Cover: Dog tapeworm (*Taenia pisiformis*), photograph taken using a light microscope, showing scolex with hooks. Spike Walker, Wellcome Images.

Copyright © 2016 by ASM Press. ASM Press is a registered trademark of the American Society for Microbiology. All rights reserved. No part of this publication may be reproduced or transmitted in whole or in part or reutilized in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

Disclaimer: To the best of the publisher’s knowledge, this publication provides information concerning the subject matter covered that is accurate as of the date of publication. The publisher is not providing legal, medical, or other professional services. Any reference herein to any specific commercial products, procedures, or services by trade name, trademark, manufacturer, or otherwise does not constitute or imply endorsement, recommendation, or favored status by the American Society for Microbiology (ASM). The views and opinions of the author(s) expressed in this publication do not necessarily state or reflect those of ASM, and they shall not be used to advertise or endorse any product.

Library of Congress Cataloging-in-Publication Data
Names: Garcia, Lynne Shore, author.
Title: Diagnostic medical parasitology / by Lynne S. Garcia.
Identifiers: LCCN 2015041826 (print) | LCCN 2015042284 (ebook) | ISBN 9781555818999 (alk. paper) | ISBN 9781555819002 ()
Subjects: LCSH: Diagnostic parasitology.
Classification: LCC QR255 .G37 2016 (print) | LCC QR255 (ebook) | DDC 616.9/6075--dc23
LC record available at http://lccn.loc.gov/2015041826
doi:10.1128/9781555819002

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Address editorial correspondence to: ASM Press, 1752 N St., N.W., Washington, DC 20036-2904, USA.

Send orders to: ASM Press, P.O. Box 605, Herndon, VA 20172, USA.

Phone: 800-546-2416; 703-661-1593. Fax: 703-661-1501.

E-mail: books@asmusa.org

Online: http://estore.asm.org
Dedication

As with the first five editions, I dedicate this book to Marietta Voge, a truly rare individual who was widely recognized as one of the world’s leading parasitologists. During her years as a diagnostic and research parasitologist at the University of California, Los Angeles, she touched the lives of many students and staff in a very special way. She was always more than willing to share her expertise with all who asked and volunteered this help over the years whenever contacted. She was always willing to donate a considerable amount of her personal time as a volunteer for various medical projects throughout the world.

She was a very special individual to work with, always interested in the person as well as the problem at hand. Her areas of teaching extended far beyond science. Whatever subject she was interested in received her total enthusiasm and dedication, and she had an exceptional ability to deal with detailed work. Her sense of fairness and professional integrity were remarkable; these ideals were shared with all who came in contact with her.

Her contributions to the field of diagnostic parasitology were numerous and included many classes, seminars, papers, and textbooks. The importance of working with Dr. Voge is hard to put into words. She was unique in her ability to allow a student to grow, both scientifically and personally. She could guide without constraints, teach without formal lectures, counsel without being judgmental, challenge without being unrealistic, tease without being cruel, and always be supportive regardless of the situation. She expected much from her students and employees and yet always gave considerably more than she received.

Scientific information gained from our association with her was invaluable; however, her impact on our lives was considerably more than scientific. She was always available for consultations and just to talk. She left all of us with a sense of having personally matured as a result of knowing and working with her over the years. She is missed by all of us, and yet her contributions in terms of teaching, consultations, volunteer work, professionalism, and friendship will remain with us forever.

I would also like to dedicate the sixth edition of this book to the bench technologists, those of you who provide critical diagnostic information on a daily basis and contribute such valuable input for excellent patient care.
Academic training provides key information in the field, but those who perform routine work at the bench often contribute much more than simple diagnostic identifications. Congratulations and thanks to all of you.

Finally, I also dedicate this book to John Lawrence. He was an extraordinary individual, and without his original encouragement and assistance, the first edition of the book would never have been written.
Contents

Dedication v
Preface xi
Acknowledgments xv

PART I
Diagnostic Procedures 1

1 Philosophy and Approach to Diagnostic Parasitology 3

2 Collection, Preservation, and Shipment of Fecal Specimens 6
 Safety 6
 Fresh-specimen collection 7
 Collection of the specimen 7
 Number of specimens to be collected (standard recommendation) 7
 Number of specimens to be collected (pros and cons of various options) 8
 Collection times 9
 Specimen type, specimen stability, and need for preservation 9
 Preservation of specimens 12
 Preservatives 12
 Use of fixatives 20
 Shipment of diagnostic specimens, biological products, etiologic agents, or infectious substances 21

3 Macroscopic and Microscopic Examination of Fecal Specimens 26
 Macroscopic Examination 26
 Microscopic Examination (Ova and Parasite Examination) 27
 Direct wet smear 27
 Concentration (sedimentation and flotation) 32
 Permanent stained smear 41
 Specialized Stains for Coccidia (Cryptosporidium, Cryptosporidium, Cryptosporidium, Cyrtosporidium, and Cyclospora Species) and the Microsporidia 60
 Modified Kinyoun’s acid-fast stain (cold method) 60
 Modified Ziehl-Neelsen acid-fast stain (hot method) 63
 Carbol fuchsin negative stain for Cryptosporidium (from W. L. Current) 66
 Rapid safranin method for Cryptosporidium 66
 Rapid safranin method for Cyclospora, using a microwave oven 66
 Auramine O stain for coccidia (from Thomas Hänscheid) 67
 Modified trichrome stain for the microsporidia (Weber—green) 68
 Modified trichrome stain for the microsporidia (Ryan—blue) 70
 Modified trichrome stain for the microsporidia (Kokoskin—hot method) 72
 Acid-fast trichrome stain for Cryptosporidium and the microsporidia 72

