Molecular Genetics of Mycobacteria

2nd Edition
Molecular Genetics of Mycobacteria

2nd Edition

EDITED BY

GRAHAM F. HATFULL
Department of Biological Sciences,
University of Pittsburgh, Pittsburgh, PA 15260

AND

WILLIAM R. JACOBS, JR.
Howard Hughes Medical Institute,
Albert Einstein College of Medicine, Bronx, NY 10461

ASM Press
Washington, DC
Contents

I. GENOMES, GENOMICS, AND GENETIC EXCHANGE

1. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment 3
 William R. Jacobs, Jr.

2. Mycobacterial Pathogenomics and Evolution 27
 Daria Bottai, Timothy P. Stinear, Philip Supply, and Roland Brosch

3. BCG Vaccines 49
 Vanessa Tran, Jun Liu, and Marcel A. Behr

 Keith M. Derbyshire and Todd A. Gray

5. Molecular Genetics of Mycobacteriophages 81
 Graham F. Hatfull

6. Genetics of Phage Lysis 121
 Madalena Pimentel
II. GENE EXPRESSION AND REGULATION

7. Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence
 Riccardo Manganelli 137

8. Transcription Factor Binding Site Mapping Using ChIP-Seq
 Suma Jaini, Anna Lyubetskaya, Antonio Gomes, Matthew Peterson, Sang Tae Park, Sahadevan Raman, Gary Schoolnik, and James Galagan 161

9. Noncoding RNA in Mycobacteria
 Kristine B. Arnvig, Teresa Cortes, and Douglas B. Young 183

10. Two-Component Regulatory Systems of Mycobacteria
 Tanya Parish 209

11. Regulated Expression Systems for Mycobacteria and Their Applications
 Dirk Schnappinger and Sabine Ehrt 225

III. THE MYCOBACTERIAL PROTEOME

12. Mycobacterium tuberculosis in the Proteomics Era
 Martin Gengenbacher, Jeppe Mouritsen, Olga T. Schubert, Ruedi Aebersold, and Stefan H. E. Kaufmann 241

13. Structural Annotation of the Mycobacterium tuberculosis Proteome
 Nagasuma Chandra, Sankaran Sandhya, and Praveen Anand 261

14. Cyclic AMP Signaling in Mycobacteria
 Gwendowlyn S. Knapp and Kathleen A. McDonough 281

IV. METABOLISM

15. The Physiology and Genetics of Oxidative Stress in Mycobacteria
 Bridgette M. Cumming, Dirk Lamprecht, Ryan M. Wells, Vikram Saini, James H. Mazorodze, and Adrie J. C. Steyn 299

16. Metabolomics of Central Carbon Metabolism in Mycobacterium tuberculosis
 Anthony D. Baughn and Kyu Y. Rhee 323

17. Mycobacterial Lipidomics
 Emilie Layre, Reem Al-Mubarak, John T. Belisle, and D. Branch Moody 341

18. Genetics of Mycobacterial Trehalose Metabolism
 Rainer Kalscheuer and Hendrik Koliwer-Brandl 361
19. Metallobiology of Tuberculosis 377
 G. MARCELA RODRIGUEZ AND OLIVIER NEYROLLES

20. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria 389
 GREGORY M. COOK, KIEL HARDS, CATHERINE VILCHÈZE, TRAVIS HARTMAN, AND MICHAEL BERNEY

V. GENETICS OF DRUG RESISTANCE

21. Molecular Basis of Drug Resistance in Mycobacterium tuberculosis 413
 KEIRA A. COHEN, WILLIAM R. BISHAI, AND ALEXANDER S. PYM

22. Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities 431
 CATHERINE VILCHÈZE AND WILLIAM R. JACOBS, JR.

