6TH EDITION

DIAGNOSTIC MEDICAL PARASITOLOGY

LYNNE SHORE GARCIA
6TH EDITION

DIAGNOSTIC MEDICAL PARASITOLOGY

LYNNE SHORE GARCIA, M.S., MT, CLS, F(AAM)
LSG & Associates, Santa Monica, California

Washington, DC
As with the first five editions, I dedicate this book to Marietta Voge, a truly rare individual who was widely recognized as one of the world’s leading parasitologists. During her years as a diagnostic and research parasitologist at the University of California, Los Angeles, she touched the lives of many students and staff in a very special way. She was always more than willing to share her expertise with all who asked and volunteered this help over the years whenever contacted. She was always willing to donate a considerable amount of her personal time as a volunteer for various medical projects throughout the world.

She was a very special individual to work with, always interested in the person as well as the problem at hand. Her areas of teaching extended far beyond science. Whatever subject she was interested in received her total enthusiasm and dedication, and she had an exceptional ability to deal with detailed work. Her sense of fairness and professional integrity were remarkable; these ideals were shared with all who came in contact with her.

Her contributions to the field of diagnostic parasitology were numerous and included many classes, seminars, papers, and textbooks. The importance of working with Dr. Voge is hard to put into words. She was unique in her ability to allow a student to grow, both scientifically and personally. She could guide without constraints, teach without formal lectures, counsel without being judgmental, challenge without being unrealistic, tease without being cruel, and always be supportive regardless of the situation. She expected much from her students and employees and yet always gave considerably more than she received.

Scientific information gained from our association with her was invaluable; however, her impact on our lives was considerably more than scientific. She was always available for consultations and just to talk. She left all of us with a sense of having personally matured as a result of knowing and working with her over the years. She is missed by all of us, and yet her contributions in terms of teaching, consultations, volunteer work, professionalism, and friendship will remain with us forever.

I would also like to dedicate the sixth edition of this book to the bench technologists, those of you who provide critical diagnostic information on a daily basis and contribute such valuable input for excellent patient care.
vi Dedication

Academic training provides key information in the field, but those who perform routine work at the bench often contribute much more than simple diagnostic identifications. Congratulations and thanks to all of you.

Finally, I also dedicate this book to John Lawrence. He was an extraordinary individual, and without his original encouragement and assistance, the first edition of the book would never have been written.
Contents

Dedication v
Preface xi
Acknowledgments xv

PART I
Diagnostic Procedures 1

1 Philosophy and Approach to Diagnostic Parasitology 3

2 Collection, Preservation, and Shipment of Fecal Specimens 6

 Safety 6
 Fresh-specimen collection 7
 Collection of the specimen 7
 Number of specimens to be collected (standard recommendation) 7
 Number of specimens to be collected (pros and cons of various options) 8
 Collection times 9
 Specimen type, specimen stability, and need for preservation 9
 Preservation of specimens 12
 Preservatives 12
 Use of fixatives 20
 Shipment of diagnostic specimens, biological products, etiologic agents, or infectious substances 21

3 Macroscopic and Microscopic Examination of Fecal Specimens 26

 Macroscopic Examination 26
 Microscopic Examination (Ova and Parasite Examination) 27
 Direct wet smear 27
 Concentration (sedimentation and flotation) 32
 Permanent stained smear 41

 Specialized Stains for Coccidia (Cryptosporidium, Cyclospora, and Cyclospora Species) and the Microsporidia 60
 Modified Kinyoun’s acid-fast stain (cold method) 60
 Modified Ziehl-Neelsen acid-fast stain (hot method) 63
 Carbol fuchsin negative stain for Cryptosporidium (from W. L. Current) 66
 Rapid safranin method for Cryptosporidium 66
 Rapid safranin method for Cyclospora, using a microwave oven 66
 Auramine O stain for coccidia (from Thomas Hånscheid) 67
 Modified trichrome stain for the microsporidia (Weber—green) 68
 Modified trichrome stain for the microsporidia (Ryan—blue) 70
 Modified trichrome stain for the microsporidia (Kokoskin—hot method) 72
 Acid-fast trichrome stain for Cryptosporidium and the microsporidia 72

4 Additional Techniques for Stool Examination 77

 Culture of larval-stage nematodes 77
 Harada-Mori filter paper strip culture 78
 Filter paper/slant culture technique (petri dish) 79
 Charcoal culture 80
 Baermann technique 81
 Agar plate culture for Strongyloides stercoralis 83

 Egg studies 87
 Estimation of worm burdens and Kato-Katz thick film 87
 Hatching of schistosome eggs 89

 Search for tapeworm scolex 91

 India ink injection procedure for tapeworm proglottids 92

 Qualitative test for fecal fat 94

 Quantitation of reducing substances (Clinitest) 95

vii
Contents

5 Examination of Other Specimens from
the Intestinal Tract and the
Urogenital System 98

Examination for pinworm 98
Cellulose tape preparations 99
Anal swabs 99
Sigmoidoscopy material 100
 Direct saline mount 101
 Permanent stained slide 101
Duodenal contents 102
 Duodenal drainage 102
 Duodenal capsule technique (Entero-Test) 103
Urogenital specimens 103
 Trichomoniasis 103
 Filariasis 105
 Schistosomiasis 105