4 Additional Techniques for Stool Examination 77
 Culture of larval-stage nematodes 77
 Harada-Mori filter paper strip culture 78
 Filter paper/slant culture technique (petri dish) 79
 Charcoal culture 80
 Baermann technique 81
 Agar plate culture for Strongyloides stercoralis 83
 Egg studies 87
 Estimation of worm burdens and Kato-Katz thick film 87
 Hatching of schistosome eggs 89
 Search for tapeworm scolex 91
 India ink injection procedure for tapeworm proglottids 92
 Qualitative test for fecal fat 94
 Quantitation of reducing substances (Clinitest) 95
5 Examination of Other Specimens from the Intestinal Tract and the Urogenital System 98
 Examination for pinworm 98
 Cellulose tape preparations 99
 Anal swabs 99
 Sigmoidoscopy material 100
 Direct saline mount 101
 Permanent stained slide 101
 Duodenal contents 102
 Duodenal drainage 102
 Duodenal capsule technique (Entero-Test) 103
 Urogenital specimens 103
 Trichomoniasis 103
 Filariasis 105
 Schistosomiasis 105

6 Sputum, Aspirates, and Biopsy Material 107
 Expectorated sputum 107
 Induced sputum 109
 Aspirates 116
 Lungs and liver 116
 Lymph nodes, spleen, liver, bone marrow, spinal fluid, eyes, and nasopharynx 118
 Cutaneous ulcer 120
 Biopsy material 120
 Skin 124
 Lymph nodes 124
 Muscle 125
 Rectum and bladder 126

7 Procedures for Detecting Blood Parasites 129
 Preparation of thick and thin blood films 129
 Thick blood films 130
 Thin blood films 131
 Combination thick and thin blood films (on the same slide) 132
 Combination thick and thin blood films (can be stained as either) 132
 Buffy coat blood films 134
 Staining blood films 135
 Giemsa stain 136
 Wright's stain 137
 General notes on staining procedures 140
 Proper examination of thin and thick blood films 140
 Thin blood films 140
 Thick blood films 141
 Determination of parasitemia 141
 Diagnosis of malaria: review of alternatives to conventional microscopy 142
 QBC microhematocrit centrifugation method 145
 ParaSight F test 146
 NOW malaria test 147
 Flow anti-pLDH Plasmodium monoclonal antibodies 148
 Molecular testing 149
 Automated blood cell analyzers 150
 Diagnosis of leishmaniasis: review of alternatives to conventional microscopy 150
 ICT for detection of anti-rK-39 antibodies 150
 Concentration procedures 151
 Cytocentrifugation technique 151
 Knott concentration procedure 151
 Membrane filtration technique 151
 Gradient centrifugation technique 152
 Triple-centrifugation method for trypanosomes 152
 Special stain for microfilarial sheath 152
 Delafield's hematoxylin 152

8 Parasite Recovery: Culture Methods, Animal Inoculation, and Xenodiagnosis 156
 Culture methods 156
 Intestinal protozoa 157
 Pathogenic free-living amebae 162
 Blastocystis spp. (Blastocystis hominis) 167
 Pathogenic flagellates 168
 Flagellates of blood and tissue 172
 Toxoplasma gondii 176
 Plasmodium and Babesia spp. 177
 Cryptosporidium spp. 178
 Microsporidia 178
 Animal inoculation 178
 Leishmania spp. 180
 Trypanosoma spp. 180
 Toxoplasma gondii 180
 Xenodiagnosis 181

9 Fixation and Special Preparation of Fecal Parasite Specimens and Arthropods 183
 Fixation of parasite specimens and arthropods 183
 Protozoa 185
 Solutions to induce relaxation in adult helminths 185
 Nematodes 186
 Trematodes 187
 Cestodes 187
 Helminth eggs and larvae 188
 Arthropods 188
 Mounting and staining of parasite specimens for examination 189
 Nematodes 189
 Trematodes 189
 Cestodes 191
 Mounting of arthropods for examination 191
 Mites 192
 Fleas and lice 192
 Ticks 193
 Miscellaneous arthropods 193
10 Artifacts That Can Be Confused with Parasitic Organisms 195

Protozoa 195
Amebae 195
Flagellates 198
Ciliates 198
Coccidia and microsporidia 198
Cryptosporidium spp. and Cyclospora cayetanensis 198
Cystoisospora belli 198
Microsporidia 199
Blood and body fluids 200
Malaria parasites and Babesia spp. 200
Leishmaniae and trypanosomes 200
Microfilariae 201
Body fluids: ciliated epithelial cells 202
Helminths 203
Adult worms and larvae 203
Eggs 204
Human cells 204
Polymorphonuclear leukocytes 205
Eosinophils 206
Macrophages 207
Lymphocytes 207
Red blood cells 207
Charcot-Leyden crystals 208
Nonhuman elements seen in feces (yeast cells) 209
Insect larvae 209
Spurious infections 209
Delusory parasitosis (delusional infestation) 210