23. The Molecular Genetics of Fluoroquinolone Resistance in Mycobacterium tuberculosis 455
 CLAUDINE MAYER AND HOWARD TAKIFF

24. Mechanisms of Pyrazinamide Action and Resistance 479
 YING ZHANG, WANLIANG SHI, WENHONG ZHANG, AND DENIS MITCHISON

25. Genetic Strategies for Identifying New Drug Targets 493
 ANDREJ TRAUNER, CHRISTOPHER M. SASSETTI, AND ERIC J. RUBIN

VI. GENETICS OF MEMBRANE AND CELL WALL BIOSYNTHESIS

26. Genetics of Peptidoglycan Biosynthesis 513
 MARTIN S. PAVELKA, JR., SEBABRATA MAHAPATRA, AND DEAN C. CRICK

27. Genetics of Mycobacterial Arabinogalactan and Lipoarabinomannan Assembly 535
 MONIKA JANKUTE, SHIPRA GROVER, HELEN L. BIRCH, AND GURDyal S. BESRA

28. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids 559
 MAMADOU DAFFÉ, DEAN C. CRICK, AND MARY JACKSON

29. The Molecular Genetics of Mycolic Acid Biosynthesis 611
 JAKUB Pawełczyk AND LAURENT KREMER
VII. GENETICS OF MACROMOLECULAR BIOSYNTHESIS

30. Nucleotide Metabolism and DNA Replication 635
 Digby F. Warner, Joanna C. Evans, and Valerie Mizrahi

31. Double-Strand DNA Break Repair in Mycobacteria 657
 Michael S. Glickman

32. The Pup-Proteasome System of Mycobacteria 667
 Nadine J. Bode and K. Heran Darwin

33. Mycobacterium tuberculosis Serine/Threonine
 Protein Kinases 681
 Sladjana Prisic and Robert N. Husson

VIII. THE MYCOBACTERIAL LIFESTYLE, PERSISTENCE,
 AND MACROPHAGE SURVIVAL

34. The Spectrum of Drug Susceptibility in Mycobacteria 711
 Bree B. Aldridge, Iris Keren, and Sarah M. Fortune

35. The Sculpting of the Mycobacterium tuberculosis Genome by Host
 Cell-Derived Pressures 727
 David G. Russell, Wonsik Lee, Shumin Tan, Neelima Sukumar,
 Maria Podinovskaia, Ruth J. Fahey, and Brian C. VanderVen

36. Evasion of Innate and Adaptive Immunity by
 Mycobacterium tuberculosis 747
 Michael F. Goldberg, Neeraj K. Saini, and Steven A. Porcelli

37. Mycobacterial Biofilms 773
 Jacobs P. Richards and Anil K. Ojha

Index 785
Contributors

Ruedi Aebersold
Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, and Faculty of Science, University of Zurich, 8057 Zurich, Switzerland

Bree B. Aldridge
Department of Molecular Biology & Microbiology and Department of Biomedical Engineering, Tufts University, Boston, MA 02111, and Medford, MA 02155

Reem Al-Mubarak
Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523

Praveen Anand
Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India

Kristine B. Arnvig
Mycobacterial Research Division, National Institute for Medical Research, London NW7 1AA, United Kingdom

Anthony D. Baughn
Department of Microbiology, University of Minnesota, 420 Delaware St. SE, MMC196, Mayo Building Room 1020, Minneapolis, MN 55455

Marcel A. Behr
McGill International TB Centre, Montreal, Quebec, Canada, H3G 1A4
Contributors

John T. Belisle
Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523

Michael Berney
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Gurdyal S. Besra
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

Helen L. Birch
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

William R. Bishai
Johns Hopkins School of Medicine, The Center for TB Research, 1550 Orleans St., CRBII, Room 103, Baltimore, MD 21287

Nadine J. Bode
Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, NY 10016

Daria Bottai
Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia Università di Pisa, Pisa, Italy

Roland Brosch
Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France

Nagasuma Chandra
Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India

Keira A. Cohen
KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, 719 Umbilo Road, Durban, South Africa, and Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115

Gregory M. Cook
University of Otago, Department of Microbiology and Immunology, Dunedin, New Zealand

Teresa Cortes
Mycobacterial Research Division, National Institute for Medical Research, London NW7 1AA, United Kingdom

Dean C. Crick
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682

Bridgette M. Cumming
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa
Contributors

Mamadou Daffé
CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, and the Université de Toulouse Paul Sabatier, F-31077 Toulouse, France

K. Heran Darwin
Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, NY 10016

Keith M. Derbyshire
Division of Genetics, Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, University at Albany, Albany, NY 12201

Sabine Ehrt
Department of Microbiology and Immunology, Weill Medical College, and Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065

Joanna C. Evans
Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, P/Bag X3, Rondebosch 7700, South Africa

Ruth J. Fahey
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Sarah M. Fortune
Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115