6 Sputum, Aspirates, and Biopsy Material 107

Expectorated sputum 107
Induced sputum 109
Aspirates 116
 Lungs and liver 116
 Lymph nodes, spleen, liver, bone marrow, spinal fluid, eyes, and nasopharynx 118
 Cutaneous ulcer 120
Biopsy material 120
 Skin 124
 Lymph nodes 124
 Muscle 125
 Rectum and bladder 126

7 Procedures for Detecting Blood Parasites 129

Preparation of thick and thin blood films 129
 Thick blood films 130
 Thin blood films 131
 Combination thick and thin blood films
 (on the same slide) 132
 Combination thick and thin blood films
 (can be stained as either) 132
 Buffy coat blood films 134
Staining blood films 135
 Giemsa stain 136
 Wright’s stain 137
 General notes on staining procedures 140
Proper examination of thin and thick blood films 140
 Thin blood films 140
 Thick blood films 141
 Determination of parasitemia 141
Diagnosis of malaria: review of alternatives to
 conventional microscopy 142
 QBC microhematocrit centrifugation method 145
 ParaSight F test 146
 NOW malaria test 147
Flow anti-pLDH Plasmodium monoclonal antibodies 148
Molecular testing 149
Automated blood cell analyzers 150
Diagnosis of leishmaniasis: review of alternatives to
 conventional microscopy 150
 ICT for detection of anti-rK-39 antibodies 150
Concentration procedures 151
 Cyto centrifugation technique 151
 Knott concentration procedure 151
 Membrane filtration technique 151
 Gradient centrifugation technique 152
 Triple-centrifugation method for trypanosomes 152
Special stain for microfilarial sheath 152
 Delafield’s hematoxylin 152

8 Parasite Recovery: Culture Methods, Animal
Inoculation, and Xenodiagnosis 156

Culture methods 156
 Intestinal protozoa 157
 Pathogenic free-living amebae 162
 Blastocystis spp. (Blastocystis hominis) 167
 Pathogenic flagellates 168
 Flagellates of blood and tissue 172
 Toxoplasma gondii 176
 Plasmodium and Babesia spp. 177
 Cryptosporidium spp. 178
 Microsporidia 178
Animal inoculation 178
 Leishmania spp. 180
 Trypanosoma spp. 180
 Toxoplasma gondii 180
Xenodiagnosis 181

9 Fixation and Special Preparation of Fecal
Parasite Specimens and Arthropods 183

Fixation of parasite specimens and arthropods 183
 Protozoa 185
 Solutions to induce relaxation in adult helminths 185
 Nematodes 186
 Trematodes 187
 Cestodes 187
 Helminth eggs and larvae 188
 Arthropods 188
Mounting and staining of parasite specimens for
 examination 189
 Nematodes 189
 Trematodes 189
 Cestodes 191
Mounting of arthropods for examination 191
 Mites 192
 Fleas and lice 192
 Ticks 193
 Miscellaneous arthropods 193
10 Artifacts That Can Be Confused with Parasitic Organisms 195

Protozoa 195
 Amebae 195
 Flagellates 198
 Ciliates 198
Coccidia and microsporidia 198
 Cryptosporidium spp. and Cyclospora cayetanensis 198
 Cystoisospora belli 198
 Microsporidia 199
Blood and body fluids 200
 Malaria parasites and Babesia spp. 200
 Leishmaniae and trypanosomes 200
 Microfilariae 201
 Body fluids: ciliated epithelial cells 202
Helminths 203
 Adult worms and larvae 203
 Eggs 204
Human cells 204
 Polymorphonuclear leukocytes 205
 Eosinophils 206
 Macrophages 207
 Lymphocytes 207
 Red blood cells 207
 Charcot-Leyden crystals 208
Nonhuman elements seen in feces (yeast cells) 209
Insect larvae 209
Spurious infections 209
Delusory parasitosis (delusional infestation) 210

11 Equipment, Supplies, Safety, and Quality System Recommendations for a Diagnostic Parasitology Laboratory: Factors Influencing Future Laboratory Practice 212

Equipment 212
 Microscope 212
 Centrifuge 216
 Fume hood 217
 Biological safety cabinet 217
 Refrigerator-freezer 218
Supplies 218
 Glassware 218
 Miscellaneous supplies 218
 ATCC quality control organisms 219
Safety: personnel and physical facilities 219
 General precautions 219
 Handwashing 220
 Personal protective equipment
 (OSHA 2001 blood borne) 221
 Handling specimens 221
 Processing specimens 221
 Spills 222

Disposal of contaminated materials 224
Standard precautions 224
Hepatitis exposure protocol 227
Dangerous properties of industrial materials 227
Current OSHA regulations for the use of formaldehyde 228
Latex allergy 229