11 Equipment, Supplies, Safety, and Quality System Recommendations for a Diagnostic Parasitology Laboratory: Factors Influencing Future Laboratory Practice 212

Equipment 212
Microscope 212
Centrifuge 216
Fume hood 217
Biological safety cabinet 217
Refrigerator-freezer 218
Supplies 218
Glassware 218
Miscellaneous supplies 218
ATCC quality control organisms 219
Safety: personnel and physical facilities 219
General precautions 219
Handwashing 220
Personal protective equipment
(OSHA 2001 blood borne) 221
Handling specimens 221
Processing specimens 221
Spills 222

Disposal of contaminated materials 224
Standard precautions 224
Hepatitis exposure protocol 227
Dangerous properties of industrial materials 227
Current OSHA regulations for the use of formaldehyde 228
Latex allergy 229
Quality systems 229
Extent of services 229
Proficiency testing 230
In-house quality control 233
Patient outcome measures 236
Continuous quality improvement, total quality management, or 10-step and FOCUS-PDCA for performance improvement activities 237
CLIA ’88 inspection process 238
New quality guidelines 239
ISO guidelines 240
CLSI (NCCLS) model 240
Factors influencing future laboratory practice 241
Managed care 241
Financial considerations 242
Current regulations 242
Decentralized testing 243
Laboratory services 244
Technological trends 244
Clinical decision support 245
Personnel issues 245
Changing demographics 245
Emerging diseases 246
Bioterrorism 246

12 Medical Parasitology: Case Histories 249

Protozoal infections 249
Case 1 249
Case 2 251
Case 3 252
Case 4 255
Case 5 256
Case 6 258
Case 7 260
Helminth infections 262
Case 8 262
Case 9 263
Case 10 266
Case 11 267
Case 12 269
Case 13 271
Case 14 273
Blood parasite infections 274
Case 15 274
Case 16 278
Case 17 280
Contents

Case 18	281
Case 19	283
Case 20	284
Diagnostic methods and proficiency testing	286
Case 21	286
Case 22	288
Case 23	289
Case 24	292
Case 25	293

PART II

Clinically Important Human Parasites 297

13 Intestinal Nematodes 299
- Ascaris lumbricoides 300
- Enterobius vermicularis 308
- Trichuris trichiura 311
- Capillaria philippinensis 314
- Hookworms (Ancylostoma duodenale, Necator americanus, and Ancylostoma ceylanicum) 316
- Trichostrongylus spp. 321
- Strongyloides spp. 322

14 Tissue Nematodes 336
- Trichinella spp. 336
- Baylisascaris procyonis 346
- Lagochilascaris minor 352
- Toxocara canis and T. cati (visceral larva migrans and ocular larva migrans) 353
- Ancylostoma braziliense and A. caninum (cutaneous larva migrans) 358
- Human eosinophilic enteritis 359
- Dracunculus medinensis 360
- Angiostrongylus (Parastrongylus) cantonensis (cerebral angiostrongyliasis) 362
- Angiostrongylus (Parastrongylus) costaricensis (abdominal angiostrongyliasis) 365
- Gnathostoma spinigerum 366
- Gnathostoma doloresi, G. nipponicum, G. hispidum, and G. biminceatum 368
- Anisakis simplex, A. physetis, Pseudoterranova decipiens, Contracaecum osculatum, Hysterobothrium aduncum, and Porrocaecum reticulatum (larval nematodes acquired from saltwater fish) 370
- Capillaria hepatica 373
- Thelazia spp. 373

15 Filarial Nematodes 377
- Basic Life Cycle 380
- The Endosymbiont 380
- Human Pathogens 380
- Wuchereria bancrofti 381
- Brugia malayi 391
- Brugia timori 392
- Zoonotic Brugia infections (American brugian filariasis) 393
- Tropical pulmonary eosinophilia 394
- Loa loa 394
- Mansonella ozzardi 397
- Mansonella perstans 398
- Mansonella streptocerca 399
- Onchocerca volvulus 400
- Dirofilaria Dirofilaria and Dirofilaria Nochiella spp. 409

16 Intestinal Cestodes 418
- Diphyllolothrium latum 418
- Taenia solium 425
- Taenia saginata 435
- Taenia asiatica (Asian Taenia or Taenia saginata asiatica) 437
- Hymenolepis (Rodentolepis) nana 439
- Hymenolepis diminuta 441
- Dipylidium caninum 443

17 Tissue Cestodes: Larval Forms 447
- Echinococcus granulosus (cystic hydatid disease) 447
- Echinococcus multilocularis (alveolar disease, hydatid disease) 458
- Echinococcus vogeli (Polycystic Hydatid Disease) and Echinococcus oligarthrus (Uncystic Hydatid Disease): Neotropical Echinococcosis 463
- Taenia (Multiceps) spp. (Taenia multiceps, Taenia serialis) (coenurosis) 465
- Spirometra mansonioides and Diphyllolothrium spp. (sparganosis) 467

18 Intestinal Trematodes 474
- Fasciolopsis buski 475
- Echinostoma ilocanum 479
- Heterophyes heterophyes 481
- Metagonimus yokogawai 482
- Gastrodiscoides hominis 484

