ORAL MICROBIOLOGY AND IMMUNOLOGY
SECOND EDITION
SECOND EDITION

ORAL MICROBIOLOGY AND IMMUNOLOGY

EDITED BY

Richard J. Lamont
Center for Oral Health and Systemic Disease
University of Louisville School of Dentistry
Louisville, Kentucky

George N. Hajishengallis
Department of Microbiology
School of Dental Medicine
University of Pennsylvania
Philadelphia, Pennsylvania

Howard F. Jenkinson
School of Oral and Dental Sciences
University of Bristol
Bristol, United Kingdom

ASM PRESS
WASHINGTON, DC
Contents

Contributors xix
Preface xxiii
About the Editors xxv

SECTION I GENERAL PRINCIPLES OF ORAL MICROBIOLOGY 1

1 General Microbiology 3
Howard F. Jenkinson

Introduction 3
Classification Schemes for Bacteria 4
Bacterial Classification 5
Bacterial Architecture 6
Membranes 7
Lipopolysaccharides 8
Cell Wall Peptidoglycan 9
Lipoteichoic Acids 10
Other Important Components Produced by Bacteria 12

Genetic Organization of Bacteria 15
The Bacterial Chromosome 15
Chromosome Replication in Bacteria 16
Gene Transfer in Bacteria 17

Bacterial Growth and Nutrition 17
Growth 17
Nutrient Acquisition 19
Contents

Introduction to Fundamental Concepts of Oral Microbial Ecology 20
Microbial Biofilms 20
Ecology of the Oral Microbiota and Development of Oral Diseases 22

KEY POINTS 23

2 The Immune System and Host Defense 25
P. M. Lydyard and M. F. Cole

Introduction 25
Innate Immunity 25
Cells Involved in Early Defense 25
Molecules Involved in Early Defense 27

The Lymphoid System 31
Lymphocyte Heterogeneity 32
Lymphoid Organs and Tissues 33

Antibodies: Specificities, Classes, and Functions 35
Generalized Structure and Specificity 35
Antibody Classes 38
Differential Properties of Antibodies 39
Antibody-Mediated Protection against Microbes 39

Recognition of Antigen by Lymphocytes 40
B Lymphocytes 40
T Lymphocytes 41

The Adaptive Immune System in Action 44
Initiation of Adaptive Immune Responses: the Interface between the
Innate and Adaptive Systems 44
Most B Cells Require Help from T Cells 45
T-Cell Mechanisms in Host Defense: Cell-Mediated Immunity 46
Regulation of the Immune Response 48

KEY POINTS 48

FURTHER READING 49

3 The Oral Environment 51
Frank A. Scannapieco

Introduction 51
General Features of the Oral Environment 51
Teeth 51
The Oral Soft Tissues (Periodontium, Oral Mucosa, and Tongue) 54

Physical and Host Parameters Affecting Oral Microbial Colonization 55
Temperature 55
pH 55
Oxygen 56
Mechanical Abrasive Forces 56
Fluid Flow 56
Host Age 57

The Oral Microbiota 57
Tooth (Dental) Plaque: Early Determinants of Plaque Formation 57
Calculus 62
The Mucosal Microbiota 65

Recent Concepts of Dental Biofilm Formation 66
Saliva and the Salivary Proteome 66
Saliva-Microbe Interactions 68
Clearance of Bacteria from the Oral Cavity: Agglutinins 70
Pellicle Adhesion Receptors 72
Antimicrobial Components in Saliva 73
Antiviral Components in Saliva 75
Saliva as a Source of Bacterial Nutrition 75
Gingival Crevicular Fluid 75

KEY POINTS 76
FURTHER READING 76

4 Isolation, Classification, and Identification of Oral Microorganisms 77
EUGENE J. LEYS, ANN L. GRIFFEN, CLIFFORD BEALL, AND MARK F. MAIDEN

Introduction 77
Diversity of the Oral Microbiota 77
The Ribosomal 16S Gene and Bacterial Identification and Classification 78
16S and Phylogeny 79
Sampling Oral Bacteria 80
Identifying Oral Bacteria 80
Molecular Techniques for Bacterial Identification 81
Naming of Bacteria and Molecular Analysis 90
Direct Observation of Oral Bacteria 90
Cultivation of Oral Bacteria 91
Oxygen Requirements 91
Culture Media 94
Classification of Cultured Bacteria 95
Antibiotic Susceptibility 95

