Avenue, Baltimore, MD 21205

JOHN M. ROUTES
Department of Pediatrics and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226

RICHARD RUBENSTEIN
SUNY Downstate Medical Center, Departments of Neurology and Physiology/Pharmacology, 450 Clarkson Ave., Brooklyn, NY 11203

DALIA A. A. SALEM
CCR, NCI, NIH, Laboratory of Pathology, Building 10, Mail Stop 1500, Room 3S 241, Bethesda, MD 20892

LUZALBA SANOJA
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Célular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

CARAH B. SANTOS
National Jewish Health, 1400 Jackson St., K731A, Denver, CO 80206

MINNIE M. SARWAL
University of California San Francisco, Division of Transplant Surgery, G893, 513 Parnassus Ave., San Francisco, CA 94143

MINORU SATOH
Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Isei-ga-oka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan

HOWARD I. SCHER
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

D. SCOTT SCHMID
Centers for Disease Control and Prevention, NCIRD/DVD/MMRHLB, 1600 Clifton Rd NE, Atlanta, GA 30333

JOHN L. SCHMITZ
University of North Carolina, Department of Pathology & Laboratory Medicine, School of Medicine, Rm. 1035 East Wing, UNC Hospitals, Chapel Hill, NC 27514

JOHN T. SCHROEDER
Johns Hopkins University, Medicine, Division of Allergy and Immunology, Unit Office 2, 5501 Hopkins Bayview Circle, Baltimore, MD 21224

H. NIDA SEN
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive, Bethesda, MD 20814

CHRISTINE SEROOGY
University of Wisconsin, Pediatrics, 1111 Highland Ave., 4139 WIMR, Madison, WI 53705

BARBARA L. SHACKLETT
Dept. of Medical Immunology, University of California at Davis, 3146 Tupper Hall, 1 Shields Ave., Davis, CA 95616
ContRIButoRs

ROSEMARY SHE
Keck Medical Center of USC, Pathology, 1441 Eastlake Ave., Suite 2424, Los Angeles, CA 90089

R. SUE SHIREY
Johns Hopkins Hospital, Transfusion Medicine, 1800 Orleans St., Baltimore, MD 21287

TARA SIGDEL
University of California San Francisco, Division of Transplant Surgery, 513 Parnassus Avenue, S-1268 Medical Sciences Building, San Francisco, CA 94143

PAUL SIKORSKI
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

JERRY W. SIMECKA
Department of Cell Biology and Immunology, University of North Texas Health Science Center, RES 432A 3500 Camp Bowie Blvd., Fort Worth, TX 76107

JAY E. SLATER
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

MAREK SMIEJA
McMaster University, Department of Pathology & Molecular Medicine, L424-St. Joseph’s Healthcare Hamilton, 50 Charlton Ave E, Hamilton, ON L8N 4A6, Canada

RICHARD J. H. SMITH
Iowa Institute of Human Genetics, Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA 52242

R. NEAL SMITH
Massachusetts General Hospital, Pathology, 501B Warren Bldg., 14 Fruit St., Boston, MA 02114

MELISSA R. SNYDER
Mayo Clinic, Hilton 2-10D, 200 First St. SW, Rochester, MN 55905

LORI J. SOKOLL
Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205

JEREMY SOKOLOVE
VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304-1207, and Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305

LORI SOMA
University of Washington, Department of Laboratory Medicine, NW120, Box 357110, 1959 Pacific St., Seattle, WA 98195-7110

DAVID J. SPEICHER
Griffith University, Mensies Health Institute Queensland, Gold Coast Campus, Queensland 4222, Australia

ANDREA K. STECK
Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045

MARYALICE STETLER-STEVENSON
CCR, NCI, NIH, Laboratory of Pathology, Building 10, Mail Stop 1500, Room 3S 235G, Bethesda, MD 20892

JAMES R. STONE
Massachusetts General Hospital, Pathology, 185 Cambridge Street, Boston, MA 02114

JOHN H. STONE
Harvard Medical School, Division of Rheumatology, 25 Shattuck St, Boston, MA 02115

MANIKKAM SUTHANTHIRAN
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065

D. ROBERT SUTHERLAND
Laboratory Medicine Program, Toronto General Hospital/University Health Network, 200 Elizabeth St., Room 11E416, Toronto, Ontario, M5G2C4 Canada

ELIZABETH SYKES
Beaumont Hospital – Royal Oak, Clinical Pathology, 3601 W. 13 Mile Road, Royal Oak, MI 48073

CARMELA D. TAN
Department of Pathology, 9500 Euclid Ave., Cleveland, OH 44022

YI-WEI TANG
Memorial Sloan-Kettering Cancer Center, Clinical Microbiology Service, 1275 York Ave., S328, New York, NY 10065

STEFFEN THIEL
Aarhus University, Department of Medicine, Bartholin Building, Wilhelm Meyers Allé 4, Aarhus, 8000, Denmark

RENEE TSOLIS
Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616

JEROEN VAN BERGEN
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands

CORETTA C. VAN LEER-BUTER
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

PRIYANKA VASHISHT
Mayo Clinic, Department of Immunology and Division of Rheumatology, 200 1st St. SW, Rochester, MN 55905

RENATO VEGA
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205
CONTINUOUSLY REVISED

The Manual of Molecular and Clinical Laboratory Immunology is by its nature a continuously revised work which refines and extends the contributions of previous editions. Since its first edition in 1976, many eminent scientists have contributed to this important reference work. The American Society for Microbiology and its Publications Board gratefully acknowledge the contributions of all of these generous authors over the life of this Manual.
In 1971, I was working at the University of Oxford's Sir William Dunn School of Pathology in the laboratory of James Gowans, the investigator who first definitively showed that the lymphocyte was the source of specific adaptive immunity. I was busily cannulating the thoracic ducts of rats in order to harvest T lymphocytes when I was informed that a transatlantic telephone call was coming in. My first reaction was fear of bad news. Rather, it was a phone call from Earle Spaulding. I knew Earle as the chairman of microbiology at Temple and active in the Eastern Pennsylvania branch of the American Society for Microbiology (ASM). He explained that he was calling as a member of the editorial group of the *Manual of Clinical Microbiology* (MCM), at that time in its first edition. His particular concern was the chapter on immunology, which devoted 100 pages to various serologic tests for infectious organisms with no mention of noninfectious diseases. Earle felt strongly that the field of immunologic diagnosis was growing exponentially and deserved a separate, companion manual. The MCM editorial board agreed, providing I was willing to accept the position of Editor-in-Chief.

I was delighted to receive the invitation. I had recently chaired a “blue ribbon” committee of the American Association of Immunologists (AAI) on the future of clinical immunology. We concluded that there was no space for a new patient-centered clinical specialty, but great need for improved, expanded laboratory support. A comprehensive manual would serve as a great stimulus to the whole field of laboratory-based clinical immunology. I accepted the offer with two qualifications. First, I needed a co-editor, particularly someone well versed at a practical level in immunology related to infectious diseases. Second, I asked that such a manual be cosponsored by the AAI. Both qualifications were agreed to by the ASM Publications Board.

The person I had in mind as co-Editor-in-Chief was Herman Friedman. I knew Herman from contacts arising from our joint interest in allergy research. I knew he understood the practice of laboratory immunology and was one of the few immunologists who actually researched the immunology of infection. Herman readily agreed to partner with me on the *Manual*, and so began a close collaboration that continued for three subsequent editions of the *Manual*, ended only by his untimely death. The AAI also accepted an offer of collaboration and appointed a liaison committee to work with us.

We were off and running, but we had no idea of how to proceed. There had never been a manual describing the entire laboratory practice of immunology. Part of our mission was to include the many applications of immunology devoted to detection and analysis of a wide variety of diseases, not only those induced by microorganisms. Should we approach the subjects disease by disease or method by method? We finally decided to compromise by beginning the book with invited chapters on the common methods used in the immunology laboratory, then continuing with sections covering their application to the main categories of disease. We included a final section on laboratory administration and quality control.

Having developed particular sections, we then sought the most experienced and highly qualified individuals to serve as section editors. Because of the cross-cutting matrix arrangement, there was major concern that some topics would be dealt with twice or even three times. We therefore decided to organize a “stakeholders meeting,” at which all of the section editors met at ASM in Washington, DC, with proposed outlines of their sections. Going through each one systematically, we identified topics where overlap occurred and ensured that everything important was included once, but not more. We also made a fundamental decision that the book would be complete and free-standing. The methods would be described in sufficient detail that the laboratory worker could actually prepare the materials, perform the tests, and interpret the results without consulting other references. It should be understood that, at that time, most laboratory reagents
were prepared within the laboratory and were generally not available as commercial kits. This format required that we keep descriptions terse and the reference lists short.

When the first edition of the *Manual of Clinical Immunology* was published in 1976, we felt it warranted some type of celebration. Herman suggested that we should organize a meeting to mark the birth of the book and to bring together the leaders in clinical laboratory immunology, including our authors and section editors. Eventually, this led to the formation of the Association of Medical Laboratory Immunologists and the American Board of Medical Laboratory Immunology.

The *Manual* continues to be published at regular intervals to the present, as the editorial lineup has evolved. Barbara Detrick and Robert G. Hamilton joined me as Editors for the Sixth Edition, and Dr. Detrick has continued to lead the *Manual* for the Seventh and the present Eighth Edition. I hope the series will go on for many years. Although the *Manual*’s name has changed and the format is altered, the overall aim is still to improve the care of patients with infectious malignant inflammatory and immune-mediated disorders. With the ready availability of validated kits, the job of the clinical laboratory immunologist has shifted toward working with clinical colleagues on the significance and interpretation of laboratory tests.

I’m proud to have been involved in the genesis of this *Manual*. It would not have been possible without the continued support of ASM, the cooperation of AAI, the persistence of succeeding volume and section editors, the contributions of hundreds of practicing clinical laboratory immunologists, and the foresight of a few visionary microbiologists of the 1970 era who realized that immunology had become a discipline and specialty of its own. It never would have happened if Herman Friedman had not joined with me in accepting the challenge. I hope that he will long be remembered for his numerous contributions to immunology.

NOEL R. ROSE, MD, Ph.D.
For over 40 years, the *Manual of Clinical Laboratory Immunology* has been the leading reference source, both in the United States and abroad, to advance the field of laboratory immunology, to foster the best contemporary and most cutting-edge methodologies, and to translate basic immunologic principles into appropriate laboratory tests.

Since the publication of the 7th edition of this *Manual*, remarkable progress has been made in the field of immunology, and these notable advancements have been reflected in the clinical immunology arena as well. The scope of clinical immunology is exceptionally broad and encompasses nearly every medical specialty, including such areas as transplantation, rheumatology, oncology, infectious disease, allergy, hematology, and neurology, to name a few. Because of its strategic position in the hospital setting, it is critical that the clinical immunology laboratory should have a guide to follow with regard to accurate and appropriate laboratory procedures. As the field of clinical immunology continues to expand, we look to the laboratory director as a key person to gather the new basic information and integrate it into useful clinical procedures as well as to serve as a pivotal contact for communication with the various disciplines. In addition to keeping abreast with the most updated testing systems, the goal for this *Manual* is that it must not only serve the needs of today's clinical immunology laboratory but also look to the future, where even more dramatic progress in diagnosis and treatment can be anticipated.

In an effort to capture the new dimensions in this field and to reflect the continuous evolution of clinical immunology, significant changes have been introduced into the 8th edition of the *Manual of Molecular and Clinical Laboratory Immunology*. Several sections of the *Manual* have been notably updated to reflect the latest laboratory approaches in molecular assays as well as the shift to automated testing, kit-based diagnostics, and new technical tools: themes that are carried throughout the book.

New chapters have been introduced to highlight these changes. For example, section D, Flow Cytometry, describes the latest applications of these techniques, such as polychromatic flow cytometry and mass cytometry; section F reviews fresh information on the clinical applications of cytokines and chemokines; the infectious disease sections H, I, and J include the newest strategies used in infectious disease diagnosis and treatment, including the HIV and syphilis algorithms; section K, Immunodeficiency Diseases, presents the recent newborn screening programs for severe combined immune deficiency; and section P, Transplantation Immunology, outlines the usefulness of next-generation sequencing in the human leukocyte antigen (HLA) laboratory.

Once again, this *Manual* is offered not just in print but also electronically as either an EPUB file or a PDF. This special feature will allow a larger audience to review and use the *Manual*.

As we produce the 8th edition of this *Manual*, it is appropriate to celebrate its success. Noel Rose, the *Manual*’s first Editor-in-Chief, has provided a foreword reflecting on how the field has changed over the past 5 decades.

Since the publication of this *Manual* is a joint effort of many dedicated individuals, I wish to acknowledge the outstanding commitment and invaluable support of our volume editors, section editors, and chapter authors, all of whom, as internationally renowned experts in their areas, have contributed their extraordinary experience, energy, and time to the success of this edition. Also, I would like to extend my appreciation to the ASM editorial staff, in particular Ellie Tupper, Senior Production Editor, and Christine Charlip, Director, ASM Press, who have provided their valuable experience and support to complete this edition.

BARBARA DETRICK, Ph.D.
Editor in Chief
Author and Editor
Conflicts of Interest

Cem Akin (coauthor on chapter 85) has consultancy agreements with Novartis and Patara Pharma and receives research funding from Dyax.

Barbara Detrick (Editor in Chief, coauthor on chapter 106) serves as a consultant to Siemens Healthcare Diagnostics, Inc., Abbott Laboratories, and INOVA Diagnostics, Inc.

Deborah Ferriola (coauthor on chapter 113) receives royalties from Omixon. Omixon has licensed the protocol we developed for HLA typing by NGS from the Children’s Hospital of Philadelphia and makes it available as a commercial product named “Holotype HLA.” Omixon is mentioned in this chapter as a company that provides software analysis tools for the genotyping of HLAs using NGS data. It is not mentioned as a company that commercializes HLA typing products/kits, because at the time of writing Omixon had not developed this activity.

Marvin J. Fritzler (coauthor on chapter 88) has been a consultant to or received research gifts in kind from Inova Diagnostics Inc., Euroimmun GmbH, Mikrogen GmbH, Dr. Fsoke Laboratorien GmbH, ImmunoConcepts, GSK Canada, Amgen, Roche, and Pfizer. He is the Director of Mitogen Advanced Diagnostics Laboratory.

Andrea Illingworth (coauthor on chapter 18) has received unrestricted Educational Grant funding and speaker honoraria from Alexion Pharmaceuticals.

Michael Keeney (coauthor on chapters 18 and 19) is a consultant for Beckman Coulter, Canada, and Alexion Pharma, Canada. He has received unrestricted Educational Grant funding and speaker honoraria from Alexion Pharmaceuticals.

Masataka Kuwana (chapter 91) holds a patent on an anti-RNA polymerase III antibody measuring kit.

Curt Lind (coauthor on chapter 113) receives royalties from a licensing agreement between Omixon Biocomputing and the Children’s Hospital of Philadelphia and is an employee of Thermo Fisher Scientific, Transplant Diagnostics.

Robert P. Lisak (coauthor on chapter 99) is on an advisory board for Syntimmune.

Dimitri Monos (coauthor on chapter 113) receives royalties from Omixon. Omixon has licensed the protocol we developed for HLA typing by NGS from the Children’s Hospital of Philadelphia and makes it available as a commercial product named “Holotype HLA.” Omixon is mentioned in this chapter as a company that provides software analysis tools for the genotyping of HLAs using NGS data. It is not mentioned as a company that commercializes HLA typing products/kits, because at the time of writing Omixon had not developed this activity.

Stanley J. Naides (chapter 62) is a full-time employee of Quest Diagnostics Nichols Institute and receives a salary, stock, and stock options from Quest Diagnostics.

Timothy Niewold (coauthor on chapter 38) has received research grants from Janssen Inc. and EMD Serono Inc.

Maurice R. G. O’Gorman (chapter 20) is a BD Biosciences consultant and contractee.

Paul Sikorski (coauthor on chapter 114) is an employee of One Lambda, Inc., a Thermo Fisher Scientific brand.

Marek Smieja (coauthor on chapter 63) has done small studies with Copan and GenMark.

Melissa R. Snyder (chapter 103) participates on the Strategic Advisory Committee with INOVA Diagnostics.

Kathleen E. Sullivan (section editor) is a Baxter grant recipient and an Immune Deficiency Foundation consultant.

D. Robert Sutherland (coauthor on chapters 18 and 19) has received speaker fees and consulting fees from Alexion Pharmaceuticals.
Yi-Wei Tang (coauthor on chapter 57) has received research funds from Roche Molecular Diagnostics and the Luminex Corporation.

Brent Wood (coauthor on chapter 22) has received research funding and honoraria for Advisory Board participation from Seattle Genetics and Amgen and honoraria from Abbvie for Advisory Board participation.