James Galagan
Department of Biomedical Engineering, Bioinformatics Program, and National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02215, and Broad Institute of MIT and Harvard, Cambridge, MA 02142

Martin Gengenbacher
Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany

Michael S. Glickman
Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10803

Michael F. Goldberg
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Antonio Gomes
Bioinformatics Program, Boston University, Boston, MA 02215

Todd A. Gray
Division of Genetics, Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, University at Albany, Albany, NY 12201
SHIPTA GROVER
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

KIEL HARD
University of Otago, Department of Microbiology and Immunology, Dunedin, New Zealand

TRAVIS HARTMAN
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

GRAHAM F. HATFULL
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260

ROBERT N. HUSSON
Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115

MARY JACKSON
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682

WILLIAM R. JACOBS, JR.
Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

SUMA JAINI
Department of Biomedical Engineering and National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02115

MONIKA JANKUTE
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

RAINER KALSCHEUER
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany

STEFAN H. E. KAUFMANN
Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany

IRIS KEREN
Antimicrobial Discovery Center and Department of Biology, Northeastern University, Boston, MA 02115

GWENDOWLIN S. KNAPP
Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002

HENDRIK KOLIWER-BRANDL
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
Contributors

LAURENT KREMER
Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier 2 et 1, CNRS; UMR 5235, case 107; and INSERM, DIMNP, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France

DIRK LAMPRECHT
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa

EMILIE LAYRE
Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115

WONSIK LEE
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

JUN LIU
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8

ANNA LYUBETSKAYA
Bioinformatics Program, Boston University, Boston, MA 02215

SEBAKRATA MAHAPATRA
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523

RICCARDO MANGANELLI
Department of Molecular Medicine, University of Padova, Italy

CLAUDINE MAYER
Unité de Microbiologie Structurale, Institut Pasteur; UMR 3528 du CNRS; and Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 75015, Paris, France

JAMES H. MAZORODZE
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa

KATHLEEN A. MCCARTHY
Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, and Department of Biomedical Sciences, University at Albany, Albany, NY 12222

DENIS MITCHISON
Centre for Infection, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom

VALERIE MIZRAHI
Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, P/Bag X3, Rondebosch 7700, South Africa
D. BRANCH MOODY
Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115

JEPP MOURITSEN
Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland

OLIVIER NEYROLLES
Centre National de la Recherche Scientifique & Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France

ANIL K. OJHA
Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261

TANYA PARISH
Infectious Disease Research Institute, Seattle, WA 98102, and Queen Mary University of London, London, United Kingdom

SANG TAE PARK
Macrogen Clinical Laboratory, Macrogen Corp, Rockville, MD 20850

MARTIN S. PAVELKA, JR.
Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642

JAKUB PAWEŁCZYK
Institute for Medical Biology, Polish Academy of Sciences, Lodz, Poland

MATTHEW PETERSON
Department of Biomedical Engineering, Boston University, Boston, MA 02215

MADALENA PIMENTEL
Centro de Patogénese Molecular, Unidade dos Retrovirus e Infecções Associadas, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal

MARIA PODINOVSKAIA
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

STEVEN A. PORCELLI
Department of Microbiology and Immunology and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461

SLADJANA PRISIC
Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115

ALEXANDER S. PYM
KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, 719 Umbilo Road, Durban, South Africa

SAHADEVAN RAMAN
National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02215
Contributors

Kyu Y. Rhee
Department of Medicine, Weill Cornell Medical College, 1300 York Avenue
A-431A, New York, NY 10065

Jacobs P. Richards
Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261

G. Marcela Rodriguez
Public Health Research Institute Center & Department of Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103

Eric J. Rubin
Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115

David G. Russell
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Vikram Saini
Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294

Neeraj K. Saini
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Sankaran Sandhya
Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India

Christopher M. Sassetti
University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655

Dirk Schnappinger
Department of Microbiology and Immunology, Weill Medical College, and Program in Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065

Gary Schoolnik
Department of Medicine and Department of Microbiology and Immunology, Stanford Medical School, Stanford, CA 94305

Olga T. Schubert
Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland

Wanliang Shi
Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205

Adrie J. C. Steyn
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa, and Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
Timothy P. Stinear
Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia

