6TH EDITION

DIAGNOSTIC MEDICAL PARASITOLOGY

LYNNE SHORE GARCIA
Cover: Dog tapeworm (*Taenia pisiformis*), photograph taken using a light microscope, showing scolex with hooks. Spike Walker, Wellcome Images.

Copyright © 2016 by ASM Press. ASM Press is a registered trademark of the American Society for Microbiology. All rights reserved. No part of this publication may be reproduced or transmitted in whole or in part or reutilized in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

Disclaimer: To the best of the publisher's knowledge, this publication provides information concerning the subject matter covered that is accurate as of the date of publication. The publisher is not providing legal, medical, or other professional services. Any reference herein to any specific commercial products, procedures, or services by trade name, trademark, manufacturer, or otherwise does not constitute or imply endorsement, recommendation, or favored status by the American Society for Microbiology (ASM). The views and opinions of the author(s) expressed in this publication do not necessarily state or reflect those of ASM, and they shall not be used to advertise or endorse any product.

Library of Congress Cataloging-in-Publication Data
Names: Garcia, Lynne Shore, author.
Title: Diagnostic medical parasitology / by Lynne S. Garcia.
Identifiers: LCCN 2015041826 (print) | LCCN 2015042284 (ebook) | ISBN 9781555818999 (alk. paper) | ISBN 9781555819002 ()
Subjects: LCSH: Diagnostic parasitology.
Classification: LCC QR255 .G37 2016 (print) | LCC QR255 (ebook) | DDC 616.9/6075--dc23
LC record available at http://lccn.loc.gov/2015041826

doi:10.1128/9781555819002

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Address editorial correspondence to: ASM Press, 1752 N St., N.W., Washington, DC 20036-2904, USA.

Send orders to: ASM Press, P.O. Box 605, Herndon, VA 20172, USA.

Phone: 800-546-2416; 703-661-1593. Fax: 703-661-1501.

E-mail: books@asmusa.org

Online: http://estore.asm.org
As with the first five editions, I dedicate this book to Marietta Voge, a truly rare individual who was widely recognized as one of the world’s leading parasitologists. During her years as a diagnostic and research parasitologist at the University of California, Los Angeles, she touched the lives of many students and staff in a very special way. She was always more than willing to share her expertise with all who asked and volunteered this help over the years whenever contacted. She was always willing to donate a considerable amount of her personal time as a volunteer for various medical projects throughout the world.

She was a very special individual to work with, always interested in the person as well as the problem at hand. Her areas of teaching extended far beyond science. Whatever subject she was interested in received her total enthusiasm and dedication, and she had an exceptional ability to deal with detailed work. Her sense of fairness and professional integrity were remarkable; these ideals were shared with all who came in contact with her.

Her contributions to the field of diagnostic parasitology were numerous and included many classes, seminars, papers, and textbooks. The importance of working with Dr. Voge is hard to put into words. She was unique in her ability to allow a student to grow, both scientifically and personally. She could guide without constraints, teach without formal lectures, counsel without being judgmental, challenge without being unrealistic, tease without being cruel, and always be supportive regardless of the situation. She expected much from her students and employees and yet always gave considerably more than she received.

Scientific information gained from our association with her was invaluable; however, her impact on our lives was considerably more than scientific. She was always available for consultations and just to talk. She left all of us with a sense of having personally matured as a result of knowing and working with her over the years. She is missed by all of us, and yet her contributions in terms of teaching, consultations, volunteer work, professionalism, and friendship will remain with us forever.

I would also like to dedicate the sixth edition of this book to the bench technologists, those of you who provide critical diagnostic information on a daily basis and contribute such valuable input for excellent patient care.
Dedication

Academic training provides key information in the field, but those who perform routine work at the bench often contribute much more than simple diagnostic identifications. Congratulations and thanks to all of you.

Finally, I also dedicate this book to John Lawrence. He was an extraordinary individual, and without his original encouragement and assistance, the first edition of the book would never have been written.
Contents

Dedication v
Preface xi
Acknowledgments xv

PART I
Diagnostic Procedures 1

1 Philosophy and Approach to Diagnostic Parasitology 3

2 Collection, Preservation, and Shipment of Fecal Specimens 6
 Safety 6
 Fresh-specimen collection 7
 Collection of the specimen 7
 Number of specimens to be collected (standard
 recommendation) 7
 Number of specimens to be collected (pros and cons of
 various options) 8
 Collection times 9
 Specimen type, specimen stability, and need for
 preservation 9
 Preservation of specimens 12
 Preservatives 12
 Use of fixatives 20
 Shipment of diagnostic specimens, biological products,
 etiologic agents, or infectious substances 21

3 Macroscopic and Microscopic Examination of Fecal Specimens 26
 Macroscopic Examination 26
 Microscopic Examination (Ova and Parasite
 Examination) 27
 Direct wet smear 27
 Concentration (sedimentation and flotation) 32
 Permanent stained smear 41

Specialized Stains for Coccidia (Cryptosporidium,
 Cystoisospora, and Cyclospora Species) and the
 Microsporidia 60
 Modified Kinyoun’s acid-fast stain (cold method) 60
 Modified Ziehl-Neelsen acid-fast stain (hot method) 63
 Carbol fuchsin negative stain for Cryptosporidium
 (from W. L. Current) 66
 Rapid safranin method for Cryptosporidium 66
 Rapid safranin method for Cyclospora, using a
 microwave oven 66
 Auramine O stain for coccidia (from Thomas
 Hänscheid) 67
 Modified trichrome stain for the microsporidia
 (Weber—green) 68
 Modified trichrome stain for the microsporidia
 (Ryan—blue) 70
 Modified trichrome stain for the microsporidia
 (Kokoskin—hot method) 72
 Acid-fast trichrome stain for Cryptosporidium and the
 microsporidia 72