19 Liver and Lung Trematodes 487
- Liver Flukes 487
 - Clonorchis sinensis 487
 - Opisthorchis viverrini 494
 - Opisthorchis felineus 497
 - Fasciola hepatica 499
 - Fasciola gigantica 502
- Less Common Liver Flukes 504
 - Dicrocoelium dendriticum, Dicrocoelium hospes, and Eurytrema pancreaticum 504
- Lung Flukes 506
 - Paragonimus westermani 506
 - Paragonimus kellicotti 512

20 Blood Trematodes: Schistosomes 516
- Schistosoma mansoni 517
- Schistosoma japonicum 530
- Schistosoma mekongi 536
Contents

21 Intestinal Protozoa: Amebae 552
 Entamoeba histolytica 552
 Entamoeba dispar 567
 Entamoeba moshkovskii 568
 Entamoeba bangladeshi 569
 Entamoeba hartmanni 570
 Entamoeba coli 571
 Entamoeba polecki 572
 Entamoeba gingivalis 572
 Endolimax nana 574
 Iodamoeba bütschlii 575
 Blastocystis spp. 576

22 Intestinal Protozoa: Flagellates and Ciliates 584
 Giardia lamblia (G. duodenalis, G. intestinalis) 584
 Dientamoeba fragilis 598
 Pentatrichomonas hominis (Trichomonas hominis) 602
 Trichomonas tenax 603
 Chilomastix mesnili 604
 Enteromonas hominis 604
 Retortamonas intestinalis 605
 Balantidium coli 605

23 Intestinal Protozoa (Coccidia), Microsporidia, and Algae 612
 Coccidia 612
 Cryptosporidium spp. 612
 Cyclospora cayetanensis 630
 Cystoisospora (Isospora) belli 637
 Sarcocystis spp. 643
 Microsporidia 648
 Algae (Prototheca) 662

24 Free-Living Amebae 667
 Naegleria fowleri 669
 Acanthamoeba spp. 677
 Balamuthia mandrillaris 687
 Sappinia (diploidea) pedata 690

25 Protozoa from Other Body Sites 694
 Trichomonas vaginalis 694
 Toxoplasma gondii 704

26 Malaria and Babesiosis 719
 Malaria 719
 Babesiosis 763

27 Leishmaniasis 778
 Cutaneous Leishmaniasis: General Comments 779
 Old World (Eastern) Leishmaniasis: Cutaneous 780
 New World (Western) Leishmaniasis: Cutaneous 788
 Visceral Leishmaniasis: General Comments 796
 Old World (Eastern) Leishmaniasis: Visceral 796
 New World (Western) Leishmaniasis: Visceral 803

28 Trypanosomiasis 810
 African trypanosomiasis 811
 Trypanosoma brucei gambiense 811
 Trypanosoma brucei rhodesiense 822
 American trypanosomiasis 826
 Trypanosoma cruzi 826
 Trypanosoma rangeli 839

29 Unusual Parasitic Infections 845
 Aquatic protist 845
 Rhinosporidium seeberi 845
 Protozoa 848
 Lophomonas blattarum 848
 Dictyostelium polycephalum 850
 Myxozoa parasites 850
 Trypanosoma evansi, Trypanosoma lewisi 851
 Nematodes (the roundworms) 852
 Anclyostoma ceylanicum 852
 Halicephalobus gingivalis 853
 Oesophagostomum spp. 853
 Eustrongylides spp. 855
 Mermis nigrescens 856
 Dictophyta renale 856
 Ternidens deminutus 858
 Mammanomonogamus laryngeus (Syngamus laryngeus) 859
 Ascaris suum 860
 Gongylonema pulchrum 861
 Haycocknema perplexum 861
 Cestodes 862
 Diplogonopus spp. 862
 Bertiella studeri 862
 Inermicapsifer madagascariensis 863
 Raillietina celebensis 863
 Mesocestoides spp. 864
 Taenia crassiceps 865
 Trematodes 866
 Alaria americana 866
 Plagiorchis spp. 868
 Neodiplostomum seoulense 868
 Spelotrema brevicica 869
 Brachylaima sp. 869
 Nanophyetus (Troglotrema) salmincola 870
 Stellantchasmus falcatus 871
 Phaneropsolus spinicirrus, Phaneropsolus bonnei, and Prosthecodendrium molenkempi 871
Contents

Haplorchis taichui 872
Gymnophalloides seoi 872
Metorchis conjunctus (North American liver fluke) 873
Schistosoma mattheei 874
Philophthalmus lacrinosus 875
Achillurbainia spp. 875
Pentastomids 875
Armillifer spp., Linguatula serrata, and Sebekia spp. 875
Acanthocephalans 876
Macracanthorhynchus hirudinaceus and Moniliformis moniliformis 876

30 Parasitic Infections in the Compromised Host 883

Entamoeba histolytica 885
Free-living amebae 895
Blastocystis spp. 903
Giardia lamblia 903
Toxoplasma gondii 910
Cryptosporidium spp. 907
Cyclospora cayetanensis 910
Cystoisospora (Isospora) belli 912
Sarcocystis spp. 913
Microsporidia 914
Leishmania spp. 918
Strongyloides stercoralis 923
Plasmodium spp. 926
Babesia spp. 927
American trypanosomiasis 929
Crusted scabies 930