Quality systems 229
 Extent of services 229
 Proficiency testing 230
 In-house quality control 233
 Patient outcome measures 236
 Continuous quality improvement, total quality management, or 10-step and FOCUS-PDCA for performance improvement activities 237
 CLIA ’88 inspection process 238
New quality guidelines 239
 ISO guidelines 240
 CLSI (NCCLS) model 240
Factors influencing future laboratory practice 241
 Managed care 241
 Financial considerations 242
 Current regulations 242
 Decentralized testing 243
 Laboratory services 244
 Technological trends 244
 Clinical decision support 245
 Personnel issues 245
 Changing demographics 245
 Emerging diseases 246
 Bioterrorism 246

12 Medical Parasitology: Case Histories 249

Protozoal infections 249
 Case 1 249
 Case 2 251
 Case 3 252
 Case 4 255
 Case 5 256
 Case 6 258
 Case 7 260
Helminth infections 262
 Case 8 262
 Case 9 263
 Case 10 266
 Case 11 267
 Case 12 269
 Case 13 271
 Case 14 273
Blood parasite infections 274
 Case 15 274
 Case 16 278
 Case 17 280
PART II
Clinically Important Human Parasites 297

13 Intestinal Nematodes 299
 Ascaris lumbricoides 300
 Enterobius vermicularis 308
 Trichuris trichiura 311
 Capillaria philippinensis 314
 Hookworms (Ancylostoma duodenale, Necator americanus, and Ancylostoma ceylanicum) 316
 Trichostrongylus spp. 321
 Strongyloides spp. 322

14 Tissue Nematodes 336
 Trichinella spp. 336
 Baylisascaris procyonis 346
 Lagochilascaris minor 352
 Toxocara canis and T. cattii (visceral larva migrans and ocular larva migrans) 353
 Ancylostoma braziliense and A. caninum (cutaneous larva migrans) 358
 Human eosinophilic enteritis 359
 Dracunculus medinensis 360
 Angiostrongylus (Parasangilliasis) cantonensis (cerebral angiostrongyliasis) 362
 Angiostrongylus (Parasangilliasis) costaricensis (abdominal angiostrongyliasis) 365
 Gnathostoma spinigerum 366
 Gnathostoma doloresi, G. nipponicum, G. hispidum, and G. binucleatum 368
 Anisakis simplex, A. physetis, Pseudoterranova decipiens, Contracaecum osculatum, Hysterobothrium aduncum, and Porrocaecum reticulatum (larval nematodes acquired from saltwater fish) 370
 Capillaria hepatica 373
 Thelazia spp. 373

15 Filarial Nematodes 377
 Basic Life Cycle 380
 The Endosymbiont 380
 Human Pathogens 380
 Wuchereria bancrofti 381
 Brugia malayi 391
 Brugia timori 392
 Zoonotic Brugia infections (American brugian filariasis) 393
 Tropical pulmonary eosinophilia 394
 Loa loa 394
 Mansonella ozzardi 397
 Mansonella perstans 398
 Mansonella streptocerca 399
 Onchocerca volvulus 400
 Dirofilaria Dirofilaria and Dirofilaria Nochtielli spp. 409

16 Intestinal Cestodes 418
 Diphyllobothrium latum 418
 Taenia solium 425
 Taenia saginata 435
 Taenia asiatica (Asian Taenia or Taenia saginata asiatica) 437
 Hymenolepis (Rodentolepis) nana 439
 Hymenolepis diminuta 441
 Dipylidium caninum 443

17 Tissue Cestodes: Larval Forms 447
 Echinococcus granulosus (cystic hydatid disease) 447
 Echinococcus multilocularis (alveolar disease, hydatid disease) 458
 Echinococcus vogeli (Polyzystic Hydatid Disease) and Echinococcus oligarthrus (Uncystic Hydatid Disease): Neotropical Echinococcosis 463
 Taenia (Multiceps) spp. (Taenia multiceps, Taenia serialis) (coenurosis) 465
 Spirometra mansonoides and Diphyllobothrium spp. (sparganosis) 467

18 Intestinal Trematodes 474
 Fasciolopsis buski 475
 Echinostoma ilocanum 479
 Heterophyes heterophyes 481
 Metagonimus yokogaei 482
 Gastrodiscoides hominis 484

19 Liver and Lung Trematodes 487
 Liver Flukes 487
 Clonorchis sinensis 487
 Opisthorchis viverrini 494
 Opisthorchis felineus 497
 Fasciola hepatica 499
 Fasciola gigantica 502
 Less Common Liver Flukes 504
 Dicrocoelium dendriticum, Dicrocoelium hospes, and Eurytrema pancreaticum 504
 Lung Flukes 506
 Paragonimus westermani 506
 Paragonimus kellicotti 512

20 Blood Trematodes: Schistosomes 516
 Schistosoma mansoni 517
 Schistosoma japonicum 530
 Schistosoma mekongi 536
Contents

21 Intestinal Protozoa: Amebas 552
Entamoeba histolytica 552
Entamoeba dispar 567
Entamoeba moshkovskii 568
Entamoeba bangladashi 569
Entamoeba hartmanni 570
Entamoeba coli 571
Entamoeba polecki 572
Entamoeba gingivalis 572
Endolimax nana 574
Iodamoeba bütschlii 575
Blastocystis spp. 576