KEY POINTS 96
FURTHER READING 96
5 Oral Microbial Ecology 97
HOWARD F. JENKINSON AND RICHARD J. LAMONT

Introduction 97
Acquisition of Oral Bacteria 98
Colonization by Oral Bacteria 99
Surface Structures and Molecules Involved in Adhesion 99
Mechanisms of Adhesion 102
Host Surface-Specific Constraints on Bacterial Adhesion 104
Adhesion and Metabolism 104
Gene Regulation 106
Bacterial Communication 108
Communication with Host Cells 110

KEY POINTS 112
FURTHER READING 112

6 Oral Microbial Physiology 113
PAUL G. EGLAND AND ROBERT E. MARQUIS

Overview 113
Survey of Metabolic Activities Important to the Oral Bacterial Community 115
Carbohydrate Fermentation 115
Metabolism of Organic Acids 116
Energy Generation Using Lactate 117
Metabolism of Amino Acids 118
The Role of Proteases in Energy Generation 119
Amino Acid Metabolism by The Stickland Reaction 120
Amino Acid Fermentation by Fusobacterium nucleatum 120
Arginine Metabolism by the Arginine Deiminase System 121

Acid-Base Physiology of Oral Microorganisms 122
Acid-Base Cycling in the Mouth 122
The Range of Acid Tolerance among Oral Bacteria Related to Oral Ecology 122
Acid Tolerance Related to Specific Functions 123
Constitutive and Adaptive Acid Tolerance 124
Alkali Production and Tolerance 126
Acid-Base Physiology, Virulence, and Disease 128

Oxygen Metabolism, Oxidative Stress, and Adaptation 128
Sources of Oxygen for Oral Bacteria 128
Oxygen Levels and Oxidation-Reduction Potentials in Dental Plaque 129
Oxygen Metabolism in Oral Bacteria, Reactive Oxygen Species, and Oxidative Damage 130
Repair Systems 133

Physiology of Oral Biofilms 134
Physicochemical Gradients in Oral Biofilms and Concentrative Capacities of Biofilms for Fluoride and Other Antimicrobials 135
Plaque Nutrition Related to Biofilm Physiology 137

KEY POINTS 138
FURTHER READING 138

7 Genetics and Molecular Biology of Oral Microorganisms 139
Susan Kinder Haake, Donald J. LeBlanc, and Gena D. Tribble

Introduction 139
Fundamental Terms in Bacterial Genetics 139

Bacterial DNA Inheritance 140
Gene Transfer Mechanisms 140
Gene Transfer in Nature 144

Molecular Manipulation and Analysis of Oral Microorganisms 153
Vectors and Their Utility 158
Features of Plasmids Essential for Vector Construction 160
Use of Native Plasmids in Molecular Analyses 165
Use of Nonnative or Broad-Host-Range Plasmids in Molecular Analyses 167
Integration Vectors 169

Transposon Mutagenesis 172

Conclusions 174

KEY POINTS 175

8 Applied Molecular Biology and the Oral Microbes 177
Hansel M. Fletcher, Wilson Aruni, Yuetan Dou, and Ann Progulske-Fox

Introduction 177

Investigating Gene Expression: Genetic Approaches 177
DNA Cloning 177
PCR 180
9 Population Genetics of Oral Bacteria 195
Mogens Kilian
Introduction 195
Bacterial Species Show Different Patterns of Evolution 195
Localized Sex in Bacteria 197
Differences in Pathogenicity of Strains 198
Specific Host Adaptation of Bacterial Clones 198
Population Sizes of Pathogenic and Commensal Bacteria 199
Oral Bacteria Show Varying Degrees of Genetic Diversity 200
The Oral Microbiota Is a Dynamic Population Undergoing Constant Changes 201
Virulence Differences within Species of Oral Bacteria? 202
Methods of Strain Differentiation and Search for Virulent Clones 203
Population Genetics Structure of Oral Bacteria 205
KEY POINTS 208
FURTHER READING 208

10 Immunology of the Oral Cavity 209
Evlambia Hajishengallis and George Hajishengallis
Introduction 209
Oral Secretory Immunity 209
Innate Host Defense Factors in Saliva 210
Specific Host Defense Factors in Saliva: S-IgA 214
Subgingival Immunity and Inflammation 217
Innate and Adaptive Immune Players below the Gums 217
KEY POINTS 225
FURTHER READING 226
SECTION II INFECTION-DRIVEN ORAL DISEASES 227