4 Additional Techniques for Stool Examination 77
 Culture of larval-stage nematodes 77
 Harada-Mori filter paper strip culture 78
 Filter paper/slant culture technique (petri dish) 79
 Charcoal culture 80
 Baermann technique 81
 Agar plate culture for Strongyloides stercoralis 83
 Egg studies 87
 Estimation of worm burdens and Kato-Katz thick film 87
 Hatching of schistosome eggs 89
 Search for tapeworm scolex 91
 India ink injection procedure for tapeworm
 proglottids 92
 Qualitative test for fecal fat 94
 Quantitation of reducing substances (Clinitest) 95
Contents

5 Examination of Other Specimens from the Intestinal Tract and the Urogenital System 98
- Examination for pinworm 98
- Cellulose tape preparations 99
- Anal swabs 99
- Sigmoidoscopy material 100
- Direct saline mount 101
- Permanent stained slide 101
- Duodenal contents 102
- Duodenal drainage 102
- Duodenal capsule technique (Entero-Test) 103
- Urogenital specimens 103
 - Trichomoniasis 103
 - Filariasis 105
 - Schistosomiasis 105

6 Sputum, Aspirates, and Biopsy Material 107
- Expectorated sputum 107
- Induced sputum 109
- Aspirates 116
 - Lungs and liver 116
 - Lymph nodes, spleen, liver, bone marrow, spinal fluid, eyes, and nasopharynx 118
 - Cutaneous ulcer 120
- Biopsy material 120
 - Skin 124
 - Lymph nodes 124
 - Muscle 125
 - Rectum and bladder 126

7 Procedures for Detecting Blood Parasites 129
- Preparation of thick and thin blood films 129
 - Thick blood films 130
 - Thin blood films 131
 - Combination thick and thin blood films (on the same slide) 132
 - Combination thick and thin blood films (can be stained as either) 132
 - Buffy coat blood films 134
- Staining blood films 135
 - Giemsa stain 136
 - Wright's stain 137
 - General notes on staining procedures 140
- Proper examination of thin and thick blood films 140
 - Thin blood films 140
 - Thick blood films 141
 - Determination of parasitemia 141
- Diagnosis of malaria: review of alternatives to conventional microscopy 142
 - QBC microhematocrit centrifugation method 145
 - ParaSight F test 146
 - NOW malaria test 147
 - Flow anti-pLDH Plasmodium monoclonal antibodies 148
 - Molecular testing 149
 - Automated blood cell analyzers 150
 - Diagnosis of leishmaniasis: review of alternatives to conventional microscopy 150
 - ICT for detection of anti-rK-39 antibodies 150
 - Concentration procedures 151
 - Cytocentrifugation technique 151
 - Knott concentration procedure 151
 - Membrane filtration technique 151
 - Gradient centrifugation technique 152
 - Triple-centrifugation method for trypanosomes 152
 - Special stain for microfilarial sheath 152
 - Delafield's hematoxylin 152

8 Parasite Recovery: Culture Methods, Animal Inoculation, and Xenodiagnosis 156
- Culture methods 156
 - Intestinal protozoa 157
 - Pathogenic free-living amebae 162
 - Blastocystis spp. (Blastocystis hominis) 167
 - Pathogenic flagellates 168
 - Flagellates of blood and tissue 172
 - Toxoplasma gondii 176
 - Plasmodium and Babesia spp. 177
 - Cryptosporidium spp. 178
 - Microsporidia 178
 - Animal inoculation 178
 - Leishmania spp. 180
 - Trypanosoma spp. 180
 - Toxoplasma gondii 180
- Xenodiagnosis 181

9 Fixation and Special Preparation of Fecal Parasite Specimens and Arthropods 183
- Fixation of parasite specimens and arthropods 183
 - Protozoa 185
 - Solutions to induce relaxation in adult helminths 185
 - Nematodes 186
 - Trematodes 187
 - Cestodes 187
 - Helminth eggs and larvae 188
 - Arthropods 188
- Mounting and staining of parasite specimens for examination 189
 - Nematodes 189
 - Trematodes 189
 - Cestodes 191
- Mounting of arthropods for examination 191
 - Mites 192
 - Fleas and lice 192
 - Ticks 193
 - Miscellaneous arthropods 193
10 Artifacts That Can Be Confused with Parasitic Organisms 195
Protozoa 195
Amebae 195
Flagellates 198
Ciliates 198
Coccidia and microsporidia 198
Cryptosporidium spp. and Cyclospora cayetanensis 198
Cystoisospora belli 198
Microsporidia 199
Blood and body fluids 200
Malaria parasites and Babesia spp. 200
Leishmaniae and trypanosomes 200
Microfilariae 201
Body fluids: ciliated epithelial cells 202
Helminths 203
Adult worms and larvae 203
Eggs 204
Human cells 204
Polymorphonuclear leukocytes 205
Eosinophils 206
Macrophages 207
Lymphocytes 207
Red blood cells 207
Charcot-Leyden crystals 208
Nonhuman elements seen in feces (yeast cells) 209
Insect larvae 209
Spurious infections 209
Delusory parasitosis (delusional infestation) 210

11 Equipment, Supplies, Safety, and Quality System Recommendations for a Diagnostic Parasitology Laboratory: Factors Influencing Future Laboratory Practice 212
Equipment 212
Microscope 212
Centrifuge 216
Fume hood 217
Biological safety cabinet 217
Refrigerator-freezer 218
Supplies 218
Glassware 218
Miscellaneous supplies 218
ATCC quality control organisms 219
Safety: personnel and physical facilities 219
General precautions 219
Handwashing 220
Personal protective equipment
(OSH 2001 blood borne) 221
Handling specimens 221
Processing specimens 221
Spills 222