22 Intestinal Protozoa: Flagellates and Ciliates 584
Giardia lamblia (G. duodenalis, G. intestinalis) 584
Dientamoeba fragilis 598
Pentatrichomonas hominis (Trichomonas hominis) 602
Trichomonas tenax 603
Chilomastix mesnili 604
Enteromonas hominis 604
Retortamonas intestinalis 605
Balantidium coli 605

23 Intestinal Protozoa (Coccidia), Microsporidia, and Algae 612
Coccidia 612
Cryptosporidium spp. 612
Cyclospora cayetanensis 630
Cystoisospora (Isospora) belli 637
Sarcocystis spp. 643
Microsporidia 648
Algae (Prototheca) 662

24 Free-Living Amebae 667
Naegleria fowleri 669
Acanthamoeba spp. 677
Balamuthia mandrillaris 687
Sappinia (diploidea) pedata 690

25 Protozoa from Other Body Sites 694
Trichomonas vaginalis 694
Toxoplasma gondii 704

26 Malaria and Babesiosis 719
Malaria 719
Babesiosis 763

27 Leishmaniasis 778
Cutaneous Leishmaniasis: General Comments 779
Old World (Eastern) Leishmaniasis: Cutaneous Leishmaniasis 780
New World (Western) Leishmaniasis: Cutaneous Leishmaniasis 788
Visceral Leishmaniasis: General Comments 796
Old World (Eastern) Leishmaniasis: Visceral Leishmaniasis 796
New World (Western) Leishmaniasis: Visceral Leishmaniasis 803

28 Trypanosomiasis 810
African trypanosomiasis 811
Trypanosoma brucei gambiense 811
Trypanosoma brucei rhodesiense 822
American trypanosomiasis 826
Trypanosoma cruzi 826
Trypanosoma rangeli 839

29 Unusual Parasitic Infections 845
Aquatic protist 845
Rhinosporidium seeberi 845
Protozoa 848
Lophomonas blattarum 848
Dictyostelium polycephalum 850
Myxozoan parasites 850
Trypanosoma evansi, Trypanosoma lewisi 851
Nematodes (the roundworms) 852
Ancylostoma ceylanicum 852
Halicephalobus gingivalis 853
Oesophagostomum spp. 853
Eustrongylides spp. 855
Mermis nigrescens 856
Dioctophyma renale 856
Teredinus deminutus 858
Mammomonogamus laryngeus (Syngamus laryngeus) 859
Ascaris suum 860
Gongylonema pulchrum 861
Haycocknema perplexum 861
Cestodes 862
Diplogonoporus spp. 862
Bertiella studeri 862
Inermicapsifer madagascariensis 863
Raillietina celebensis 863
Mesocestoides spp. 864
Taenia crassiceps 865
Trematodes 866
Alaria americana 866
Plagiorchis spp. 868
Neodiplostomum seoulense 868
Spelotrema breviceca 869
Brachyaima sp. 869
Neophyetus (Troglotrema) salmifcola 870
Stellantchasmus falcatus 871
Phaneropsolus spinicirrus, Phaneropsolus bonnei, and Prosthemadonium molenkempi 871
Contents

Haplorchis taichui 872
Gymnophalloides seoi 872
Metorchis conjunctus (North American liver fluke) 873
Schistosoma mattheei 874
Philophthalmus lacrinosus 875
Achilarbainia spp. 875
Penstomids 875
Armillifer spp., Linguatula serrata, and Sebekia spp. 875
Acanthocephalans 876
Macracanthorhynchus hirudinaceus and Moniliformis moniliformis 876

30 Parasitic Infections in the Compromised Host 883
Entamoeba histolytica 885
Free-living amebae 895
Blastocystis spp. 903
Giardia lamblia 903
Toxoplasma gondii 905
Cryptosporidium spp. 907
Cyclospora cayetanensis 910
Cystoisospora (Isospora) belli 912
Sarcocystis spp. 913
Microsporidia 914
Leishmania spp. 918
Strongyloides stercoralis 923
Plasmodium spp. 926
Babesia spp. 927
American trypanosomiasis 929
Crusted scabies 930

31 Health Care-Associated and Laboratory-
Acquired Infections 935
Health Care-Associated (Nosocomial) infections 935
Gastrointestinal infections 936
Cryptosporidium spp. 936
Giardia lamblia 939
Entamoeba histolytica 940
Microsporidia 941
Cystoisospora (Isospora) belli 941
Hymenolepis nana 942
Taenia solium 942
Blood and tissue infections 942
Plasmodium spp. 942
Babesia spp. 943
Trypanosoma brucei gambiense and T. brucei rhodesiense 943
Trypanosoma cruzi 943
Leishmania donovani 944
Toxoplasma gondii 944
Infections with ectoparasites 945
Pediculus spp. and Phthirus pubis 945
Sarcoptes scabiei 945
Myiasis 945
Infections in the pediatric patient 946
Cryptosporidium spp. 946
Giardia lamblia 946
Pediculus humanus capitis 946
Sarcoptes scabiei 946
Infections in the compromised patient 946
Intestinal protozoa 948
Free-living amebae 948
Plasmodium spp. 948
Trypanosoma brucei gambiense and T. brucei rhodesiense 948
Trypanosoma cruzi 950
Leishmania spp. 950
Toxoplasma gondii 951
Specimen handling 951
Summary 951