Andrea A. Zachary (coauthor on chapter 114) is a consultant for BiologicTx and Genentech and is a Scientific Advisory Board member for Immucor.
Author Index

Abraham, Roshini Sarah, 26, 269
Aguero-Rosenfeld, Maria E., 419
Akin, Cem, 825
Ali, Mohsin, 598
Anderson, Burt, 473
Andrade, Luis Eduardo Coelho, 843
Ansari, Aftab A., 975
Baldwin III, William M., 1123
Balfour, Jr., Henry H., 563
Barbesino, Giuseppe, 930
Barnidge, David R., 26
Baxter-Lowe, Lee Ann, 1161
Biancotto, Angélique, 149
Blanton, Lucas S., 461
Brown, Mary B., 444
Browne, Sarah K., 365
Bryceson, Yenan T., 300
Bubb, Michael Raymond, 897
Buchner, C. E., 909
Burek, C. Lynne, 929, 930, 975
Burlingame, Rufus W., 859, 909
Burton, Robert L., 280
Bushman, Frederic D., 19
Caruso, Breanna, 674
Caturegli, Patrizio, 930
Ceribelli, Angela, 878
Chan, Chi-Chao, 998
Chan, Edward K. L., 859, 878
Chandra, Anita, 737
Chauvette, Ann Duskin, 897
Chiang, Samuel C. C., 300
Collins, A. Bernard, 376, 385
Cook, Linda, 1169
Cooley, Sarah, 1150
Coppel, Ross L., 866
Crumpin, Wilson de Melo, 843
Curtis, Kelly A., 696
Dalhania, Darshana, 1132
Dale, Bethany L., 1103
Davila, Daniel C., 1051
De Remigi, Alessandra, 930
de Souza, William Marcel, 658
De Vincentis, Ludovica, 930
Degheidy, Helba, 226
Dellavance, Alessandra, 843
Detrick, Barbara, 998
DiGiuseppe, Joseph A., 207
Douglas, Steven D., 261
Duffy, Elizabeth R., 324
Duke, James, 1069
Dunn, Bruce E., 404
Eisenbarth, George S., 930
Elmer, Melissa, 721
Ferriola, Deborah, 1069
Figueiredo, Luiz Tadeu Moraes, 658
Fleisher, David M., 815
Fleisher, Martin, 1051
Fleisher, Thomas A., 3
Flores-Montero, Juan, 235
Francescantonio, Paulo Luiz Carvalho, 843
Fritzler, Marvin J., 859
Galanakis, Dennis, 101
Gershvin, M. Eric, 966
Ghia, Emanuela M., 51
Gielas, Patricia C., 127, 129, 749
Gilmour, Kimberly C., 737
Godfrey, Elizabeth A., 1008
Gorevic, Peter D., 101
Green, Kim Y., 639
Guerrero, Pamela A., 783, 801
Hamilton, Robert G., 375, 795, 1007
Han, Shuhong, 868
Hanly, J. G., 909
Harbeck, Ronald J., 1169
Harris, Neil, 905
Hartono, Choli, 1132
Hill, Harry R., 394
Hirakata, Michio, 878
Hodinka, Richard L., 578
Hogueist, Kristin A., 563
Holland, Steven M., 766
Hooks, John J., 323, 998
Hooper, D. Craig, 665
Hsu, Amy P., 5
Humphrey, Richard L., 74
Illingworth, Andrea, 168
Islam, Sabina A., 343
Jackson, Annette M., 1103
Jacobson, Steven, 674
Jaife, Elaine S., 1015
Johnson, Jeffrey A., 696
Katzmann, Jerry A., 112
Keeney, Michael, 168, 182
Keren, David E., 49, 74, 112
Kickler, Thomas S., 995
King, Karen E., 990
Kipps, Thomas J., 51
Klom, Amy D., 825
Knight, Vijaya, 1180
Kuhns, Douglas B., 310
Kumararatne, D. S., 737
Kunkel, Mark, 1069
Kuwana, Masatake, 888
Lanciotti, Robert S., 648
Landry, Marie Louise, 538
Lebo, Terri, 1180
Lederman, Howard M., 713
Leland, Diane S., 610
Leung, Patrick S. C., 966
Levinson, Arnold L., 954
Li, Yi, 868
Lind, Curt, 1069
Lindsay, Mark D., 503
Lisak, Robert P., 954
Litwin, Christine M., 393, 394, 433, 473
Litwin, Sheldon E., 394
Lucas, Donna P., 1091
Luster, Andrew D., 343
Maecker, Holden T., 251, 338
Maier, Cheryl L., 975
Manns, Michael P., 966
Marsh, Rebecca, 775
Massini, John, 688
Massoud, Raya, 674
McClay, J. Philip, 149
Medoff, Benjamin D., 343
Metes, Diana, 1108
Monos, Dimitri, 1069
Murphy, Martina, 905
Muthukumar, Thangamani, 1132
AUTHOR INDEX

Nahm, Moon H., 280
Naides, Stanley J., 591
Nieters, Hubert G. M., 620
Niewold, Timothy B., 357
Nixon, Douglas F., 290
Nussenblatt, Robert, 998
Nunn, Thomas B., 485, 486

O’Gorman, Maurice R. G., 147, 199
Orfao, Alberto, 235
Owen, S. Michele, 696

Parra, Gabriel I., 639
Peebles, Jr., R. Stokes, 801
Pérez, José Juan, 235
Petersen, Robert B., 682
Phadnis, Suhas H., 404
Fojero, Fanny, 235
Posey, Yvonne, 89
Priel, Debra Long, 310
Prusin, Calman, 825
Puig, Noemí, 235

Rabin, Ronald L., 784
Raffeld, Mark, 1015
Rai, Alex J., 1008
Rajalingam, Raja, 1150
Rasley, Amy, 473
Rassenti, Laura Z., 51
Reed, Elaine F., 1065
Reeves, Westley H., 841, 868
Reinsmonen, Nancy L., 1108
Relich, Ryan F., 610
Remick, Daniel G., 324
Renn, Lynnesy, 784
Ricciuti, Adriana, 930
Riezebos-Brilman, Annelies, 620
Risma, Kimberly, 775
Rodriguez, E. Rene, 1123
Roehrig, John T., 648
Rose, Noel R., 930, 975
Routes, John M., 715
Rubenstein, Richard, 682

Salem, Dalia A. A., 226
Sanoja, Luzalba, 235
Santos, Carah B., 815
Sarwal, Minnie M., 1132
Sato, Minoru, 878
Scher, Howard L., 1051
Schmid, D. Scott, 550, 556
Schmitz, John L., 412, 537
Schroeder, John T., 801
Sen, H. Nida, 998
Serogy, Christine, 721
Shacklett, Barbara L., 290
She, Rosemary, 453
Shirey, R. Sue, 902
Sigdel, Tara K., 1132
Sikorski, Paul, 1091
Simecka, Jerry W., 444
Slater, Jay E., 784
Snieja, Marek, 598
Smith, Richard J. H., 138
Smith, R. Neal, 376, 385
Snyder, Melissa R., 983
Sokoll, Lori J., 1008
Sokolove, Jeremy, 922
Soma, Lori, 217
Speicher, David J., 598
Steck, Andrea K., 930
Sternler-Stevenson, Maryalice, 226
Stone, James R., 376
Stone, John H., 917
Suthanthiran, Manikam, 1132
Sutherland, D. Robert, 168, 182

Tykes, Elizabeth, 89
Tan, Carmela D., 1123
Tang, Yi-Wei, 538
Thiel, Steffen, 133
Tsolis, Renee, 473

Van Bergen, Jeroen, 1150
Van Leer-Buter, Coretta C., 620
Vashisht, Priyanka, 357
Vega, Renato, 1091
Verbsky, James W., 715
Verghe, Priya S., 563
Vidrales, María Belén, 235

Waites, Ken B., 444
Walker, David H., 461
Walsh, Noreen M., 909
Wang, Guiqing, 419
Wang, Jian, 930
Warren, Jeffrey S., 54
Weinberg, Adriana, 263
Whiteside, Theresa L., 296, 1036
Wilkins, Patricia P., 486
Willison, Hugh J., 961
Wisniewski, Thomas, 682
Wood, Brent, 217
Wood, Robert A., 815

Yu, Liping, 930
Yuan, Constance M., 226

Zachary, Andrea A., 1091
Zeevi, Adriana, 1108
Zhang, Qiheng Jennifer, 1065
AABB (American Association of Blood Banks), 1172
AAE (acquired angioedema), 756–757
ABB (American Board of Bioanalysis), 1174
ABCC (American Board of Clinical Chemistry), 1174
ABFT (American Board of Forensic Toxicology), 1174
ABHI (American Board of Histocompatibility and Immunogenetics), 1172
ABI SOLiD system, 20
ABMG (American Board of Medical Genetics), 1172
ABMLI (American Board of Medical Laboratory Immunology), 1172
ABMM (American Board of Medical Microbiology), 1172
Absolute cell counting, in polychromatic flow cytometry, 155
ACA (anticentromere antibody), 888–889
Acanthamoeba, 489
Accreditation of clinical immunology laboratory, 1176–1177
Accuracy, 1183–1184
Acetylcholine, 954–956
Acetylcholine receptor, 954–958
Acetylcholine receptor antibodies, 954–958
Acetylcholinesterase, 957
aCGH (array comparative genomic hybridization), 745
ACIF (anticomplement immunofluorescence assay), for human herpesvirus-6, 582–583
Acoustic radiation, 151
ACPA. See Anti-cyclic citrullinated peptide antibody
Acquired angioedema (AAE), 756–757
Acrocyanosis, cryoglobulins and, 101–102
Acrodermatitis chronica atrophicans, Lyme, 421
Activated partial thromboplastin time (APTT), 906–907
Activation-induced deaminase (AID), 59, 740
Active cell movement, signal transduction and, 351
Acute erythroid leukemia, 220
Acute glomerulonephritis, poststreptococcal, 394–395, 397, 399–401
Acute lymphoblastic leukemia (ALL), 207–214, 1150
diagnosis, 207–212
flow cytometry immunophenotyping, 207–214
immunophenotypic-genotypic and prognostic correlations, 212
minimal residual disease (MRD), 207–209, 212–214
Acute megakaryoblastic leukemia, 220
Acute monocytic leukemia (AMoL), 220, 1028–1029
Acute motor axonal neuropathy (AMAN), 961–962, 964
Acute myeloid leukemia (AML), 147–148, 207, 209–210, 1066, 1150
antigens associated with diagnosis of, 218
biology of, 218
classification, 218–220
diagnostic sample preparation and evaluation, 220–222
data acquisition, 221
data analysis, 221
reagent panels, 221
reporting, 221–222
specimen requirements and processing, 220–221
epidemiology, 218
minimal residual disease, 222–223
data acquisition and evaluation, 222–223
reporting, 223
specimen requirements, processing, and reagent panels, 222
normal myeloid maturation and antigen expression, 217–218
overview, 217–220
Acute myocardial injury, 975–976
Acute-phase reaction, electrophoresis, 81–82
Acute promyelocytic leukemia (APL), 220
Acute respiratory tract infections, 598. See also Respiratory viruses
Acute rheumatic fever, 394–395, 397–401
ADA, 301, 306
Adalimumab, 361
ADCC (antibody-dependent cellular cytotoxicity), NK cell-mediated, 1156
ADGs (analog-to-digital converters), 153
Addison disease antibodies to adrenal antigens, 931–932
clinical manifestations, 931
indirect IF test for adrenal autoantibodies, 931–932
prevalence, 931
Addressable laser bead immunoassay (ALBIA), 862–863
Adenosine, extracellular, 298
Adenoviridae, 640
Adenoviruses, 598, 644–645
clinical significance, 600–602, 644
description of agents, 599
detection and characterization, 645
direct fluorescent antibody (DFA), 603
epidemiology, 600
gastroenteritis, 644
genoome, 644
proteins, 644–645
rapid diagnosis, 539
species, 645
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600
Adhesion assays, 350
Adhesion disorders, 767–771
Adhesion molecules, allograft rejection and, 1132
Adult T-cell leukemia/lymphoma, 1026
human T-cell lymphotropic virus, 674–675
immunophenotype of, 228
Affinity maturation, 59, 67
African sleeping sickness, 489
African tick bite fever, 463–464
African trypanosomiasis, 489
Agarose gel electrophoresis
CSF samples, 98–99
monoclonal gammopathies, 115
protein identification, 77
reference ranges, 77
serum proteins, 83
urine proteins, 85–86, 97
Age-related macular degeneration (AMD), 100, 127, 749
Agglutination, rheumatoid arthritis testing, 900
Agreement, 1184
Agrin, antibodies against, 958–959
AH50 assay, 749–751, 752–753
analytical concerns, 753
controls, 752–753
interpretation, 754
materials and reagents, 752
pitfalls and troubleshooting, 753

