2nd Edition

DIAGNOSTIC MICROBIOLOGY OF THE IMMUNOCOMPROMISED HOST

EDITED BY

Randall T. Hayden
St. Jude Children’s Research Hospital
Memphis, Tennessee

Donna M. Wolk
Geisinger Health System
Danville, Pennsylvania

Karen C. Carroll
The Johns Hopkins University School of Medicine
Baltimore, Maryland

Yi-Wei Tang
Memorial Sloan-Kettering Cancer Center
Weill Medical College of Cornell University
New York, New York

ASM PRESS
Washington, DC
Contents

Contributors ix
Foreword xvii
Preface xix

I. OVERVIEW OF INFECTIONS IN THE IMMUNOCOMPROMISED HOST

1. Overview of Infections in the Immunocompromised Host 3
 Lesia K. Dropulic and Howard M. Lederman

II. LABORATORY DIAGNOSIS: APPROACHES, INTERPRETATIONS, AND LIMITATIONS INFECTIONS BY SPECIFIC ETIOLOGIC AGENTS

2. Human Immunodeficiency Virus 53
 Wendy S. Armstrong, Jeannette Guarner, Colleen S. Kraft, and Angela M. Caliendo

3. Chronic Hepatitis B, C, and D 69
 Bryan R. Cobb and Alexandra Valsamakis

4. Cytomegalovirus 97
 M. Veronica Dioverti and Raymund R. Razonable

5. Epstein-Barr Virus 127
 Andrew Nowalk and Michael Green
6. Herpes Simplex Virus and Varicella-Zoster Virus 135
 Myron J. Levin, Adriana Weinberg, and D. Scott Schmid

7. Human Herpesviruses 6A, 6B and 7 157
 Henri Agut, Pascale Bonnafous, and Agnès Gautheret-Dejean

8. Human Papillomavirus 177
 Eileen M. Burd and Christina L. Dean

9. Polyomaviruses 197
 Linda Cook

10. Adenovirus 217
 Michael G. Ison and Randall T. Hayden

11. Respiratory RNA Viruses 233
 Richard L. Hodinka

12. Enteroviruses and Parechoviruses 273
 James J. Dunn

13. Parvovirus B19 297
 Marie Louise Landry

14. Filamentous Fungi 311
 Margaret V. Powers-Fletcher, Brian A. Kendall, Allen T. Griffin,
 and Kimberly E. Hanson

15. Yeasts 343
 Sean X. Zhang and Nathan P. Wiederhold

16. Mycobacteria 367
 Patricia J. Simner, Gail L. Woods, and Nancy L. Wengenack

17. Aerobic Actinomycetes of Clinical Significance 391
 A. Brian Mochon, Den Sussland, and Michael A. Saubolle

18. Parasites 411
 Elitza S. Theel and Bobbi S. Pritt

19. Selected Topics in Aerobic Bacteriology 467
 Geraldine Hall and Karen C. Carroll

20. Selected Topics in Anaerobic Bacteriology 493
 Deirdre L. Church
Contents

III. LABORATORY DIAGNOSIS: APPROACHES, INTERPRETATIONS, AND LIMITATIONS

INFECTIONS OF SPECIFIC ORGAN SYSTEMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. Lower Respiratory Tract Infections</td>
<td>539</td>
</tr>
<tr>
<td>Karen C. Carroll and La'Tonzia L. Adams</td>
<td></td>
</tr>
<tr>
<td>22. Genitourinary Tract Infections</td>
<td>569</td>
</tr>
<tr>
<td>Odaliz Abreu Lanfranco and George J. Alangaden</td>
<td></td>
</tr>
<tr>
<td>23. Gastrointestinal Infections</td>
<td>613</td>
</tr>
<tr>
<td>Kevin Alby and Irving Nachamkin</td>
<td></td>
</tr>
<tr>
<td>24. Central Nervous System Infections</td>
<td>629</td>
</tr>
<tr>
<td>Andrea J. Zimmer, Victoria E. Burke, and Karen C. Bloch</td>
<td></td>
</tr>
<tr>
<td>25. Bloodstream Infections</td>
<td>653</td>
</tr>
<tr>
<td>Raquel M. Martinez and Donna M. Wolk</td>
<td></td>
</tr>
<tr>
<td>26. Skin and Soft Tissue Infections</td>
<td>691</td>
</tr>
<tr>
<td>Anne Spichler Moffarah, Mayar Al Mohajer, Bonnie L. Hurwitz, and David G. Armstrong</td>
<td></td>
</tr>
</tbody>
</table>

IV. SPECIAL TOPICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27. Prosthetic Device Infections</td>
<td>711</td>
</tr>
<tr>
<td>Raquel M. Martinez, Thomas R. Bowen, and Michael A. Foltzer</td>
<td></td>
</tr>
<tr>
<td>28. Hospital-Associated Infections</td>
<td>735</td>
</tr>
<tr>
<td>N. Esther Babady</td>
<td></td>
</tr>
<tr>
<td>29. Surgical Pathologic Diagnosis</td>
<td>759</td>
</tr>
<tr>
<td>Mary K. Klassen-Fischer and Ronald C. Neafie</td>
<td></td>
</tr>
</tbody>
</table>

Index 781
Contributors

Odaliz Abreu Lanfranco
Division of Infectious Diseases
Henry Ford Health System
Detroit, MI 48202

LaTonzia L. Adams
Department of Pathology & Lab Medicine
VA Portland Health Care System
Portland, OR 97239

Henri Agut
Sorbonne Universités, UPMC, CIMI-Paris UMRS CR7, PVI Team
INSERM, CIMI-Paris U1135, PVI Team
AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix,
Service de Virologie
Paris, France

Mayar Al Mohajer
Division of Infectious Diseases
University of Arizona
Tucson, AZ 85724

George J. Alangaden
Division of Infectious Diseases
Henry Ford Health System;
Wayne State University
Detroit, MI 48202
Contributors

KEVIN ALBY
Department of Pathology and Laboratory Medicine
University of Pennsylvania
Perelman School of Medicine
Philadelphia, PA 19104

DAVID G. ARMSTRONG
Department of Surgery, Southern Arizona Limb Salvage Alliance (SALSA)
University of Arizona Health Sciences Center
Tucson, AZ 85719

WENDY S. ARMSTRONG
Division of Infectious Diseases
Emory University
Atlanta, GA 30322

N. ESTHER BABAHY
Department of Laboratory Medicine
Memorial Sloan-Kettering Cancer Center
New York, NY 10065

KAREN C. BLOCH
Vanderbilt University Medical Center
Departments of Medicine and Health Policy
Nashville, TN 37232

PASCALE BONNAFOUS
Sorbonne Universités, UPMC, CIMIT-Paris U1135, PVI Team
INSERM, CIMIT-Paris U1135, PVI Team
Paris, France

THOMAS R. BOWEN
Department of Orthopedics
Geisinger Health System
Danville, PA 17822

EILEEN M. BURD
Emory University School of Medicine
Department of Pathology and Laboratory Medicine
Atlanta, GA 30322

VICTORIA E. BURKE
Louisiana State University Health Sciences Center
New Orleans, LA 70112

ANGELA M. CALIENDO
Department of Medicine
Alpert Medical School Brown University
Providence, RI 02903

KAREN C. CARROLL
Division of Medical Microbiology
Department of Pathology
The Johns Hopkins University School of Medicine
Baltimore, MD 21287
CONTRIBUTORS

DEIRDRE L. CHURCH
Departments of Pathology & Laboratory Medicine and Medicine
University of Calgary;
Division of Microbiology
Calgary Laboratory Services
Calgary, AB T2K 2K8

BRYAN R. COBB
Roche Diagnostics Corporation
Indianapolis, IN 46256

LINDA COOK
University of Washington
Laboratory Medicine
Seattle, WA 98102

CHRISTINA L. DEAN
Emory University School of Medicine, Department of Medicine
Division of Infectious Diseases
Atlanta, GA 30322