12 Medical Parasitology: Case Histories 249
Protozoal infections 249
Case 1 249
Case 2 251
Case 3 252
Case 4 255
Case 5 256
Case 6 258
Case 7 260
Helminth infections 262
Case 8 262
Case 9 263
Case 10 266
Case 11 267
Case 12 269
Case 13 271
Case 14 273
Blood parasite infections 274
Case 15 274
Case 16 278
Case 17 280
Disposal of contaminated materials 224
Standard precautions 224
Hepatitis exposure protocol 227
Dangerous properties of industrial materials 227
Current OSHA regulations for the use of formaldehyde 228
Latex allergy 229
Quality systems 229
Extent of services 229
Proficiency testing 230
In-house quality control 233
Patient outcome measures 236
Continuous quality improvement, total quality management, or 10-step and FOCUS-PDCA for performance improvement activities 237
CLIA ’88 inspection process 238
New quality guidelines 239
ISO guidelines 240
CLSI (NCCLS) model 240
Factors influencing future laboratory practice 241
Managed care 241
Financial considerations 242
Current regulations 242
Decentralized testing 243
Laboratory services 244
Technological trends 244
Clinical decision support 245
Personnel issues 245
Changing demographics 245
Emerging diseases 246
Bioterrorism 246
PART II
Clinically Important Human Parasites 297

13 Intestinal Nematodes 299

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascaris lumbricoides</td>
<td>300</td>
</tr>
<tr>
<td>Enterobius vermicularis</td>
<td>308</td>
</tr>
<tr>
<td>Trichurus trichiura</td>
<td>311</td>
</tr>
<tr>
<td>Capillaria philippinensis</td>
<td>314</td>
</tr>
<tr>
<td>Hookworms (Ancylostoma duodenale, Necator americanus, and Ancylostoma ceylanicum)</td>
<td>316</td>
</tr>
<tr>
<td>Trichostrongylus spp.</td>
<td>321</td>
</tr>
<tr>
<td>Strongyloides spp.</td>
<td>322</td>
</tr>
</tbody>
</table>

14 Tissue Nematodes 336

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichinella spp.</td>
<td>336</td>
</tr>
<tr>
<td>Baylisascaris procyonis</td>
<td>346</td>
</tr>
<tr>
<td>Lagochilascaris minor</td>
<td>352</td>
</tr>
<tr>
<td>Toxocara canis and T. cati (visceral larva migrans and ocular larva migrans)</td>
<td>353</td>
</tr>
<tr>
<td>Ancylostoma braziliense and A. caninum (cutaneous larva migrans)</td>
<td>358</td>
</tr>
<tr>
<td>Human eosinophilic enteritis</td>
<td>359</td>
</tr>
<tr>
<td>Dracunculus medinensis</td>
<td>360</td>
</tr>
<tr>
<td>Angiostrongylus (Parastrongylus) cantonensis (cerebral angiostrongyliasis)</td>
<td>362</td>
</tr>
<tr>
<td>Angiostrongylus (Parastrongylus) costaricensis (abdominal angiostrongyliasis)</td>
<td>365</td>
</tr>
<tr>
<td>Gnathostoma spinigerum</td>
<td>366</td>
</tr>
<tr>
<td>Gnathostoma doloresi, G. nipponicum, G. hispidum, and G. binucleatum</td>
<td>368</td>
</tr>
<tr>
<td>Anisakis simplex, A. physetis, Pseudoterranova decipiens, Contracaecum osculatum, Hysterobothrium aduncum, and Porrocaecum reticulatum (larval nematodes acquired from saltwater fish)</td>
<td>370</td>
</tr>
<tr>
<td>Capillaria hepatica</td>
<td>373</td>
</tr>
<tr>
<td>Thelazia spp.</td>
<td>373</td>
</tr>
</tbody>
</table>

15 Filarial Nematodes 377

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Life Cycle</td>
<td>380</td>
</tr>
<tr>
<td>The Endosymbiont</td>
<td>380</td>
</tr>
<tr>
<td>Human Pathogens</td>
<td>380</td>
</tr>
<tr>
<td>Wuchereria bancrofti</td>
<td>381</td>
</tr>
<tr>
<td>Brugia malay</td>
<td>391</td>
</tr>
<tr>
<td>Brugia timori</td>
<td>392</td>
</tr>
<tr>
<td>Zoonotic Brugia infections (American brugian filariasis)</td>
<td>393</td>
</tr>
<tr>
<td>Tropical pulmonary eosinophilia</td>
<td>394</td>
</tr>
<tr>
<td>Loa loa</td>
<td>394</td>
</tr>
<tr>
<td>Mansonella ozzardi</td>
<td>397</td>
</tr>
<tr>
<td>Mansonella persiana</td>
<td>398</td>
</tr>
<tr>
<td>Mansonella streptocerca</td>
<td>399</td>
</tr>
<tr>
<td>Onchocerca volvulus</td>
<td>400</td>
</tr>
<tr>
<td>Dirofilaria, Dirofilaria and Dirofilaria Noctiella spp.</td>
<td>409</td>
</tr>
</tbody>
</table>

16 Intestinal Cestodes 418

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphyllobothrium latum</td>
<td>418</td>
</tr>
<tr>
<td>Taenia solium</td>
<td>425</td>
</tr>
<tr>
<td>Taenia saginata</td>
<td>435</td>
</tr>
<tr>
<td>Taenia asiatica (Asian Taenia or Taenia saginata asiatica)</td>
<td>437</td>
</tr>
<tr>
<td>Hymenolepis (Rodentolepis) nana</td>
<td>439</td>
</tr>
<tr>
<td>Hymenolepis diminuta</td>
<td>441</td>
</tr>
<tr>
<td>Dipylidium caninum</td>
<td>443</td>
</tr>
</tbody>
</table>