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Sun, 09 Jun 2019 05:17:52

1195
immunossays, 783, 795–800
inflammation. See Inflammation, allergic
mast cell disorders, 783, 831–834
Allograft injury, mechanisms of, 1103–1104
Allograft rejection. See Transplant rejection
Allergen immunotherapy. See also Allergen(s)
ALK protein, 1027
ALKL. See ALCL.
ALK protein, 1027
Allergic bronchopulmonary aspergillosis, 80,
Allergen immunotherapy, 784
Airway challenges, 810–811
Allergen(s) See ALK protein, 1027
ALC1. See ALCL.
ALK protein, 1027
Allergic diseases
eosinophilic gastrointestinal diseases (GESID), 783,
825–829
Allergic diseases
eosinophilic gastrointestinal diseases (GESID), 783,
Anti-perinuclear factor, 898–899
Anti-phospholipase A2 receptor antibodies, Western blot analysis of, 387–388
Antiphospholipid antibody syndrome (APS), 905–907
anticardiolipin assay, 907
clinical manifestations, 905
considerations when testing, 907
diagnostic criteria, 905–906
laboratory testing, 906–907
lupus anticoagulant testing, 906–907
whom to test, 907
Anti-PM-Scl antibody, 891
Anti-proliferating cell nuclear antigen (PCNA) antibodies, 870
Anti-RA33 antibody, 899
Antiretroviral therapy (ART), 545–546
Anti-ribosomal P antibodies, 870
Anti-RNA helicase A autoantibodies, 870
Anti-RNAP III antibody, 889–890
Anti-RNP antibodies, 868–869, 873, 890–891
Anti-Ro (SS-A) antibodies, 869
Anti-Ro/SS-B/La antibodies, 869
Anti-RuVBL1/2 antibody, 891
Anti-Sa, 898–899
Anti-Sm antibodies, 868–869
Anti-streptokinase test, 401
Anti-streptolysin O (ASO), 395, 397–401
Anti-streptolysin O (ASO) test, 398–399
Anti-P1/STP1 antibody, 869
Anti-TG antibodies, 984–985
Anti-U1 RNP antibody, 891
Anti-U3 RNP antibody, 890
Anti-U1/A/U2 RNP antibody, 890–891
Antiviral susceptibility testing
treatment of human herpesvirus-6, 584–585
influenza virus, 606
respiratory viruses, 606
AOA (American Osteopathic Association), 1172
APCs. See Antigen-presenting cells
APCFCED (autoimmune polyclonal lymphoproliferative-candidiasis-ectodermal dystrophy), 365
APL (acute promyelocytic leukemia), 220
Aplastic anemia, paroxysmal nocturnal hemoglobinuria (PNH) and, 168
Apoptosis assays, 733
APS. See Antiphospholipid antibody syndrome
APTT (activated partial thromboplastin time), 906–907
Arboviruses, 648–656
antibody detection, 648, 650–652
complement fixation, 651
hemagglutination inhibition, 651
IgG ELISA, 651
IgM ELISA, 648, 650–651
immunoﬂuorescence, 651
neutralization test, 651–652
antigen detection, 652–653
antigen capture ELISA, 652
immunohistochemical staining, 652–653
characteristics of medically important, 649
genomic sequence detection, 653–655
in situ hybridization, 653
nucleic acid ampliﬁcation tests (NAAT), 653
nucleic acid sequence-based ampliﬁcation (NASBA), 654
real-time 5′-exonuclease ﬂuorogenic assays, 654
reverse transcription loop-mediated isothermal ampliﬁcation (RT-LAMP), 654–655
RNA extraction and puriﬁcation, 653–654
RT-PCR, 654
testing algorithms, 654
interpretation of test results, 655–656
rapid diagnosis, 539
selection and sequence of tests, 655
Array comparative genomic hybridization (aCGH), 745
Arrays. See also Microarrays
chemokine/chemokine receptor assays, 348
cytokine assays
bead array assays, 332–334
membrane-bound antibody arrays, 331
micro array, 327–330
protein analysis, 29–31
anticytokine autoantibody detection, 367–368
tissue rejection, 1144–1145
Arsenist, 998
ART (antiretroviral therapy), 545–546
Arthritis, giant cell, 911
polyarteritis nodosa, 911
Takayasu’s, 911
Arthritis, Lyme, 421
ASHI (American Society for Histocompatibility and Immunogenetics), 1075, 1172, 1177
ASO test, 398–399
Aspergillosis, 504, 506, 515–516
allergic bronchopulmonary, 80, 515, 516–517
chronic necrotizing pulmonary aspergillosis, 516
infection in transplantation, 1099
liver kidney microsomal, 969–972
myasthenia gravis, 954–958
myositis-speciﬁc, 878–879
parietal cell antibodies, 932–933
in peripheral neuropathy, 961–964
platelet, 995–997
in scleroderma/systemic sclerosis, 888–895
in systemic lupus erythematosus (SLE), 868–874
thymoglobulin antibodies, 930–931
thymopoiesis antibodies, 930–931
Au, 909–914
Asthma
chemokines in, 346–347
exacerbation by respiratory viruses, 601
Astroviridae, 640
Astroviruses, 642–644
detection and characterization, 643–644
genome, 643
overview, 642–643
Ataxia telangiectasia, 713, 722, 725
ATG16L1 gene, 986
Atherosclerosis, chemokines in, 346
Athletes software, 1087
ATLL (angiotensin II type I receptor), 1103–1104
ATLL. See Adult T-cell leukemia/lymphoma
Atopic dermatitis, food allergy and, 815–819
Atopic disorders, 795–797
Atopy patch tests, 817–818
Atorvastatin, 1138
ATP synthesis assay, intracellular, 1116–1119
Attune cytometer, 151
Atypical hemolytic-uremic syndrome (aHUS), 141, 759, 761
Australia antigen, 624
Australian bat lyssavirus, 666
Autoantibodies
to adrenal antigens, 931–932
anti-acetylcholine receptor antibodies, 954–958
antimicrotubulin, 966–969
antinuclear antibody, 843–857
bacterial, 923
in diabetes mellitus, 935–946
to erythrocytes, 990–993
to glycolipids, 961–964
interference in transplantation, 1099
liver kidney microsomal, 969–972
in myasthenia gravis, 954–958
myositis-speciﬁc, 878–879
parietal cell antibodies, 932–933
in peripheral neuropathy, 961–964
platelet, 995–997
in scleroderma/systemic sclerosis, 888–895
in systemic lupus erythematosus (SLE), 868–874
thymoglobulin antibodies, 930–931
thymopoiesis antibodies, 930–931
Autoantibody detection, 859–865
production of recombinant proteins, 860–861
puriﬁcation of autoantigens, 860
puriﬁcation of recombinant proteins, 861
Rosetta bacteria for production of large recombinant proteins, 861
use of natural autoantigens, 860
use of peptide antigens, 860
bead-based immunoassays, 862–865
addressable laser bead immunoassay (ALBIA), 862–863
advantages of, 864
challenges of multiplexed immunoassays of, 865
chimeric immunoassays immunoassay (CIA), 863–864
overview, 859
Autoantigens
pituitary antibodies, 946–949
puriﬁcation, 860
use in autoantibody detection, 860
Autoimmune diseases. See also speciﬁc disorders
antineutrophil cytoplasmic antibodies (ANCA) associated vasculitis, 909–914
subjects index
Cancer. See also specific cancer types circulating tumor cells, 1051–1057
cryoglobulins and, 101
electrophoresis patterns, 82, 84
epithelial-mesenchymal transition (EMT), 1031–1052
Epstein-Barr virus, 567
immune system malignancies, 1015–1029
monitoring immunologic therapies, 1036–1048
overview, 1007
pyroglobulins and, 110
Treg depletion for treatment of, 299
tumor markers, 1028–1034
Cancer-associated retinopathy, 999, 1001
Candida, T cell response to, 272, 275
Candidiasis, 504, 506, 518–519
antibody assays, 518
antigen assays, 518–519
BGD (β-d-glucan), 519
clinical indications and diagnostic rationale, 518
enzyme immunoassay (EIA), 518–519
immunodiffusion, 518
indirect fluorescent antibody (IFA) assay, 518
latex agglutination, 518–519
CANOMAD, 964
Capillary electrophoresis controls, 77–78
cost of testing, 87
cryoglobulins, 76
cytokine assays, 331–332
followed by mass spectrometry (CE-MS) in proteome studies in transplant rejection, 1142–1143
immunosubtraction, 76, 91–92. See also Immunosubtraction (ISUB)
electrophoresis monoclonal gammapathies, 115
pattern interpretation, 80–85
principles, 75–76
proteins identified in, 77–80
quality control/assurance, 76–77
radiocontrast and antibiotic spikes, 75–76
reference ranges, 76–77
Capillary leak syndrome, 113
Capillary sequencing, 1080–1081
Capture enzyme-linked immunosorbent assay, 105
Carboxyfluorescein diacetate succinimidyl ester (CFSE), 270, 298, 1111–1112
Carboxypeptidase H autoantibodies, 936–937
CARD15 gene, 986
Card agglutination test for trypanosomiasis (CATT), 489
Cardiac Allograft Rejection Gene Expression Observational (CARGO) study, 1137
Cardiac disease acute rheumatic fever (ARF), 394–395, 397–401
Bartonella, 474
immunofluorescence in diagnosis of, 376–384
Cardiac troponins, 975–976
Cardiolipin, antibodies against, 907
Chorion, cardiomyopathy, 975–980
dilated, 975–978
hypertrophic, 977–978
inflammatory, 978–980
peripartum, 979–980
Cardiovascular diseases, 975–980
acute myocardial injury, 975–976
cardiomyopathy, 975–980
chronic myocardial injury, 975–977
molecular diagnostics, 977–978
serologic diagnosis, 975–977
Carditis
Lymphe, 421
strepococcus, 394–395
CARGO (Cardiac Allograft Rejection Gene Expression Observational) study, 1137
CARPA (complement activation-related pseudoallergy), 127
Carrion’s disease, 474
Cartilage hair hypoplasia, 722, 725
Castleman’s disease, 1020
Cat scratch disease, 471–474, 476–477
CATT (card agglutination test for trypanosomiasis), 489
cccDNA (covalently closed circular DNA), 624
CC chemokines, 343
CCU (charge-coupled device), 150, 165
CCL11, in rheumatoid arthritis, 346
CCND1 gene, 1024
CCR1, in rheumatoid arthritis, 346
CCR5 human immunodeficiency virus (HIV) and, 706–707
inhibitors, 706–707
in rheumatoid arthritis, 346
CCR6, 298
CCR7, 298, 580
CCS (Center for Clinical Standards and Quality), 1172
CD1, Langerhans cells, 1028
CD1a acute lymphoblastic leukemia, 207, 209–210, 212
dendritic cells, 1028
CD2 acute lymphoblastic leukemia, 209
acute myeloid leukemia, 219–220
chronic lymphocytic leukemia (CLL), 226
NK cells, 301
T-cell chronic lymphoproliferative disorders, 228
T-cell lymphomas, 1027
CD3/CD3+ cells, 161
acute lymphoblastic leukemia, 207, 209–211, 214
cross-linking, 732–733
human herpesvirus-6, 580
lymphocytic variant hypereosinophilic syndrome, 828
simultaneous enumeration of CD34+ and CD3+ cells, 192–193
T-cell chronic lymphoproliferative disorders, 228
T cell lymphoblastic leukemia, 1020
TCR-CD3 complex, 271
Treg cells, 296–297
CD4/CD4+ cells
acute lymphoblastic leukemia, 207, 209, 211
allograft rejection, 1132
cytomegalovirus and, 570, 573
cytotoxic assays, 275
Downey cells, 564, 566
equation of, 135
enzyme-linked immunosorbent spot (ELISPOT) assay, 290–292
Epstein-Barr virus, 564, 566, 569
human herpesvirus-6, 578
stimulation in intracellular cytokine staining (ICS) assay, 339–340
T-cell chronic lymphoproliferative disorders, 228
T-cell lymphomas, 1025, 1027
CD9, in acute lymphoblastic leukemia, 212
CD10 acute lymphoblastic leukemia, 207–210, 212
acute myeloid leukemia, 217
B-cell chronic lymphoproliferative disorders, 227
B-cell lymphomas, 1024–1025
chronic lymphocytic leukemia (CLL), 226, 229
T-cell chronic lymphoproliferative disorders, 228
T-cell lymphomas, 1025, 1027
CD8,CD8+ cells, 161
acute lymphoblastic leukemia, 207, 209–210
allograft rejection, 1132
cytomegalovirus and, 570, 573
cytotoxic assays, 275
Downey cells, 564, 566
equation of, 135
enzyme-linked immunosorbent spot (ELISPOT) assay, 290–292
Epstein-Barr virus, 564, 566, 569
human herpesvirus-6, 578
stimulation in intracellular cytokine staining (ICS) assay, 339–340
T-cell chronic lymphoproliferative disorders, 228
T-cell lymphomas, 1025, 1027
CD11b, 150, 155, 749
acute lymphoblastic leukemia, 212
acute myeloid leukemia, 217–220
CD11c acute lymphoblastic leukemia, 212
in lymphocytic variant hypereosinophilic syndrome, 828–829
phytohemagglutinin (PHA) and T cell stimulation, 269
responder cell frequency (RCF), 264
stimulation in intracellular cytokine staining (ICS) assay, 339–340
T-cell chronic lymphoproliferative disorders, 228
T-cell lymphomas, 1025–1026
Tregs. See Regulatory T cell
CD4 Dynabeads, 1118
CD5 acute lymphoblastic leukemia, 209, 211
acute myeloid leukemia, 218–219, 223
B-cell chronic lymphoproliferative disorders, 227
B-cell lymphomas, 1023, 1025
B cells, 281
chronic lymphocytic leukemia (CLL), 226, 229
lymphocytic variant hypereosinophilic syndrome, 828
T-cell chronic lymphoproliferative disorders, 228
CD6 lymphocytic variant hypereosinophilic syndrome, 828
reaction and, 1137
CD7 acute lymphoblastic leukemia, 208, 210
acute myeloid leukemia, 218–219, 223
chronic lymphocytic leukemia (CLL), 226
lymphocytic variant hypereosinophilic syndrome, 828
T-cell chronic lymphoproliferative disorders, 228
T cell lymphoblastic lymphoma, 1020
T-cell lymphomas, 1027
CD1c (continued)
- B-cell chronic lymphoproliferative disorders, 227
- chronic lymphocytic leukemia (CLL), 226
- hairy cell leukemia, 1028
- Langerhans cells, 1028

CD13
- acute lymphoblastic leukemia, 211–212
- acute myeloid leukemia, 217–220
- chronic lymphocytic leukemia (CLL), 226

CD14
- acute lymphoblastic leukemia, 212
- acute myeloid leukemia, 217–218, 220
- in assays for PNH, 172, 174–175, 177
- Langerhans cells, 1028

CD15
- acute lymphoblastic leukemia, 212
- acute myeloid leukemia, 217–220
- in assays for PNH, 171–172, 175, 177–178
- Hodgkin's lymphoma, 1027–1028

CD15s deficiency

CD16
- acute myeloid leukemia, 217–218
- in assays for PNH, 172–173
- NK cell defects, 776, 779
- NK cells, 300–301, 305–306
- T-cell chronic lymphoproliferative disorders, 228

CD18, 150, 749
- deficiency, 201
- leukocyte adhesion deficiency (LAD), 770–771

CD19
- acute lymphoblastic leukemia, 207–208, 210, 212–213
- acute myeloid leukemia, 217–219
- B-cell chronic lymphoproliferative disorders, 227
- B cells, 280–281
- chronic lymphocytic leukemia (CLL), 226–229, 232
deficiency, 740
- human herpesvirus-8, 586–587
- plasma cells, 239–246
- T-cell lymphoblastic lymphoma, 1021

CD20
- acute lymphoblastic leukemia, 207–208, 210, 212–213
- B-cell chronic lymphoproliferative disorders, 227
- B cells, 280–281
- chronic lymphocytic leukemia (CLL), 226–227, 229
- Hodgkin's lymphoma, 1028
- plasma cells, 239–240, 243
- removal by pronase treatment of cells, 1099
- T-cell lymphoblastic lymphoma, 1021
tissue rejection and, 1137

CD21, 563, 1028

CD22
- acute lymphoblastic leukemia, 208–210, 212
- B-cell chronic lymphoproliferative disorders, 227
- chronic lymphocytic leukemia (CLL), 226, 229

CD23
- B-cell chronic lymphoproliferative disorders, 227
- B-cell lymphomas, 1023
- B cells, 281
- chronic lymphocytic leukemia (CLL), 226, 229
dendritic cells, 1028

CD24, in assays for PNH, 172–173, 175, 177

CD25
- acute lymphoblastic leukemia, 212
- B-cell chronic lymphoproliferative disorders, 227
- chronic lymphocytic leukemia (CLL), 226
dacilumab (anti-CD25 antibody), 299
deficiency, 723, 727–728
- mast cells, 831–833
- T-cell chronic lymphoproliferative disorders, 228
- T-cell lymphomas, 1026
- Treg cells, 296–298

CD25high, 275, 298

CD27
- B cells, 281
- lymphocytic variant hypereosinophilic syndrome, 828
- plasma cells, 239–242, 245–246

CD28, plasma cells, 239–240, 242, 244

CD30
- Hodgkin's lymphoma, 1028
- T-cell lymphomas, 1027

CD33
- acute myeloid leukemia, 217–220, 223
- in assays for PNH, 171–172
- chronic lymphocytic leukemia (CLL), 226
- plasma cells, 239–240

CD34/CD34+

CD34 Count Kit (Dako), 188–189

CD35, 130–131, 138, 749

CD36, acute myeloid leukemia, 218, 220

CD37
- acute lymphoblastic leukemia, 207, 209
- acute myeloid leukemia, 217, 219–220, 222–223
- B-cell lymphomas, 1024
- chronic lymphocytic leukemia (CLL), 226, 232
- plasma cells, 236, 238–240, 242, 246–247

CD39, Treg cells, 296–298

CD39, Treg cells, 296–298

CD40, X-linked hyper IgM syndrome (XHIM) and, 726

CD40L
- expression for diagnosis of X-linked hyper IgM syndrome (HIGM), 742–744
- as marker of T cell activation, 269–270, 275

CD40 ligand deficiency screens, 201–203

CD43, chronic lymphocytic leukemia (CLL), 226, 229

CD45
- acute lymphoblastic leukemia, 207–214
- acute myeloid leukemia, 217–222
- in assays for PNH, 175, 178
- B-cell lymphomas, 1024
- chronic lymphocytic leukemia (CLL), 226, 229
- in flow cytometry of hematopoietic stem cells, 183–195
- plasma cells, 239–242, 245–246

CD46, 130–131, 138–139, 141, 580, 749, 1124

CD54, 155, 238–240, 239

CD55, 131, 138–139, 141, 749
- absence in PNH, 168–169
- in assays for PNH, 170
- flow cytometry quantification, 150

CD56
- acute myeloid leukemia, 218–219, 223
- NK cell defects, 777
- NK cells, 300–301, 305
- plasma cells, 239, 242
- T-cell chronic lymphoproliferative disorders, 228
- T-cell lymphomas, 1027

CD56dim, 300, 303–305

CD57, T-cell chronic lymphoproliferative disorders, 228

CD57dim, 305

CD59, 131, 138, 1126
- absence in PNH, 168–169
- in assays for PNH, 169–172, 174, 180
deficiency, 761
- flow cytometry quantification, 150

CD61, acute myeloid leukemia, 220

CD62L, 155
- in cryoprotected peripheral blood mononuclear cells, 266
- NK cells, 300
- CD63, as basophil surface activation marker in allergy, 791, 806, 821

CD64, 32–33
- acute lymphoblastic leukemia, 212
- in assays for PNH, 171–172, 175, 177–178

CD65, in acute lymphoblastic leukemia, 212

CD66b, in assays for PNH, 172–173

CD68, 1127

CD69
- as basophil surface activation marker in allergy, 826
- as marker of T cell activation, 269, 275
- NK cells, 301, 305
- X-HIGM screening, 731–732

CD71, acute myeloid leukemia, 217–218, 220

CD73, 298

CD79a, 52, 209, 212
- B-cell lymphomas, 1024
- T-cell lymphoblastic lymphoma, 1021