M. VERONICA DIOVERTI
Division of Infectious Diseases
Department of Medicine
Mayo Clinic College of Medicine
Rochester, MN 55905

LESIA K. DROPULIC
The National Institutes of Health
National Institute of Allergy and Infectious Diseases
Division of Intramural Research
Bethesda, MD 20814

JAMES J. DUNN
Department of Pathology
Texas Children’s Hospital
Houston, TX 77030

MICHAEL A. FOLTZER
Department of Infectious Diseases
Geisinger Health System
Danville, PA 17822

AGNÈS GAUTHÉRÉT-DEJEAN
Sorbonne Universités, UPMC, CIMIT-Paris UMRS CR7, PVI Team
INSERM, CIMIT-Paris U1135, PVI Team
AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix,
Service de Virologie
Université René Descartes, Faculté de Pharmacie, Laboratoire
de Microbiologie UPRES EA 4065
Paris, France

MICHAEL GREEN
University of Pittsburgh School of Medicine
Division of Infectious Diseases
Children's Hospital of Pittsburgh of UPMC
Pittsburgh, PA 15224

ALLEN T. GRIFFIN
Owensboro Health
Owensboro, KT 42301

JEANNETTE GUARNER
Division of Infectious Diseases
Department of Pathology and Laboratory Medicine
Emory University
Atlanta, GA 30322

GERALDINE HALL†
Division of Microbiology, Department of Pathology
Cleveland Clinic;
Lerner College of Medicine, Case Western Reserve University School of Medicine
Cleveland Ohio 44106

KIMBERLY E. HANSON
Departments of Pathology and Medicine
University of Utah School of Medicine
Salt Lake City, UT 84132

RANDALL T. HAYDEN
Department of Pathology
St. Jude Children’s Research Hospital
Memphis, TN 38105

DIANA R. HERNANDEZ
Department of Laboratory Medicine
Geisinger Health System
Danville, PA 17822

RICHARD L. HODINKA
Department of Biomedical Sciences
University of South Carolina School of Medicine
Greenville Health System
Greenville, SC 29605

BONNIE L. HURWITZ
Department of Agricultural and Biosystems Engineering
University of Arizona
Tucson, AZ 85719

MICHAEL G. ISON
Divisions of Infectious Diseases and Organ Transplantation
Transplant & Immunosuppressed Host Infectious Diseases Service
Northwestern University Feinberg School of Medicine
Chicago, IL 60611

†Deceased
Contributors

BRIAN A. KENDALL
Departments of Pathology and Medicine
University of Utah School of Medicine
Salt Lake City, UT 84132

MARY K. KLASSEN-FISCHER
Joint Pathology Center
Silver Spring, MD 20910

COLEEN S. KRAFT
Division of Infectious Diseases
Department of Pathology and Laboratory Medicine
Emory University
Atlanta, GA 30322

MARIE LOUISE LANDRY
Departments of Laboratory Medicine and Internal Medicine
Yale University School of Medicine
New Haven, CT 06520

HOWARD M. LEDERMAN
Departments of Pediatrics, Medicine and Pathology
The Johns Hopkins University School of Medicine
Baltimore, MD 21287

MYRON J. LEVIN
Departments of Pediatrics and Medicine
University of Colorado School of Medicine Anschutz Medical Campus
Aurora, CO 80045

ELIZABETH MARLOWE
Department of Microbiology
Southern California Permanente Medical Group
North Hollywood, CA 91605

RAQUEL M. MARTINEZ
Department of Laboratory Medicine
Geisinger Health System
Danville, PA 17822

A. BRIAN MOCHON
Infectious Diseases Division, Laboratory Sciences of Arizona
Banner Gateway Medical Center/Banner MD Anderson Cancer Center
Gilbert, AZ 85234

IRVING NACHAMKIN
Department of Pathology and Laboratory Medicine
University of Pennsylvania
Perelman School of Medicine
Philadelphia, PA 19104

RONALD C. NEAFIE
Joint Pathology Center
Silver Spring, MD 20910
ANDREW NOWALK
University of Pittsburgh School of Medicine
Division of Infectious Diseases
Children’s Hospital of Pittsburgh of UPMC
Pittsburgh, PA 15224

MARGARET V. POWERS-FLETCHER
Department of Pathology
University of Utah School of Medicine
Salt Lake City, UT 84132

BOBBI S. PRITT
Department of Laboratory Medicine and Pathology
Mayo Clinic
Rochester, MN 55905

RAYMUND R. RAZONABLE
The William J von Liebig Transplant Center
Mayo Clinic College of Medicine
Rochester, Minnesota 55905

MICHAEL A. SAUBOLLE
Division of Infectious Diseases
Laboratory Sciences of Arizona
Banner – University Medical Center Phoenix;
Department of Medicine
University of Arizona, College of Medicine – Phoenix
Phoenix, AZ 85006

D. SCOTT SCHMID
Centers for Disease Control and Prevention
Herpesvirus Team, NCID/DVD/MMRHLB
Atlanta, GA 30333

PATRICIA J. SIMNER
Division of Medical Microbiology
Department of Pathology
The Johns Hopkins University School of Medicine
Baltimore, MD 21287

ANNE SPICHLER MOFFARAH
Department of Medicine
University of Arizona Health Science Center
Tucson, AZ 85724

DEN SUSSLAND
Division of Infectious Diseases
Laboratory Sciences of Arizona Banner – University Medical Center Phoenix
Phoenix, AZ 85006

ELITZA S. THEEL
Department of Clinical Microbiology
Mayo Clinic
Rochester, MN 55905
Contributors

ALEXANDRA VALSAMAKIS
Division of Medical Microbiology
Department of Pathology
The Johns Hopkins University School of Medicine
Baltimore, MD 21287

ADRIANA WEINBERG
Department of Pediatrics, Medicine and Pathology
University of Colorado School of Medicine Anschutz Medical Campus
Aurora, CO 80045

NANCY L. WENGENACK
Division of Clinical Microbiology
Department of Laboratory Medicine and Pathology
Mayo Clinic
Rochester, MN 55905

NATHAN P. WIEDERHOLD
Departments of Pathology and Medicine/Infectious Diseases
University of Texas Health Science Center at San Antonio
San Antonio, TX 78229

DONNA M. WOLK
Department of Laboratory Medicine
Geisinger Health System
Danville, PA 17822

GAIL L. WOODS
Central Arkansas Veterans Healthcare System
John L. McClellan Memorial Veterans Hospital
Little Rock, AR 72202

SEAN X. ZHANG
Division of Medical Microbiology
Department of Pathology
The Johns Hopkins School of Medicine
Baltimore, MD 21287

ANDREA J. ZIMMER
University of Nebraska Medical Center
Omaha, NE 68198
Over the past two decades, molecular diagnostics have revolutionized management of the immunocompromised host, with more diagnostic information available than ever before. Infectious diseases are particularly dangerous to immunocompromised hosts who are less competent to control primary infection and more susceptible to developing prolonged and protracted clinical courses that propagate unique and often life-threatening presentations. Infections in the immunocompromised hosts are often caused by pathogens that rarely cause serious disease in the general population, such as respiratory viruses and fungal pathogens. The immunocompromised patient population is increasing throughout the world. Major advances in transplantation techniques both for solid organs and hematopoietic cells, have not only expanded access to these life-saving therapies, but have also improved outcomes in these high-risk populations. Autologous and allogeneic hematopoietic cell transplants have continued to increase worldwide as a result of wider utilization of this treatment for new disease, extension to older and higher risk recipients, the development of reduced intensity and haploidentical donor protocols as well as the use of novel graft sources. Cancers and numerous immunologic disorders may also be linked to more specific or limited forms of an immunocompromised state, either due to immunosuppression caused directly by underlying disease or through the use of additional immunosuppressive treatments. The increased use and development of biologic agents for autoimmune mediated diseases also represent a major risk of infectious complications. In addition, there are a large number of people receiving corticosteroids at various doses for a broad range of diseases. Finally, as the population ages, there are those patients who are immunosuppressed based on their biologic stage in life. Indeed, all these conditions require sensitive and specific diagnosis of infectious organisms. Additionally, an understanding of the biology of these infections, host
conditions, and the limitations of technologies used to detect and quantify such pathogens is critical to optimal care.