11 Dental Caries: General Concepts 229
Robert G. Quivey, Jr., Hyun Koo, José Lemos, and Dorota T. Kopycka-Kedzierawski

Overview 229
Tooth Structure and Development 230
Sites of Carious Lesions 231
Coronal Caries 231
Root Surface Caries 232
Early Childhood Caries 232
Caries in Populations 233
Bacterial Etiology of Dental Caries 234
The Supragingival Oral Microbiome 235
Root Caries 236
Caries Risk Assessment 236
Prevention of Dental Caries 237
Fluoride 237
Natural Products 238
Specifically Targeted Antimicrobial Peptides 239

KEY POINTS 240
FURTHER READING 240

12 Pathogenic Mechanisms in Dental Caries 241
Robert G. Quivey, Jr., Hyun Koo, José Lemos, and Dorota T. Kopycka-Kedzierawski

Background 241
Colonization of the Oral Cavity by Mutans Streptococci 242
Polysaccharide Production 243
Acid Production 245
Acid Tolerance and Stress Resistance 246
Animal Models of Caries 247
The Rat Caries Model 248
Caries Scoring in Rats 249
Caries Models in the Future 249

KEY POINTS 250
FURTHER READING 250
13 Periodontal Diseases: General Concepts 251
 PANOS N. PAPAPANOU
 Introduction 251
 Current Classification of Periodontal Diseases 251
 Epidemiology of Periodontal Diseases 255
 Microbial Etiology of Periodontal Diseases 261
 Prevention and Control of Periodontal Diseases 266
 Periodontal Diseases and General Health Outcomes 266
 KEY POINTS 271
 FURTHER READING 271

14 Virulence Factors of Periodontal Bacteria 273
 RICHARD J. LAMONT, JANINA P. LEWIS, AND JAN POTEMPAs
 Introduction 273
 Colonization 273
 Localization in the Gingival Crevice 273
 Attachment 274
 Invasion 275
 Community Development 276
 Toxins 277
 Leukotoxin 277
 Cytolethal Distending Toxin 277
 Proteolytic Enzymes 277
 Acquisition of Iron 281
 Surface-Associated Bioactive Components 284
 Lipopolysaccharide 284
 Capsule and Exopolysaccharide 284
 Toxic Bacterial Components and Enzymes 285
 Resistance to Neutrophil Killing 286
 KEY POINTS 286
 FURTHER READING 286

15 Immunopathogenic Mechanisms in Periodontal Disease 287
 GEORGE HAJISHENGALLIS AND TOSHIHISA KAWAI
 Introduction 287
 Disruption of Protective Innate Immunity 288
Unresolved Inflammation in Periodontitis 293
Role of Adaptive Immunity in Periodontitis 295
Osteoimmunological Interactions in Periodontitis 297
T-Cell Subsets in Periodontal Disease 300
Th1 Cells 301
Th2 Cells 301
Th17 Cells 301
Tfh Cells 302
Tregs 302

KEY POINTS 303

FURTHER READING 304

16 Oral Virology 305

Matti Sällberg

Introduction 305
What Is Oral Virology? 305
What Is a Virus? 305
The Virus 306
How Viruses Change: Viral Evolution 307

The Viral Life Cycle 308

Virus Taxonomy 313
Discovery of New Viruses without Isolating the Virus 316

Oral Virology: The Viruses 317

Viruses That Can Cause Pathologies in the Oral Cavity 317
Picornaviridae 317
Human Herpesviruses 318
Human Herpesviruses 1 and 2 318
Varicella-Zoster Virus 319
Cytomegalovirus and Epstein-Barr Virus 320
Human Herpesviruses 6, 7, and 8 321
Human Papillomaviruses 321

Viruses Present in the Oral Cavity 323
Hepatitis B Virus 323
Hepatitis D Virus 326
Hepatitis C Virus 327
Human Immunodeficiency Virus 329

Viral Immune Responses 331
Viruses and the Innate Immune System 331
Viruses and the Adaptive Immune System 332
Viral Evasion Strategies 333
17 Fungi and Fungal Infections of the Oral Cavity 343
Richard D. Cannon and Norman A. Firth