32 Immunology of Parasitic Infections 954
Amebiasis 960
Giardiasis 964
Toxoplasmosis 966
African trypanosomiasis 968
American trypanosomiasis 970
Malaria 973
Helminth infections 978
Summary 981

33 Antibody and Antigen Detection in Parasitic Infections 986
Protozoal infections 993
Amebiasis 993
Babesiosis 995
Chagas' disease 996
Cryptosporidiosis 997
Cyclosporiasis 997
Giardiasis 997
Leishmaniasis 998
Malaria 999
Toxoplasmosis 1001
Trichomoniasis 1004
Helminth infections 1004
Cysticercosis 1004
Hydatid disease 1005
Fascioliasis 1007
Filariasis 1007
Paragonimiasis 1009
Schistosomiasis 1010
Strongyloidiasis 1011
Toxocariasis 1012
Trichinosis 1013
Intradermal tests 1014
Casoni test 1014
Montenegro test 1014
Summary 1014
34 Histologic Identification of Parasites 1019

Protozoa 1020
 Amebae 1020
 Flagellates 1024
 Ciliates 1024
 Coccidia 1025
 Microsporidia 1027

Helminths 1029
 Nematodes 1029
 Cestodes 1039
 Trematodes 1045

Blood Parasites 1052
 Malaria 1052
 Leishmania 1053
 Trypanosomes 1055
 Filaria 1056

35 Medically Important Arthropods 1077

Arthropods and their relationship to disease 1077
 Biological vectors of microorganisms 1077
 Bites and envenomation 1078
 Tissue invasion 1081
 Entomophobia and delusional infestation (parasitosis) 1082

Class Insecta (insects) 1083
 Order Diptera (flies, mosquitoes, and midges) 1083
 Myiiasis 1090
 Order Hemiptera (true bugs) 1098
 Order Coleoptera (beetles) 1100
 Order Siphonaptera (Fleas) (Ctenocephalides spp., Xenopsylla cheopis, Pulex irritans [Human Flea], Tunga penetrans, Nosopsyllus fasciatus, Echidnophaga gallinacea, and “Sand Fleas”) 1102
 Order Anoplura (sucking lice) 1104
 Order Mallophaga (biting and chewing lice) 1106
 Order Hymenoptera (bees, wasps, and ants) 1106
 Order Blattaria (cockroaches) 1108

Class Arachnida (ticks, mites, spiders, and scorpions) 1109
 Subclass Acari (ticks, mites, and chiggers) 1109
 Subclass Araneae (spiders) 1118
 Subclass Scorpiones (scorpions) 1122

Other arthropods 1122
 Class Chilopoda (centipedes) 1122
 Class Diplopoda (millipedes) 1123
 Class Crustacea (copepods, crabs, crayfish, etc.) 1123

Control of arthropods of medical importance 1123
 Physical control 1124
 Biological control 1124
 Chemical control 1124

36 Treatment of Parasitic Infections 1134

Albendazole (Albenza) (Amedra) 1134
Amphotericin B (AmBisome) (Gilead) 1135
Amphotericin B (Fungizone) (X-Gen) 1153
Artemether (Artenam) (Arenco, Belgium) 1154
Atovaquone (Mepron) (GlaxoSmithKline) 1154
Atovaquone-Proguanil (Malarone) (GlaxoSmithKline) 1155
Benznidazole (Rochagan) (Roche, Brazil) 1155
Bithionol (Bitin) (CDC) 1156
Chloroquine Phosphate (Aralen) (Sanofi, Others) 1156
Crotamiton (Eurax) (Ranbaxy) 1156
Dapsone (Jacobs) 1157
Diethylcarbamazine Citrate USP (Hetrazan) (CDC) 1157
Diloxanide Furoate (Furamide, Entamide) (Boots, England) 1157
Eflornithine (Difluoromethylornithine, Ornidy1) (Sanofi) (CDC) 1158
Fumagillin (Fumidil-B) 1158
Furazolidone (Furoxone) 1158
Iodoquinol/Diiodohydroxyquin (Yodoxin) (Glennwood, Others) 1158
Ivermectin (Stromectol, Sklice) (Merck, Sanofi) 1159
Lumefantrine/Artemether (Coartem, Riamet) (Novartis) 1160
Malathion (Ovide) (Taro Pharmaceuticals) 1160
Mebendazole (Generics) 1160
Mefloquine Hydrochloride (Generics) 1161
Mesoropsrol (Mel-B) (CDC) 1162
Metronidazole (Flagyl, IV Flagyl) (Searle/Pfizer, Baxter) 1162
Miltefosine (Impavid, Miltex) (Paladin, Canada) (CDC) 1163
Niclosamide (Yomesan, Niclocide) (Bayer, Germany) 1163
Nifurtimox (Lampit) (Bayer HealthCare) (CDC) 1163
Nitazoxanide (Alinia) (Romark) 1164
Paromomycin (Generics) (Sun Pharma) 1164
Pentamidine Isethionate (Pentam 300, Nebupent) (APP Pharmaceuticals) 1165
Permethrin (Nix [Insight Pharmaceuticals], Elimite [Premier Pharma]) 1166
Polyhexamethylene Biguanide (Baquacil) (Zeneca) 1166
Praziquantel (Biltricide) (Bayer) 1166
Primaquine Phosphate (Sanofi-Aventis) 1167
Propamidine Isethionate (Brolene) (Aventis, Canada) 1167
Pyrantel Pamoate (Pin-X, Reese's Pinworm Medicine) (Quartz Specialty Pharmaceuticals, Reese) 1168
Pyrethrins with Piperonyl Butoxide (Rid) (Bayer, Others) 1168
Pyrimethamine (Daraprim) (Amedra) 1168
Quinidine Gluconate (Generics) 1169
Quinoline Sulfate or Quinine Dihydrochloride (Many Manufacturers) 1169
Spiramycin (Rovamyicine) (Sanofi-Aventis) 1169
Stibogluconate Sodium (Pentostam, Solustibosan) (GlaxoSmithKline) (CDC) 1170
Suramin Sodium (Germanin) (Bayer, Germany) (CDC) 1170
Contents