The 2nd Edition of Diagnostic Microbiology of the Immunocompromised Host uniquely covers all aspects of state-of-the-art diagnostics for infectious complications in the immunocompromised patient. Preeminent authors cover a broad range of relevant topics. Section I reviews relevant aspects of host biology, antineoplastic, and transplantation techniques as well as the basis of immunosuppressive conditions ranging from diabetes to age-related immunosuppression. Section II covers approaches, interpretations, and limitations of laboratory diagnosis of infections by a wide range of specific etiologic agents. Section III reviews the laboratory diagnosis of infections of specific organ systems, such as respiratory tract infections, gastrointestinal tract infections, and central nervous system infections. Finally, Section IV includes a diverse selection of diagnostic aspects for special topics that are of particular interest, including prosthetic devices and catheters, healthcare acquired infections, and morphologic considerations (anatomic pathology). The book includes outlooks on future diagnostic technologies and their potential impact on the field.

As technologic innovations continue to transform laboratory diagnosis of infectious diseases, the 2nd Edition of Diagnostic Microbiology of the Immunocompromised Host will be an invaluable resource for a wide range of users, including laboratory medicine specialists, pathologists, technologists, students, and clinical care professionals who are involved or interested in the care of the immunocompromised host.

MICHAEL BOECKH, MD, PHD
VACCINE AND INFECTIOUS DISEASE DIVISION
FRED HUTCHINSON CANCER RESEARCH CENTER
DEPARTMENT OF MEDICINE, DIVISION OF INFECTIOUS DISEASES
UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON
Preface

Over the past quarter century, health care of immunocompromised patients has grown progressively in importance. These individuals require high-intensity services and specialized care, often for a prolonged period of time. They are susceptible to a wide range of infectious diseases, which may manifest quite differently from those in an immunocompetent host. There are marked differences in how health care is delivered to such high-risk patients. Proper care depends on the etiology and degree of immune suppression as well as on underlying patient characteristics, such as demographics, nutritional status, and ongoing disease processes. Differences in clinical care include aspects of infection control practices, infectious disease prophylaxis, immune modulation, and pharmacologic therapy. In addition, the use and interpretation of laboratory tests, particularly tests for microorganisms, must be tailored carefully to fit these patients. Evidence-based diagnostic algorithms for the immunocompromised are evolving; however, many clinicians and laboratory professionals are challenged to best utilize the growing array of diagnostic tools at their disposal. Certainly there are books containing information on clinical testing; however, no standard laboratory reference focuses heavily on issues unique to the immunocompromised population. It is the goal of the authors to consolidate such discussions in a single, easily referenced text that can be used by clinical health care providers, laboratory professionals, and trainees alike.

As in the first edition, this newly updated second edition takes a multiphasic approach to the topic. The stage is set in Section I, wherein the essence of the problem is defined. That is, what are the causes of immune suppression, who are the populations at risk for infections, and to which infections are they prone? In Section II, the application of laboratory diagnostic methods is discussed, primarily in an organism-by-organism fashion, while in Section III, discussions are based on the organ system involved. Finally, Section IV includes selected topics of
particular interest to caregivers, including chapters on prosthetic devices, health care acquired infections, and tissue morphology of infections in this population. New to this edition is the just mentioned discussion of tissue pathology, together with chapters on HIV, hepatitis viruses, papilloma and polyoma viruses, and aerobic and anaerobic bacteriology.

The different sections of the book are designed to provide complementary views of these often complex diagnostic challenges. While in many cases the clinician may be more comfortable with an organ systems approach, a focus on individual pathogens may be more useful in deciding upon screening strategies or follow-up of a known infection. Although laboratory professionals may turn most frequently to chapters on individual infectious agents, the systemic perspective will bring added value in making decisions on which new diagnostic methods to introduce in the laboratory. These sections will also be useful for a review of specimen-specific culture workup and exceptions to the rules, which may apply to immunocompromised patient units or clinics. In addition, many chapters include flow charts suggesting diagnostic pathways. We hope that these sections will provide a way to help to synthesize the material presented in the text into practical algorithms that can be applied to realistic case scenarios.

This book is intended to have broad appeal to laboratory professionals, infectious disease physicians, oncologists, other clinical care providers, and trainees, all of whom participate in the health care of immunocompromised patients. The editorial board, as well as the contributors, comprise a diverse group of both clinical infectious disease practitioners, and laboratory-based diagnosticians. We hope that this book will build in a meaningful way on the first edition, continuing its contribution to the care of these complex and often critically ill patients.

We extend our heartfelt thanks to all of the chapter authors, who devoted so much of their time and expertise to this project. Working with such a fine group of professionals has been a privilege. We are also grateful for the support and patience of our families while we immersed ourselves in this project. We dedicate this work to all of them and to the immunocompromised patients whom we hope this book will continue to serve. In addition, we would like to add a special word of dedication and remembrance to Dr. Gerri Hall. Through her extraordinary years of devotion to patient care and teaching, she touched countless lives and made a lasting imprint on the care of our patients and on her many students and colleagues. We all miss her and thank her for her tremendous contributions to the field and to this book.