Introduction 343
Biology 343
Morphology 344
Replication 345
Pathogenesis 345
Acquisition 345
Virulence 346
Host Defenses against Fungal Infection 347
Nonspecific Defense Mechanisms 347
Specific Defense Mechanisms 348
Antifungal Therapy 348
Growth and Identification of Fungi 348
Principles of Antifungal Chemotherapy 349
Clinical Conditions 350
Candidiasis 351
Aspergillosis 356
Cryptococcosis 356
Histoplasmosis 356
Blastomycosis 357
Paracoccidioidomycosis 357
Mucormycosis 357

KEY POINTS 358
FURTHER READING 359

18 Endodontic Microbiology 361
Burton Rosan, Louis Rossman, and J. Craig Baumgartner

Introduction 361
History 361
Sources of Infection 364
Microbiology of Root Canal Infections 365
Pathogenesis of Endodontic Infections 367
Endodontic Treatment 368
Microbiological Considerations for Obturation 369
Antimicrobial Agents Used in Endodontics 370
Summary 370
KEY POINTS 371
FURTHER READING 371

19 Systemic Disease and the Oral Microbiota 373
Jingyuan Fan, Massimo Costalonga, Karen F. Ross, and Mark C. Herzberg

Introduction 373
Routes from Oral to Systemic Compartments 374
Breaches in the Oral Mucosa 374
Transport and Translocation of Microbes 374
The Potential of Commensal Bacteria To Behave as Pathogens 374
Microbial Chameleons: Changing Gene Expression in Response to Environmental Signals 375
Host Defenses 378
Systemic Diseases Associated with Oral Microbes 381
Infective Endocarditis 381
Disseminated Intravascular Coagulation 383
Sequelae of Oral Viral Infections 383
Other Effects 384
Other Possible Associations between Oral Microbes and Systemic Disease 384
Heat Shock Proteins 384
Autorecognition Induced by Oral Microorganisms 386
Inflammation: a Link between Local Dental Disease and Systemic Pathology? 387

KEY POINTS 390
FURTHER READING 390

SECTION III CONTROL OF ORAL DISEASES 391

20 Immunological Intervention against Oral Diseases 393
Kohtaro Fujihashi, Michael W. Russell, and George Hajishengallis

Introduction and Historical Background 393
The Mucosal Immune System from an Oral Perspective 395
Mucosal Vaccination Routes and Adjuvants 397
Rationale for Vaccination against Dental Caries 398
Salivary Adhesins as Immunogens against Dental Caries 400
Caries Immunization Using GTF and Glucan-Binding Proteins 403
Targeting both Sucrose-Independent and Sucrose-Dependent Colonization 404
Safety Considerations and Prospects for a Caries Vaccine 405
Vaccine Development against Periodontal Disease 406
Proof-of-Concept Immunization against Periodontal Pathogens in Rodent Models 408
Immunization of Nonhuman Primates against Periodontal Disease 410
Conclusions 411
KEY POINTS 411
FURTHER READING 412

21 Antibiotics and the Treatment of Infectious Diseases 413
DONALD J. LEBLANC

Antibiotics: a Class of Therapeutic Agent 413
Inhibitors of Cell Wall Synthesis 415
Inhibitors of Translation 421
Inhibitors of Transcription and Replication 426
Miscellaneous Antibiotics 428
Treatment of Tuberculosis 430
Antibiotic Combinations 430
Measurements of Antibiotic Potency 431

Antibiotic Resistance 433
Resistance to Antibiotics Follows Their Introduction into Clinical Practice 433
R Factors and Other Resistance Plasmids 433
Acquired Antibiotic Resistance 435
Transposons and Other Mobile Genetic Elements Carry Antibiotic Resistance Genes 435
The Role of Mutations in Antibiotic Resistance 440
Efflux Pumps: Association with Acquired and Intrinsic Resistance and Mutation to Resistance 443
Oral Microbial Resistance 445

Antibiotic Resistance in the 21st Century 447
Genetic Elements in Resistance Spread 447
The Many Mechanisms of Antibiotic Resistance 448
Why So Much Resistance? 450
Future Prospects 452
Will the Modern Antibiotic Era Soon Be Over? 452
What Can Be Done To Extend The Antibiotic Era? 456

KEY POINTS 458
FURTHER READING 458

22 Infection Control in Dentistry 459
J. Christopher Fenno, Stephen J. Stefanac,
and Dennis E. Lopatin

Introduction 459
Introduction to Risk Control 462
Quality Assurance Is the Promise of Performance 462
Cross-Infection Control Is Essentially a Set of Management Strategies for
Risk Control 462
What Is Risk Management? 462