CD79b, 52

CD79a, 52, 209, 212
- B-cell lymphomas, 1024
CD81, 298
chronic lymphocytic leukemia (CLL), 226, 229
plasma cells, 239, 242
cD90, 194–195
cD95, in lymphocytic variant hypereosinophilic syndrome, 828
cD99, 1022
cD103, B-cell chronic lymphoproliferative disorders, 227
cD107, detection in intracellular cytokine staining (ICS) assay, 339
ICD10a, 275, 301, 303, 305
detection in intracellular cytokine staining (ICS) assay, 338
NK cell defects, 779
as surrogate of degranulation in T cell and NK cell cytotoxicity, 204–205
cD10b, 275
cD117
acute lymphoblastic leukemia, 211
acute myeloid leukemia, 217–220, 222
plasma cells, 239–240, 242, 244, 246–247
cD123, acute myeloid leukemia, 217–218
cD127™, 275
cD133
acute myeloid leukemia, 217
flow cytometry quantification, 150
CD319, plasma cells, 236, 238–240
CD307, plasma cells, 239–240
CD235 (glycophorin A), 169–171, 220
CD203c, as basophil surface activation marker
CD200
CD157, in assays for PNH, 172–173, 175, 177, 179–180
CD200
chronic lymphocytic leukemia (CLL), 226, 229
plasma cells, 239–240, 242–244
CD203c, as basophil surface activation marker in allergy, 791, 806, 821
CD229, plasma cells, 236, 238–240, 239
CD235 (glycoporphin A), 169–171, 220
CD279, T-cell lymphomas, 1026
CD307, plasma cells, 239–240
CD319, plasma cells, 236, 238–240
CDAC (cold-dependent activation of complement), cryoglobulinemia and, 101, 106
CDC. See Centers for Disease Control and Prevention
CDC assay. See Complement-dependent cytotoxicity (CDC) assay
cDNA, 8, 335
cDNA microarray
lymphoma, 1020, 1024–1025
transplant rejection, 1134, 1137
CDR3, 57
celiac disease, 983–986, 988
clinical manifestation, 984
diagnosis, 984–986
anti-deaminated gliadin antibodies, 984–985
anti-gliadin antibodies, 984–985
anti-tTG antibodies, 984–985
biopsy, 984
endomysial antibodies, 984–985
HLA typing, 984, 986
summary of tests, 985
epidemiology, 983–984
monitoring patients, 986
pathology, 983
quality assurance for clinical testing, 988
testing recommendations, 986
Cell culture. See Culture
Cell death, measuring, 1042
Cell-mediated immunity
food allergy, 815–816
human herpesvirus-6, 580
Cell Quest software, 1044
CellSearch immunomagnetic isolation, 1052–1053, 1056
Cell surface markers, on T cells after activation with mitogenic stimuli, 274, 277
Cellular immune response in transplantation, evaluation of, 1108–1121
division and precursor frequency
analysis using multiparameter CFSE-MLC, 1111–1112
data analysis and interpretation, 1112
pitfalls and troubleshooting, 1112
procedure, 1111–1112
clinical applications, 1120–1121
cytokine measurements, 1113–1116
ELISPOT assay, 1113–1114
clinical significance, 1114
pitfalls and troubleshooting, 1114
procedure, 1113–1114
flow cytometry, 1111–1112, 1114–1116
immune cell function assay, 1116–1119
intracellular ATP synthesis assay, 1116–1119
expected values, 1119
interpretation of results, 1118–1119
overview, 1116–1117
procedure, 1116–1118
intracellular cytokine staining (ICS), 1114–1116
data acquisition, 1116
data analysis, 1116
procedure, 1114–1116
troubleshooting, 1116
mixed lymphocyte culture (MLC) assay, 1108–1110
concept, 1108
equipment and instrumentations, 1109
interpretation, 1109
materials and reagents, 1109
mechanics and controls, 1109
MTT method, 1109–1110
pitfalls and troubleshooting, 1109
procedure, 1108–1109
sample requirements, 1108–1109
propagation of lymphocyte cultures from allograft biopsy specimens, 1112–1113
concept, 1112–1113
pitfalls and troubleshooting, 1113
procedure, 1113
T-cell precursor frequency determination by limiting dilution assays, 1110–1111
validation of assays, 1110–1120
analysis of patient and healthy control subject data, 1110–1120
proficiency testing, 1120
quality assurance, 1120
quality control, 1120
statistical evaluation of data, 1119–1120
Cellular infiltrate, chemokine assays, 348
Center for Clinical Standards and Quality (CCSQ), 1172
Centers for Disease Control and Prevention (CDC)
CDC-ETIB (CDC-enzyme-linked immunoelectrotransfer blot) assay for cytotoxicity, 492–493
guidelines for flow cytometry, 1180
Model Performance Evaluation Program (MPEP), 1177
Centers for Medicare & Medicaid Services (CMS), 1171–1175
Cephotiope (CP) unit, 71
Cerebrospinal fluid (CSF)
arboviruses, 648, 650, 652, 655
cryptococcosis, 522–523
cysticercosis, 492–493
herpes simplex virus, 550
immunochemical characterization of immunoglobulins, 98–99
measles viruses, 612
transferrin in, 79
Treponema pallidum, 413–416
Trypanosoma cruzi, 491
Cetrullinamab, 361
CFB (complement factor B), 140, 142
CFH receptors, 138, 140, 142
CFSE (carboxyfluorescein diacetate succinimidyl ester), 270, 298, 1111–1112
CGD. See Chronic granulomatous disease
CH50 (complement 50% hemolysis), 131–132
CH50 assay, 749–754
analytical concerns, 753
buffer preparation, 751
controls, 752–753
equipment and instruments, 751
interpretation, 753–754
materials, 751
pitfalls and troubleshooting, 753
postanalytical concerns, 753
preanalytical concerns, 753
procedure, 751–752
quality control/quality assurance, 753
reagents, 750–751
sample requirements, 750
sensitized sheep cells, 751
Chagas' disease, 491
Charged-coupled device (CCD), 150, 165
Chédiak-Higashi syndrome, 765–767, 771
Chlamydomonasneumimmunassay (CIA)
autobiocayty detection, 863–864
human immunodeficiency virus (HIV), 698–705
oxidative metabolism disorders, 773–774
systemic sclerosis-related antinuclear antibodies, 892
Treponema pallidum, 414–417
viral infections, 542
Chemokines and chemokine receptors, 323, 343–354
allograft rejection, 1132
assays, 348–353
adhesion assays, 350
animal models, 353
Boyden chamber, 349
cellular infiltrate, 348
for chemokine expression in disease, 347–348
chemotactic response: in vitro assay, 348–351
chemotactic response: in vivo assay, 351–353
imaging, in vivo, 351–353
integron conformation change, 350–351
overview, 348
recruitment assays, 351
signal transduction and active cell movement, 351
Colorectal cancer, circulating tumor cells and, 1051, 1054, 1056–1057
Coltivirus, 649
COMACC (Commission on Accreditation in Clinical Chemistry), 1172
Combined immunodeficiency (CID), 721–733
Ca++ flux assays, 732–733
flow cytometry, 732–733
fluorometric assay, 733
protein tyrosine phosphorylation by immunoblotting, 733
cytokine signaling pathway defects, 723, 727–728
CD25 deficiency, 723, 727–728
JAK3 deficiency, 723, 727
partial common γ-chain defects, 723, 727
STAT3 deficiency, 723, 728
STAT5b deficiency, 723, 728
defects in cytoskeletal and migration pathways, 723–724, 728–729
DOCK8 deficiency, 723, 729
Wiskott-Aldrich syndrome, 723, 729
diagnostic assays, 729–733
apoptosis assays, 733
Ca++ flux assays, 732–733
flow cytometry, 729–732
T-cell proliferation assays, 732
T-cell differentiation, 730
in vitro experiments, 730
intracellular cytokine staining, 730
Foxp3 analysis, 731
apoptosis assays, 733
T-cell activation, 731–732
trophic pathways, 723–724, 728–729
Suppressor of cytokine signaling (SOCS) proteins, 732–733
flow cytometry, 729–732
Ca++ flux assay, 733
enumeration of lymphocyte cell populations, 729–730
Foxp3 analysis, 731
intracellular cytokine staining, 730
intracellular protein expression and T-cell differentiation, 730
T-cell activation, 731–732
trophic pathways, 723–724, 728–729
NEMO deficiency, 723, 728
SCID. See Severe combined immunodeficiency
T-cell defects in DNA repair and recombination, 725
ataxia telangiectasia, 722, 725
Omenn syndrome, 722, 725
T-cell defects in proximal T-cell activation, 722, 726
T-cell defects in signal transduction pathways, 722, 726–727
Lck deficiency, 722, 726–727
Unc119 deficiency, 722, 727
ZAP-70 deficiency, 722, 727
T-cell defects in survival, 723, 728
PNP deficiency, 723, 728
T-cell development defects, 721–722, 725
cartilage hair hypoplasia, 722, 725
COR/A mutation, 725
MHC class I and II deficiencies, 721–722
MST1 mutation, 725
TREC assay, 718
X-linked inhibitor of apoptosis (XIAP), 724, 729
X-linked lymphoproliferative syndromes (XLP), 724, 729
Commission on Accreditation in Clinical Chemistry (COMACC), 1172
Commission on Office Laboratory Accreditation (COLA), 1172
Common cold, 602
Common variable immune deficiency, 740
Compensation, 149
Competition ELISA, 791, 970–972, 1185
Complement activation. See Complement activation alternative pathway, 138–143
AHSO (alternative pathway 50% hemolysis), 131–132
atypical hemolytic uremic syndrome, 140–141
C3 glomerulopathy, 142–143
schematic of activation, 130
anti-acetylcholine receptor antibodies and, 956
antibody and, 282
assays, 750–754
AH50 assay, 749–751, 752–754
CH50 assay, 749–752
classical pathway, 129–132
CH50 (complement 50% hemolysis), 129–132
components of, 129–130
control of, 130–131
laboratory evaluation, 131–132
schematic of activation, 130
deficiency. See Complement deficiency discovery of, 129
dysfunction, 127
evolutionary history of, 127, 129
housekeeping activities of, 749
lectin pathway
mannan-binding lectin (MBL), analysis of activity of, 133–137
recent advances in understanding of, 127–128
schematic of activation, 130
measurement in cryoglobulinemia, 105–106
measurement of components, 749
myasthenia gravis and, 956
pathways, 750
schematic of activation, 130
in systemic lupus erythematosus (SLE), 874–875
terminal pathway, 130–132
Complement activation pathways, 129–131, 133–132, 138
products in specific organ transplants, 1126–1127
composite tissue grafts, 1127
heart, 1126–1127
kidney, 1126
liver, 1127
lung, 1127
pancreas, 1127
small intestine, 1127
regulators of complement activation (RCAs), 138–140
spleen rejection, 1128–1129
acute rejection, 1128–1129
chronic rejection, 1129
complement deposits in tissue biopsy specimens, 1123–1126
hyperacute rejection, 1128
polyclonal and monoclonal antibodies to C1q, 1123
polyclonal and monoclonal antibodies to C3 split products, 1124–1126
polyclonal and monoclonal antibodies to C4d, 1123–1124
Complement activation (continued)

polyclonal and monoclonal antibodies to C5b-9, 1124–1126, 1126
quality control of complement assays, 1126
soluble complement products in body fluids, 1127–1128
specific organ transplants, 1126–1127
types of injury, 1128–1129

Complement activation-related pseudoallergy (CARPA), 127

Complement control protein (CCP), 757

Complement deficiency, 749–761

Complement control protein (CCP), 757

Complement activation-related pseudoallergy (CARPA), 127

Complement control protein (CCP), 757

Complement deficiency, 749–761

Complement control protein (CCP), 757

Complement activation

1206

measles viruses, 611–613

materials, 510

measles viruses, 611–613

mumps virus, 615

Mycoplasma pneumoniae, 445

paracoccidioidomycosis, 526

procedure, 510–512

reagent preparation and standardization, 510

titration of guinea pig complement, 510–511

reading and interpretation of reactions, 511–512

rubella virus, 616–617

sample requirements, 510

theory, 509–510

Trypanosoma cruzi, 491

Complement receptor 1 (CR1), 130–131,

138–139, 749, 759, 761, 1124–1125

Complement receptor 3 (CR3), 749

Complement- dependent cytotoxicity (CDC)