RANDALL T. HAYDEN, DONNA M. WOLK, KAREN C. CARROLL, AND YI-WEI TANG
Index

A
Acanthamoeba, 424–425
amebic keratitis, 426
central nervous system infections, 631, 640
clinical presentation, 426
control, 428
cutaneous disease, 426
diagnosis, 426–428
epidemiology, 425
granulomatous amebic encephalitis (GAE), 426
life cycle and transmission, 425
pathophysiology, 425
treatment, 428
Acid-fast bacteria (AFB)
algorithm for, testing, 376, 377
smears for, 380
Acinetobacter spp.
aerobic bacteria, 471–472, 474, 477
bloodstream infections, 664
central nervous system infection, 634
goal-associated infections, 739
lower respiratory tract infection, 540–541, 543
Acquired immunodeficiency disease (AIDS)
Acanthamoeba, 425–426
Babesia, 448
bacterial infections, 479–480
central nervous system infections, 630–633, 640
Clostridium difficile infection, 520
Cryptosporidium, 421
cytomegalovirus (CMV) in patients with, 98, 111–113
gastrointestinal infection, 616–617, 619
genitourinary tract infection, 570–571, 574–575, 578, 580, 583
HIV infection and, 30–31
Leishmania, 434–435
lower respiratory tract infections and, 541, 542–543, 553, 555
microsporidial infection, 422–423
mycobacterial infection, 371–372
Plasmodium, 445
Sarcocystis scabiei, 454
skin and soft tissue infections, 515–517
surgical pathologic diagnosis, 762–763
Toxoplasma gondii, 429–430, 432
Trypanosoma cruzi, 440
Acremonium, 315, 323, 660
Actinobacter spp.
bloodstream infections, 664
central nervous system infections, 634
gram-negative bacteria, 471, 472, 474, 477
hospital-associated infections, 739
lower respiratory tract infections, 540, 541, 543
Actinomadura spp.
culture, 402
microscopy and direct visualization, 400
taxonomy and epidemiology, 396
Actinomyces, aerobic, 391–405
culture
Actinomadura spp., 402
Amycolata spp., 402
 Dermatophilus spp., 402
Gordonia spp., 402
Nocardia spp., 402
Nocardiopsis spp., 402
Rhodococcus spp., 402
Segniliparus spp., 402
Streptomyces spp., 402
Tsukamurella spp., 402
Williamsia spp., 402
description, 391–392
diagnosis, 398–404
antigen testing, 400
culture, 400–402
identification, 402–403
interpretation of data, 403–404
microscopy and direct visualization, 398–400
specimen collection, 398
gram-negative, classification of, 471–473
gram-positive, classification of, 467–470
HIV-positive individuals, infections in, 479–480
multiple myeloma and infections, 481
nonculture methods, 484
primary immunodeficiencies, infections with, 480–481
solid organ transplant patients, infections in, 477–479
susceptibility testing, 484–487
Bacteroids, anaerobic, 502, 506
anaerobe culture, 495–496, 498, 499
antibiotic–susceptibility testing, 508, 510–512
bloodstream infections by, 512–515, 659
collection devices, 497
diversity in human body, 494
directions, 523–524
identification of anaerobes, 498, 502
introduction, 493–494
laboratory guidelines for, from nonsterile specimen cultures, 509
laboratory methods, 510
limitations, 511–512
pyogenic polymicrobial infections by, 515–518
gastrointestinal complications, 516–518
laboratory methods, 518
necrotizing skin and soft-tissue infections (SSTIs), 515–516
periodontal disease, 516
rapid identification of anaerobic cocci, 508
rapid identification of gram-negative bacilli, 500–501
Clostridium spp., 504, 505, 506
Fusobacterium spp., 503
rapid identification of nonspore-forming gram-positive bacilli, 507
specimen handling, 495, 496
testing guidelines, 510–511
toxin-mediated C. difficile infection, 519–523
Balamuthia mandrillaris, 424–425
clinical presentation, 426
culture, 428
cutaneous disease, 426
direct detection by microscopy, 427
epidemiology, 425
granulomatous amebic encephalitis (GAE), 426
life cycle and transmission, 425
pathophysiology, 425–426
treatment, 428
Bartonella
aerobic bacteria, 472–473, 487
bloodstream infections, 660, 668, 673
surgical pathologic diagnosis, 769
Basidionymycetes yeasts, infection by, 344–346
Basiliximab, immunosuppression by, 14
B-cell depletion, bloodstream infections, 665
BD GeneOhm StaphSR Assay, 672
BD Max, 672
Beta-β-glucan (BDG) testing
filamentous fungi detection, 323–324
yeast infection diagnosis, 349–350
Biofilms
broad-range PCR, 722
disruption, 720–721
molecular methods, 722–723
prosthetic device, 711–713
small-colony variant (SCV), 711–713, 721–722
species-specific PCR, 722–723
BioFire Film Assay, 672
Biomarkers, bloodstream infections, 674–675
BK virus
genotyirinary tract infections, 585–586, 587–588
polyomavirus, 201–202, 204
therapeutic options for, 208
 Blastomyces dermatitidis, 313
Blood-brain barrier, 629
Blood culture
automated systems, 667
bloodstream infections, 676
genotyirinary tract infections, 580
indwelling port, 669
interpretation of positive, 667–668
isolator, 668
lower respiratory tract infections, 552
peripheral collection, 669
principles of collection, 668–669
systems, 667–668
Bloodstream infections, see also Molecular methods, commercially available agents of, 657–661
anaerobic bacteria, 659
fastidious pathogens, 660–661
fungi, 659–660
gram-positive and gram-negative bacteria, 657–659
molds, 660
mycobacteria, 659
viruses, 660
yeasts, 659–660
algorithms for handling, 662
anaerobic bacteria causing, 512–515
antimicrobial susceptibility testing, 669–670
bacterial infections and, 474–475
children with cancer and, 475
commercially available molecular methods, 670–675
diagnosis approaches, 666–669
blood culture collection principles, 668–669
blood culture systems, 667–668
histopathology, 666
microbiology procedures, 666–668
radiography, 666
emerging technology, 675–677
hospital-associated infections, 742, 747–748
laboratory methods, 513–514
limitations, 514–515
pathophysiology of, 653–661
coagulation abnormalities and tissue injury, 657, 658
host’s innate immune system, 655
immunosuppression and anti-inflammatory processes, 657
organ dysfunction, 656–657
role of human immune response in sepsis, 653, 656
sepsis, 653–655
systemic inflammatory response syndromes, 655
predisposing factors for, 661–666
age, 663–664
B-cell depletion, 665
cancer, 662–663
critical care and surgery, 662