Cross-Infection Risks in Dentistry 463
Routes of Spread of Infection 463
Management of Recently Identified Infection Control Risks 466

Practical Application of Infection Control Measures in General
Dentistry 471
Definitions of Terms 471
Problems Posed for Prevention of Cross-Infection in General Dental
Practice 471
Universal Precautions 473
Infection Control Checklist 477
Sterilization of Instruments 477

KEY POINTS 483
FURTHER READING 483

Index 485
Contributors

Wilson Aruni
Division of Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350

J. Craig Baumgartner
322 Aoloa St. Apt. 207, Kailua, HI 96734

Clifford J. Beall
Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH 43210

Richard D. Cannon
Department of Oral Sciences, University of Otago, P.O. Box 647, Dunedin, New Zealand

Michael F. Cole
Department of Microbiology and Immunology, Georgetown University School of Medicine, 3900 Reservoir Rd. NW, Washington, DC 20007

Massimo Costalonga
Department of Developmental and Surgical Sciences, 18-226 Moos Tower, University of Minnesota, 515 Delaware St., SE, Minneapolis, MN 55455

Yuetan Dou
Division of Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350

Paul G. Egland
Department of Biology, Augustana College, 2001 S. Summit Ave., Sioux Falls, SD 57197

Jingyuan Fan
Division of Periodontics, Eastman Institute for Oral Health, University of Rochester, 625 Elmwood Avenue, Rochester, NY 14620
Contributors

J. Christopher Fenno
Department of Biologic and Materials Science, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI 48109-1078

Norman A. Firth
Department of Oral Diagnostic and Surgical Sciences, University of Otago, P.O. Box 647, Dunedin, New Zealand

Hansel M. Fletcher
Division of Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350

Kohtaro Fujihashi
Department of Pediatric Dentistry, University of Alabama School of Dentistry, BBRB 713, 1530 3rd Avenue South, Birmingham, AL 35294-2170

Ann L. Griffen
Department of Pediatric Dentistry, The Ohio State University, 305 W. Twelfth Ave., Columbus, OH 43210

Susan Kinder Haake (deceased)
Department of Periodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668

Evlambia Hajishengallis
Department of Preventive and Restorative Sciences, Division of Pediatric Dentistry, School of Dental Medicine, Philadelphia, PA 19104

George N. Hajishengallis
Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA 19104

Mark C. Herzberg
Department of Diagnostic and Biological Sciences, 17-164 Moos Tower, University of Minnesota, 515 Delaware St., SE, Minneapolis, MN 55455

Howard F. Jenkinson
School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom

Toshihisa Kawai
Department of Immunology, The Forsyth Institute, Cambridge, MA 02142

Mogens Kilian
Department of Biomedicine, Wilhelm Meyers allé 4, Aarhus University, DK-8000 Aarhus, Denmark

Hyun Koo
Box 611, Center for Oral Biology, Eastman Institute for Oral Health, Department of Dentistry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
Dorota T. Kopycka-Kedzierska
Box 683, Community Dentistry and Oral Disease Prevention, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642

Richard J. Lamont
Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, KY 40292

Donald J. LeBlanc
424 Battle Flag Lane, Mount Juliet, TN 37122

José Lemos
Box 611, Center for Oral Biology, Eastman Institute for Oral Health, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642

Janina Lewis
Philips Institute of Oral and Craniofacial Biology, Virginia Commonwealth University School of Medicine, Box 980566, 521 North 11th Street, Richmond, VA 23298-0678

Eugene J. Leys
Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH 43210

Dennis M. Lopatin
Department of Biologic and Materials Science, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI 48109-1078

Peter M. Lydyard
Division of Infection and Immunity, Department of Immunology, University College, London WC1E 6BT, United Kingdom

Mark F. Maiden
Department of Molecular Genetics, The Forsyth Institute, 140 Fenway, Boston, MA 02115

Robert E. Marquis
Department of Microbiology and Immunology and Center for Oral Biology, University of Rochester, Rochester, NY 14642

Panos N. Papapanou
Division of Periodontics, Section of Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, New York, NY 10032

Jan Potempa
Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, KY 40292, and Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
Contributors

Ann Progulske-Fox
Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610

Robert G. Quivey, Jr.
Box 611, Center for Oral Biology, Eastman Institute for Oral Health, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642