Complement activation

Complement deficiency, 749–761

Complement control protein (CCP), 757

Complement activation-related pseudoallergy (CARPA), 127

Complement control protein (CCP), 757

Complement deficiency, 749–761

Complement control protein (CCP), 757

Complement activation-related pseudoallergy (CARPA), 127

Complement control protein (CCP), 757

Complement deficiency, 749–761

Complement control protein (CCP), 757

Complement activation-related pseudoallergy (CARPA), 127

Complement control protein (CCP), 757

Complement deficiency, 749–761

Complement control protein (CCP), 757

Complement activation-related pseudoallergy (CARPA), 127

Complement control protein (CCP), 757

Complement deficiency, 749–761

Complement control protein (CCP), 757

Complement activation-related pseudoallergy (CARPA), 127

Complement control protein (CCP), 757

Complement deficiency, 749–761

Complement control protein (CCP), 757
Bartonella henselae, 473
Rickettsia typhi, 462
Culture
adenoviruses, 645
astroviruses, 643
Bartonella, 475
Branella, 477
Chlamydia trachomatis, 454
Chlamyphila pneumoniae, 456
Chlamyphila psittaci, 457–458
cytomegalovirus, 572
Epstein-Barr virus, 569
Franciella, 478
group A streptococci, 395–396
human herpesvirus-6, 581
human herpesvirus-7, 581
human herpesvirus-8, 581, 587
influenza virus, 603, 606
Leptospira, 573
parvovirus B19, 593
Penicillium marneffeii, 527
rabies virus, 669
relapsing fever, 427
respiratory viruses, 603
rubella virus, 616
viral, 541, 543
Cutaneous vasculitis, cryoglobulins and, 101, 104
CWD (chronic wasting disease), 682, 684–685, 687, 691–692
CXC chemokines, 343
CXCL9
atorvastatin modulation of, 1138
rejection and, 1137–1138
CXCL10
atorvastatin modulation of, 1138
rejection and, 1137–1138
CXCR2, in rheumatoid arthritis, 346
CXCR3, in rheumatoid arthritis, 346
CXCR4
HIV coreceptor tropism, 707
WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, 765–767
CXCR4 chemokine receptor antagonists, 196, 580
CXCR5, in cryopreserved peripheral blood mononuclear cells, 260
CXCR13, 1026
CYYB gene, 14
Cyclical hematopoiesis, 767
Cyclic neutropenia, 767
Cyclin D1, 229, 1017, 1023–1024
Cyclopentamide, 299
Cyclophosphamide, 299
Cyclosporine, 1121
Cyclophosphamide, 299
Cyclin D1, 229, 1017, 1023–1024
Cyclopentamide, 299
Cyclophosphamide, 299
Cyclosporine, 1121
Cylg, 236, 241–242, 245–246
Cylex immune cell function assay, 1118–1119
Cystic neomycococcal disease, 493
Cycloterosis, 492–493
Cytobank, 235
Cytomegalovirus, 572, 723, 727–728
Cytokine and migration pathway defects
production and lymphocyte activation, 1027
production and lymphocyte activation, 1027
ratio to cytokine inhibitors, 324
STAT1 phosphorylation levels as signal ratio to cytokine inhibitors, 324
STAT1 phosphorylation levels as signal ratio to cytokine inhibitors, 324
STAT1 phosphorylation levels as signal ratio to cytokine inhibitors, 324
rheumatoid arthritis treatment with interferon-α in systemic lupus erythematosus, 323, 358–359
rheumatoid arthritis treatment with cytokine inhibitors, 357, 359–362
Dane particle, 624
DAF (decay- accelerating factor), 131, 138, 141
DAF (decay- accelerating factor), 131, 138, 141
DAF (decay- accelerating factor), 131, 138, 141
Dantrium, 1138
dbNSFP, 10–11
dbSNP, 13
Decamidated gladin, antibodies against, 984–985
Decay accelerating factor, 749
Decay accelerating factor (DAF), 131, 138, 141
Dedicator of cytokinesis 8 (DOCK8) deficiency, 10, 724, 729
Degranulation assay, NK cell defects assessed by, 779
Delayed-type hypersensitivity, 1039
Delta checks, 1189
basophil, 804–806
biomarker of chronic myocardial injury, 976–977
cytokine-based assays, cryopreserved peripheral blood mononuclear cells (PMBC) and, 264–265
diagnostic and clinical applications, 357–362
hepatitis C treatment with interferon-α (IFN-α), 323, 357, 362
inflammatory bowel disease treatment with cytokine inhibitors, 357–362
interferon-α (IFN-α) in systemic lupus erythematosus, 323, 358–359
interleukin-1 (IL-1) in juvenile idiopathic arthritis, 323, 359
multiple sclerosis (MS) treatment with interferon-β (IFN-β), 323, 357, 362
rheumatoid arthritis treatment with cytokine inhibitors, 357, 359–362
flow cytometry, 1042
immunologic monitoring, 1045
intronuclear cytokine staining, 290, 730
measurement by flow cytometry, 323, 338–340
bead array assays, 332–334
cell processing, 339–340
costimulation, 338
data analysis, 340
resting prior to stimulation, 338
secretion inhibitors, 339
specimen types, 338
stimulating antigens, 339
stimulation kinetics, 339
stimulation vessels, 338
workflow of intracellular cytokine staining (ICS) assay, 340
measurements for evaluation of cellular immune response in transplantation, 1113–1116
multiplex cytokine assays, 29–31, 324–336
bead array assays, 332–334
capillary electrophoresis, 331–332
cost comparison, 334–335
membrane-bound antibody arrays, 331
microarrays, 327–330
molecular methods for measuring cytokines, 335
PCR, 335
plate-based micro-ELISAs, 330–331
sequential ELISA, 326–327
in situ hybridization, 335
traditional ELISA, 324–326
ocular, 1027
production and lymphocyte activation, 270–275
ratio to cytokine inhibitors, 324
STAT1 phosphorylation levels as signal ratio to cytokine inhibitors, 324
clinical relevance, 570–571
culture, 543, 572
discovery, 570
ELISPOT, 573
genome, 570
histopathology, 572
IgG avidity assay, 572–573
IgM detection, 543–544, 572
immunohistochemistry, 572
in situ hybridization (ISH), 572
kidney transplantation, 1156–1157
natural killer (NK) cell control of human hematopoietic stem cell transplantation, 1155–1156
nucleic acid amplification tests, 571–572
PCR, 571–572
QuantiFERON-CMV assay, 573
quantitative assays, 546
rapid diagnosis, 539
respiratory symptoms, 600
erosology, 572–573
Cytometer Setting and Tracking (CST) beads, 154
Cytometric bead assay, for rheumatoid arthritis, 901
Cytopathic effect (CPE) adenosviruses, 645
hantaviruses, 660
varicella-zoster virus, 557
viral infections, 543
Cytoreductive therapy, for mastocytosis, 834
Cytoskeletal and migration pathway defects
production and lymphocyte activation, 1027
production and lymphocyte activation, 1027
ratio to cytokine inhibitors, 324
STAT1 phosphorylation levels as signal ratio to cytokine inhibitors, 324
storage effects on, 1045
Cytokine signaling pathway defects
CD25 deficiency, 723, 727–728
combined immunodeficiency (CID), 723–724, 728–729
DOCK8 deficiency, 723, 729
Wiskott-Aldrich syndrome, 723, 729
Cytotoxic chemotherapy, 767
Cytotoxicity assays cryopreserved peripheral blood mononuclear cells (PMBC), 264
immunologic monitoring and, 1044–1045
in transplantation evaluation. See Complement-dependent cytotoxicity (CDC) assay
Cytotoxic T lymphocytes (CTLs) activity in cryoprotected PBMC, 264
CD4+ cells, 919
cytotoxicity assays, 1044–1045
limiting dilution assay (LDA), 1110–1111
NK cell defects and, 775–779
NK cells compared, 300
precursor (CTLp), 1120–1121
Daclizumab, 299
DAF (decay-accelerating factor), 131, 138, 141
Dane particle, 624
Dark-field microscopy, of Treponema pallidum, 412–413
Dasatinib, 1138
dbNSFP, 10–11
dbSNP, 13
Deamidated gluten, antibodies against, 984–985
Decay accelerating factor, 749
Decay accelerating factor (DAF), 131, 138, 141
Dedicator of cytokinesis 8 (DOCK8) deficiency, 10, 724, 729
Degranulation assay, NK cell defects assessed by, 779
Delayed-type hypersensitivity, 1039
Delta checks, 1189
Entamoeba histolytica, 489
Entamoeba dispar—Enolase, 1000
α Enhancers, immunoglobulin, 59
Endothelial cells, 1103–1105
Endothelial cell (EC) crossmatch, 1105
Endoplasmic reticulum aminopeptidase
Endomysial antibodies, 984–985
Endocrinopathies, 930–949
emm
Emerin, 978
See ELISPOT.
ELISA inhibition assay, 791
Enzyme-linked immunosorbent assay (ELISA)
Endomysial antibodies, 984–985
Enzyme immunoassay (EIA) adenoviruses, 645
antifungal antibody detection, 513–514
antiretroviral antibodies, 1000
aspergillosis, 515–516
astroviruses, 644
blastozycomys, 517
Borrelia burgdorferi, 422–423
candidiasis, 518–519
Chlamydia trachomatis, 455
Chlamydia pneumoniae, 456–457
coccidioidomycosis, 521–522
cryptococcosis, 523
cryptosporidiosis, 491–492
echinococcosis, 493
Entamoeba histolytica, 489
Epstein-Barr virus, 564, 567–568
fascioliasis, 494
fungal antigen detection, 514
gingival infections, 513–514
giardiasis, 495
hantaviruses, 661
hepatitis C virus, 628–629
hepatitis E virus, 633
herpes simplex virus, 552–553
histamine, 801–802
histoplasmosis, 523–526
human herpesvirus-6, 581, 583
human herpesvirus-7, 586
human herpesvirus-8, 58
human immunodeficiency virus (HIV), 698–701
leishmaniasis, 495
measles viruses, 611–612
mumps virus, 615
Mycoplasma genitalium, 448
Mycoplasma pneumoniae, 445–446
paragonimiasis, 496
rubella virus, 616–617
strongyloidiasis, 497
systemic sclerosis-related antineural antibodies, 891–893
theory, 513
toxocarisis, 497
toxoplasmosis, 497
Trichinella pallidum, 414–417
trichinellosis, 498
Trypanosoma cruzi, 491
varicella-zoster virus, 559
viral infections, 541–542
Enzyme-linked immunoelectrotransfer blot (ELTIB), for cytoscercosis, 492–493
Enzyme-linked immunofluorescent assay (ELISA) allergen potency testing, 791
allergen testing, 789–790
anticytokine autoantibody detection, 365, 367–368
anti-dsDNA antibodies, 874
antiganglioside antibodies, 963–964
anti-MCV (mutated citrullinated vimentin), 899
antimitochondrial autoantibodies, 967–968
antineutrophil cytoplasmic antibodies (ANCA), 911
antiphospholipid antibody testing, 907
arboviruses, 648, 650–653
automated liquid-handling systems, 1189–1190
Bartonella, 476
blocking reagent selection, 325–326
Borrelia burgdorferi, 422–423
Brucella, 478
chemokine/chemokine receptor assays, 348
Chlamydia pneumoniae, 457
Coxiella, 466
cytokine assays
plate-based micro-ELISAs, 330–331
sequential ELISA, 326–327
traditional ELISA, 324–326
direct, 325
Francisella, 479
glutamic acid dehydrogenase autoantibodies, 945
group A streptococci, 401
hantaviruses, 661
Helicobacter pylori, 407–408, 409
herpes simplex virus, 552
histamine, 801–802
human T-cell lymphotropic virus, 676
humoral response in transplantation, 1103
IgE, 799
IgG4-related disease, 920
immunologic monitoring, 1040, 1045
indirect (sandwich), 325
insulin autoantibodies (IAA), 945
interferon alpha, 807
Leptospira, 429–430
leukotriene C4, 804
liver kidney microsomal antibodies, 970–972
myasthenia gravis, 958–959
non-HLA antibody testing, 1104–1105
parvovirus B19, 594–595
pitrutin antibodies, 947
pneumococcus, 283
prion diseases, 686
protein analysis, 28
protein biomarker validation, 1145
rabies virus, 666–667, 670–671
recombinant myositis autoantigens, 885–887
rheumatoid arthritis testing, 900–901
rheumatoid factor measurement, by 898
Rocky Mountain spotted fever, 465
sensitivity and specificity, 325
systemic sclerosis-related antineural antibodies, 892
thyroglobulin antibodies, 930–931
thyroxine oxidase antibodies, 930–931
tryptase, 806–807
tuberculosis, 441
validation, 1185
varicella-zoster virus, 558–560
Wuchereria bancrofti, 494
zinc transporter-8 (ZnT8) antibodies, 945
Enzyme-linked immunosorbent spot (ELISPOT) assay applications of, 292
automated liquid-handling systems, 1189–1190
B-cell functional assays, 266–267
Fixation, for immunofluorescence, 377
FLAER (fluorescent derivative of bacterial pro-aerolysin), in PNH detection assays, 169, 172–178, 180
Flagellin, Borrelia burgdorferi, 421–422
Flaviviridae, 626–627
Flavivirus (genus), 627
Flagellin, Borrelia burgdorferi
FlowCAP, 164
Flow cytometry. See also Polychromatic flow cytometry
- acute lymphoblastic leukemia/lymphoma
- immunophenotyping, 207–214
- acute myeloid leukemia (AML), 217–223
- allergy, extract potency testing, 791
- antibody deficiencies, laboratory investigation of, 741
- automated liquid-handling systems, 1189–1190
- basophil activation testing, 821
- bead array assays, 332–334
- CD34+ hematopoietic stem cell enumeration, 150
- CD34+ hematopoietic stem cells
- enumeration, 182–196
- benefits, 190–191
- CD34+ cell subsets in backup marrow, 196
- clinical issues, 183
- clinical utility, 195–196
- commercial kits based on ISHAGE guidelines, 187–190
- controls for rare-event detection, 184
- early methods, 183
- graft assessment, 183
- immunological characterization of
- CD34+ stem cells, 193–195
- ISHAGE protocol, basic, 185
- ISHAGE single platform with viability assessment, 185–187
- lysing agents, 191
- negative antibody controls, 191
- quality assurance, 191
- sequential Boolean gating, 184–185
- simultaneous CD34+ and CD3+ cells, 192–193
- single-platform absolute CD34+ count, 185
- statistical issues in rare-event detection, 183–184
- technical issues, 184
- chemokine/chemokine receptor assays, 348
- chimerism testing, 1165
- chronic lymphocytic leukemia (CLL), 226–232
- minimal residual disease, 232
- role in diagnosis, 226
- role in prognostication, 226–227
- sample preparation, 227–228
- ZAP-70 analysis, 229–232
- circulating tumor cells, 1054
- combined immunodeficiency (CID), 729–732
- Ca2+ flux assay, 733
- enumeration of lymphocyte cell populations, 729–730
- Foxp3 analysis, 731
- intracellular cytokine staining, 730
- intracellular protein expression and T-cell differentiation, 730
- T-cell activation, 731–732
- tyrosine phosphorylation (phosphopeptide analysis), 732
- WASp, SAP, or XIAP expression, 731
- compensation
- fluorescence, 150
- hardware, 149
- software, 149
- complement control proteins, 749
- cytokine measurement, 323, 338–340
- bead array assays, 332–334
- cell processing, 339–340
- costimulation, 338
- data analysis, 340
- resting prior to stimulation, 338
- secretion inhibitors, 339
- specimen types, 338
- stimulating antigens, 339
- stimulation kinetics, 339
- stimulation vessels, 338
- workflow of intracellular cytokine staining (ICS) assay, 340
- future technologies and applications, 251–257
- hantaviruses, 663
- history of, 149
- humoral response in transplantation, 1042–1043
- immunologic monitoring cytokine, 1042
- intracellular staining for flow cytometry, 1042
- multiparameter flow cytometry, 1042–1043
- immunophenotyping cryopreserved peripheral blood mononuclear cells (PMBC), 265–266
- interferon assessment, 876
- laboratory investigation of antibody deficiencies, 741–742
- leukocyte adhesion deficiency (LAD), 771
- lymphoma, 1017
- mass cytometry, 251–253
- acquisition speed, 252–253
- cell loss, 253
- clinical applications, 256–257
- data analysis, 253, 255
- logistic considerations, 251
- phospho-flow combined with, 256
- sensitivity, 253
- SPADE, 253, 255
- spillover and contamination, 253–254
- workflow overview, 252
- multiparameter CFSE- MLC, 1111–1112
- multiparametric intracellular cytokine staining, 1114–1116
- non-HLA antibody testing, 1104
- paroxysmal nocturnal hemoglobinuria, high-sensitivity detection of red and white blood cells, 168–180
- assay sensitivity, 179–180
- assay validation, 178–180
- evolution of methods, 168–169
- fluorescence-minus two controls, 177–178
- general guidelines, 169
- high-sensitivity five-color WBC assay, 175, 177
- high-sensitivity four-color WBC assay, 170–171
- high-sensitivity RBC assay, 170–171
- high-sensitivity six-color WBC assay, 175, 178
- issues with early flow methods, 169
- presence of type II populations in neutrophils and monocytes, 174–176
- quality control and assurance, 175, 177–178
- routine versus high-sensitivity, 169
- strategies for outgoing antibody-conjugate verification, 175, 177
- verification of instrument set-up and antibody performance, 178–179
- phospho-flow, 253–256
- antibodies, 255
- data analysis, 255
- fixation and permeabilization, 255
- mass cytometry combined with, 256
- staining of cell surface epitopes, 255
- stimuli, 255
- technical considerations, 253, 255
- plasmablasts, 920
- plasma cell disorders, 235–247
- clinical utility of MFC
- immunophenotyping, 243–247
- diagnosis and classification, 243
- MRD monitoring in multiple myeloma, 244–247
- prognostic stratification of patients, 243–244
- quantitation of plasma cells in bone marrow aspirated samples, 242–243
- primary immunodeficiency diseases, 199–206
- CD40 ligand deficiency screens, 201–203
- CD107a as surrogate of degranulation in T cell and NK cell cytotoxicity, 204–205
- cell surface adhesion marker upregulation in LAD-1 (leukocyte adhesion deficiency type-1), 201–202
- examples, table of, 200
- familial hemophagocytic lymphohistiocytosis (FHL), 204
- oxidative burst assay screen for CGD (chronic granulomatous disease), 204
- phosphorylated kinase substrate evaluation, 199–200
- STAT1 gain-of-function alleles in CMCD (chronic mucocutaneous candidiasis), 202–203
- STAT1 phosphorylation levels as signal for type 1 cytokine signaling abnormalities, 200
- protein detection, 31–34
- quality control, 1188–1189
- T cell proliferation measurement, 270
- uses, 150
- validation, 1180–1182
- “Flow Cytometry Standard” (.fcs) files, 149, 164
- Fluidics, 151
- Fluorescence enzyme immunoassay (FEIA), for systemic sclerosis-related antinuclear antibodies, 892
- Fluorescence microscopes, 379
- Fluorescence-minus-one (FMO), 164, 1185–1187
- Fluorescence quantum yield, 156
- Fluorescence-activated cell sorter (FACS), 159, 161
- antibody deficiencies, 742–745
- neutrophil defects, 767–771, 773
- Fluorescent antibody to membrane antigen (FAMA) assay, for varicella-zoster virus, 558–559