17 Tissue Cestodes: Larval Forms 447

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echinococcus granulosus (cystic hydatid disease)</td>
<td>447</td>
</tr>
<tr>
<td>Echinococcus multilocularis (alveolar disease, hydatid disease)</td>
<td>458</td>
</tr>
<tr>
<td>Echinococcus vogeli (Polyrystal Hydatid Disease) and Echinococcus oligarthrus (Uncystic Hydatid Disease): Neotropical Echinococcosis</td>
<td>463</td>
</tr>
<tr>
<td>Taenia (Multiceps) spp. (Taenia multiceps, Taenia serialis) (coenurusias)</td>
<td>465</td>
</tr>
<tr>
<td>Spirometra mansonioides and Diphyllobothrium spp. (sparganosis)</td>
<td>467</td>
</tr>
</tbody>
</table>

18 Intestinal Trematodes 474

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasciolopsis buski</td>
<td>475</td>
</tr>
<tr>
<td>Echinostoma ilocanum</td>
<td>479</td>
</tr>
<tr>
<td>Heterophyes heterophyes</td>
<td>481</td>
</tr>
<tr>
<td>Metagonimus yokogaei</td>
<td>482</td>
</tr>
<tr>
<td>Gastrodiscoides bominis</td>
<td>484</td>
</tr>
</tbody>
</table>

19 Liver and Lung Trematodes 487

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver Flukes</td>
<td>487</td>
</tr>
<tr>
<td>Clonorchis sinensis</td>
<td>487</td>
</tr>
<tr>
<td>Opisthorchis viverrini</td>
<td>494</td>
</tr>
<tr>
<td>Opisthorchis felineus</td>
<td>497</td>
</tr>
<tr>
<td>Fasciola hepatica</td>
<td>499</td>
</tr>
<tr>
<td>Fasciola gigantica</td>
<td>502</td>
</tr>
<tr>
<td>Less Common Liver Flukes</td>
<td>504</td>
</tr>
<tr>
<td>Dicrocoelium dendriticum, Dicrocoelium hospes, and Eurytrema pancreaticum</td>
<td>504</td>
</tr>
<tr>
<td>Lung Flukes</td>
<td>506</td>
</tr>
<tr>
<td>Paragonimus westermani</td>
<td>506</td>
</tr>
<tr>
<td>Paragonimus kellicotti</td>
<td>512</td>
</tr>
</tbody>
</table>

20 Blood Trematodes: Schistosomes 516

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schistosoma mansoni</td>
<td>517</td>
</tr>
<tr>
<td>Schistosoma japonicum</td>
<td>530</td>
</tr>
<tr>
<td>Schistosoma mekongi</td>
<td>536</td>
</tr>
</tbody>
</table>
Contents

Schistosoma malayensis 539
Schistosoma haematobium 539
Schistosoma intercalatum 546

21 Intestinal Protozoa: Amebae 552
Entamoeba histolytica 552
Entamoeba dispar 567
Entamoeba moshkovskii 568
Entamoeba bangladeshi 569
Entamoeba hartmanni 570
Entamoeba coli 571
Entamoeba polecki 572
Entamoeba gingivalis 572
Endolimax nana 574
Iodamoeba bütschlii 575
Blastocystis spp. 576

22 Intestinal Protozoa: Flagellates and Ciliates 584
Giardia lamblia (G. duodenalis, G. intestinalis) 584
Dientamoeba fragilis 598
Pentatrichomonas hominis (Trichomonas hominis) 602
Trichomonas tenax 603
Chilomastix mesnili 604
Enteromonas hominis 604
Retortamonas intestinalis 605
Balantidium coli 605

23 Intestinal Protozoa (Coccidia), Microsporidia, and Algae 612
Coccidia 612
Cryptosporidium spp. 612
Cyclospora cayetanensis 630
Cystoisospora (Isospora) belli 637
Sarcocystis spp. 643
Microsporidia 648
Algae (Prototheca) 662

24 Free-Living Amebae 667
Naegleria fowleri 669
Acanthamoeba spp. 677
Balamuthia mandrillaris 687
Sappinia (diploidea) pedata 690

25 Protozoa from Other Body Sites 694
Trichomonas vaginalis 694
Toxoplasma gondii 704

26 Malaria and Babesiosis 719
Malaria 719
Babesiosis 763

27 Leishmaniasis 778
Cutaneous Leishmaniasis: General Comments 779
Old World (Eastern) Leishmaniasis: Cutaneous Leishmaniasis 780
New World (Western) Leishmaniasis: Cutaneous Leishmaniasis 788
Visceral Leishmaniasis: General Comments 796
Old World (Eastern) Leishmaniasis: Visceral Leishmaniasis 796
New World (Western) Leishmaniasis: Visceral Leishmaniasis 803

28 Trypanosomiasis 810
African trypanosomiasis 811
Trypanosoma brucei gambiense 811
Trypanosoma brucei rhodesiense 822
American trypanosomiasis 826
Trypanosoma cruzi 826
Trypanosoma rangeli 839

29 Unusual Parasitic Infections 845
Aquatic protist 845
Rhinosporidium seeberi 845
Protozoa 848
Lophomonas blattarum 848
Dictyostelium polycerateum 850
Myxozoan parasites 850
Trypanosoma evansi, Trypanosoma lewisi 851
Nematodes (the roundworms) 852
Ancylostoma ceylanicum 852
Halicephalobus gingivalis 853
Oesophagostomum spp. 853
Eustrongylides spp. 855
Mermis nigrescens 856
Dioctophyma renale 856
Ternidens deminutus 858
Mammomonogamus laryngeus (Syngamus laryngeus) 859
Ascaris suum 860
Gongylonema pulchrum 861
Haycocknema perplexum 861

Cestodes 862
Diplogonoporus spp. 862
Bertiella studeri 862
Inermicapsifer madagascariensis 863
Raillietina cebulensis 863
Mesocestoides spp. 864
Taenia crassiceps 865