31 Health Care-Associated and Laboratory-Acquired Infections 935

Health Care-Associated (Nosocomial) infections 935
Gastrointestinal infections 936
Cryptosporidium spp. 936
Giardia lamblia 939
Entamoeba histolytica 940
Microsporidia 941
Cystoisospora (Isospora) belli 941
Hymenolepis nana 942
Taenia solium 942
Blood and tissue infections 942
Plasmodium spp. 942
Babesia spp. 943
Trypanosoma brucei gambiense and T. brucei rhodesiense 943
Trypanosoma cruzi 943
Leishmania donovani 944
Toxoplasma gondii 944
Infections with ectoparasites 945
Pediculus spp. and Phthirus pubis 945
Sarcoptes scabiei 945
Myiasis 945

Infections in the pediatric patient 946
Cryptosporidium spp. 946
Giardia lamblia 946
Pediculus humanus capitis 946
Sarcoptes scabiei 946
Infections in the compromised patient 946
Intestinal protozoa 948
Free-living amebae 948
Plasmodium spp. 948
Trypanosoma brucei gambiense and T. brucei rhodesiense 948
Trypanosoma cruzi 950
Leishmania spp. 950
Toxoplasma gondii 951
Specimen handling 951
Summary 951

32 Immunology of Parasitic Infections 954

Amebiasis 960
Giardiasis 964
Toxoplasmosis 966
African trypanosomiasis 968
American trypanosomiasis 970
Malaria 973
Helminth infections 978
Summary 981

33 Antibody and Antigen Detection in Parasitic Infections 986

Protozoal infections 993
Amebiasis 993
Babesiosis 995
Chagas’ disease 996
Cryptosporidiosis 997
Cyclosporiasis 997
Giardiasis 997
Leishmaniasis 998
Malaria 999
Toxoplasmosis 1001
Trichomoniasis 1004
Helminth infections 1004
Cysticercosis 1004
Hydatid disease 1005
Fascioliasis 1007
Filariasis 1007
Paragonimiasis 1009
Schistosomiasis 1010
Strongyloidiasis 1011
Toxocariasis 1012
Trichinosis 1013
Intradermal tests 1014
Casoni test 1014
Montenegro test 1014

Summary 1014
34 Histologic Identification of Parasites 1019

Protozoa 1020
Amebae 1020
Flagellates 1024
Ciliates 1024
Coccidia 1025
Microsporidia 1027
Helminths 1029
Nematodes 1029
Cestodes 1039
Trematodes 1045
Blood Parasites 1052
Malaria 1052
Leishmania 1053
Trypanosomes 1055
Filaria 1056

35 Medically Important Arthropods 1077

Arthropods and their relationship to disease 1077
Biological vectors of microorganisms 1077
Bites and envenomation 1078
Tissue invasion 1081
Entomophobia and delusional infestation (parasitosis) 1082

Class Insecta (insects) 1083
Order Diptera (flies, mosquitoes, and midges) 1083
Myiasis 1090
Order Hemiptera (true bugs) 1098
Order Coleoptera (beetles) 1100
Order Siphonaptera (Fleas) (Ctenocephalides spp., Xenopsylla cheopis, and “Sand Fleas”) 1102
Order Anoplura (sucking lice) 1104
Order Mallophaga (biting and chewing lice) 1106
Order Hymenoptera (bees, wasps, and ants) 1106
Order Blattaria (cockroaches) 1108

Class Arachnida (ticks, mites, spiders, and scorpions) 1109
Subclass Acari (ticks, mites, and chiggers) 1109
Subclass Araneae (spiders) 1118
Subclass Scorpiones (scorpions) 1122

Other arthropods 1122
Class Chilopoda (centipedes) 1122
Class Diplopoda (millipedes) 1123
Class Crustacea (copepods, crabs, crayfish, etc.) 1123

Control of arthropods of medical importance 1123
Physical control 1124
Biological control 1124
Chemical control 1124