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Sun, 09 Jun 2019 05:17:52
Giardia, 495
Gliacominylvolans, 462
Gleiche’s syndrome, 829
Gludin, antibodies against, 984–985
Glomerular basement membrane, antibodies to, 385–387
Glomerulonephritis cryoglobulins and, 101 membranoproliferative, 127 pyroglobulins and, 110
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucose, as cryoprotectant, 263
Glutathione S-transferase (GST), 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
Glutamic acid decarboxylase autoantibodies, 365–366, 369
Glutathione peroxidase (GSH) (GST) deficiency, 404–410
Glucocerebrosidase, 307–309
Glucocorticoids, 94
Glucocorticoid therapy, 94
Glucocorticoids, testing for autoantibodies to, 961–964
natural killer cell receptor ligands, 1150–1158
nomenclature, 1072
relevance in transplantation, 1091–1092
HLA Caller software, 1087
HLA-DR, 208, 211, 217–220, 1125
HLA genes
organization/structure, 1069–1071
polymorphic nature of, 1069
publication of data, 1071
role of, 1069
HLA Twin software, 1087
HLA typing
in celiac disease, 984, 986
contamination prevention, 1075–1076
future of, 1087–1088
nanopore technology, 1088
Pacific Biosciences, 1088
sequence-specific oligonucleotide probes
Sanger sequence-based typing (SBT)
applications, 1081–1082
data analysis, 1085–1087
gene coverage strategies, 1084
platforms, 1077, 1079, 1085
potential impact on HLA typing,
1073–1074
principle of the technology, 1081–1082
strengths and weaknesses, 1084–1085
workflow, 1082–1084
process of DNA-based HLA typing,
1074–1075
analysis, 1074–1075
genotyping, 1074
sample preparation, 1074
template amplification, 1074
quality control and quality assurance, 1075
real-time PCR, 1077–1079
analysis of data, 1079
applications, 1078
interpretation of results, 1079
principle of the technology, 1078
strengths and weaknesses, 1077–1079
troubleshooting and technical issues, 1079
regulatory and reporting requirements, 1075
sample management, 1075–1076
Sanger sequence-based typing (SBT)
analysis of data, 1081
applications, 1079–1080
interpretation of results, 1081
principle of the technology, 1079–1080
strengths and weaknesses, 1077, 1080
troubleshooting and technical issues, 1081
sequence-specific oligonucleotide probes
(SSOs), 1069, 1072–1074, 1076–1077
analysis of data, 1076
applications, 1076
interpretation of results, 1076
principle of the technology, 1076
reverse SSO (RSSO), 1076–1077
strengths and weaknesses, 1076–1077
troubleshooting and technical issues, 1076–1077
sequence-specific primers (SSPs), 1069, 1072–1074, 1071–1078
analysis of data, 1078
applications, 1077–1078
interpretation of results, 1078
principle of the technology, 1077–1078
strengths and weaknesses, 1077–1078
troubleshooting and technical issues, 1078
software packages, 1087
using bead array assays, 332
HLC (heavy-light chain) assays, 69–70
HLH (hemophagocytic lymphohistocytosis), 204
HME (human monocytotropic ehrlichiosis),
462–464, 466, 468
HMG (high-mobility group) proteins, 58
Hodgkin’s lymphoma
classical, 1027–1028
nodular lymphocyte-predominant, 1025, 1028
Hook effect, 68–69
Horizon stains, 149
Horseshoe crab, 127, 129, 514
HSCT. See Hematopoietic stem cell transplantation
hSLAM (human signaling lymphocyte
activation molecule), 611
HTLV. See Human T-cell lymphotropic virus
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 675
Human bocavirus
description of agents, 599–600
new species, 598
specimen collection, transport, and storage,
602–603
taxonomy, 599
Human Cell Differentiation Molecules
(HCDM), 158
Human coronaviruses
clinical significance, 600–602
description of agents, 599
epidemiology, 600
Middle East respiratory syndrome (MERS) coronavirus, 538, 598–599, 602–603
new species, 598
rapid diagnosis of, 539
severe acute respiratory syndrome (SARS) coronavirus, 538, 599, 602
specimen collection, transport, and storage,
602–603
taxonomy, 599
transmission, 600
Human Genome Variation Society
nomenclature, 6
Human granulocytotropic anaplasmosis
(HGA), 462–463, 466, 468
Human herpesvirus-6, 578–585
antibody avidity assay, 583
antibody detection, 581–582
anticomplement immunofluorescence assay
(ACIF), 582–583
antigen detection, 580–582
antiviral susceptibility testing, 584–585
biological characteristics, 579
clinical manifestations, 579
collection and storage of specimens, 582
culture, 581
diagnostic methods, 581
enzyme immunoassay (EIA), 581, 583
epidemiology and clinical characteristics, 580
genetic polymorphism, 578
genome, 578
immunohistochemistry (IHC), 580–581
immunologic diagnosis, 580–583
immunology of infection, 580
indirect fluorescent antibody (IFA), 582
molecular diagnosis, 583–584
morphology, 578
neutralization test, 583
nucleic acid detection, 581, 583–584
PPR, 583–584
radioimmunoprecipitation assay (RIA), 583
rapid diagnosis, 539
reactivation, 579–580
respiratory symptoms, 600
serology, 583
spin amplification shell vial assay, 581–582
transmission, 579–580
Western blot, 583
Human herpesvirus-7, 585–586
antigenemia assay, 586
biochemical characteristics, 579
clinical disease, 585
culture, 581
diagnostic methods, 581
enzyme immunoassay (EIA), 586
epidemiology and clinical characteristics, 580
genome, 585
immunologic and molecular diagnosis,
585–586
indirect fluorescence antibody (IFA), 586
nucleic acid detection, 581
reactivation, 585
serology, 586
Western blot, 586
Human herpesvirus-8, 586–588
biological characteristics, 579
culture, 581, 587
diagnostic methods, 581, 587–588
disease associations, 586
enzyme immunoassay (EIA), 587
epidemiology and clinical characteristics, 580
genetic diversity, 586
genome, 586
HIV coinfection, 586–588
immunoblot, 587–588
indirect fluorescence antibody (IFA),
587–588
nucleic acid detection, 581
PCR, 587
respiratory symptoms, 600
serology, 587–588
transmission, 587
Human herpesvirus 8, lymphomas and, 1020,
1025
Human Immune Monitoring Center, 148
Human immunodeficiency virus (HIV)
tropism assays, 707
phenotyping assays, 706–707
genotyping assays, 706
acquisition assay, 706–707
antigenemia assay, 706
antigen detection, 706–708
clinical disease, 710
co-infections/codisorders
AIDS, 706
circulating recombinant forms, 706–707
Epstein-Barr virus, 567
human herpesvirus-6, 578–579
human herpesvirus-8, 586–588
lymphoma, 1025
strongyloidiasis, 497
syphilis, 412
tuberculosis, 706
Human immunodeficiency virus (HIV)
(continued)
Trypanosoma cruzi, 491
tuberculosis, 440–441
diagnosis principles and procedures, 696–707
direct detection, 701
drug resistance tests, 546
enzyme immunoassay (EIA), 542, 698–701, 703
Genius HIV1/2 supplemental assay, 703–704
genotyping, 546
historical perspective, 696
hypervirulent diarrheal syndromes (HES) and, 826
IGM detection in response to infection, 543
immunochromatographic assays, 703–704
indirect fluorescence antibody (IFA), 703
laboratory markers of infection, 696–698
carcinoid tumor, 701–706
Alere q HIV-1/2 Detect, 702
GeneXpert, 702
Liat HIV Quant VL assay, 702
RNA qualitative assay, 701
simple amplification-based assay (SAMBA), 702
p24 antigen assays, 701
PCR, 702, 704–706
point-of-care tests, 700–702, 705
prevalence, 696
prognostic HIV testing, 704
Amplicor HIV-1 Monitor, 705
COBAS AmpliPrep/COBAS TaqMan HIV-1, 704–705
RealTime HIV-1 assay, 704
quality assurance program, 706–707
quantitative assays, 545–546
rapid diagnosis, 539, 699–701
serologic tests, 698–701
specimens for antibody testing, 700–701
Testing algorithms, 696–699
Tregs and, 296, 298–299
viral load testing, 706
Virogen, 701
Western blot, 703
Human metapneumovirus, 598
clinical significance, 601
description of agents, 599
direct fluorescent antibody (DFA), 603
epidemiology, 600
rapid diagnosis, 539
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600
Human Microbiome Project, 22
Human monocyticotropic ehrlichiosis (HME), 703
Human microbiome project, 22
Human metapneumovirus, 598
genotyping, 546
Human rhinovirus
clinical significance, 600–601
description of agents, 599
epidemiology, 600
new species, 598
rapid diagnosis, 540
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600
Human signaling lymphocyte activation molecular (hSLAM) protein, 611
Human T-cell lymphotropic virus (HTLV), 674–678
cellular characterization, 674
discovery, 674
epidemiology, 674
genealogical distribution, 674
indicators for testing, 675
laboratory assays, 675–678
ELISA, 676
line immunoassay, 676–677
particle agglutination, 675–676
PCR, 677–678
western blotting, 676–677
lymphoma, 1020, 1026
pathogenesis, 675
transmission, 674–675
HUMARA assay, 1018–1019
Humoral immunity
associations with deficiencies, 281
parasitic infections, 486
Humoral response in transplantation, 1091–1092
desensitization protocols, monitoring, 1100–1101
goals and aims, 1092
how to test, 1100
interference, 1099–1100
assessment of antibody function, 1100
autoantibodies, 1099
promiscuous treatment of cells, 1099
in solid-phase immunoenzymometric assays, 1099–1100
therapeutic antibodies, 1099
methods, 1092–1096
antibody screens, 1093
assay characteristics, 1093
crossmatches, 1093
patient profile, 1092
quality control, 1095–1096
techniques for testing antibody, 1093–1095
tests, 1092–1093
relevance, 1091–1092
risk assessment, 1101
test interpretation, 1097–1101
antibody screen, 1097
calculated PRA (panel-reactive antibody), 1097
crossmatch test, 1099
phenotype panel, 1097–1098
single-antigen panel, 1098–1099
virtual crossmatching, 1097–1099
test validation, 1096–1097
when to test, 1100
whom to test, 1100
HVHS (hypocomplementemiccricarial vasculitis), 875
Hybridization protection assay, for human immunodeficiency virus (HIV), 701
Hydatid cysts, 493
Hydrogen peroxide, analysis of PMN H2O2 production by flow cytometry of dihydrorhodamine 123 staining, 310–312
interpretation and limitations, 312
principle, 310
procedure, 311–312
reagents, 310–311
results and normal range, 312
Hymenoptera venom allergens, 788–789
Hypereosinophilic syndromes (HES), 826–828
diagnosis, 827–828
epidemiology and clinical features, 826–827
therapy, 828
patient evaluation, 826
subtypes, classification of, 826
Hypervascularaglobulinemia E syndrome, 795–796
Hyper-IgM syndromes, 722, 726
Hypertrophic cardiomyopathy, 977–978
Hyperviscosity
cryoglobulins and, 101
monoclonal gammopathy, 115
pyroglobulins and, 110
symptoms, 71–72
viscosity measurement, 71
Hypopallinemia
in liver disease, 81
in nephrotic syndrome, 82
Hypocomplementemiccricarial vasculitis (HUVCs), 875
Hypogammaglobulinemia
euthymic cases, 82
immunoglobulin measurement, 70
nonsecretory multiple myeloma, 94
Hypophysitis, autoimmune, 946–949
Hypothyroidism, 933–935
IAA (insulin autoantibodies), 935–938, 941–945
Iatrogenic Creutzfeldt-Jakob disease (iCJD), 682, 687, 691
ICCS (International Clinical Cytometry Society), 169, 171–173, 1185
ICS. See Intracellular cytokine staining (ICS) assay
ICSH (International Council for Standardization in Hematology), 1180, 1185
IEF (isoelectric focusing), 98–99, 791–792
IEMA (immunoenzymatic assay), 797, 799–800
IFATA. See Indirect fluorescent antibody assay
IFCC (International Federation of Clinical Chemistry and Laboratory Medicine), 1178–1179
IFE. See Immunofixation electrophoresis
IFIT1, 358
IFN. See Interferon
IFN-γ release assays, tuberculosis and, 435–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and HIV-infected patients, 440–441
interpretation, 439
QuantiFERON-TB Gold In-Tube assay (QFT-GIT), 435–437, 439–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and HIV-infected patients, 440–441
interpretation criteria, 436–437
method, 435–436
reproducibility, conversions, and reversions, 437
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
variability and quality control issues, 437
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
T-SPOT.TB assay, 435, 437–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and HIV-infected patients, 440–441
interpretation criteria, 439
method, 435, 437–439
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
IgA
antimitochondrial autoantibodies, 966
characteristics, 66–67
class switching, 58–59
cryoglobulins, 101–102, 105
deficiency, 70, 740–741, 984
electrophoresis, 80
Epstein-Barr virus, 568
function, 280
heavy-chain disease, 94
hyperviscosity and, 71
immunofixation electrophoresis, 90–91
immunosubtraction, 91–92
measurement of, 67–68
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
polyclonal, 93
pyroglobulins, 110
structure, 52, 66–67
subclasses, 67
IgA vasculitis, 911
IgD
characteristics, 66–67
class switching, 58–59
electrophoresis, 80
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
polyclonal, 93
pyroglobulins, 110
structure, 52, 66–67
surface, 280–281
IgD myeloma, 85
IgE
allergic potency testing, 790–791
in allergic diseases
allergen-specific IgE, 795–798
total serum IgE, 796–797, 799–800
basophil histamine release assay for demonstration of activity, 802
characteristics, 66–67
class switching, 58–59
electrophoresis, 80
in multiple myeloma, 113–114
pyroglobulins, 110
structure, 52, 66–67
IgE myeloma, 85
monoclonal, 93–94
omalizumab (anti-IgE), 795
pyroglobulins, 110
structure, 52, 66–67
total serum IgE assay, 796–797, 799–800
IgE myeloma, 85
IgG
allergen-specific, 796–797, 799
anti-acetylcholine receptor antibodies, 955
anticytokine autoantibodies, 369
antimitochondrial autoantibodies, 966
Barrett, 476
Brunig, 494
class switching, 58–59
complement activation, 129
Coxella, 466–467
cryoglobulins, 101–102
cytomegalovirus, 543–544, 572
electrophoresis, 80
Entamoeba histolytica, 489
Epstein-Barr virus, 565–569
function, 280
hantaviruses, 661
heavy-chain disease, 94
hepatitis A virus, 623
hepatitis E virus, 633
herpes simplex virus, 553
human herpesvirus-6, 584
human herpesvirus-8, 587–588
hyperviscosity and, 71
immunofixation electrophoresis, 79, 90–91
immunosubtraction, 91–92
Loa loa, 495
measles viruses, 611–614
measurement of, 67–68
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
mumps virus, 614–615
onchocerciasis, 494
polyclonal, 93
pyroglobulins, 110
Rocky Mountain spotted fever, 465
rubella virus, 616–617
rubella virus, 616–617
structure, 51–52, 66–67
subclass deficiency, 741
subclasses, 51–52, 66–67, 78, 92–93
toxoplasmosis, 497–498
trichinelliosis, 498
varicella-zoster virus, 557, 559–560
IgG4
allergen-specific, 797, 799
characteristics of molecule, 918
food-specific antibodies, 821
serum concentrations in IgG4-related disease, 919–920
IgG4-related disease, 917–920
clinical features, 917–918
abdomen, 917
chest, 917
head and neck, 917
retroperitoneum, 917–918
flow cytometry, 920
immunodiagnosis, 919
pathology, 918
pathophysiology, 918–919
B-cell lineage, 918
CD4 killer cell, 919
IgG4 molecule, 918
immunoglobulin class switch, 918–919
T-cell pathways, 919
serum IgG4 concentrations, 919–920
treatment, 919
IgG avidity
cytomegalovirus, 572–573
herpes simplex virus, 553
human herpesvirus-6, 583
measles viruses, 611
rubella virus, 616
 toxoplasmosis, 498
IgG ELISA, for arboviruses, 651
IgG index, 99
IgG myeloma, 89
IGH gene, 1024, 1028
IgM
Barrett, 476
class switching, 58–59
complement activation, 129
Coxella, 466
cryoglobulins, 101–103
cytomegalovirus, 543–544, 572
electrophoresis, 80
Epstein-Barr virus, 565–569
function, 280
hantaviruses, 658, 660–662
heavy-chain disease, 94
hepatitis A virus, 623
hepatitis E virus, 633
herpes simplex virus, 553
human herpesvirus-6, 584
human herpesvirus-8, 587–588
hyperviscosity and, 71
immunofixation electrophoresis, 79, 90–91
immunosubtraction, 91–92
measles viruses, 611–613
measurement of, 67–68
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
mumps virus, 614–615
parvovirus B19, 543, 592
polyclonal, 93
pyroglobulins, 110
response measurement to viral infection, 543–544
Rocky Mountain spotted fever, 465
rubella virus, 616–617
structure, 52, 66–67
rubella virus, 616–617
surface, 280–281
toxoplasmosis, 497–498
varicella-zoster virus, 560
Waldenström's macroglobulinemia and, 71, 113, 115
X-linked hyper IgM syndrome (XHIM), 201, 281
IgM autoantibody, hemolytic anemia and, 990, 993
IgM capture EIA, for toxoplasmosis, 497
IgM capture ELISA (MAC-ELISA)
arboviruses, 648, 650–651, 655
hantaviruses, 461
IgM ELISA
arboviruses, 648, 650–651
Bartonella, 476
Leptospira, 429–430
IgM paraproteinemic neuropathy, 961, 964
IHA. See Indirect hemagglutination assay
Leukemia (continued)
myelogenous leukemia, BCR-ABL
translocation in, 922
plasma cell, 235–237, 240
IMWG diagnostic criteria, 237
monoclonal gammopathy, 113
pyroglobulins and, 110
Leukotriene C4, assay for, 803–804
Levey-Jennings chart, 77–78, 153–154,
1188–1189
L-ficolin, 133
Liat HIV Quant VL assay, 702
Licensure of clinical immunology laboratory,
1176–1177
Light chains, immunoglobulin
Limiting dilution assay (LDA)
Light Cycler HAV quantitation assay, 623
Limiting dilution assay (LDA)
of cytotoxic T lymphocytes, 1110–1111
of helper T lymphocytes, 1104–1106
of plasma cell proliferation, 1104–1106
of helper T lymphocytes, 1110
Limit of blank (LoB), 1185
Limit of detection (LoD), 1185–1187
Limit of quantitation (LoQ), 1185–1186
Linearity, 1185–1186
Line blot immunoassay
for systemic sclerosis,
89–90
Line immunoblot assay, for human T-cell
disease, 80
Line immunoassay, for systemic sclerosis-
related antinuclear antibodies, 89–90
Line immunoassay, for human T-cell
lymphotropic virus, 676–677
Flow cytometric measurement of T cell
proliferation by
Ki-67 assay, 270, 272
measurement of T cell proliferation by
using 1H-thymidine, 270
Lymphocyte cultures from allograft biopsy
specimens, 1112–1113
concept, 1112–1113
pitfalls and troubleshooting, 1113
procedure, 1113
Lymphocyte proliferation assay (LPA), 732
for B-cell analysis, 281–282
cryopreserved peripheral blood
mononuclear cells (PBMC), 264–265
secretion of soluble mediators, 282
stimulation index, 282
using Edu-based flow cytometry, 271,
277
in situ whole-blood, 283–284
Lymphocyte separation medium, 1109
Lymphocyte-specific protein kinase (LCK),
1138
Lymphogranuloma venereum, 453–455
Lymphoma, 1015–1029. See also specific types
of lymphoma
adult T-cell leukemia/lymphoma, 1026
anaplastic large-cell lymphoma (ALCL),
228, 1017, 1020, 1027
Burkitt’s, 227, 563, 1017, 1020, 1025
classification, 1015–1017
diagnostic tests, 1017–1020
clonality assays, 1018–1019
flow cytometry, 1017
immunohistochemistry, 1017–1018
in situ hybridization, 1019
molecular cytogentic, 1019–1020
PCR, 1018–1020
diffuse large B-cell lymphoma (DLBCL),
226–227, 1020, 1024–1025
Epstein-Barr-associated, 1020
folicular, 227, 1017, 1023–1024
human herpesvirus 8-associated, 1020
human T-cell leukemia virus-associated,
1020
immunophenotypes of T-cell chronic
lymphoproliferative disorders, 228
lymphoblastic, 1020–1022
lymphoplasmacytotic, 226, 1023–1024
MALT (mucosa-associated lymphoid
tissue), 404, 1017, 1020
mantle cell lymphoma (MCL), 226–227,
229, 1017, 1023
marginal zone, 1023
markers, 1020–1028
multiple myeloma, 1024
NK/T-cell, 1020, 1026–1027
nodular lymphocyte-predominant
Hodgkin’s lymphoma, 1025, 1028
peripheral T-cell lymphoma, 1020
small lymphocytic, 226, 1023–1024
small mature B cell lymphoma, 1023–1025
splenic marginal zone, 227, 1023
T-cell-rich large B-cell lymphoma, 1025
translocations in, 1019–1020, 1022–1024
Lymphoplasmacytotic lymphoma, 226,
1023–1024
Lymphoproliferative disease
Epstein-Barr virus-associated, 567
monoclonal gammopathy, 113
percentage of plasma cell proliferative
disorders, 90
Lyophilization, 159
Lyoplates, 159
Lysozyme, 1028
Lysaviruses, 665
LYST, 301, 307, 771, 776, 778
Mass analyzers, 35–38
Marseilles fever, 461
Marginal zone lymphoma, 226, 1023
Marburg virus, 651
Mannose-binding lectin (MBL), 138, 756
MALT (mucosa-associated lymphoid tissue) gene, 1024
Malignant plasma cell proliferative disorders, Malignancies, immune system, 1015–1029.
Malaria, 495–496
Major histocompatibility complex (MHC) gene polymorphism, 1065
class I proteins and allograft rejection, 1132
class I expression in natural killer cells, 1153
class I tetramer staining, 261, 290
class I-related chain A (MICA), 1103
class II proteins, 1103
class II peptides, 1103
class II expression, 1103
class II tetramer staining, 261, 290
Major histocompatibility complex class I, 721–722
MHC class II, 721–722
MHC class I, 721–722
MAHA (microangiopathic hemolytic anemia), 140
MAIPA (monoclonal antibody-specific immobilization of platelet antigen) assay, 995–997
Major histocompatibility complex (MHC) class I expression in natural killer cells, 1153
class I proteins and allograft rejection, 1132
deficiencies, 721–722
MHC class I, 721–722
MHC class II, 721–722
gene polymorphism, 1065
Major histocompatibility complex class I-related chain A (MICA), 1103
Major histocompatibility complex (MHC) class I tetramer staining, 261, 290
Malaria, 495–496
MALDI (matrix-assisted laser desorption ionization), 35
MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometry, 468
Malignancies, immune system, 1015–1029.
Malignant plasma cell proliferative disorders, 112–114
MALT1 gene, 1024
MALT (mucosa-associated lymphoid tissue) lymphoma, 404, 1017, 1020
Mannose-binding lectin (MBL), 138, 756
Mannose-binding lectin (MBL), assay of activity, 133–137
assay procedure, 136
assay solutions, 135–136
materials, 134–135
results, calculation, and interpretation, 136–137
serum/plasma preparation, 134
troubleshooting, 137
Mantle cell lymphoma (MCL), 226–227, 229, 1017, 1023
Marburg virus, 651
Marginal zone lymphoma, 226, 1023
Milleses fever, 461
Mannose-binding lectin (MBL), 133–134, 756–757
Mass analyzers, 35–38
Orbitrap mass spectrometer, 37–38
quadrupole ion trap mass spectrometer, 36–37
time-of-flight (TOF) mass spectrometer, 37–38
triple-quadrupole mass spectrometer, 35–36
Mass cytometry, 32, 251–253
acquisition speed, 252–253
cell loss, 253
clinical applications, 256–257
data analysis, 253, 255
logistic considerations, 251
phospho-flow combined with, 256
sensitivity, 253
SPADE, 253, 255
spillover and contamination, 253–254
workflow overview, 252
Mass spectrometry
clinical samples analyzed by, 41–42
cytometry. See Mass cytometry
elements of use, 38–40
MS/MS analysis of proteolytic peptides to identify proteins by SRM, 38
MS/MS analysis of tryptic peptides to identify proteins, 38
MS/MS of intact proteins, 39–40
top-down MS, 39–40
ionization techniques, 34–35
ESI (electrospray ionization), 34–35
MALDI (matrix-assisted laser desorption ionization), 35
liquid chromatography coupled with, 38
mass analyzers, 35–38
Orbitrap mass spectrometer, 37–38
quadrupole ion trap mass spectrometer, 36–37
time-of-flight (TOF) mass spectrometer, 37–38
triple-quadrupole mass spectrometer, 35–36
phenotyping proteins with MS, 40–41
protein analysis, 34–42
Mast cell, IgG binding to, 66–67
Mast cell leukemia, 833
Mast cell sarcoma, 833
Mastocytosis, 783, 831–834
classification, 831–833
aggressive systemic mastocytosis, 833
cutaneous mastocytosis, 831
extracutaneous mastocytoma, 833
idolent systemic mastocytosis, 831–833
mast cell leukemia (MCL), 833
mast cell sarcoma (MCS), 833
systemic mastocytosis with AHNMD (associated clonal hematologic non-mast cell disease), 833
definition, 831
diagnostic criteria, 831–833
pitfalls in diagnosis, 833–834
therapy, 834
MAT (microscopic agglutination test), for Leptospira, 429
Matrix metalloproteinases, 976–977
Maximal tolerated dose, 1037
Mayero fever, 649
MBDA (multi-biomarker disease activity) score, 897, 901
MBL. See Mannose-binding lectin
MBL-associated serine proteases (MASPs), 133–134
MCL. See Mantle cell lymphoma
MCM4, 300, 305–306, 775–776
MCP. See Membrane cofactor protein
MCTD (mixed connective tissue disease), 404
MCP-1, 300
MCF. See Monoclonal free light chains
MG. See Myasthenia gravis
MGUS. See Monoclonal gammopathy of undetermined significance
MHC. See Major histocompatibility complex
MIATA program, 1046, 1116
MIB-1 protein, 1025–1026
Multiple bead fluorescence immunoassays (FIA), 611–613
neutralization, 611–613
PCR, 611–612
plaque reduction neutralization, 611–613
rapid diagnosis, 340
resurgence of disease, 610
serology, 612–613
technology for measles testing, 612–613
transplacental transfer of antibodies, 611
vaccination, 610–611
Median fluorescence intensity, 154, 156–157
Medical Test Site Licensure law, Washington State, 1175
Medication adverse reaction assessment, 808–809
Mediterannean spotted fever, 461, 463
MEGAN, 20
Melanoma-associated retinopathy, 999, 1001
Membrane attack complex (MAC), 138–140, 874, 956, 1126
Membrane-bound antibody arrays, 331
Membrane cofactor protein (MCP), 130–131, 138, 140–141, 749, 759, 1124–1125
Membranoproliferative glomerulonephritis, 127
Men who have sex with men (MSM), Chlamydia trachomatis in, 453
MERS (Middle East respiratory syndrome) coronavirus, 538, 598–599, 602
Mesenchymal-epithelial transition (MET), 1052
MESF (molecular equivalents of soluble fluorochrome) units, 1042, 1097
Mesothelin, 1013
Mesothelioma, 1013
Messenger RNA. See mRNA
MET (mesenchymal-epithelial transition), 1052
Metagenomics
artifacts in research, 20–22
biases in sequence tag analysis, 21
cage effects in mouse models, 22
low-biomass samples, 21–22
description, 19
disease states, investigation of, 22–23
methods of research, 19–20
DNA barcoding, 20
DNA sequencing, 20
nucleic acid purification, 19–20
shotgun sequencing, 20
tag sequencing, 20
respiratory viruses, 607
viruses, 22
MetaPhlAn, 20
Metapneumovirus. See Human metapneumovirus
Metapneumovirus (genus), 599
MFC immunophenotyping, in plasma cell disorders, 243–247
diagnosis and classification, 243
MRD monitoring in multiple myeloma, 244–247
prognostic stratification of patients, 243–244
M-ficolin, 133
MFLC. See Monoclonal free light chains
MG. See Myasthenia gravis
MGUS. See Monoclonal gammopathy of undetermined significance
MHC. See Major histocompatibility complex
MIATA program, 1046, 1116
MIB-1 protein, 1025–1026