Trematodes 866
Alaria americana 866
Plagiorchis spp. 868
Neodiplostomum seoulense 868
Spelotrema brevicucca 869
Brachylaima sp. 869
Nanophyetus (Troglotrema) salmincola 870
Stellantchasmus falcatus 871
Phaneropsolus spinicirrus, Phaneropsolus bonni, and Prosthodendrium molenkempi 871
Contents

Haplorchis taichui 872
Gymnophalloides seoi 872
Metorchis conjunctus (North American liver fluke) 873
Schistosoma mattheei 874
Philophthalmus lacrimosus 875
Achillurbainia spp. 875
Pentastomids 875
Armillifer spp., Linguatula serrata, and Sebekia spp. 875
Acanthocephalans 876
Macracanthorhynchus hirudinaceus and Moniliformis moniliformis 876

30 Parasitic Infections in the Compromised Host 883
Entamoeba histolytica 885
Free-living amebae 895
Blastocystis spp. 903
Giardia lamblia 903
Toxoplasma gondii 905
Cryptosporidium spp. 907
Cyclospora cayetanensis 910
Cystoisospora (Isospora) belli 912
Sarcocystis spp. 913
Microsporidia 914
Leishmania spp. 918
Strongyloides stercoralis 923
Plasmodium spp. 926
Babesia spp. 927
American trypanosomiasis 929
Crusted scabies 930

31 Health Care-Associated and Laboratory- Acquired Infections 935
Health Care-Associated (Nosocomial) infections 935
Gastrointestinal infections 936
Cryptosporidium spp. 936
Giardia lamblia 939
Entamoeba histolytica 940
Microsporidia 941
Cystoisospora (Isospora) belli 941
Hymenolepis nana 942
Taenia solium 942
Blood and tissue infections 942
Plasmodium spp. 942
Babesia spp. 943
Trypanosoma brucei gambiense and T. brucei rhodesiense 943
Trypanosoma cruzi 943
Leishmania donovani 944
Toxoplasma gondii 944
Infections with ectoparasites 945
Pediculus spp. and Phthirus pubis 945
Sarcoptes scabiei 945
Myiasis 945

Infections in the pediatric patient 946
Cryptosporidium spp. 946
Giardia lamblia 946
Pediculus humanus capitis 946
Sarcoptes scabiei 946
Infections in the compromised patient 946
Laboratory infections 948
Intestinal protozoa 948
Free-living amebae 948
Plasmodium spp. 948
Trypanosoma brucei gambiense and T. brucei rhodesiense 948
Trypanosoma cruzi 950
Leishmania spp. 950
Toxoplasma gondii 951
Specimen handling 951
Summary 951

32 Immunology of Parasitic Infections 954
Amebiasis 960
Giardiasis 964
Toxoplasmosis 966
African trypanosomiasis 968
American trypanosomiasis 970
Malaria 973
Helminth infections 978
Summary 981

33 Antibody and Antigen Detection in Parasitic Infections 986
Protozoal infections 993
Amebiasis 993
Babesiosis 995
Chagas’ disease 996
Cryptosporidiosis 997
Cyclosporiasis 997
Giardiasis 997
Leishmaniasis 998
Malaria 999
Toxoplasmosis 1001
Trichomoniasis 1004
Helminth infections 1004
Cysticercosis 1004
Hydatid disease 1005
Fascioliasis 1007
Filariasiis 1007
Paragonimiasis 1009
Schistosomiasis 1010
Strongyloidiasis 1011
Toxocarasis 1012
Trichinosis 1013
Intradermal tests 1014
Casoni test 1014
Montenegro test 1014
34 Histologic Identification of Parasites 1019

Protozoa 1020
 Amebae 1020
 Flagellates 1024
 Ciliates 1024
 Coccidia 1025
 Microsporidia 1027
Helminths 1029
 Nematodes 1029
 Cestodes 1039
 Trematodes 1045
Blood Parasites 1052
 Malaria 1052
 Leishmania 1053
 Trypanosomes 1055
 Filaria 1056

35 Medically Important Arthropods 1077

Arthropods and their relationship to disease 1077
 Biological vectors of microorganisms 1077
 Bites and envenomation 1078
 Tissue invasion 1081
 Entomophobia and delusional infestation (parasitosis) 1082
Class Insecta (insects) 1083
 Order Diptera (flies, mosquitoes, and midges) 1083
 Myiasis 1090
 Order Hemiptera (true bugs) 1098
 Order Coleoptera (beetles) 1100
 Order Siphonaptera (Fleas) (Ctenocephalides spp., Xenopsylla cheopis, Pulex irritans [Human Flea], Tunga penetrans, Nosopsyllus fasciatus, Echidnophaga gallinacea, and “Sand Fleas”) 1102
 Order Anoplura (sucking lice) 1104
 Order Mallophaga (biting and chewing lice) 1106
 Order Hymenoptera (bees, wasps, and ants) 1106
 Order Blattaria (cockroaches) 1108
Class Arachnida (ticks, mites, spiders, and scorpions) 1109
 Subclass Acari (ticks, mites, and chiggers) 1109
 Subclass Aranae (spiders) 1118
 Subclass Scorpiones (scorpions) 1122
Other arthropods 1122
 Class Chilopoda (centipedes) 1122
 Class Diplopoda (millipedes) 1123
 Class Crustacea (copepods, crabs, crayfish, etc.) 1123
Control of arthropods of medical importance 1123
 Physical control 1124
 Biological control 1124
 Chemical control 1124