HIV, 664
hospitalization, 664
intensive care unit, 665
neutropenia, 665
nosocomial, 665–666
nutrition, 665
steroid use, 664–665
transplant, 664
risk factors and outcomes, 661–666
solid tumor patients, 475
B lymphocytes, 3, 5–6
Bone-marrow examination, parvovirus, 301, 303
Bone marrow transplantation, bacterial infections, 476
Bordetella spp., gram-negative bacteria, 471, 473
Brain mass lesions, central nervous system infections, 630–632
Breast prostheses
diagnosis, 715
laboratory diagnostics, 724
management, 715
Bronchoalveolar lavage (BAL), 557–558
galactomannan testing, 558–559
Bronchoscopy, fiber optic, 356–358
Burkholderia spp., gram-negative bacteria, 471, 472
Campylobacter, gastrointestinal infections, 614, 616
Cancer
bacterial infections and, 473–477
bloodstream infections, 662–663
bloodstream infections in children with, 475
filamentous fungi, infection by, 318–319
mycobacterial infection, 373
polyomaviruses and, 205
skin and soft tissue infections, 693–694, 696
Candida spp.
bloodstream infections, 659–660
C. albicans, 343, 346, 350, 351, 352, 353
C. glabrata, 343, 346, 348, 350, 351, 352, 353, 354
C. guilliermondii, 343, 352, 353
C. krusei, 343, 346, 350, 351, 352, 353, 354
C. lusitaniae, 343
C. parapsilosis, 343, 348, 350, 351, 352, 353
C. tropicalis, 343, 346, 350, 351, 352, 353
diagnosis of infections, 346–351
antigen detection, 348–350
beta-β-glucan, 349–350
biochemical methods, 346
Candida spp. (Continued)
cryptococcal polysaccharide-capsule antigen, 348–349
culture-based methods, 346–348
direct microscopic examination, 348
molecular methods, 347–348
morphological examination, 346
non-culture-based methods, 348–351
nucleic acid amplification testing (NAT), 350–351
nucleic acid-based identification, 347
nucleic acid detection, 350–351
PNA-FISH (peptide nucleic acid-fluorescence in situ hybridization), 350
Proteomic-based identification, 347–348
proteomic method, 351
gastrointestinal infections, 617
hospital-associated infections, 739–740
infection by, 343
prosthetic device infections, 712
CDC guidelines, HIV diagnosis, 58, 60–62
Cell-mediated immunity evaluation of, 37
lower respiratory tract infections and, 542
Central nervous system infections, 629–645
clinical manifestations, 630–632
brain lesion masses, 630–632
encephalitis, 630–632
meningitis, 630
myleitis, 632
fungal pathogens, 637–639
HIV/AIDS, 632–633
immunocompromised status and syndromes, 632–634
laboratory testing
CSF antigen testing, 643
CSF sample handling, 642–643
culture, 643–644
diagnostic evaluation, 644–645
direct microscopic examination, 643
molecular approaches, 642
morphologic assays, 644
neuroimaging, 641–642
non-microbiologic approaches, 641–642
serology, 644
mycobacterial pathogens, 640–641
pathogens, 634–635
bacteria, 634–635
Nocardia, 635
syphilis, 635
vector-borne and zoonotic bacteria, 635
protozoan pathogens, 639–640
transplant, 633–634
vital pathogens, 635–637
arboviruses, 637
enteroviruses, 637
herpes viruses, 635–636
HIV, 636–637
human T-lymphotropic virus, 637
JC virus, 637
Central venous catheters, 713–714
diagnosis, 714
laboratory diagnostics, 723–724
management, 714
Cervical cancer
algorithm for screening and diagnosis of, 187
cytology, 186–187
diagnosis, 186–187
human papillomavirus (HPV), 180–181
management, 188
modern HPV tests, 187–188
prevention, 188–190
prophylactic vaccination, 188–189
screening, 184–186
screening guidelines, 186
therapeutic vaccination, 189–190
treatment monitoring, 188
Chagas disease, see Trypanosoma cruzi
Chlamydia trachomatis, genitourinary tract infections, 589–590, 600
Chlamyphila pneumoniae, lower respiratory tract infections by, 540, 545, 548, 554, 560
Chromogenic media, yeast identification by, 346, 349
Chronic disease, 34–35
bacterial infections associated with, 482–483
chronic active hepatitis and cirrhosis, 35
end-stage renal disease, 35
systemic lupus erythematosus (SLE), 34–35
Chronic granulomatous disease (CGD), 482–483
bacterial infections and, 480–481
surgical pathology, 761
Chronic hepatitis, see Hepatitis B virus (HBV); Hepatitis C, chronic (CHC)
Chronic lymphocytic leukemia (CLL), 31–32
Cirrhosis, 33, 483
CLL, see Chronic lymphocytic leukemia (CLL)
Clostridium difficile infection
anaerobe bacteria, 519–523
gastrointestinal infections, 616, 619–620
hospital-associated infections, 736–737, 743–744, 745, 748–749
laboratory methods, 520–522
limitations of, 522–523
prosthetic device infections, 712
testing algorithm for diagnosis, 522, 744
CMV, see Cytomegalovirus (CMV)
Coccidia, 419–422
central nervous system infection, 638
clinical presentation, 420
diagnosis, 420–421
antigen detection, 421
direct detection by microscopy, 420–421
molecular methods, 421
epidemiology, 419–420
life cycle and transmission, 419
parasitic infections, 412
pathophysiology, 419
surgical pathologic diagnosis, 772–773
treatment, 421–422
Culture, see also Blood culture; Viral culture
actinomyces, aerobic, 400–402
bacterial infections, 484
central nervous system infection, 643–644
fungi, filamentous, 322
mycobacteria, 378
prosthetic device infections, 719–720
skin and soft tissue infections, 701
surveillance, for hospital-associated infections, 741–744
yeast infection diagnosis, 346–348
Cyclopsora cayetanensis, 419–422
central nervous system infection, 638
clinical presentation, 420
diagnosis, 420–421
antigen detection, 421
direct detection by microscopy, 420–421
molecular methods, 421
D
Dematococci, fungi, 312, 315–316
Dermaatophillus spp.
culture, 402
microscopy and direct visualization, 400
taxonomy and epidemiology, 396
Diabetes mellitus (DM), 32
filamentous fungi, infection by, 320
mycobacterial infection, 374
Diabetic foot infection, skin and soft tissue infections, 695–696, 697–698
Dietzia spp.
microscopy and direct visualization, 400
taxonomy and epidemiology, 396
Dimorphic pathogens, 312–314, 324
DNA probes, mycobacterial identification, 378–379
DNA sequencing
bloodstream infections, 673–674
yeast infection diagnosis, 347
Drug reactions, 759
Drug resistance, molecular testing for, 673