Neelima Sukumar
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Philip Supply
CNRS UMR 8204; INSERM, U1019; Center for Infection and Immunity of Lille, Institut Pasteur de Lille; and Université Lille Nord de France, Lille, France

Howard Takiff
Laboratorio de Genética Molecular, CMBC, IVIC, Caracas, Venezuela

Shumin Tan
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Vanessa Tran
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8

Andrej Trauner
Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115

Brian C. VanderVen
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Catherine Vilchèze
Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Digby F. Warner
Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, P/Bag X3, Rondebosch 7700, South Africa

Ryan M. Wells
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa, and Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294

Douglas B. Young
Mycobacterial Research Division, National Institute for Medical Research, London NW7 1AA, United Kingdom

Ying Zhang
Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, and Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China

Wenhong Zhang
Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
Preface

Fourteen years have passed since the first edition of Molecular Genetics of Mycobacteria was published in 2000, and the mycobacterial field has exploded in the intervening time. In 2000 the Mycobacterium tuberculosis genome sequence had recently been reported, and there was considerable optimism for the advances in tuberculosis genetics that this would stimulate. This Second Edition of Molecular Genetics of Mycobacteria offers insights into how these promises have been realized, as well as the substantial impact of the numerous new molecular tools developed over the past dozen years. The field of mycobacterial genetics has thus expanded dramatically, with investigations into new areas of mycobacterial growth, replication, metabolism, physiology, drug susceptibility, and virulence.

The size and scope of Molecular Genetics of Mycobacteria, Second Edition, reflect this rapidly expanding field. This new edition contains double the number of chapters in the first edition and includes many topics not discussed there. The book is divided into eight main sections that focus on genomics and genetic exchange, gene expression, the proteome, metabolism, drug resistance, cell wall biosynthesis, macromolecular biosynthesis, and growth and persistence. Each contains several chapters written by leading experts in the field and includes a genetic perspective on the various topics discussed. The field is growing so rapidly that there are undoubtedly some specific topics and areas—especially those developed over the past year—that we have not been able to include and will have to await another edition.

Although M. tuberculosis is now fully tractable to genetic manipulation, tuberculosis the disease advances with little abatement of its impact on human health. Better clinical management across the world has led to steadying of the numbers of new cases reported each year, tuberculosis mortality, and the total number of infected people. Nonetheless, most of the problems in tuberculosis control that existed in 2000 are still with us today. The only available vaccine is BCG, with its
dubious efficacy against adult pulmonary tuberculosis; drug resistance continues
to grow; antituberculosis drug regimens have barely changed; and diagnosis is
either slow or costly. The good news is that the advances in mycobacterial genet-
ics are beginning to be reflected in exciting recent developments. New diagnostic
approaches can determine rifampin resistance within a few hours, promising new
drugs are progressing through the pipeline and into the clinic, and a range of
newly developed vaccines are being evaluated. The fruits of 30 years of intensive
genetic investigations are finally beginning to emerge. But there remains much
to learn about the mycobacteria and their curious but deadly habits and habi-
tats. We anticipate that molecular genetic approaches will blunt the defenses of
humanity’s deadliest microbial enemies over the next dozen years. It is our hope
that this book inspires both newcomers to the field and veterans in tuberculosis
research alike to think about tuberculosis problems with fresh perspectives and
understanding.

We would like to thank Ellie Tupper of ASM Press for her tireless efforts; Greg
Payne, ASM Press, for his continual encouragement and advice; and our excep-
tionally gifted and dedicated authors who contributed so splendidly to this book.