Thiabendazole (Mintezol) (Merck) 1170

Tinidazole (Tindamax) (Mission Pharmaceuticals) 1171

Triclabendazole (Egaten) (Novartis) 1172

APPENDIXES 1175

APPENDIX 1 Information Tables 1176

A1.1 Classification of human parasites 1176

A1.2 Distribution of selected parasitic infections in the Americas 1179

A1.3 Distribution of selected parasitic infections in Europe 1179

A1.4 Distribution of selected parasitic infections in Africa 1180

A1.5 Distribution of selected parasitic infections in Asia 1180

A1.6 Distribution of selected parasitic infections in Oceania 1181

A1.7 Cosmopolitan distribution of common parasitic infections (North America, Mexico, Central America, South America, Europe, Africa, Asia, and Oceania) 1181

A1.8 Body sites and specimen collection 1182

A1.9 Body sites and possible parasites recovered (trophozoites, cysts, oocysts, spores, adults, larvae, eggs, amastigotes, and trypomastigotes) 1183

A1.10 Body site, specimen and procedures, recommended methods, relevant parasites, and comments 1184

A1.11 Examination of tissue and body fluids 1189

A1.12 Key characteristics of protozoa of the intestinal tract and urogenital system 1191

A1.13 Key characteristics of tissue protozoa 1194

A1.14 Key characteristics of helminths 1196

A1.15 Key characteristics of most common parasites found in blood 1198

A1.16 Diagnostic laboratory report information that should be relayed to the physician 1200

A1.17 Pros and cons of stool specimen collection and testing options 1201

A1.18 Approaches to stool parasitology: test ordering 1203

A1.19 Pros and cons of ova and parasite examination options 1204

A1.20 Laboratory test reports: optional comments 1206

A1.21 Estimated prevalence of parasitic diseases worldwide 1207

APPENDIX 2 Flowcharts and Staining Tables for Diagnostic Procedures 1208

Flowcharts

A2.1 Procedure for processing fresh stool for the ova and parasite examination by using the traditional two-vial collection kit 1210

A2.2 Procedure for processing preserved stool for the ova and parasite examination by using sodium acetate-acetic acid-formalin (SAF)-preserved stool 1211

A2.3 Use of various fixatives and their recommended stains: fecal specimens preserved using polyvinyl alcohol (PVA) 1212

A2.4 Use of various fixatives and their recommended stains: fecal specimens preserved in the Universal Fixative, TOTAL-FIX 1213

Tables

A2.1 Steps in the trichrome staining procedure (mercuric chloride-based PVA-preserved stool specimens) 1214

A2.2 Steps in the trichrome staining procedure (non-mercuric chloride-based PVA-preserved stool specimens) 1215

A2.3 Steps in the iron hematoxylin staining procedure (mercuric chloride-based PVA-preserved stool specimens) (Spencer-Monroe method) 1216

A2.4 Steps in the iron hematoxylin staining procedure (mercuric chloride-based PVA-preserved stool specimens) (Tompkins-Miller method) 1217

A2.5 Steps in the iron hematoxylin staining procedure (incorporating the carbol fuchsin step) 1218

A2.6 Steps in the trichrome staining procedure (Universal Fixative [no mercury, no formalin, no PVA]) 1219

A2.7 Oil-mounted permanent stained smears (no Permount is used) 1220

A2.8 Tips on stool processing and staining 1221

APPENDIX 3 Common Problems in Parasite Identification 1222

Figures

A3.1–A3.25 Paired drawings of “look alikes” 1222

A3.26 Relative sizes of helminth eggs 1233

Tables

A3.1 Entamoeba spp. trophozoites versus macrophages 1223

A3.2 Entamoeba spp. cysts versus polymorphonuclear leukocytes (PMNs) 1224

A3.3 Entamoeba bistolytica versus Entamoeba coli precysts and cysts 1226

A3.4 Endolimax nana versus Dientamoeba fragilis 1227

A3.5 Adult nematodes and/or larvae found in stool specimens: size comparisons 1234