Burton Rosan
1001 City Ave., Apt. WB912, Wynnewood, PA 19096

Karen F. Ross
Department of Diagnostic and Biological Sciences, 17-174 Moos Tower, University of Minnesota, 515 Delaware St., SE, Minneapolis, MN 55455

Louis Rossman
Suite 1114, The Medical Arts Building, 1601 Walnut Street, Philadelphia, PA 19102

Michael W. Russell
Departments of Microbiology & Immunology, and Oral Biology, University at Buffalo, Buffalo, NY 14214

Matti Sällberg
Division of Clinical Virology, F68, Karolinska Institutet at Huddinge University Hospital, S-141 86 Huddinge, Sweden

Frank A. Scannapieco
Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Foster Hall, Buffalo, New York 14214

Stephen J. Stefanac
Department of Biologic and Materials Science, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI 48109-1078

Gena D. Tribble
Department of Periodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77059
Preface

In the seven years since the first edition of this book, the world of microbiology and immunology has seen incredible technological and conceptual advances. It is now almost routine to sequence the genome of a bacterium, and for that matter, a community of bacteria; the catalog of proteins for which the crystal structure is known has increased apace; knockout mice deficient in numerous components of the innate and adaptive immune system are widely available; and the regulatory interplay between the innate and adaptive arms of immunity is now better understood. Development of high resolution and 3D imaging techniques has allowed novel studies of communities growing in biofilms, as well as the more intimate interactions between microbes and host cells. High-throughput techniques and extended computer power have made population biology and epidemiology research more comprehensive. This burgeoning knowledge has changed our understanding of both the etiology of oral diseases and the nature of the pathogenic mechanisms and host responses. These changing perceptions are reflected in the updated and expanded chapters.

What has (disappointingly) not improved over the last seven years is the incidence of caries and periodontal disease. It is more important than ever for dental practitioners and the clinical scientists to understand the basic science underlying oral health and disease in order for such knowledge to be translated into future health improvements.

As with the first edition, each chapter is self contained and represents the particular insights and priorities of the authors. Taken separately or together, we hope that the chapters provide the reader with the basic facts as well as with the ecological and biological context.
About the Editors

Richard J. Lamont received a bachelor of science degree in bacteriology from the University of Edinburgh; he received a doctorate from the University of Aberdeen in 1985. After a postdoctoral fellowship at the University of Pennsylvania focusing on streptococcal adherence mechanisms, he joined the faculty at the University of Washington, in 1989. He is currently the Delta Dental Endowed Professor of oral microbiology at the University of Louisville. His research interests include the molecular mechanisms of polymicrobial synergy and the cellular interactions between oral bacteria and the host epithelium. He has taught microbiology and immunology to dental students and residents for over 25 years.

George Hajishengallis was originally trained as a dentist (DDS, 1989, University of Athens, Greece) before pursuing doctoral studies in cellular and molecular biology (PhD, 1994, University of Alabama at Birmingham). His postdoctoral training combined research in mucosal immunology (University of Alabama at Birmingham) and periodontal pathogenesis (State University of New York at Buffalo). He has held faculty appointments at the Louisiana State University, the University of Louisville, and, most recently, the University of Pennsylvania, which he joined in 2012 as a Professor of Microbiology. His field of interest lies at the host-microbe interface focusing on mechanisms of periodontal immunopathogenesis and inflammation. He has taught microbiology and immunology to dental students and residents since 1997.

Howard F. Jenkinson received his bachelor’s degree in microbiology and virology from the University of Warwick, England. He completed his PhD training in 1978 at the University of Nottingham. He worked at the University of Oxford for five years as a postdoctoral researcher on the biochemistry and genetics of sporulation in Bacillus subtilis. He was appointed Lecturer in Oral Biology at the University of Otago, New Zealand, in 1983 and progressed through the ranks to Professor of Molecular Oral Biology at Otago (1996). He was a visiting Commonwealth
Medical Fellow at the Department of Biochemistry, University of Cambridge (1989–1990), and at the Institute of Molecular Medicine, University of Oxford (1995–1996). In 1997, he moved to the University of Bristol, England, as Professor and Chair of Oral Microbiology. His research interests include the genetics and biochemistry of microbial cell surfaces, principally streptococci and *Candida*, intermicrobial interactions, polymicrobial communities, and infective cardiovascular disease. He has taught molecular microbiology and biochemistry to dental, medical, and basic sciences students since 1983.