36 Treatment of Parasitic Infections 1134

Albendazole (Albenza) (Amedra) 1134
Amphotericin B (AmBisome) (Gilead) 1135
Amphotericin B (Fungizone) (X-Gen) 1153
Artemether (Artenam) (Aarenco, Belgium) 1154
Atovaquone (Mepron) (GlaxoSmithKline) 1154
Atovaquone-Proguanil (Malarone) (GlaxoSmithKline) 1155
Benznidazole (Rochagan) (Roche, Brazil) 1155
Bithionol (Bitin) (CDC) 1156
Chloroquine Phosphate (Aralen) (Sanofi, Others) 1156
Crotamiton (Eurax) (Ranbaxy) 1156
Dapsone (Jacobs) 1157
Diethylcarbamazine Citrate USP (Hetrazan) (CDC) 1157
Diloxanide Furoate (Furamide, Entamide) (Boots, England) 1157
Eflornithine (Difluoromethylornithine, Ornidyline) (Sanofi) (CDC) 1158
Fumagillin (Fumidil-B) 1158
Furazolidone (Furoxone) 1158
Iodoquinol/Diiodohydroxyquin (Yodoxin) (Glenwood, Others) 1158
Ivermectin (Stromectol, Sklice) (Merck, Sanofi) 1159
Lumefantrine/Artemether (Coartem, Riamet) (Novartis) 1160
Malathion (Ovide) (Taro Pharmaceuticals) 1160
Mebendazole (Generics) 1160
Mefloquine Hydrochloride (Generics) 1161
Melarsoprol (Mel-B) (CDC) 1162
Metronidazole (Flagyl, IV Flagyl) (Searle/Pfizer, Baxter) 1162
Miltefosine (Impavid, Miltex) (Paladin, Canada) (CDC) 1163
Niclosamide (Yomesan, Niclocide) (Bayer, Germany) 1163
Nifurtimox (Lampit) (Bayer HealthCare) (CDC) 1163
Nitazoxanide (Alinia) (Romark) 1164
Nifurtimox (Lampit) (Bayer HealthCare) (CDC) 1163
Nitazoxanide (Alinia) (Romark) 1164
Paromomycin (Generics) (Sun Pharma) 1164
Pentamidine Isethionate (Pentam 300, Nebupent) (APP Pharmaceuticals) 1165
Permethrin (Nix [Insight Pharmaceuticals], Elimite [Prestium Pharma]) 1166
Polyhexamethylene Biguanide (Baquacil) (Zeneca) 1166
Praziquantel (Biltricide) (Bayer) 1166
Primaquine Phosphate (Sanofi-Aventis) 1167
Propamidine Isethionate (Brolene) (Aventis, Canada) 1167
Pyrantel Pamoate (Pin-X, Reese’s Pinworm Medicine) (Quartz Specialty Pharmaceuticals, Reese) 1168
Pyrethrin with Piperonyl Butoxide (RID) (Bayer, Others) 1168
Pyrethrin (Kenmore Chemical) (Amerisun) 1168
Quinacrine Hydrochloride (Generics) 1169
Quinine Sulfate (Many Manufacturers) 1169
Spiramycin (Rovamycin) (Sanofi-Aventis) 1169
Stibogluconate Sodium (Pentostam, Solustibosan) (GlaxoSmithKline) (CDC) 1170
Suramin Sodium (Germanin) (Bayer, Germany) (CDC) 1170

Contents xiii
APPENDIXES 1175

APPENDIX 1 Information Tables 1176
A1.1 Classification of human parasites 1176
A1.2 Distribution of selected parasitic infections in the Americas 1179
A1.3 Distribution of selected parasitic infections in Europe 1179
A1.4 Distribution of selected parasitic infections in Africa 1180
A1.5 Distribution of selected parasitic infections in Asia 1180
A1.6 Distribution of selected parasitic infections in Oceania 1181
A1.7 Cosmopolitan distribution of common parasitic infections (North America, Mexico, Central America, South America, Europe, Africa, Asia, and Oceania) 1181
A1.8 Body sites and specimen collection 1182
A1.9 Body sites and possible parasites recovered (trophozoites, cysts, oocysts, spores, adults, larvae, eggs, amastigotes, and trypomastigotes) 1183
A1.10 Body site, specimen and procedures, recommended methods, relevant parasites, and comments 1184
A1.11 Examination of tissue and body fluids 1189
A1.12 Key characteristics of protozoa of the intestinal tract and urogenital system 1191
A1.13 Key characteristics of tissue protozoa 1194
A1.14 Key characteristics of helminths 1196
A1.15 Key characteristics of most common parasites found in blood 1198
A1.16 Diagnostic laboratory report information that should be relayed to the physician 1200
A1.17 Pros and cons of stool specimen collection and testing options 1201
A1.18 Approaches to stool parasitology: test ordering 1203
A1.19 Pros and cons of ova and parasite examination options 1204
A1.20 Laboratory test reports: optional comments 1206
A1.21 Estimated prevalence of parasitic diseases worldwide 1207

APPENDIX 2 Flowcharts and Staining Tables for Diagnostic Procedures 1208

Flowcharts
A2.1 Procedure for processing fresh stool for the ova and parasite examination 1208
A2.2 Procedure for processing liquid specimens for the ova and parasite examination 1209
A2.3 Procedure for processing preserved stool for the ova and parasite examination by using the traditional two-vial collection kit 1210
A2.4 Procedure for processing sodium acetate-acetic acid-formalin (SAF)-preserved stool for the ova and parasite examination 1211
A2.5 Use of various fixatives and their recommended stains: fecal specimens preserved using polyvinyl alcohol (PVA) 1212
A2.6 Use of various fixatives and their recommended stains: fecal specimens preserved in the Universal Fixative, TOTAL-FIX 1213

Tables
A2.1 Steps in the trichrome staining procedure (mercuric chloride-based PVA-preserved stool specimens) 1214
A2.2 Steps in the trichrome staining procedure (non-mercuric chloride-based PVA-preserved stool specimens) 1215
A2.3 Steps in the iron hematoxylin staining procedure (mercuric chloride-based PVA-preserved stool specimens) (Spencer-Monroe method) 1216
A2.4 Steps in the iron hematoxylin staining procedure (mercuric chloride-based PVA-preserved stool specimens) (Tompkins-Miller method) 1217
A2.5 Steps in the iron hematoxylin staining procedure (incorporating the carbol fuchsin step) 1218
A2.6 Steps in the trichrome staining procedure (Universal Fixative [no mercury, no formalin, no PVA]) 1219
A2.7 Oil-mounted permanent stained smears (no Permount is used) 1220
A2.8 Tips on stool processing and staining 1221

APPENDIX 3 Common Problems in Parasite Identification 1222

Figures
A3.1–A3.25 Paired drawings of “look alikes” 1222
A3.26 Relative sizes of helminth eggs 1233