APPENDIX 4 Quality Control Recording Sheets 1235

A4.1 Diagnostic parasitology quality control (QC) (reagents) 1236
A4.2 Diagnostic parasitology quality control (QC) (reagents)—example for multiple reagents 1237
A4.3 Diagnostic parasitology quality control (QC) (culture)—example of a worksheet 1238
A4.4 Equipment maintenance 1239

APPENDIX 5 Commercial Supplies and Suppliers 1241

Tables
A5.1 Sources of commercial reagents and supplies 1242
A5.2 Addresses of suppliers listed in Table A5.1 1245
A5.3 Sources of available reagents for immunodetection of parasitic organisms or antigens 1246
A5.4 Addresses of suppliers listed in Table A5.3 1248
A5.5 Commercial suppliers of diagnostic parasitology products 1249
A5.6 Sources of additional teaching materials, including case histories 1252

A5.7 Sources of parasitologic specimens 1253

APPENDIX 6 Reference Sources 1254

APPENDIX 7 “Late-Breaking” Published Information 1257

APPENDIX 8 Molecular Panels for Parasitology 1278

APPENDIX 9 FAQs 1284

GLOSSARY 1307

Index 1321
During the past few years, the field of diagnostic medical parasitology has seen dramatic changes, including newly recognized parasites, emerging pathogens in new geographic areas, bioterrorism considerations and requirements, alternative techniques required by new regulatory requirements, reevaluation of diagnostic test options and ordering algorithms, continuing changes in the laboratory test menus, implementation of testing based on molecular techniques, reporting formats and report comments, coding and billing requirements, managed-care relevancy, increased need for consultation and educational initiatives for clients, and an overall increased awareness of parasitic infections from a worldwide perspective. We have seen organisms like the microsporidia change from the status of “unusual parasitic infection” to being widely recognized as among the most important infections in both immunocompetent and compromised patients. With confirmation of the fifth human malaria, *Plasmodium knowlesi*, this field has expanded dramatically. More sensitive diagnostic methods for organism detection in stool specimens are now commercially available for *Entamoeba histolytica*, *Entamoeba histolytica*/*E. dispar*, *Giardia lamblia*, Cryptosporidium spp., and *Trichomonas vaginalis*. Reagents are actively being developed for other organisms such as *Dientamoeba fragilis*, *Blastocystis* spp., and the microsporidia. We have seen *Cyclospora cayetanensis* coccidia become well recognized as the cause of diarrhea in immunocompetent and immunocompromised humans. We continue to see new disease presentations in compromised patients; a good example is granulomatous amebic encephalitis caused by *Acanthamoeba* spp., *Sappinia diploidea*, and *Balamuthia mandrillaris*. With the expansion of transplantation options, many parasites are potential threats to patients who are undergoing immunosuppression, and these must be considered within the context of this patient group. Transfusion transmission of potential parasitic pathogens continues to be problematic. Transfusion in general is becoming more widely recognized as a source of infection, and donors are also more likely to come from many parasite-endemic areas of the world. It is also important to recognize the many neglected parasitic infections seen within the United States; indeed, the world continues to shrink in terms of infectious diseases.

With expanding regulatory requirements related to the disposal of chemicals, laboratories are continuing to review the use of mercury compounds as specimen fixatives and learning to become familiar with organism morphology when using substitute compounds. Permanent staining of fecal smears confirms
that none of the substitute fixatives provide results of the same quality found with the use of mercuric chloride-based fixatives. However, the key issue is whether the intestinal parasites can be identified using these alternative fixatives, not how “perfect” they look. Many fixative options are now available, including single-vial collection systems, some of which are coupled with their own stains. Requirements also mandate that any laboratory using formalin must have formalin vapor monitored as both an 8-hour time-weighted average and 15-minute readings. Most laboratories are now familiar with the regulations on protection of health care workers from blood and other body fluids and have implemented specific changes that are no longer optional. Although laboratories were already using many of the safety recommendations, these regulations delineate in detail what must be done and documented. Regulatory information based on new shipping requirements is also included.

On the basis of excellent suggestions and comments, I have made the following changes in this new edition: (i) the chapter on case histories has been expanded and contains a large number of parasite medical case histories (case history, study questions, correct answer and discussion, and illustrative material); (ii) some of the life cycles have been redrawn, and new life cycles have been added; (iii) algorithms have been expanded; (iv) new tables and figures have been added throughout the book; (v) additional drawings and photographs have been added; (vi) extensive color images have replaced the black and white images; (vii) extensive updated text information is included, all of which was taken from a comprehensive literature review of all aspects of diagnostic medical parasitology; (viii) additional examples of unusual parasitic infections are included; (ix) the chapter on arthropods has been expanded and includes additional photographs and drawings and expanded text; (x) the chapter on the immunology of parasitic infections has been enlarged, and updated information on both antigen and antibody detection methods continues to be included in this edition; (xi) the chapter on histological identification of parasites has been dramatically expanded with diagrams of various parasites and their visual presentations in tissue sections, with greatly enhanced legends for all images; (xii) diagnostic methods using newer immunoassay and “dipstick” technology are included; and (xiii) the chapter on quality control has been expanded to include information on instrumentation and equipment, safety regulations, quality control and quality systems information, continuous quality improvement, and managed-care considerations. The appendixes have been expanded to contain more information on artifacts; expanded lists and photographs of products and commercial suppliers; algorithms for ordering specific tests that complement the ova and parasite examination; flowcharts for processing stool specimens; quality control recording sheets for use in the laboratory; and general references and relevant web sites. One of the most important expanded areas of the sixth edition is found in Appendix 7, which contains information that has been published within months prior to the final printing of this edition. This “late-breaking” synopsis of very recent publications can assist the reader in having access to the latest information available. I encourage you to review this section as you read various chapters throughout the book. A more comprehensive discussion of molecular methods has also been added to the sixth edition and can be found in Appendix 8. Appendix 9 contains comprehensive information on the most frequently asked questions for all aspects of human parasitology, and Appendix 10 contains information related to CPT coding for testing options for diagnostic parasitology.