36 Treatment of Parasitic Infections 1134

Albendazole (Albenza) (Amedra) 1134
 Amphotericin B (Ambisome) (Gilead) 1135
Amphotericin B (Fungizone) (X-Gen) 1153
 Artemether (Artanam) (Arenco, Belgium) 1154
 Atovaquone (Mepron) (GlaxoSmithKline) 1154
 Atovaquone-Proguanil (Malarone) (GlaxoSmithKline) 1155
 Benznidazole (Rochagan) (Roche, Brazil) 1155
 Bithionol (Bitin) (CDC) 1156
 Chloroquine Phosphate (Aralen) (Sanofi, Others) 1156
 Crotamiton (Eurax) (Ranbaxy) 1156
 Dapsone (Jacobs) 1157
 Diethylcarbamazine Citrate USP (Hetrazan) (CDC) 1157
 Diloxanide Furoate (Furamide, Entamide) (Boots, England) 1157
 Eflornithine (Difluoromethylornithine, Ornidy) (Sanofi) (CDC) 1158
 Fumagillin (Fumidil-B) 1158
 Furazolidone (Furozone) 1158
 Iodoquinol/Diiodohydroxyquin (Yodoxin) (Glenwood, Others) 1158
 Ivermectin (Stromectol, Sklice) (Merck, Sanofi) 1159
 Lumefantrine/Artether (Coartem, Riamet) (Novartis) 1160
 Malathion (Ovide) (Taro Pharmaceuticals) 1160
 Mebendazole (Generics) 1160
 Mefloquine Hydrochloride (Generics) 1161
 Melarsoprol (Mel-B) (CDC) 1162
 Metronidazole (Flagyl, IV Flagyl) (Searle/Pfizer, Baxter) 1162
 Miltefosine (Impavido, Miltex) (Paladin, Canada) (CDC) 1163
 Niclosamide (Yomesan, Nicloicide) (Bayer, Germany) 1163
 Nifurtimox (Lampit) (Bayer HealthCare) (CDC) 1163
 Nitazoxanide (Alinia) (Romark) 1164
 Paromomycin (Generics) (Sun Pharma) 1164
 Pentamidine Isethionate (Pentam 300, Nebupent) (APP Pharmaceuticals) 1165
 Permethrin (Nix [Insight Pharmaceuticals], Elimite [Premier Pharma]) 1166
 Polyhexamethylene Biguanide (Baquacil) (Zeneca) 1166
 Praziquantel (Biltricide) (Bayer) 1166
 Primaquine Phosphate (Sanofi-Aventis) 1167
 Propamidine Isethionate (Brolene) (Aventis, Canada) 1167
 Pyrantel Pamoate (Pin-X, Reese's Pinworm Medicine) (Quartz Specialty Pharmaceuticals, Reese) 1168
 Pyrethrin with Piperonyl Butoxide (Rid) (Bayer, Others) 1168
 Pyrimethamine (Daraprim) (Amedra) 1168
 Quinidine Gluconate (Generics) 1169
 Quinine Sulfate or Quinine Dihydrochloride (Many Manufacturers) 1169
 Spiramycin (Rovamycin) (Sanofi-Aventis) 1169
 Stibogluconate Sodium (Pentostam, Solustibosan) (GlaxoSmithKline) (CDC) 1170
 Suramin Sodium (Germanin) (Bayer, Germany) (CDC) 1170
APPENDIXES 1175

APPENDIX 1 Information Tables 1176

A1.1 Classification of human parasites 1176
A1.2 Distribution of selected parasitic infections in the Americas 1179
A1.3 Distribution of selected parasitic infections in Europe 1179
A1.4 Distribution of selected parasitic infections in Africa 1180
A1.5 Distribution of selected parasitic infections in Asia 1180
A1.6 Distribution of selected parasitic infections in Oceania 1181
A1.7 Cosmopolitan distribution of common parasitic infections (North America, Mexico, Central America, South America, Europe, Africa, Asia, and Oceania) 1181
A1.8 Body sites and specimen collection 1182
A1.9 Body sites and possible parasites recovered (trophozoites, cysts, oocysts, spores, adults, larvae, eggs, amastigotes, and trypomastigotes) 1183
A1.10 Body site, specimen and procedures, recommended methods, relevant parasites, and comments 1184
A1.11 Examination of tissue and body fluids 1189
A1.12 Key characteristics of protozoa of the intestinal tract and urogenital system 1191
A1.13 Key characteristics of tissue protozoa 1194
A1.14 Key characteristics of helmints 1196
A1.15 Key characteristics of most common parasites found in blood 1198
A1.16 Diagnostic laboratory report information that should be relayed to the physician 1200
A1.17 Pros and cons of stool specimen collection and testing options 1201
A1.18 Approaches to stool parasitology: test ordering 1203
A1.19 Pros and cons of ova and parasite examination options 1204
A1.20 Laboratory test reports: optional comments 1206
A1.21 Estimated prevalence of parasitic diseases worldwide 1207

APPENDIX 2 Flowcharts and Staining Tables for Diagnostic Procedures 1208

Flowcharts
A2.1 Procedure for processing fresh stool for the ova and parasite examination 1208
A2.2 Procedure for processing liquid specimens for the ova and parasite examination 1209
A2.3 Procedure for processing preserved stool for the ova and parasite examination by using the traditional two-vial collection kit 1210
A2.4 Procedure for processing sodium acetate-acetic acid-formalin (SAF)-preserved stool for the ova and parasite examination 1211
A2.5 Use of various fixatives and their recommended stains: fecal specimens preserved using polyvinyl alcohol (PVA) 1212
A2.6 Use of various fixatives and their recommended stains: fecal specimens preserved in the Universal Fixative, TOTAL-FIX 1213