Monocytes flow cytometry for detection/monitoring of PINH, 171–179 malignancies of, 1028–1029 MonoMAC syndrome, 10, 15–16

Monocytes flow cytometry for detection/monitoring of PINH, 171–179 malignancies of, 1028–1029 MonoMAC syndrome, 10, 15–16

Mononegavirales, 665

Monoplex assays, for viral infections, 544–545 MOPA4. See Multipleplex oncophagocytic killing assay (MOPA4) for functional antibodies against Streptococcus pneumoniae

Morbivirus (genus), 610

Mother-to-child transmission hepatitis C virus, 629–630 human T-cell lymphotropic virus virus transmission by, 675

Mounting medium, for immunofluorescence, 378

Mouse models, cage effects in, 22 MPEP (Model Performance Evaluation Program), CDC, 1177

MPN. See Myeloproliferative neoplasm M protein. See also Monoclonal proteins anti-M-protein test, 401 detection, 82–83 quantification, 83–84 M protein serotyping, streptococci, 396 MRD. See Minimal residual disease mRNA absolute quantification of mRNA levels by PCR, 1133 cancer-specific, 1054 cytokine, detection with in situ hybridization, 335 gene expression profiles in allografts, techniques for characterization, 1132–1135 profiles in tissue rejection, 1135–1138 mRNA quantification assays, in cryopreserved peripheral blood mononuclear cells (PBMC), 267

MS. See Multiple sclerosis

MS2 phage, 606–607

MS. See Multiple sclerosis

M protein. See also Monoclonal proteins anti-M-protein test, 401 detection, 82–83 quantification, 83–84

Mumps virus, 614–615

HL-60 cell differentiation, 286 initiation of HL-60 cultures, 286 preparation of target bacteria working stocks, 286 routine HL-60 propagation, 286

Multiplex ligation-dependent probe amplification (MLPA), 745

Multiplex reverse transcription-PCR (RT-PCR) human immunodeficiency virus (HIV), 702 rotaviruses, 640

Multiplex HIV-1/HIV-2 rapid test, 703

Mumps virus, 614–615

clinical manifestations, 614 complement fixation, 615 diagnostic strategies, 614–615 enzyme immunoassay (EIA), 615 epidemiology, 614 genotyping, 614 hemagglutination inhibition, 615 incidence, 614 indirect fluorescence antibody (IFA), 615 interpretation of testing, 615 molecular methods, 615 multiplex bead fluorescence immunoassays (FIA), 615 neutralization test, 615 rapid diagnosis, 540 resurgence of disease, 610 reverse-transcriptase (RT)-PCR, 614–615 serology, 615 technology for testing, 615 transplacental transfer of antibodies, 614 vaccination, 610, 614 virus isolation, 614–615

Murine typhus, 463

Murray Valley encephalitis virus, 648, 650, 654

Murray Valley encephalitis virus, 648, 650, 654

Mumps virus, 614–615

HL-60 cell differentiation, 286 initiation of HL-60 cultures, 286 preparation of target bacteria working stocks, 286 routine HL-60 propagation, 286

Multiplex ligation-dependent probe amplification (MLPA), 745

Multiplex reverse transcription-PCR (RT-PCR) human immunodeficiency virus (HIV), 702 rotaviruses, 640

Multiplex HIV-1/HIV-2 rapid test, 703

Mumps virus, 614–615

clinical manifestations, 614 complement fixation, 615 diagnostic strategies, 614–615 enzyme immunoassay (EIA), 615 epidemiology, 614 genotyping, 614 hemagglutination inhibition, 615 incidence, 614 indirect fluorescence antibody (IFA), 615 interpretation of testing, 615 molecular methods, 615 multiplex bead fluorescence immunoassays (FIA), 615 neutralization test, 615 rapid diagnosis, 540 resurgence of disease, 610 reverse-transcriptase (RT)-PCR, 614–615 serology, 615 technology for testing, 615 transplacental transfer of antibodies, 614 vaccination, 610, 614 virus isolation, 614–615