Tables
A3.1 Entamoeba spp. trophozoites versus macrophages 1223
A3.2 Entamoeba spp. cysts versus polymorphonuclear leukocytes (PMNs) 1224
A3.3 Entamoeba histolytica versus Entamoeba coli precysts and cysts 1226
A3.4 Endolimax nana versus Dientamoeba fragilis 1227
A3.5 Adult nematodes and/or larvae found in stool specimens: size comparisons 1234

APPENDIX 4 Quality Control Recording Sheets 1235

A4.1 Diagnostic parasitology quality control (QC) (reagents) 1236
A4.2 Diagnostic parasitology quality control (QC) (reagents)—example for multiple reagents 1237
A4.3 Diagnostic parasitology quality control (QC) (culture)—example of a worksheet 1238
A4.4 Equipment maintenance 1239

APPENDIX 5 Commercial Supplies and Suppliers 1241

Tables
A5.1 Sources of commercial reagents and supplies 1242
A5.2 Addresses of suppliers listed in Table A5.1 1245
A5.3 Sources of available reagents for immunodetection of parasitic organisms or antigens 1246
A5.4 Addresses of suppliers listed in Table A5.3 1248
A5.5 Commercial suppliers of diagnostic parasitology products 1249
A5.6 Sources of additional teaching materials, including case histories 1252

A5.7 Sources of parasitologic specimens 1253

APPENDIX 6 Reference Sources 1254

APPENDIX 7 “Late-Breaking” Published Information 1257

APPENDIX 8 Molecular Panels for Parasitology 1278

APPENDIX 9 FAQs 1284

GLOSSARY 1307

Index 1321
During the past few years, the field of diagnostic medical parasitology has seen dramatic changes, including newly recognized parasites, emerging pathogens in new geographic areas, bioterrorism considerations and requirements, alternative techniques required by new regulatory requirements, reevaluation of diagnostic test options and ordering algorithms, continuing changes in the laboratory test menus, implementation of testing based on molecular techniques, reporting formats and report comments, coding and billing requirements, managed-care relevancy, increased need for consultation and educational initiatives for clients, and an overall increased awareness of parasitic infections from a worldwide perspective. We have seen organisms like the microsporidia change from the status of “unusual parasitic infection” to being widely recognized as among the most important infections in both immunocompetent and compromised patients. With confirmation of the fifth human malaria, *Plasmodium knowlesi*, this field has expanded dramatically. More sensitive diagnostic methods for organism detection in stool specimens are now commercially available for *Entamoeba histolytica*, *Entamoeba histolytica/E. dispar*, *Giardia lamblia*, Cryptosporidium spp., and *Trichomonas vaginalis*. Reagents are actively being developed for other organisms such as *Dientamoeba fragilis*, *Blastocystis* spp., and the microsporidia. We have seen *Cyclospora cayetanensis* coccidia become well recognized as the cause of diarrhea in immunocompetent and immunocompromised humans. We continue to see new disease presentations in compromised patients; a good example is granulomatous amebic encephalitis caused by *Acanthamoeba* spp., *Sappinia diploidea*, and *Balamuthia mandrillaris*. With the expansion of transplantation options, many parasites are potential threats to patients who are undergoing immunosuppression, and these must be considered within the context of this patient group. Transfusion transmission of potential parasitic pathogens continues to be problematic. Transfusion in general is becoming more widely recognized as a source of infection, and donors are also more likely to come from many parasite-endemic areas of the world. It is also important to recognize the many neglected parasitic infections seen within the United States; indeed, the world continues to shrink in terms of infectious diseases.

With expanding regulatory requirements related to the disposal of chemicals, laboratories are continuing to review the use of mercury compounds as specimen fixatives and learning to become familiar with organism morphology when using substitute compounds. Permanent staining of fecal smears confirms
that none of the substitute fixatives provide results of the same quality found with the use of mercuric chloride-based fixatives. However, the key issue is whether the intestinal parasites can be identified using these alternative fixatives, not how "perfect" they look. Many fixative options are now available, including single-vial collection systems, some of which are coupled with their own stains. Requirements also mandate that any laboratory using formalin must have formalin vapor monitored as both an 8-hour time-weighted average and 15-minute readings. Most laboratories are now familiar with the regulations on protection of health care workers from blood and other body fluids and have implemented specific changes that are no longer optional. Although laboratories were already using many of the safety recommendations, these regulations delineate in detail what must be done and documented. Regulatory information based on new shipping requirements is also included.