Graham F. Hatfull
William R. Jacobs, Jr.
Index

A
ABC transporter, in trehalose transport, 365, 369
Abrahams, G. L., 503
Acadian phage, 128
acc genes, 615–616
Accelerator, in asymmetric growth, 716
Accurate-mass retention time values, 342
aceA gene, 146
Acetamidase system, switches, 225, 228
Acetylated PIMs, 545–546
Acetylation, 247, 289
Acetyl-CoA carboxylase, 615–616
N-Acetylglucosamine, in lysis, 122
N-Acetylglucosamine rhamnose linker, in peptidoglycan synthesis, 520
N-Acetylmuramidases, in lysis, 122
N-Acetyl-muramyl-L-alanine amidases, in lysis, 122, 124
Acyltransferases, 563, 574
Acyltrehaloses, 572–579
Adams, K. N., 715
Adaptive immunity, evasion of, 756–762
Adaptive response, in signal transduction, 681
AddAB protein, 658
Adenosine deaminase, 639
Adenosine kinase, 639–640
S-Adenosylmethionine, 311
S-Adenosylmethionine-dependent methyltransferase, 619
Adenylyl cyclases, in cyclic AMP signaling, 281, 283–285
Adephanahage phage, 106
AdnAB protein, 658, 660
Ag85 antigens, 755–756
ahp genes and Ahp proteins, 151, 232, 304, 417, 436, 733
Airborne pathogens, biosafety requirements for, 4–5
Akhter, Y., 188
Alanine dehydrogenase, 245–246
Alanine ligase, 515
Alanine racemase, 232, 500, 515
l-Alanyl-l-glutamine-meso-diaminopimelyl-d-alanine, 513
Alber, M., 365
AlbG protein, 469
Albicidin, 469
Aldridge, B. B., 716
Alkyl hydroperoxidase reductase, 733
Allelic exchange reactions, 17–18
Alma phage, 97
Almeida, D., 418
Aldos, S., 735
Alpha/beta hydrolases, 268
Alpha-glucans, 362, 370–372
Alpha-mycolic acids, 613
ald gene, 414
Alternative sigma factor density, 138
Alternator, in asymmetric growth, 716
Alveolar surface area, 301
Mycobacterium avium-intracellularare-
scrofulaceum complex, 63–64
Mycobacterium bovis
adenylate cyclases of, 284
BCG derived from, 49, 51
carbon metabolism in, 329
cell envelope composition of, 577, 581,
585–586
energetics of, 394–395
gene transfer in, 16
genetic switches in, 232
genomics of, 29, 31, 33, 35, 37
horizontal gene transfer in, 61
lipidomics of, 353, 354
mycolic acids of, 616
noncoding RNAs of, 198
pathogenicity of, 27
phage lysis and, 127
phosphatidyl-mylo-inositol glycolipids of,
542, 545, 548
Pup-proteasome system of, 670
redox reactions in, 300
resistance to, 417, 434, 437, 484
sigma factors of, 140, 144, 147, 150–151
transduction in, 16
Mycobacterium bovis BCG, 49–59
adenylate cyclases of, 284
antigen integration into, 4
as attenuated member of Mycobacterium
tuberculosis complex, 51
for bladder cancer, 56
buffers of, 309, 313
cAMP signaling in, 282, 286–288, 290
cell envelope composition of, 559, 562,
574, 577, 579, 581, 585–586, 590
deletions in, 16–17
energetics of, 395, 399, 402–404
genomics of, 35, 37–38, 51–56
immune system evasion by, 747, 752
metabolism of, 379
mutants of, 5, 19
mycolic acids of, 619–621
phosphatidyl-mylo-inositol glycolipids of,
542–543, 546
proteomics of, 245–249
resistance in, 417, 435, 437–438, 442, 467
STPKs of, 661–663
substrains of early vs. late, 49–51
evolution of, 51–56
history of, 49–51
propagation of, 53–56
subunit vaccines, 252–253
trehalose in, 363–364
two-component regulatory system of,
209–210, 212–213, 216
in vacuo, 252–253
Mycobacterium butyricum, 329
Mycobacterium canetti
cell envelope composition of, 582
coguection in, 72–73
genomics of, 28–29, 32–34, 37
horizontal gene transfer in, 61–62