E
EBV, see Epstein-Barr virus (EBV)
Echinocandins, mold-active antifungal agents, 327
Eclizumab, 17
Electron microscopy, adenovirus, 220–221
Elizabethkingia meningoseptica, lower respiratory tract infections by, 540
Empiric antifungal therapy, 330
Encephalitis, central nervous system infections, 630–632
Endocarditis, 654
Endogenous asymptomatic bacteremia, 654
Entamoeba histolytica, 413–416
clinical presentation, 413–414
control, 416
diagnosis, 414–416
antigen detection, 416
culture, 416
direct detection by microscopy, 414–416
serology, 416
epidemiology, 413
life cycle and transmission, 413
molecular methods, 416
pathophysiology, 413
treatment, 416
Enteric and foodborne infections, 630–632
Enterobacteriaceae, gram-negative bacteria, 471
Enterococci spp.
aerobic gram-positive cocci, 469
aplastic anemia, 481
bloodstream infections, 475, 657, 666, 671, 747
central nervous system infections, 634
genitourinary tract infections, 570, 571, 580–583, 586–588
hematopoietic stem cell transplantation (HSCT), 476
hospital-associated infections, 737, 738, 743, 745, 747
lower respiratory tract infections, 543
prosthetic device infections, 715
skin and soft tissue infections, 699, 700
solid organ transplantation, 477–479
Enterocytozoon bieneusi
gastrointestinal infections, 618
human intestinal disease by, 422
lower respiratory tract infections by, 542
microsporidiosis, 423
surgical pathologic diagnosis, 774, 775
Enteroviruses and parechoviruses, 273–286
central nervous system infections, 637
classification and biology, 273
diagnosis, 281–286
antigen detection, 284–285
antiviral-susceptibility testing, 285
culture, 283–284
nucleic acid detection, 281–283
serology, 284
epidemiology and clinical manifestations, 273–275
infections in immunocompromised host populations, 275–280
HIV/AIDS, 279
malignancy, 277–278
neonates, 278–279
primary B-cell-associated immunodeficiencies, 275–276
transplant recipients, 276–277
vaccine-associated paralytic poliomyelitis (VAPP), 279–280
treatment, 280–281
Emmonis parva, 314
Enzyme immunoassays (EIA), yeast infection diagnosis, 348–349
Enzyme-linked immunosorbent assay (ELISA)
herpes simplex virus (HSV), 138, 140
lower respiratory tract infections, 554, 558
parvoivirus, 301, 302, 303
varicella zoster virus (VZV), 146, 148
Epidermiditis, genitourinary tract infections, 593–594, 603
Epstein-Barr virus (EBV), 31
background and clinical information, 97–100
gastrointestinal infections, 617–618
genitourinary tract infections, 586
in hematopoietic stem-cell transplant recipients, 98, 99, 113–114
in immunocompromised hosts, 100
lower respiratory tract infections, 547–550, 552, 556
monitoring therapeutic response, 111
in newborns and infants, 98, 99–100
in patients with AIDS, 98, 111–113
gastrointestinal disease, 112–113
pneumonitis, 113
polyradiculopathy and ventriculonecephalitis, 112
reinitis, 111–112
prognostication, 110
risk assessment, 110
screening, surveillance and prevention, 97–100
in solid-organ transplant recipients, 98–99, 115–116
surgical pathologic diagnosis, 765
susceptibility testing, 116–117
therapeutic considerations, 100
virology of, 97
Fluorescence in situ hybridization (FISH), yeast infection diagnosis, 350
Fluorescence microscopy mycobacteria, 376
Free-living amebae (FLA), 424–428
clinical presentation, 426
amebic keratitis, 426
cutaneous disease, 426
control, 428
diagnosis, 426–428
culture, 428
direct detection by microscopy, 427–428
epidemiology, 425
life cycle and transmission, 425
pathophysiology, 425–426
treatment, 428
Fungi, see also Fungi, filamentous; Yeasts
bloodstream infections, 659–660
central nervous system infections, 637–639
gastrointestinal infections, 614, 617
hospital-associated infections, 739–740
surgical pathologic diagnosis, 772–774
Fungi, filamentous, 311–313
antifungal prophylaxis, 328
epidemiology, 318–321
host genetic factors, 318
primary immunodeficiencies, 320
solid-organ transplantation patients, 319
stem cell transplantation patients, 318–319
etiolologic agents, 312–316
Aspergillus spp., 314–315
Blastomyces dermatitidis, 313
Coccidioides spp., 313
dematous fungi, 312, 315–316
dimorphic pathogens, 312–314
Emmonsia parva, 314
Fusarium, 315
Histoplasma capsulatum, 313
hyaline hyphomycetes, 312, 314–315
Mucorales, 315
rare and emerging species, 314, 315
Scedosporium, 316
Sporothrix schenckii, 314
Talaromyces marneffei, 314
hospital environment monitoring, 330
immunology of invasive, 316–318
adaptive fungal immunity, 317–318
innate fungal immunity, 316–317
laboratory tests, 321–326
antibody-detection assays, 322–324
culture, 322
direct staining of clinical materials, 321
histopathology, 321
microbiology and molecular techniques, 321–326
nucleic acid detection, 324–325
proteomic methods, 325–326
radiologic technologies, 326
lower respiratory tract infections, 542, 544
morphology, 311–312
prevention and management, 328, 330
reproductive structures, 312
susceptibility testing, 326–328
in vitro, 327–328, 329
teratology and taxonomy, 311–312
therapy, 328, 330
Fusarium spp., 315
G
Galactomannan testing, 322–323
bronchoalveolar lavage (BAL), 558–559
Gastrointestinal infections, 613–623
agents, 616–619
bacteremia, 616–617
fungi, 617
parasites, 618–619
viruses, 617–618
algorithm for diagnosis, 622
background, 613–615
diagnostic approaches, 619–622
hospital-associated infections, 741, 743–744, 748–749
microbial agents, 614, 615
GeneXpert, 671–672
Genital tract infections, 588–603
subtypes, 590, 602
Haemophilus ducreyi, 590, 602
Haemophilus influenzae, lower respiratory tract infections, 540, 541, 543, 545, 549
Haemophilus spp., gram-negative bacteria, 547, 472
HBV, see Hepatitis B virus (HBV)
Helicobacter pylori, 471
gastrointestinal infections, 613, 614, 616–617
prosthetic device infections, 712
Helminths, 450–453
Hematologic malignancies
bacterial infections and, 473–475
genitourinary tract infections, 578
Hematopoietic stem cell transplantation
26–30
adenovirus, 217, 218
bacterial infections, 476
central nervous system infections, 633–634
cytomegalovirus (CMV) in patients with, 98, 99, 113–114
Epstein-Barr virus (EBV), 128, 131–132
filamentous fungi, infection by, 318–319
hematopoietic stem cell transplantation, 576–577, 578, 587–588
hepatitis B disease risk, 74–77
human herpesviruses (HHV-6 and HHV-7), 161
human papillomavirus (HPV), 179, 180
lower respiratory tract infections and, 546–549
mycobacterial infection, 373
nonmyeloid ablative conditioning regimens, 29–30
timeline of infection, 26, 27
Hepatic sinusoidal-OBstruction syndrome, 761
Hepatitis, chronic active, 35
Hepatitis B virus (HBV), 69–78
characteristics of, 70
chronic HBV in normal host, 70–78
current treatments for, 74
HIV coinfection with, 77–78
markers and testing for diagnosis of, 70–71
pharmacologic immunosuppression and reactivation of, 74–77
phases and markers of, 73
prevention of infection, 72–73
Glucocorticoids, bloodstream infections, 664–665
Gordonia spp.
culture, 402
gram-positive bacteria, 469
microscopy and direct visualization, 399
susceptibility testing, 405
taxonomy and epidemiology, 395
Graft vs. host disease (GVHD)
central nervous system infections, 633
prevention and treatment of, 21
surgical pathology, 761–762
Granulomatous amebic encephalitis (GAE), 424–428
GVHD, see Graft vs. host disease (CVHD)
H
Haemophilus ducreyi, genitourinary tract infections, 590, 602
Haemophilus influenzae, lower respiratory tract infections, 540, 541, 543, 545, 549
Haemophilus spp., gram-negative bacteria, 547, 472
HBV, see Hepatitis B virus (HBV)
Helicobacter pylori, 471
Gastrointestinal infections, 613, 614, 616–617
prosthetic device infections, 712
Helminths, 450–453
Hematologic malignancies
bacterial infections and, 473–475
genitourinary tract infections, 578
Hematopoietic stem cell transplantation, 26–30
adenovirus, 217, 218
bacterial infections, 476
central nervous system infections, 633–634
cytomegalovirus (CMV) in patients with, 98, 99, 113–114
Epstein-Barr virus (EBV), 128, 131–132
filamentous fungi, infection by, 318–319
hematopoietic stem cell transplantation, 576–577, 578, 587–588
hepatitis B disease risk, 74–77
human herpesviruses (HHV-6 and HHV-7), 161
human papillomavirus (HPV), 179, 180
lower respiratory tract infections and, 546–549
mycobacterial infection, 373
nonmyeloid ablative conditioning regimens, 29–30
timeline of infection, 26, 27
Hepatic sinusoidal-OBstruction syndrome, 761
Hepatitis, chronic active, 35
Hepatitis B virus (HBV), 69–78
characteristics of, 70
chronic HBV in normal host, 70–78
current treatments for, 74
HIV coinfection with, 77–78
markers and testing for diagnosis of, 70–71
pharmacologic immunosuppression and reactivation of, 74–77
phases and markers of, 73
prevention of infection, 72–73
Glucocorticoids, bloodstream infections, 664–665
Gordonia spp.
culture, 402
gram-positive bacteria, 469
microscopy and direct visualization, 399
susceptibility testing, 405
taxonomy and epidemiology, 395
Graft vs. host disease (GVHD)
central nervous system infections, 633
prevention and treatment of, 21
surgical pathology, 761–762
Granulomatous amebic encephalitis (GAE), 424–428
GVHD, see Graft vs. host disease (CVHD)
fiber optic bronchoscopy, 556–558
galactomannan (GM), 558–559
induced sputum, 555–556
radiography, 551–552
respiratory specimens, 554–560
serology, 554
surgical lung biopsy (SLB), 561–562
transbronchial biopsy (TBB), 557–558
urinary antigen studies, 552–553
host factors and subgroups, 541–551
alcoholism, 550
anti-TNF agents, 549–550
cellular immunity defects, 542
collagen vascular diseases, 549
heart transplantation, 545–546
HIV/AIDS, 542–543
human stem cell transplantation, 546–549
humoral immunity impairment, 541
kidney transplantation, 546
liver transplantation, 546
lung transplantation, 544–545
neutropenia, 541–542
nontuberculous pulmonary disorders, 550–551
solid organ transplant patients, 543–546
pneumonia, community-acquired, 539–540
pneumonia, nosocomial, 540–541