On the basis of excellent suggestions and comments, I have made the following changes in this new edition: (i) the chapter on case histories has been expanded and contains a large number of parasite medical case histories (case history, study questions, correct answer and discussion, and illustrative material); (ii) some of the life cycles have been redrawn, and new life cycles have been added; (iii) algorithms have been expanded; (iv) new tables and figures have been added throughout the book; (v) additional drawings and photographs have been added; (vi) extensive color images have replaced the black and white images; (vii) extensive updated text information is included, all of which was taken from a comprehensive literature review of all aspects of diagnostic medical parasitology; (viii) additional examples of unusual parasitic infections are included; (ix) the chapter on arthropods has been expanded and includes additional photographs and drawings and expanded text; (x) the chapter on the immunology of parasitic infections has been enlarged, and updated information on both antigen and antibody detection methods continues to be included in this edition; (xi) the chapter on histological identification of parasites has been dramatically expanded with diagrams of various parasites and their visual presentations in tissue sections, with greatly enhanced legends for all images; (xii) diagnostic methods using newer immunoassay and "dipstick" technology are included; and (xiii) the chapter on quality control has been expanded to include information on instrumentation and equipment, safety regulations, quality control and quality systems information, continuous quality improvement, and managed-care considerations. The appendixes have been expanded to contain more information on artifacts; expanded lists and photographs of products and commercial suppliers; algorithms for ordering specific tests that complement the ova and parasite examination; flowcharts for processing stool specimens; quality control recording sheets for use in the laboratory; and general references and relevant web sites. One of the most important expanded areas of the sixth edition is found in Appendix 7, which contains information that has been published within months prior to the final printing of this edition. This "late-breaking" synopsis of very recent publications can assist the reader in having access to the latest information available. I encourage you to review this section as you read various chapters throughout the book. A more comprehensive discussion of molecular methods has also been added to the sixth edition and can be found in Appendix 8. Appendix 9 contains comprehensive information on the most frequently asked questions for all aspects of human parasitology, and Appendix 10 contains information related to CPT coding for testing options for diagnostic parasitology.

The approach to the sixth edition of the book has been revised to present the diagnostic methods first, then the didactic discussion of parasitic infections...
as the second component of the book. This change was made to ensure that the most recent and relevant material would be updated right before editing. My objective is to provide the user with clear, concise, well-organized, clinically relevant, cost-effective, and practical quality procedures for use in the clinical laboratory setting. To use and fully understand these methods for the parasites discussed, it is imperative that the user also understand information related to life cycle, morphology, clinical disease, pathogenesis, diagnosis, treatment, epidemiology, and prevention. My intent is to provide a comprehensive discussion of both aspects of the field of diagnostic medical parasitology: first, relevant diagnostic methods designed to detect and identify the organisms present, and second, a comprehensive discussion of the individual parasites. I believe that the book fulfills these objectives and provides readers, whether they are laboratorians, physicians, or other health care professionals, with not only comprehensive, but very practical information.

It is also important for readers to understand that there are many diagnostic test options available to the clinical laboratory; not every laboratory will approach the diagnosis of parasitic infections in the same way. The key to quality and clinically relevant diagnostic work is a thorough understanding of the pros and cons of each option and how various options may or may not be relevant for one’s particular geographic area, laboratory size and range of expertise, client base, number and type of patients seen, personnel expertise and availability, equipment availability, educational initiatives, and communication options, just to name a few variables. However, it is also important to understand the regulations and technical recommendations that govern and guide this type of laboratory work; many of these guidelines are related to coding and reimbursement, proficiency testing, and overall clinical relevance.

The use of product names is not intended to endorse specific products or to exclude substitute products. Also, because of possible advances and changes in the therapy of parasitic infections, independent verification of drugs and drug dosages is always recommended. The diagnostic procedures are intended for laboratory use only by qualified and experienced individuals or by the personnel under their direct supervision. Every effort has been made to ensure accuracy; however, ASM Press and I encourage you to submit to us any suggestions, comments, and information on errors found.
Acknowledgments

Peter Schantz, Frederick L. Schuster, James Seidel, Nicholas Serafy, J. A. Shadduck, Harsha Sheorey, Irwin Sherman, Robyn Shimizu, Balbir Singh, James Smith, Rosemary Soave, Frank J. Sorvillo, S. L. Stanley, Jr., John Steele, Deborah Stenzel, Damian Stark, Linda Sterzenbach, Charles Sterling, James J. Sullivan, Alex Sulzer, Kevin S. W. Tan, Egbert Tannich, Herbert Tanowitz, Mehmet Tanyuksel, William Trager, Peter Traynor, Antonio R. L. Teixeira, Sam Telford, William Trager, Allan R. Truant, Jerrold Turner, Saul Tzipori, Jacqueline A. Upcroft, Peter Upcroft, Tom van Gool, Eric Vanderslice, Jacob Verweij, Govinda Visvesvara, Marietta Voge, Susanne Wahlquist, Kenneth Walls, Rainer Weber, Wilfred Weinstein, Louis Weiss, P. P. Wilkins, John Williams, John Wilson, Marianna Wilson, Jeffrey J. Windsor, Washington Winn, Martin Wolfe, Donna Wolk, Johnson Wong, Lihua Xiao, Nigel Yeates, Judy Yost, Wenbao Zhang, Charles and Wiladene Zierdt, and many others whom I may have failed to mention specifically. If the information contained in this edition provides help to those in the field of microbiology, I will have succeeded in passing on this composite knowledge to the next generation of students and teachers.

Special thanks go to Sharon Belkin for her additional illustrations for this edition. I also thank Ronald Neafie from the Armed Forces Institute of Pathology for providing many photographs to illustrate several areas of the book, particularly the information on histological identification of parasites, and Herman Zaiman for providing slides that he has prepared and/or edited from many contributors worldwide. Very special thanks go to the group at the Centers for Disease Control and Prevention for the use of many of their clinical parasitology images; these images are invaluable to the microbiology community and include images contributed to CDC by many others, as well.

I would like to thank members of the editorial staff of ASM Press, especially Ellie Tupper; they are outstanding professionals and made my job not only challenging but fun.

Above all, my very special thanks go to my late husband, John, for his love and support for the many projects that I have been involved in over the years. I could never have undertaken these challenges without his help and understanding, a true partnership.