noncoding RNAs of, 197
resistance in, 486–487
trehalose in, 368
Mycobacterium caprae
genomics of, 31
horizontal gene transfer in, 61
sigma factors of, 151
Mycobacterium chelonae
cell envelope composition of, 579,
588–589
phage interactions with, 99
phosphatidyl-mylo-inositol glycolipids of,
542–543, 545–546
resistance in, 418
Mycobacterium chlorophenolicum, 571
Mycobacterium falkum, 579
Mycobacterium farrinogenes, 613
Mycobacterium genitalium, 13
in biofilms, 777
cell envelope composition of, 577
phage interactions with, 99
phosphatidyl-mylo-inositol glycolipids of,
543–544
plasmids of, 63
resistance in, 466–467
Mycobacterium frigenes, 8
Mycobacterium gastri, 581
Mycobacterium gilvum, 151
Mycobacterium gordone, 777
Mycobacterium haemophilum, 581
Mycobacterium kansasii
cell envelope composition of, 561, 572,
581, 586, 590
energetics of, 402
genomics of, 30, 33
phosphatidyl-mylo-inositol glycolipids of,
542
sigma factors of, 151
trehalose in, 368
Mycobacterium leprae
adenylate cyclases of, 284
BCG protection against, 50
cell envelope composition of, 560, 570,
581, 585–586, 591
drug targets of, 349
energetics of, 400
mycolic acids of, 618
noncoding RNAs of, 192, 199
nucl soils metabolism in, 636–637
pathogenicity of, 27
peptidoglycan of, 513, 517, 523–524, 526
phosphatidyl-mylo-inositol glycolipids of,
542, 545, 546
proteomics of, 273
Pup-proteasome system of, 668
regulatory systems in, 214
resistance in, 418, 467
safety in handling, 5–10
sigma factors of, 141, 151
STPKs of, 683
Mycobacterium lepraeum, 560, 587
Mycobacterium marinum
adenylate cyclases of, 284
in biofilms, 778
cell envelope composition of, 559, 571,
579–581
drug susceptibility in, 715
energetics of, 396, 402
mycolic acids of, 623
pathogenicity of, 27
peptide glycan of, 524
phage interactions with, 100
phosphatidyl-mylo-inositol glycolipids of,
542, 548
resistance in, 467
sigma factors of, 141, 151
trehalose in, 365, 368–369
Mycobacterium microti
cAMP signaling in, 290
cell envelope composition of, 581,
585, 586
genomics of, 31, 35, 37, 51
horizontal gene transfer in, 61
Mycobacterium mungi, 31, 37, 51
Mycobacterium oryisis, 31
Mycobacterium phlei, 571
Mycobacterium paratuberculosis
sigma factors of, 149–150
transposons of, 15
Mycobacterium pinnipedi
acellular composition of, 585
genomics of, 31
horizontal gene transfer in, 61
Mycobacterium protobacteriosis, 34, 72
Mycobacterium scrupulaceum, 99
Mycobacterium senegalense, 613
Mycobacterium smegmatis
adenylate cyclases of, 284
arabinogalactan of, 536, 538–541
in biofilms, 776–779
buffers of, 309, 313
cAMP signaling in, 285–287, 289–291
carbon metabolism in, 325–326, 333
cell envelope composition of, 559,
561–562, 566–567, 571–572,
577–579, 587, 589–590, 592
conjugation in, 63–64, 67, 71–72, 75–76
defenses against reactive species, 305
DNA replication in, 644
double-strand DNA break repair in, 658,
661–663
drug susceptibility in, 714–716
energetics of, 394–403
gene transfer to, 55
genetic switches in, 225–229, 231–232
genomics of, 58, 29, 33, 37
immune system evasion by, 751–752
metabolism of, 378
in Mycobacterium tuberculosis gene
transfer, 4–5, 11–17
mycolic acids of, 613, 615–616,
618–619, 623
noncoding RNAs of, 189, 192–193, 200
nucl soils metabolism in, 636–638, 640
peptide glycan of, 515, 517, 520–522,
524–527
phage interactions with, 81–82, 84, 95,
99–108