M

Malakoplakia, surgical pathologic diagnosis, 768
Malaria, see Plasmodium spp.
Malassezia spp., infection by, 345–346
Microsporidia, 422–424
Microscopic examination
Microarrays, multiplex testing platforms, 525–523
Microscopic examination
actinomycetes, aerobic, 398–400
cellular immunity defects, 542
collagen vascular diseases, 549
diagnosis, 423–424
direct detection by microscopy, 423–424
epidemiology, 422–423
gastrointestinal infections, 618
life cycle and transmission, 422
pathophysiology, 422
surgical pathologic diagnosis, 774–776
treatment, 124
Molds, see also Fungi, filamentous
bloodstream infections, 660
Molecular detection
Aspergillus-specific technique, 325
polyomaviruses, 206–207
Molecular methods, commercially available
BioFire FilmArray, 672
biomarkers, 674–675
DNA sequencing, 673–674
GeneXpert, Xpert MRA/SA BC Assay, 671–672
GenMark eason, 672
molecular testing for drug resistance, 673
Nanosphere’s Verigene, 672–673
peptide nucleic acid fluorescence
hybridization (PNA FISH), 671
procalcitonin (PCT), 675
proteomic tests (SepsiTyper and Vitek MS), 674
SmartCycler, BD GeneOhm StaphSR
Assay and BD Max, 672
T2Dx, magnetic resonance, 674
Molzyme SepsiTest, 676
MRSA (methicillin-resistant *Staphylococcus aureus*), 485–486
bacterial infections, 474–475
bloodstream infections, 663, 666, 667
children with HIV, 480
chromogenic agar for isolation, 701
community-associated, 692
cystic fibrosis, 482
detection of, 671–673, 676, 699
gram-positive cocci, 469
hospital and community-acquired, 485–486
hospital-associated infections, 737–738, 745
hospital infection diagnosis, 347–348, 351
Measles, 31, 767
Meningitis, central nervous system infections, 630
Merkel cell carcinoma (MCC), 200, 203
Metabolic diseases, 32–33
Metapneumovirus, 233, see also Respiratory viruses
epidemiology, 236–237
taxonomy and description, 234, 235
Microarrays, multiplex testing platforms, 252–253
Microscopic examination
actinomycetes, aerobic, 398–400
central nervous system infection, 643
mycobacteria, 376, 377
yeast infection diagnosis, 346, 348
Microsporidium, 422–424
clinical presentation, 423
culture, 424
diagnosis, 423–424
tagammagenic detection, 424
diseases by, 12
DNA probes, 378
line probe assays, 379
matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), 379
susceptibility testing, 381–383
Mycocecalis, surgical pathologic diagnosis, 770–771
Mycoplasma, 315
Multidrug-resistant gram-negative bacilli (MDR GNB), 739
Multidrug-resistant organisms, 484–487
Multiple myeloma, 32, 481
Mycobacteria
bloodstream infections by, 659
central nervous system infection, 640–641
Mycobacterial spindle-cell pseudotumor, 769
Mycobacterium avium-intracellulare complex (MAC), 368–369
gastrointestinal infection, 614, 616
lower respiratory tract infection, 540
surgical pathologic diagnosis, 769
Mycobacterium (mycobacterial), 367–383
description of pathogens, 367–371
Mycobacterium abscessus complex, 370
Mycobacterium avium complex (MAC), 368–369
Mycobacterium chelonae, 370
Mycobacterium fortuitum, 371
Mycobacterium genavense, 369–370
Mycobacterium haemophilum, 369
Mycobacterium kansasi, 369
Mycobacterium marinum, 370
Mycobacterium tuberculosis complex (MTBC), 367–368
nontuberculous mycobacteria (NTM), 368
rapidly growing mycobacteria (RGM), 370–371
slowly growing nontuberculous mycobacteria (SGM), 368–370
interpretation of test results, 380–383
M. tuberculosis-positive specimens, 380–381
liver transplantation, 546
liver failure, 483
lower respiratory tract infections, 544, 547, 548, 551–552, 555, 557–558
spectrum of disease in immunocompromised hosts, 371–374
diabetes mellitus, 374
hematopoietic stem cell transplantation, 373
HIV/AIDS, 371–372
solid organ transplantation, 372–373
TNF-α antagonists, treatment with, 373–374
transplantation, 372–373
urothelial bladder cancer, 373
Mycobacterium tuberculosis complex (MTBC), 367–368
central nervous system infection, 640–641
culture, 378
direct detection in clinical specimens, 377–378
dna probes, 378
line probe assays, 379
matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), 379
susceptibility testing, 381–383
Mycobophylate mofetil, immunosuppression
by, 12
Mycoplasma, lower respiratory tract infections, 540, 558
Myelitis, central nervous system infections, 632
N

Naecleria fowleri, 424–425, 631, 640
Nanosphere’s Verigene, 672–673
Neminism’s Verigene, 672–673
Neisseria gonorrhoeae, gram-negative bacteria, 471, 473
Neonates, enteroviruses and parechoviruses, 276, 278–279
Neoplasms
Epstein-Barr virus related, 763
human herpesvirus 8 (HHV-8) related, 762–763
papilloma viruses related, 763
Nephrotic syndrome, 32
Neuroimaging, central nervous system infection, 641–642
Neutropenia
bloodstream infections, 665
filamentous fungi, infections by, 318, 319, 328
lower respiratory tract infections and, 541–542
surgical pathologic diagnosis, 772
Neutropenic enterocolitis, 761
Newborns, see Infants
NK cells, 4, 5, 131
disorders of, 10
NK/T-cell lymphomas, Epstein-Barr virus and, 127, 130

Nocardia spp.
antimicrobial susceptibility profiles, 393
central nervous system infections, 632, 633, 635
culture, 402
human infection, 394
lower respiratory tract infections, 547, 548, 550, 551, 558
microscopy and direct visualization, 399
skin and soft tissue infections, 694, 697
susceptibility testing, 404
taxonomy and epidemiology, 392–394

Nocarditis spp.
culture, 402
microscopy and direct visualization, 400
taxonomy and epidemiology, 396–397
Non-Hodgkin’s lymphoma, Epstein-Barr virus
Noninfectious pulmonary disorders, lower respiratory tract infections and,
550–551
Nontuberculous mycobacteria (NTM), 367, 368
serology, 375
specimens positive for, 381
susceptibility testing, 383
transplantation infection, 372–373
Noroviruses
gastrointestinal infections, 618
hospital-associated infections, 741, 746
Nosocomial bloodstream infection, 654, 665–666
Nosocomial pneumonia, 540–541
Nucleic acid amplification testing (NAAT)
chronic hepatitis B, 74
chronic hepatitis C, 78–79
filamentous fungi, 328
lower respiratory tract infections, 558–560
mycobacteria, 377–378, 380
yeasts, 350–351
Nucleic acid testing (NAT)
adenovirus, 221–222
cytomegalovirus (CMV), 103, 105–108
tube infections and, 281–283
Epstein-Barr virus (EBV), 129–130
herpes simplex virus (HSV), 139, 141, 142
human herpesviruses (HHV-6 and HHV-7), 165–166
parvo virus, 303, 304
respiratory RNA viruses, 241, 251–252, 260
varicella zoster virus (VZV), 147, 149
yeast infection diagnosis, 350–351
Nutrition, bloodstream infections, 665

O
Oncology patients, skin and soft tissue infections, 693–694, 696
Organ dysfunction, bloodstream infections, 656–657
Organ transplantation, immunosuppressive therapy for prevention and treatment of allograft rejection, 18–21
Oropharyngeal cancer algorithm for diagnosis of, 182
diagnosis, 181–182
human papillomavirus (HPV), 180
screening, 181

P
Parechoviruses, 315, 322, 327, 660
Papilloma viruses, neoplasms related to, 763
Parainfluenza virus, 233, see also
Respiratory RNA viruses
epidemiology, 236–237
lower respiratory tract infections, 545, 548, 550
screening and prevention, 300–301
treatment and monitoring, 301