Tables
A2.1 Steps in the trichrome staining procedure (mercuric chloride-based PVA-preserved stool specimens) 1214
A2.2 Steps in the trichrome staining procedure (Non-mercuric chloride-based PVA-preserved stool specimens) 1215
A2.3 Steps in the iron hematoxylin staining procedure (mercuric chloride-based PVA-preserved stool specimens) (Spencer-Monroe method) 1216
A2.4 Steps in the iron hematoxylin staining procedure (mercuric chloride-based PVA-preserved stool specimens) (Tomkins-Miller method) 1217
A2.5 Steps in the iron hematoxylin staining procedure (incorporating the carbol fuchsin step) 1218
A2.6 Steps in the trichrome staining procedure (Universal Fixative [no mercury, no formalin, no PVA]) 1219
A2.7 Oil-mounted permanent stained smears (no Permount is used) 1220
A2.8 Tips on stool processing and staining 1221

APPENDIX 3 Common Problems in Parasite Identification 1222

Figures
A3.1–A3.25 Paired drawings of “look alikes” 1222
A3.26 Relative sizes of helminth eggs 1233

Tables
A3.1 Entamoeba spp. trophozoites versus macrophages 1223
A3.2 Entamoeba spp. cysts versus polymorphonuclear leukocytes (PMNs) 1224
A3.3 Entamoeba bistolytica versus Entamoeba coli precysts and cysts 1226
A3.4 Endolimax nana versus Dientamoeba fragilis 1227
A3.5 Adult nematodes and/or larvae found in stool specimens: size comparisons 1234

APPENDIX 4 Quality Control Recording Sheets 1235

A4.1 Diagnostic parasitology quality control (QC) (reagents) 1236
A4.2 Diagnostic parasitology quality control (QC) (reagents)—example for multiple reagents 1237
A4.3 Diagnostic parasitology quality control (QC) (culture)—example of a worksheet 1238
A4.4 Equipment maintenance 1239

APPENDIX 5 Commercial Supplies and Suppliers 1241

Tables
A5.1 Sources of commercial reagents and supplies 1242
A5.2 Addresses of suppliers listed in Table A5.1 1245
A5.3 Sources of available reagents for immunodetection of parasitic organisms or antigens 1246
A5.4 Addresses of suppliers listed in Table A5.3 1248
A5.5 Commercial suppliers of diagnostic parasitology products 1249
A5.6 Sources of additional teaching materials, including case histories 1252
A5.7 Sources of parasitologic specimens 1253

APPENDIX 6 Reference Sources 1254
APPENDIX 7 “Late-Breaking” Published Information 1257
APPENDIX 8 Molecular Panels for Parasitology 1278
APPENDIX 9 FAQs 1284

GLOSSARY 1307
Index 1321
During the past few years, the field of diagnostic medical parasitology has seen dramatic changes, including newly recognized parasites, emerging pathogens in new geographic areas, bioterrorism considerations and requirements, alternative techniques required by new regulatory requirements, reevaluation of diagnostic test options and ordering algorithms, continuing changes in the laboratory test menus, implementation of testing based on molecular techniques, reporting formats and report comments, coding and billing requirements, managed-care relevancy, increased need for consultation and educational initiatives for clients, and an overall increased awareness of parasitic infections from a worldwide perspective. We have seen organisms like the microsporidia change from the status of “unusual parasitic infection” to being widely recognized as among the most important infections in both immunocompetent and compromised patients. With confirmation of the fifth human malaria, *Plasmodium knowlesi*, this field has expanded dramatically. More sensitive diagnostic methods for organism detection in stool specimens are now commercially available for *Entamoeba histolytica*, *Entamoeba histolytica/E. dispar*, *Giardia lamblia*, Cryptosporidium spp., and *Trichomonas vaginalis*. Reagents are actively being developed for other organisms such as *Dientamoeba fragilis*, *Blastocystis* spp., and the microsporidia. We have seen *Cyclospora cayetanensis* coccidia become well recognized as the cause of diarrhea in immunocompetent and immunocompromised humans. We continue to see new disease presentations in compromised patients; a good example is granulomatous amebic encephalitis caused by *Acanthamoeba* spp., *Sappinia diploidea*, and *Balamuthia mandrillaris*. With the expansion of transplantation options, many parasites are potential threats to patients who are undergoing immunosuppression, and these must be considered within the context of this patient group. Transfusion transmission of potential parasitic pathogens continues to be problematic. Transfusion in general is becoming more widely recognized as a source of infection, and donors are also more likely to come from many parasite-endemic areas of the world. It is also important to recognize the many neglected parasitic infections seen within the United States; indeed, the world continues to shrink in terms of infectious diseases.

With expanding regulatory requirements related to the disposal of chemicals, laboratories are continuing to review the use of mercury compounds as specimen fixatives and learning to become familiar with organism morphology when using substitute compounds. Permanent staining of fecal smears confirms
that none of the substitute fixatives provide results of the same quality found with the use of mercuric chloride-based fixatives. However, the key issue is whether the intestinal parasites can be identified using these alternative fixatives, not how “perfect” they look. Many fixative options are now available, including single-vial collection systems, some of which are coupled with their own stains. Requirements also mandate that any laboratory using formalin must have formalin vapor monitored as both an 8-hour time-weighted average and 15-minute readings. Most laboratories are now familiar with the regulations on protection of health care workers from blood and other body fluids and have implemented specific changes that are no longer optional. Although laboratories were already using many of the safety recommendations, these regulations delineate in detail what must be done and documented. Regulatory information based on new shipping requirements is also included.