phage lysis and, 123–125, 127, 129–130
phosphatidyl-mylo-inositol glycolipids of,
543–550
Pup-proteasome system of, 668–669,
672–675
Index
Nitrogen compounds, see Reactive nitrogen species
NusA transcription factor, 186
Outer membrane
OtsA-OtsB pathway, 362–365
Orotate phosphoribosyltransferase, 638
Orme, I. M., 779
Organic cation transporter, 312
Optimus phage, 99
Open reading frames, in
Ontology, gene, 263–265
One-component signaling systems, 681
Obligate aerobe, Mycobacterium tuberculosis as, 302
OFF switches, 186, 189
Oftoxacin, 456–457, 462–463, 466, 467
O'Hare, H. M., 696
Ojha, A. K., 614, 715, 779–780
Ofloxacin, 456–457, 462–463, 466, 467
Orf2 protein, 513
NOD-like receptors, 747–750
Noncanonical translational start codons, 144–145
Noncoding RNAs, 183–207
Nuci gene and NudC protein, 438–439
nudC
Nucleotide excision repair, 663
Nucleoid-associated proteins, 174–175
Nuclear magnetic spectroscopy, in
NRP proteins, 399–400
genes and Nrd proteins, 641
nrd
NRAMP (natural-resistance-associated
Nod2 protein, 513–533
Nocardia farcinica
Nocardia, mycolic acids of, 613
Northern blot analysis, for RNA, 198–199
Norr proteins, 466, 714
Ojha, A. K., 614, 715, 779–780
Ofloxacin, 456–457, 462–463, 466, 467
Nonpromoter binding, in ChIP-Seq,
Non-replicating persistence, 395
Nonstructural genes, 94–95, 97
Norfloxacin, 467
Nor proteins, 466, 714
Overexpression libraries, 499
Oxy proteins, 198
Oxygen deficiency, see Hypoxia
P2 protein, 144
P3 protein, 144
P3 derivatives, 64–65
PA-824, 300, 487, 501
PacI restriction enzyme, 14
paf gene, 667, 671–674, 676
pAL5000 plasmid, 4, 13, 65
pap genes and Pap proteins, 233, 485, 487,
307, 670, 672
pap genes and Pap proteins, 212, 366–
368, 574
Par proteins, 457
Para-aminosalicylic acid
Oxidative stress, 192–193, 299–322
defense strategies for, 305–312
definition of, 300
detoxification for, 305–312
double-strand DNA breaks in, 657
in lung, 301–302
PZA activity and, 484, 485
response to, 140–141, 144, 147, 149,
151–152
Oxidative phosphorylation, energetics of, 299
Pep2 protein, 591–592
PeptideAtlas database, 249
Pep2 protein, 147, 213
Peptide(s)
cross-linking of, in peptidoglycan
synthesis, 520
from major histocompatibility complex,
759–762
for vaccines, 252–253
Pep2 protein, 147, 213
Peptide deformylase, 494
PeptideAtlas database, 249
Pep2 protein, 591–592
Pep2 protein, 147, 213
Pentraxin 2, 757
Periplasm, 350
Peroxidase/peroxynitrite reductase, 733
Peroxidasess, 304
Peroxiredoxin, 304
Peroxide/proliferator activated receptor
(PPAR), 418
Peroxynitrite reductase/peroxidoase
complex, 329
Persistence and persisters, 482
asymptomatic, 779
in biofilms, 775–776, 779
definition of, 712
drug tolerance and, 714–720
drug resistance and, 265–269
drug resistance and, 265–269
for, 376–384
in biofilms, 775–776, 779
definition of, 712
drug tolerance and, 714–720
drug resistance and, 265–269
for, 376–384
in biofilms, 775–776, 779
definition of, 712
drug tolerance and, 714–720
drug resistance and, 265–269
for, 376–384
PfR protein, 326
PgpA protein, 545, 562
pH
PfoR protein, 326
PgpA protein, 545, 562
pH
gene changes due to, 732
for growth, 390–391
PZA activity and, 483–484
response to, 212
PHE1 mutant, 5, 14, 15
pHE1 plasmid, 4
pHE159 plasmid, 28, 29
PHage, 83
PHage(s), 11, 15–17; see also
Mycobacteriophage(s)
in gene transfer, 33
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang, X. D.,</td>