Murine typhus, 463

Murray Valley encephalitis virus, 648, 650, 654
Temporal polymorphonuclear cells (PMNC), 263–264
Transportation of frozen PMBC, 263–264
Peripheral neuropathy, 961–964
Overview, 961–962
testing for autoantibodies to glycolipids, 961–964
Cost assessment, 964
Interpretation, 964
Materials and reagents, 962
procedure, 964–966
Sample requirements, 962
Perlecan, 1103
Pernicious anemia, 932–933
Perutz toxin, 351
Perforin (gene), 627
FFGE (pulsed-field gel electrophoresis), 396
pH, electrophoresis and, 74
Phagocyte oxidase (phox), 311
Phagocytic cells, 1028–1029
Plasmodium, 450–451
Plasmodium falciparum, 453
streptococcal, 394–395
viral, 600
PhenoSense assay, 706–707
Phenotypic assays, for human immunodeficiency virus (HIV), 706–707
Phenotyping proteins with mass spectrometry, 40–41
P (Prostate Health Index), 1013
Phellemotus fever, 649
Phlebotomus, in phlebotomis fever, 649
Phlebotomus fever, 649
Phlophilin, 347
Phospholipase C (PLC), 351
Phospholipase A2 receptor, 378
Phosphatidylinositol 3-kinase (PI3K), 351
Phosphatidylinositol- glycan complementation class A (PIG-A) gene, 168
Phosphatidylinositol 3-kinase (PI3K), 351
Phosphatidylinositol- glycan complementation class A (PIG-A) gene, 168
Phosphatase and tensin homolog (PTEN) deletions, 1052
Phosphatidylinositol 3-kinase (PI3K), 351
Phosphoepitope analysis, 732
Phospho-flow, 148, 253–256
antibodies, 235
data analysis, 255
Fixation and permeabilization, 255
Mass cytometry combined with, 256
Staining of cell surface epitopes, 255
Stimuli, 255
Technical considerations, 253, 255
Phospholipase A2 receptor, 378
Phospholipids, for antiphospholipid syndrome, 905–907
Phosphorylated kinase substrates, flow cytometric evaluation of, 199–200
Photography, immunofluorescence, 379–384
Photo-multiplier tube (PMT), 152–154
Phed score, 1081, 1085
Phycocyanin, 161
Phytohemagglutinin (PHA), T cell stimulation by, 269, 271, 277
PI3K (phosphatidylinositol 3-kinase), 351
Pimavanserin, 599
Pimavanserin, 599
PLC (phospholipase C), 351
Plexiforax, 196
PLG gene, 141
PLG gene. See Phorbu myristate acetate
PMBC. See Peripheral blood mononuclear cells; Peripheral blood mononuclear cells (PMBC), cryopreservation of
PMBC, 263–264
Cryopreservation of, 261, 263–267
Functional assays using cryopreserved PMBC, 264–267
Cytoxidase-based assays, 264–265
Cytotoxic assays, 264–265
Proliferative assays, 264–265
Surface markers on cryopreserved PMBC, 265–267
B-cell functional assays, 266–267
Immunophenotyping by flow cytometry, 265–266
mRNA quantification assays, 267
TCR VB repertoire, 266
Technical aspects, 263–264
Quantitative reverse transcription-PCR (qRT-PCR), 8–9
astroviruses, 644
hantaviruses, 660, 663
noroviruses, 641
rabies virus, 667–668
rotaviruses, 640
saposvirines, 642
Quant-IT PicoGreen dsDNA Assay, 1074
Quantum dots (Qdots), 29, 150
Quantitative assays, 1181
QuIC (quaking-induced conversion), 686–687, 690, 692
Radioimmunoprecipitation assay
Radioimmunoprecipitation, 1232
SARS-CoV-2, 1206
RNA, 1222
Rapid influenza diagnostic tests (RIDT), 669–670
Rapid immunoblot strip assay, 661
Rapid influenza diagnostic tests (RIDT), 669–670
Rapid immunoblot strip assay, 661
Rapid influenza diagnostic tests (RIDT), 669–670
Rabies virus, 665–671
RAB27A, 301, 307, 776, 778–779
recombinant proteins, 861
rabies virus, 667–668
Red blood cells, 941–942
Regulatory issues
analyte specific reagents regulation, 1175
assay classification according to regulatory status, 1180–1181
Clinical Laboratory Improvement Amendment (CLIA), 1171–1172,
1174–1175
Good Laboratory Practices (GLP) Regulations, 1175
HLA typing, 1075
laboratory-developed tests regulation, 1175
Regulatory T cell (Treg) assessment of function, 275
disease correlation, 299
functional cellular assays, 261–262,
296–299
immunologic monitoring, 1046
lymphocyte activation, 275
nomenclature, 296
phenotyping, 296–299
suppressor assays, 298–299
Relapsing fever, 420, 426–428
clinical indications and test interpretation,
427–428
culture, 427
direct microscopic examination of
spirochete in blood, 427
disease spectrum, 426–427
epidemiology, 426–427
molecular detection and genotyping, 427
serology, 427
taxonomy, 426
Relative light units, 1118
Relative quantitative assays, 1181
Remission, 1051
Renal disease
acute glomerulonephritis, poststreptococcal, 394–395, 397, 399–401
immunofluorescence in diagnosis of,
376–384
Renilla luciferase, 873
Reostrirade, 640
Replication reduction neutralization test (RRNT), for hantaviruses, 660
Respiratory syncytial virus, 598–607
antigen assays, 604
clinical significance, 600–601
description of agents, 599
direct fluorescent antibody (DFA), 603
epidemiology, 600
immunochromatography, 603–605
measles viruses, 611–612
mumps virus, 614–615
myeloproliferative hyperesinophilic syndromes, 827
noroviruses, 641
rabies virus, 667–668, 671
rotaviruses, 640, 642
rubella virus, 616–617
sapoviruses, 642
T-cell receptor-excision circle (TREC) assay, 716–718
RF. See Rheumatoid factor
RF FIT (rapid fluorescent-focus inhibition test), rabies virus, 669–670
RFLP (restriction fragment length polymorphism), for Rickettsia identification, 467
Rhabdovirus (family), 665
Rhabdovirus, 579, 586
Rheumatic fever, acute, 394–395, 397–401
Rheumatoid arthritis, 897–902
antibodies associated with
antibodies against citrullinated proteins, 898–900
antibodies less specific for rheumatoid arthritis, 898–900
anti-calgastatin, 899
anti-RA33, 899
biomarkers, 922–924
chemokines in, 346–347
combined ACPA and RF testing, 902
diagnosis, 357
environmental triggers, 902
rheumatoid factor (RF), 897–898, 902
testing methods, 902–901
agglutination, 900
comparison of assays, 900
ELISA, 903–901
multi-biomarker disease activity (MBDA), 897, 901
multiplex testing, 901
nephelometry, 900
treatment with cytokine inhibitors, 357, 359–362
IL-1 inhibition, 361–362
IL-6 inhibition, 361
TNF-α inhibition, 360–361
Rheumatoid factor (RF), 543–544
clinical interpretation, 898
combined ACPA and RF testing, 902
cryoautoantibodies, 101–102
factors interfering with measurement, 901–902
in hepatitis C virus infection, 898
overview, 897–898
Rhinosinusitis, viral, 600
Rhinoviruses. See Human rhinovirus
Rhûopsicilhas sanguineus, 461
Rho, 351
RIA. See Radioimmunossay
Ribonucleoprotein (RNP)
antii-RNP antibodies in SLE, 868–869, 873
anti-U1 RNP antibody, 891
anti-U3 RNP antibody, 890
anti-U1/U12 RNP antibody, 890–891
Rickettsia
epidemiology, 461–462
laboratory diagnosis, 465–468
immunodiagnosis, 465–466
interpretation, 468
molecular diagnosis, 467
pathobiology, 464
R. africae, 461–464, 466
R. akari, 461
R. amblyommii, 468
R. australis, 461
R. conorii, 463–466
R. felis, 461
R. parkeri, 461–464, 466
R. prowazekii, 461–463, 465
R. rickettsii, 463–464, 468
R. slovaca, 461–464
R. tsutsugamushi, 461
R. typhi, 461–463, 465
taxonomy, 461–462
Rickettsiaceae, 461–462
Rickettsiales, 461–462
RID. See Radial immunodiffusion
RIDT (rapid influenza diagnostic tests), 503–505, 538, 543, 545
Rift Valley fever virus, 649, 651–652, 655, 663
Rimantadine, 602
Risk assessment, in humoral response in transplantation, 1101
Rituximab, 913, 1066, 1099, 1156
RMIP mutations, 722, 725
RNA concentration quantification, 1133
degradation/integrity, 1132–1133
detection
mumps virus, 614–615
rubella virus, 616–617
extraction
arboviruses, 653–654
for immunoprecipitation analysis in autoimmune myositis, 884
total RNA standard preparation, 883–884
isolation, 5
RNA helicase autoantibodies, 870
RNAlater, 1132
RNA polymerase III antibody, 889–890
RNAs, 5, 1132
RNP. See Ribonucleoprotein
Ro, antibodies to, 869
ROAD (Read, Observe, Ask, Discover) inspection process, 1177
Roche 454 pyrosequencing, 7, 20
Rocio encephalitis, 649
Rocky Mountain spotted fever, 461, 463–466, 468
ROMA, 1012
ROS (reactive oxygen species), 310, 314–316
Rose Bengal test, for Brucella, 477–478
Rosedola, 579
Rosoviruses, 579, 585
Rosetta bacteria for production of large recombinant proteins, 861
Ross River virus, 648–649, 652–655
Rotavirus, 639–640
detection and characterization, 639–640, 642
genome, 639
strains, 639, 641
vaccines, 639
RPR card test, 413–414
RREID (rapid rabies enzyme
immunodiagnosis) assay, 666
RRNT (replication reduction neutralization
test), rabies virus, 669–670
RSO (reverse SSO), 1076–1077
RSV. See Respiratory syncytial
RT-LAMP. See Reverse transcription loop-mediated isothermal amplification
RT-PCR. See Reverse transcription-PCR (RT-PCR)
Rubella virus, 615–616
clinical manifestations, 615–616
complement fixation, 616–617
culture, 616
diagnostic strategies, 616
enzyme immunoassay (EIA), 616–617
false-positives, 617
hemagglutination inhibition, 616–617
indirect fluorescence antibody (IFA), 616–617
interpretation of testing, 617
latex agglutination, 616–617
molecular methods, 616–617
multiplex bead fluorescence immunoassays (FIA), 616–617
passive hemagglutination inhibition, 616–617
rapid diagnosis, 540
reverse-transcriptase (RT)-PCR, 616–617
reverse transcription-loop-mediated isothermal amplification (RT-LAMP), 616
serology, 616–617
technology for testing, 617
transmission, 615
vaccination, 616
virus isolation, 616
Rubella, 610. See also Measles virus
Rubivirus (genus), 599, 610
Runt-related transcription factor 3 (RUNX3), (genus), 599, 610
See also Measles virus
RT-PCR. See Reverse transcription-PCR (RT-PCR)
Rubella virus, 615–616
clinical manifestations, 615–616
complement fixation, 616–617
culture, 616
diagnostic strategies, 616
enzyme immunoassay (EIA), 616–617
false-positives, 617
hemagglutination inhibition, 616–617
indirect fluorescence antibody (IFA), 616–617
interpretation of testing, 617
latex agglutination, 616–617
molecular methods, 616–617
multiplex bead fluorescence immunoassays (FIA), 616–617
passive hemagglutination inhibition, 616–617
rapid diagnosis, 540
reverse-transcriptase (RT)-PCR, 616–617
reverse transcription-loop-mediated isothermal amplification (RT-LAMP), 616
serology, 616–617
technology for testing, 617
transmission, 615
vaccination, 616
virus isolation, 616
Rubella, 610. See also Measles virus
Rubivirus (genus), 599, 610
Runt-related transcription factor 3 (RUNX3), (genus), 599, 610
See also Measles virus
Thyroid-stimulating hormone receptor-blocking antibody, 933–935
assays for, 934–935
clinical uses, 935
nature and properties of, 933–934
Thyroid-stimulating hormone receptor-stimulating antibody, 933–935
Thyroid-stimulating immunoglobulin assay, 934
Thyroxin oxidase, antibodies to, 930–931
TIA-1 protein, 1027
Tick-borne encephalitis, 648–649, 654–655
Tick-borne lymphadenopathy, 463
Tick-borne relapsing fever, 427
Time-of-flight (TOF) mass spectrometer, 37–38, 1142–1143
Time-resolved fluorescence immunoassay (TRFIA), 559
Tissue handling and freezing procedure, for immunofluorescence, 376–377
Tissue transglutaminase, antibodies against, 984–985
Triton, 959, 978
TLRs. See Toll-like receptors
T lymphocyte. See T cell
TMA (transcription-mediated amplification), 548
TMPREX fusion products, 1052
TNE See Tumor necrosis factor
TNF-α. See Tumor necrosis factor-α
TNF-β (tumor necrosis factor-β), 360
Tocilizumab, 361
TOP (time-of-flight) mass spectrometer, 37–38, 1142–1143
Togavirus, 610
Toll-like receptors (TLRs), 349
Toll-like receptors, 349
Toll-like receptor-1 (T1R1), 610
Toll-like receptors (TLRS). See Toll-like receptors
Toluidine blue
Top-down MS, 39–40
Topoisomerase I, antibody to, 889
Toxin, antibody neutralization of, 282
Toxocariasis, 497
Toxoplasmosis, 497–498, 1000
TP-PA (Treponema pallidum passive particle agglutination) test, 414–417
Tracheitis, viral, 601
Trachoma, 453
Transcription-mediated amplification (TMA), 449
Transcriptome, 1132
Transfection, electrophoresis of, 75–76, 79, 82–83, 86
Transforming growth factor β (TGFβ), 339
Transfusion-related acute lung injury (TRALI), 1093, 1099
Transient receptor potential melastatin 1 (TRPM1), 988
Translocations in lymphomas, 1019–1020, 1022
Transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), 740
Transmigration assays, 349
Transmissible spongiform encephalopathies (TSEs), 682–692
Transplacental transfer of antibodies
measles viruses, 611
mumps viruses, 614
Transplanted, 1263–1168
Cellular immune response, evaluation of, 1108–1121
cell division and precursor frequency analysis using multiparameter CFSE-MLC, 1111–1112
clinical applications, 1120–1121
cytokine measurements, 1113–1116
ELISPOT assay, 1113–1114
flow cytometry, 1114–1116
immune cell function assay, 1116–1119
intracellular ATP synthesis assay, 1116–1119
intracellular cytokine staining (ICS), 1114–1116
mixed lymphocyte culture assay, 1108–1110
propagation of lymphocyte cultures from allograft biopsy specimens, 1110–1111
validation of assays, 1110–1111
chimerism testing, 1101–1105
demand for, 1065–1066
humoral response, evaluation of, 1091–1091
goals and aims, 1092
interpretation, 1097–1101
methods, 1092–1096
relevance, 1091–1092
test validation, 1096–1097
killer cell immunoglobulin-like receptors (KIRs), 1150–1158
non-HLA antibodies in organ transplantation, 1086, 1103–1106
clinical relevance, 1103
mechanisms of allograft injury, 1103–1104
non-HLA antigens implicated in transplantation, 1103
testing methods, 1104–1105
testing procedures, 1105–1106
rabies virus and, 666
risk assessment, 1101
Transplant rejection
chemokines in, 346–348
clinical application of molecular characterization of human allografts, 1135–1140
microarray studies, 1136–1139
real-time quantitative PCR, 1135–1136
sequencing, 1140
complement activation, 1123–1129
acquired, 1128–1129
chronic rejection, 1129
composite tissue grafts, 1127
test for rejection, 1127
heart, 1126–1127
hyperacute rejection, 1128
kidney, 1126
liver, 1127
lung, 1127
pancreas, 1127
polyclonal and monoclonal antibodies to Clq, 1123
polyclonal and monoclonal antibodies to C3 split products, 1124–1126
polyclonal and monoclonal antibodies to C4d, 1123–1124
polyclonal and monoclonal antibodies to C5b-C9, 1126
products in specific organ transplants, 1126–1127
small intestine, 1127
soluble complement products in body fluids, 1127–1128
soluble products in serum, urine, or bronchoalveolar lavage fluid, 1127–1128
specific organ transplants, 1126–1127
types of injury, 1128–1129
gene expression profiles in allografts, techniques for characterization, 1132–1135
absolute quantification of mRNA levels by PCR, 1133
competitive quantitative PCR, 1133
miRNA assays, 1134
next-generation sequencing, 1134–1135
PCR, 1132–1133
preamplification-enhanced real-time PCR assay, 1133–1134
real-time quantitative PCR, 1133
molecular characterization in solid organ transplantation, 1132–1146
clinical applications of human allografts, 1135–1140
gene expression profiles in allografts, 1132–1135
protein biomarker validation platforms, 1145
proteome and peptidome, 1140–1145
protein biomarker validation platforms, 1145
ELISA, 1145
selected reaction monitoring, 1145
proteome studies, 1140–1145
bottom-up approach, 1140
capillary electrophoresis followed by mass spectrometry (CE-MS), 1142–1143
difference gel electrophoresis (DIGE), 1140, 1142–1143
gel-based studies, 1140, 1142, 1143
high-throughput studies, 1140, 1142–1144
liquid chromatography coupled with mass spectrometry (LC-MS), 1142–1143
peptidomics, 1144
protein arrays, 1144–1145
surface-enhanced laser desorption ionization-time of flight mass spectrometry (SELDI-TOF-MS), 1142–1143
top-down approach, 1140, 1142–1143
two-dimensional gel electrophoresis (2DE), 1140, 1142–1143
Transportation of frozen PBMC, 263
Transhytentin electrophoresis of, 75, 77
in primary amyloidosis, 115
TREC (T-cell receptor excision circle), 8, 713, 715–719, 725
Treg. See Regulatory T cell
Treponema carateum, 412
Treponema denticola, 412
Treponema pallidum, 412–417
clinical manifestations, 412–413
epidemiology, 412
incidence, 412
molecular biology, 412
natural history, 412–423
subsp. endemicum, 412
subsp. pertenue, 412
testing algorithms, 416–417
direct detection, 413
indicators for, 413
nontreponemal tests, 413–414
quality control and assurance, 415–416
rapid point-of-care tests, 415
serology, 413–415
treponemal antibody tests, 414–415
Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Sun, 09 Jun 2019 05:17:52
SUBJECT INDEX ■ 1237
large vessel vasculitis, 911
medium vessel vasculitis, 911
microscopic polyangiitis, 913
polyarteritis nodosa, 911
small vessel vasculitis, 911
Takayasu's arteritis, 911
VCF file, 8
Venereal Disease Research Laboratory (VDRL) assay, 413–416
Venezuelan equine encephalitis (VEE), 650, 652, 656
Veriﬁcation, 1181
Verruga peruana, 475
Viability dyes, in polychromatoflows
cytometry, 149–150, 158–160
Vimentin, 899, 1051, 1103
Viral infections, 537. See also specific viruses
diagnostic methods, 538–547
antibody response, 543–544
chemiluminescence immunoassay (CLEIA), 543
culture, 541, 543
direct detection, 538–543
enzyme immunoassay (EIA), 541–542
genotyping assays, 544, 546
immunofluorescence, 538, 541–542
immunologic methods, 538–544
lateral flow immunoassay, 541–543
latex agglutination, 541–542
molecular methods, 544–546
multiplex assays, 544–545
nucleic acid amplification techniques (NAATs), 539–540, 544–546
PCR, 544–545
quantitative assays, 544–546
rapid, table of, 539–540
test monitoring, 547
test selection, 546
test validation, 546–547
natural killer (NK) cell control of
infections in hematopoietic stem cell
transplantation, 1155–1156
in solid organ transplantation, 1156–1157
ViroSeq HIV-1 genotyping system, 706–707
Virtual crossmatching, 1065, 1097–1099
Virus
antibody neutralization of, 282
cardiovascular diseases and, 979
metagenomic analysis of, 22
rubella virus, 616
mumps virus, 614–615
rubella virus, 616
varicella-zoster virus, 557–558
Viscometer, 71
Viscosity
description, 65, 71
measurement, 71–72
clinical aspects of, 71–72
methods, 71
viSNE, 253
Vitronectin, 138, 761
VDJ recombination, 8, 56–58
VN (vitronectin) deﬁciency, 761
VNTR (variable-number tandem repeat), 1161–1164
Voltage pulse, 152–153
VpreB protein, 57
VZV. See Varicella-zoster virus

Waldenström’s macroglobulins, 89, 93, 235, 242–243
free light chain assay, 69
hyperviscosity and, 71–72
lgM gammapathy, 71, 113, 115
immunoglobulin measurement, 70
lymphoplasmacytic lymphoma, 1024
monoclonal gammopathy, 113, 115–116, 118, 121
pyroglobulins and, 110
WANNOVAR, 10–11
Washington state, clinical immunology
laboratory certifying program, 1175
WASP (Wiskott-Aldrich syndrome protein), 729, 731
WASPMAL (World Association of Societies of
Pathology and Laboratory Medicine), 1178
Wells-Brookﬁeld viscometer, 71
Western blot
anti-glomerular basement membrane
(anti-GBM) antibodies, 385–387
anti-phospholipase A2 receptor antibodies, 387–388
antiretinal antibodies, 100
Borrelia burgdorferi, 422–423, 425
hantaviruses, 660–661
human herpesvirus-6, 583
human herpesvirus-7, 586
human immunodeﬁciency virus (HIV), 703
human T-cell lymphotropic virus, 676–677
Mycoplasma pneumoniae, 445
pityriatric antibodies, 947
prion diseases, 686, 690
Western equine encephalitis (WEE), 649–652, 654, 656
Westgard, James O., 1188
West Nile virus, 648–649, 652–656
WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis)
syndrome, 763–767
White blood cells, paroxysmal nocturnal
hemoglobinuria (PNH), 168–180
WHO. See World Health Organization
Whole-exome sequencing, 1088
Whole-genome sequencing, 1088
Whole-lung antigen challenge, 811
Whooping cough, 600
Winter vomiting disease, 640
WISH cells, 358
Wiskott-Aldrich syndrome, 281, 713, 723,
729, 795–796
Wolbachia, 461–462
Woodchuck hepatitis virus, 624
World Association of Societies of
Pathology and Laboratory Medicine
(WASPMAL), 1178
World Health Organization (WHO)
classification of lymphoid neoplasms, 1015–1017
laboratory quality assurance, 1178
Nomenclature Committee for Factors of the
HLA System, 1072
Wuchereria bancrofti, 494
WU polyomavirus, 598, 600
X(C) chemokines, 343
Xenopus laevis, 462
XAPI/BIRC4, 729, 775–776
X-linked chromosomal inactivation, 1018–1019
X-linked disorders
- agammaglobulinemia, 32–33
- anhidrotic ectodermal dysplasia with immunodeficiency, 723, 728
- antibody deficiency, 743–745
- hyper IgM syndrome, 201, 281, 726, 742–744
- lymphoproliferative disease, 724, 729, 775–776
- lymphoproliferative syndrome 1, 743–745
- lymphoproliferative syndrome 2, 743–745

X-linked inhibitor of apoptosis (XIAP), 724, 729, 731

Xpert Flu assay, 605
Xpert HIV-1 Qual, 702
Xpert HIV-1 viral load assay, 702
Xpert MTB/RIF assay, 433
xTAG Respiratory Virus Panel, 605–606

Yellow fever virus, 648–656

Zanamivir, 602
Zap-70 (zeta chain-associated protein kinase), 226–227, 229–232, 1024
ZAP-70 deficiency, 722, 727
Zinc transporter-8 (ZnT8) autoantibodies, 936–938, 941–942
Zombie stains, 149
Zone electrophoresis, 75–76
Zoonoses, hantaviruses as, 658
Zoster, 556. See also Varicella-zoster virus