On the basis of excellent suggestions and comments, I have made the following changes in this new edition: (i) the chapter on case histories has been expanded and contains a large number of parasite medical case histories (case history, study questions, correct answer and discussion, and illustrative material); (ii) some of the life cycles have been redrawn, and new life cycles have been added; (iii) algorithms have been expanded; (iv) new tables and figures have been added throughout the book; (v) additional drawings and photographs have been added; (vi) extensive color images have replaced the black and white images; (vii) extensive updated text information is included, all of which was taken from a comprehensive literature review of all aspects of diagnostic medical parasitology; (viii) additional examples of unusual parasitic infections are included; (ix) the chapter on arthropods has been expanded and includes additional photographs and drawings and expanded text; (x) the chapter on the immunology of parasitic infections has been enlarged, and updated information on both antigen and antibody detection methods continues to be included in this edition; (xi) the chapter on histological identification of parasites has been dramatically expanded with diagrams of various parasites and their visual presentations in tissue sections, with greatly enhanced legends for all images; (xii) diagnostic methods using newer immunoassay and “dipstick” technology are included; and (xiii) the chapter on quality control has been expanded to include information on instrumentation and equipment, safety regulations, quality control and quality systems information, continuous quality improvement, and managed-care considerations. The appendixes have been expanded to contain more information on artifacts; expanded lists and photographs of products and commercial suppliers; algorithms for ordering specific tests that complement the ova and parasite examination; flowcharts for processing stool specimens; quality control recording sheets for use in the laboratory; and general references and relevant web sites. One of the most important expanded areas of the sixth edition is found in Appendix 7, which contains information that has been published within months prior to the final printing of this edition. This “late-breaking” synopsis of very recent publications can assist the reader in having access to the latest information available. I encourage you to review this section as you read various chapters throughout the book. A more comprehensive discussion of molecular methods has also been added to the sixth edition and can be found in Appendix 8. Appendix 9 contains comprehensive information on the most frequently asked questions for all aspects of human parasitology, and Appendix 10 contains information related to CPT coding for testing options for diagnostic parasitology.

The approach to the sixth edition of the book has been revised to present the diagnostic methods first, then the didactic discussion of parasitic infections
as the second component of the book. This change was made to ensure that the most recent and relevant material would be updated right before editing. My objective is to provide the user with clear, concise, well-organized, clinically relevant, cost-effective, and practical quality procedures for use in the clinical laboratory setting. To use and fully understand these methods for the parasites discussed, it is imperative that the user also understand information related to life cycle, morphology, clinical disease, pathogenesis, diagnosis, treatment, epidemiology, and prevention. My intent is to provide a comprehensive discussion of both aspects of the field of diagnostic medical parasitology: first, relevant diagnostic methods designed to detect and identify the organisms present, and second, a comprehensive discussion of the individual parasites. I believe that the book fulfills these objectives and provides readers, whether they are laboratorians, physicians, or other health care professionals, with not only comprehensive, but very practical information.

It is also important for readers to understand that there are many diagnostic test options available to the clinical laboratory; not every laboratory will approach the diagnosis of parasitic infections in the same way. The key to quality and clinically relevant diagnostic work is a thorough understanding of the pros and cons of each option and how various options may or may not be relevant for one’s particular geographic area, laboratory size and range of expertise, client base, number and type of patients seen, personnel expertise and availability, equipment availability, educational initiatives, and communication options, just to name a few variables. However, it is also important to understand the regulations and technical recommendations that govern and guide this type of laboratory work; many of these guidelines are related to coding and reimbursement, proficiency testing, and overall clinical relevance.

The use of product names is not intended to endorse specific products or to exclude substitute products. Also, because of possible advances and changes in the therapy of parasitic infections, independent verification of drugs and drug dosages is always recommended. The diagnostic procedures are intended for laboratory use only by qualified and experienced individuals or by the personnel under their direct supervision. Every effort has been made to ensure accuracy; however, ASM Press and I encourage you to submit to us any suggestions, comments, and information on errors found.
Acknowledgments

Acknowledgments

Peter Schantz, Frederick L. Schuster, James Seidel, Nicholas Serafy, J. A. Shadduck, Harsha Sheorey, Irwin Sherman, Robyn Shimizu, Balbir Singh, James Smith, Rosemary Soave, Frank J. Sorvillo, S. L. Stanley, Jr., John Steele, Deborah Stenzel, Damian Stark, Linda Sterzenbach, Charles Sterling, James J. Sullivan, Alex Sulzer, Kevin S. W. Tan, Egbert Tannich, Herbert Tanowitz, Mehmet Tanyuksel, William Trager, Peter Traynor, Antonio R. L. Teixeira, Sam Telford, William Trager, Allan R. Truant, Jerrold Turner, Saul Tzipori, Jacqueline A. Upcroft, Peter Upcroft, Tom van Gool, Eric Vanderslice, Jacob Verweij, Govinda Visvesvara, Marietta Voge, Susanne Wahlquist, Kenneth Walls, Rainer Weber, Wilfred Weinstein, Louis Weiss, P. P. Wilkins, John Williams, John Wilson, Marianna Wilson, Jeffrey J. Windsor, Washington Winn, Martin Wolfe, Donna Wolk, Johnson Wong, Lihua Xiao, Nigel Yeates, Judy Yost, Wenbao Zhang, Charles and Wiladene Zierdt, and many others whom I may have failed to mention specifically. If the information contained in this edition provides help to those in the field of microbiology, I will have succeeded in passing on this composite knowledge to the next generation of students and teachers.

Special thanks go to Sharon Belkin for her additional illustrations for this edition. I also thank Ronald Neafie from the Armed Forces Institute of Pathology for providing many photographs to illustrate several areas of the book, particularly the information on histological identification of parasites, and Herman Zaiman for providing slides that he has prepared and/or edited from many contributors worldwide. Very special thanks go to the group at the Centers for Disease Control and Prevention for the use of many of their clinical parasitology images; these images are invaluable to the microbiology community and include images contributed to CDC by many others, as well.

I would like to thank members of the editorial staff of ASM Press, especially Ellie Tupper; they are outstanding professionals and made my job not only challenging but fun.

Above all, my very special thanks go to my late husband, John, for his love and support for the many projects that I have been involved in over the years. I could never have undertaken these challenges without his help and understanding, a true partnership.