<td>438</td>
</tr>
<tr>
<td>Ward, S. K.,</td>
<td>382</td>
</tr>
<tr>
<td>Water channels, in biofilms,</td>
<td></td>
</tr>
<tr>
<td>Watson, James, 7</td>
<td></td>
</tr>
<tr>
<td>Wayne, L. G., 334, 401, 714</td>
<td></td>
</tr>
<tr>
<td>Wayne model, of hypoxia, 301, 648</td>
<td></td>
</tr>
<tr>
<td>WhiB protein, 539</td>
<td></td>
</tr>
<tr>
<td>Weak acids, for PZA enhancement, 483–484</td>
<td></td>
</tr>
<tr>
<td>Weber-Ban, E., 671–672</td>
<td></td>
</tr>
<tr>
<td>WecA protein, 539</td>
<td></td>
</tr>
<tr>
<td>Weinstein, E. A., 391</td>
<td></td>
</tr>
<tr>
<td>Weinzirl, J. E., 325</td>
<td></td>
</tr>
<tr>
<td>Wheeler, P. R., 325</td>
<td></td>
</tr>
<tr>
<td>WhiB phage, 102</td>
<td></td>
</tr>
<tr>
<td>WhiB protein family, 54, 93, 140, 141, 153, 285, 404, 576</td>
<td></td>
</tr>
<tr>
<td>in drug resistance, 420</td>
<td></td>
</tr>
<tr>
<td>Whole-cell screen, 233, 498</td>
<td></td>
</tr>
<tr>
<td>Whole-genome sequencing, of transconjugants, 68</td>
<td></td>
</tr>
<tr>
<td>Wiggers, H. A. L., 361</td>
<td></td>
</tr>
<tr>
<td>Wildcat phage, 84, 99, 127</td>
<td></td>
</tr>
<tr>
<td>Williams, D. E, 148</td>
<td></td>
</tr>
<tr>
<td>Williams, E. P, 148</td>
<td></td>
</tr>
<tr>
<td>Winder, E. G., 433</td>
<td></td>
</tr>
<tr>
<td>Wollman, E. L., 62–63</td>
<td></td>
</tr>
<tr>
<td>Wolucka, B. A., 544</td>
<td></td>
</tr>
<tr>
<td>WXG100 proteins, 153</td>
<td></td>
</tr>
<tr>
<td>WzxE protein, 519</td>
<td></td>
</tr>
<tr>
<td>Xanthophylls, 570–571</td>
<td></td>
</tr>
<tr>
<td>XCMS software, for lipidomics, 347</td>
<td></td>
</tr>
<tr>
<td>xhl genes and Xhl proteins, 126</td>
<td></td>
</tr>
<tr>
<td>Xpert MTC/RIF system, 463–465</td>
<td></td>
</tr>
<tr>
<td>X-ray crystallography, for structural information, 261–262</td>
<td></td>
</tr>
<tr>
<td>Yang, Y., 779–780</td>
<td></td>
</tr>
<tr>
<td>YdaO riboswitch, 188–189</td>
<td></td>
</tr>
<tr>
<td>Yersinia pestis</td>
<td></td>
</tr>
<tr>
<td>cAMP signaling in, 290</td>
<td></td>
</tr>
<tr>
<td>carbon metabolism in, 334</td>
<td></td>
</tr>
<tr>
<td>ygbc gene, 565–566</td>
<td></td>
</tr>
<tr>
<td>ykok leader switch, 188</td>
<td></td>
</tr>
<tr>
<td>Youmans, A. S., 325</td>
<td></td>
</tr>
<tr>
<td>Youmans, G. P., 325</td>
<td></td>
</tr>
<tr>
<td>Young, D. B., 198</td>
<td></td>
</tr>
<tr>
<td>Young, Richard, 10</td>
<td></td>
</tr>
<tr>
<td>YthAB menaquinol oxidase, 401</td>
<td></td>
</tr>
<tr>
<td>Yuan, Y., 614</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>ZAS (zinc-associated anti-sigma factors), 303</td>
<td></td>
</tr>
<tr>
<td>Zhang, Y., 417, 439</td>
<td></td>
</tr>
<tr>
<td>Zheng, J., 574</td>
<td></td>
</tr>
<tr>
<td>Zhou, B., 700</td>
<td></td>
</tr>
<tr>
<td>Zinc metallobiology of, 381–384</td>
<td></td>
</tr>
<tr>
<td>in mycobacteria, 381–384, 734–735</td>
<td></td>
</tr>
<tr>
<td>transcriptional regulation of, 676–677</td>
<td></td>
</tr>
<tr>
<td>Zinc-associated anti-sigma factors, 303</td>
<td></td>
</tr>
<tr>
<td>Zinder, Norton, 7</td>
<td></td>
</tr>
<tr>
<td>Znt proteins, 734–735</td>
<td></td>
</tr>
<tr>
<td>Zobell, C., 774</td>
<td></td>
</tr>
<tr>
<td>Z-ring proteins, 498</td>
<td></td>
</tr>
<tr>
<td>zur gene, 383</td>
<td></td>
</tr>
<tr>
<td>Zur proteins, 676–677</td>
<td></td>
</tr>
<tr>
<td>zwf genes, 328</td>
<td></td>
</tr>
</tbody>
</table>