The approach to the sixth edition of the book has been revised to present the diagnostic methods first, then the didactic discussion of parasitic infections.
as the second component of the book. This change was made to ensure that the most recent and relevant material would be updated right before editing. My objective is to provide the user with clear, concise, well-organized, clinically relevant, cost-effective, and practical quality procedures for use in the clinical laboratory setting. To use and fully understand these methods for the parasites discussed, it is imperative that the user also understand information related to life cycle, morphology, clinical disease, pathogenesis, diagnosis, treatment, epidemiology, and prevention. My intent is to provide a comprehensive discussion of both aspects of the field of diagnostic medical parasitology: first, relevant diagnostic methods designed to detect and identify the organisms present, and second, a comprehensive discussion of the individual parasites. I believe that the book fulfills these objectives and provides readers, whether they are laboratorians, physicians, or other health care professionals, with not only comprehensive, but very practical information.

It is also important for readers to understand that there are many diagnostic test options available to the clinical laboratory; not every laboratory will approach the diagnosis of parasitic infections in the same way. The key to quality and clinically relevant diagnostic work is a thorough understanding of the pros and cons of each option and how various options may or may not be relevant for one’s particular geographic area, laboratory size and range of expertise, client base, number and type of patients seen, personnel expertise and availability, equipment availability, educational initiatives, and communication options, just to name a few variables. However, it is also important to understand the regulations and technical recommendations that govern and guide this type of laboratory work; many of these guidelines are related to coding and reimbursement, proficiency testing, and overall clinical relevance.

The use of product names is not intended to endorse specific products or to exclude substitute products. Also, because of possible advances and changes in the therapy of parasitic infections, independent verification of drugs and drug dosages is always recommended. The diagnostic procedures are intended for laboratory use only by qualified and experienced individuals or by the personnel under their direct supervision. Every effort has been made to ensure accuracy; however, ASM Press and I encourage you to submit to us any suggestions, comments, and information on errors found.
Acknowledgments

Peter Schantz, Frederick L. Schuster, James Seidel, Nicholas Serafy, J. A. Shadduck, Harsha Sheorey, Irwin Sherman, Robyn Shimizu, Balbir Singh, James Smith, Rosemary Soave, Frank J. Sorvillo, S. L. Stanley, Jr., John Steele, Deborah Stenzel, Damian Stark, Linda Sterzenbach, Charles Sterling, James J. Sullivan, Alex Sulzer, Kevin S. W. Tan, Egbert Tannich, Herbert Tanowitz, Mehmet Tanyuksel, William Trager, Peter Traynor, Antonio R. L. Teixeira, Sam Telford, William Trager, Allan R. Truant, Jerrold Turner, Saul Tzipori, Jacqueline A. Upcroft, Peter Upcroft, Tom van Gool, Eric Vanderslice, Jacob Verweij, Govinda Visvesvara, Marietta Voge, Susanne Wahlquist, Kenneth Walls, Rainer Weber, Wilfred Weinstein, Louis Weiss, P. P. Wilkins, John Williams, John Wilson, Marianna Wilson, Jeffrey J. Windsor, Washington Winn, Martin Wolfe, Donna Wolk, Johnson Wong, Lihua Xiao, Nigel Yeates, Judy Yost, Wenbao Zhang, Charles and Wiladene Zierdt, and many others whom I may have failed to mention specifically. If the information contained in this edition provides help to those in the field of microbiology, I will have succeeded in passing on this composite knowledge to the next generation of students and teachers.

Special thanks go to Sharon Belkin for her additional illustrations for this edition. I also thank Ronald Neafie from the Armed Forces Institute of Pathology for providing many photographs to illustrate several areas of the book, particularly the information on histological identification of parasites, and Herman Zaiman for providing slides that he has prepared and/or edited from many contributors worldwide. Very special thanks go to the group at the Centers for Disease Control and Prevention for the use of many of their clinical parasitology images; these images are invaluable to the microbiology community and include images contributed to CDC by many others, as well.

I would like to thank members of the editorial staff of ASM Press, especially Ellie Tupper; they are outstanding professionals and made my job not only challenging but fun.

Above all, my very special thanks go to my late husband, John, for his love and support for the many projects that I have been involved in over the years. I could never have undertaken these challenges without his help and understanding, a true partnership.