Patency of allograft rejection, 18–21

Parvovirus B19, 297–305
description, 297
diagnosis, 301–304
antigen detection, 304
bone marrow examination, 301, 303
culture, 304
interpretation of data, 304
nucleic acid detection, 303, 304
serology, 301, 302, 303
epidemiology and clinical disease, 298–300
immune-competent patients, 298–299
immunocompromised patients, 299–300
morbidity and mortality, 300
laboratory testing goals, 300–301
diagnosis and prognostication, 301
screening and prevention, 300–301
treatment and monitoring, 301
pathophysiology of infection, 297–298
surgical pathologic diagnosis, 765–766
therapy, 304–305
monitoring response, 305
options, 304–305
Patterson, 305
Pattern-recognition receptors, 317
PCR (polymerase chain reaction)
adenovirus, 219, 221–222, 224
bloodstream infections, 676
central nervous system infection, 644
cytomegalovirus (CMV), 101, 103, 105–107, 116
enteroviruses and parechoviruses, 281–283
Epstein-Barr virus (EBV), 129
fungi, filamentous, 323–325
hepatitis B virus (HBV), 72
hepatitis C virus (HCV), 75, 80, 83
herpes simplex virus (HSV), 138–139, 141, 142
HHV-6, 65
human herpesvirus 6 (HHV-6), 164, 165–166
human herpesvirus 7 (HHV-7), 164, 165–166
human papillomavirus (HPV), 181–183
lower respiratory tract infections, 555–556, 559–560
mycobacteria, 377, 379, 382
parvovirus, 299, 301–305
polymaviruses, 199, 206–207
prosthetic device infections, 725–726, 727–728
respiratory RNA viruses, 251–261
varicella zoster virus (VZV), 145–147, 149
yeast infection diagnosis, 350–351
Pelvic inflammatory disease (PID), genitourinary tract infections, 569, 589, 591, 596
Penile cancer
diagnosis, 182–183
human papillomavirus (HPV), 180
Peptide nucleic acid-fluorescence in situ hybridization (PNA–FISH)
bloodstream infection, 671
yeast infection diagnosis, 350
Peripheral blood smear, evaluation of, 36
Persistent bacteremia, 655
Respiratory RNA viruses (Continued)

virus isolation in cell culture, 241, 243–245
centrifugation-assisted rapid cultures, 244–245
conventional tube cultures, 244
mixed cell cultures, 245
Respiratory specimens, lower respiratory tract infections, 534–560
Respiratory syncytial virus (RSV), 233, see also Respiratory RNA viruses
epidemiology, 236–237
hospital-associated infections, 740–741
lower respiratory tract infections, 540, 541, 545, 548, 552, 554
surgical pathologic diagnosis, 767
taxonomy and description, 234
Rheumatic diseases, agents for treatment of, 21–23
Rheumatoid arthritis bacterial infections with, 483
Rhinoviruses, 233, see also Respiratory RNA viruses
epidemiology, 236–237
taxonomy and description, 234, 235
Rhodococcus spp.
culture, 402
gram-positive bacteria, 469
microscopy and direct visualization, 399
susceptibility testing, 405
taxonomy and epidemiology, 394–395
Rhodotorula spp., infection by, 456
Rituximab
bacterial infections, 477
immunodeficiency associated with, 13, 14
Salmonella
aerobic bacteriology, 467, 471, 479–480, 581
central nervous system infections, 634
gastrointestinal infection, 614, 616, 619
genitourinary tract infections, 570
gram-negative bacteria, 471
lower respiratory tract infections, 540
prosthetic device infections, 716
Saprophytaceous spp., infection by, 344
Sarcopenia scabiei
clinical presentation, 454
diagnosis, 454–455
epidemiology, 453–454
life cycle and transmission, 454
pathophysiology, 454
treatment and prevention, 455
Scabies, see Sarcoptes scabiei
Segniliparum spp., 316
Skin microbiome, 691–692
Skin microbiome, 691–692
erythematosus (SLE)
S. aureus
bloodstream infections, 653, 657, 663–664, 671–672, 675–676
central nervous system infection, 634
genitourinary tract infections, 570–572, 582
hospital-associated infections, 736–737, 742, 745, 747
lower respiratory tract infections, 540, 541, 543, 545, 548, 550–552, 556, 559
prosthetic device infections, 712–718, 721–722, 727
skin and soft tissue infections, 692–693, 695–696, 700–701, 703
S. pneumoniae
aerobic bacteriology, 471–472, 474–475, 477, 479, 481–482, 486
hospital-associated infections, 737
lower respiratory tract infection, 540–541, 545
prosthetic device infections, 718
skin and soft tissue infections, 693–694
Steroid use, bloodstream infections, 664–665
Streptococcus spp., gram-positive bacteria, 469–470
Streptococcus pneumoniae
lower respiratory tract infections, 539–541, 543, 546, 549–550, 552, 555, 5
Streptomyces spp.
culture, 402
microscopy and direct visualization, 400
taxonomy and epidemiology, 397
Strongyloides stercoralis, 450–453
bloodstream infections, 661
central nervous system infection, 640
clinical presentation, 451
central nervous system infections, 640
parasitic infection, 412
pathophysiology, 451
Sputum, lower respiratory tract infections, 555–556
Staphylococcus
gram-positive bacteria, 467, 469, 470
Streptococcus pneumoniae
human herpesviruses (HHV-6 and HHV-7), 161
human papillomavirus (HPV), 179, 180
interferon gamma release assays (IGRA), 376
kidney transplant and UTIs, 575, 576, 586–587
lower respiratory tract infections and, 543–546
heart, 545–546
kidney, 546
liver, 546
lung, 544–545
mycobacterial infection, 372–373
timeline of infections, 24
Staphylococcus aureus
bloodstream infections, 653, 657, 663–664, 671–672, 675–676
central nervous system infection, 634
genitourinary tract infections, 570–572, 582
hospital-associated infections, 736–737, 742, 745, 747
lower respiratory tract infections, 540, 541, 543, 545, 548, 550–552, 556, 559
prosthetic device infections, 712–718, 721–722, 727
skin and soft tissue infections, 692–693, 695–696, 700–701, 703
Streptococcus pneumoniae
aerobic bacteriology, 471–472, 474–475, 477, 479, 481–482, 486
hospital-associated infections, 737
lower respiratory tract infection, 540–541, 545
prosthetic device infections, 718
skin and soft tissue infections, 693–694
Steroid use, bloodstream infections, 664–665
Streptococcus spp., gram-positive bacteria, 469–470
Streptococcus pneumoniae
lower respiratory tract infections, 539–541, 543, 546, 549–550, 552, 555, 5
Streptomyces spp.
culture, 402
microscopy and direct visualization, 400
taxonomy and epidemiology, 397
Strongyloides stercoralis, 450–453
bloodstream infections, 661
central nervous system infection, 640
clinical presentation, 451
central nervous system infections, 640
parasitic infection, 412
pathophysiology, 451
surgical pathologic diagnosis, 776–777

Sequence, see also DNA sequencing
mycobacteria, 378–379
yeast infection diagnosis, 347
Sepsis
human immune response in, 655, 656
pathophysiology of, 653–655
systemic inflammatory response syndromes and, 655
SepsisTyper, 674
INDEX

793

S
Siphylis
central nervous system infection, 635
genitourinary tract infections, 597–598,
602–603
Systemic lupus erythematosus (SLE), 34–35

T
T2Dx Biosystems, 674
Talaromycosis, 314
gastrointestinal infections, 617
Targeted therapy, fungal disease, 330
T-cell assays, cytomegalovirus (CMV), 104
T-helper cells, 317
Therapeutic vaccination, cervical cancer,
189–190
Tissue culture, prosthetic device
infections, 725
Tissue-invasive disease
cytomegalovirus (CMV) in hematopoietic
stem-cell transplantation, 113–114
cytomegalovirus (CMV) in solid-organ
transplantation, 115
T lymphocytes, 3, 6
TNF antagonists, mycobacterial infection
and, 373–374
Tocilizumab, 16
Tofacitinib, 17
Toxoplasma gondii, 428–432
central nervous system infection, 631, 639
clinical presentation, 429–430
control, 432
diagnosis, 430–432
direct detection by microscopy, 430–431
molecular methods, 431
serology, 431–432
epidemiology, 429
life cycle and transmission, 429
lower respiratory tract infection, 540,
542–543, 545
parasitic infection, 411, 412, 424
diagnosis, 429
drug reactions, 759
fungi, 759
fungi infections, 770–772
neutropenic enterocolitis, 772
mucoraceae, 770–771
Pneumocystis jiroveci, 771–772
genitourinary tract infections, 579
graft-versus-host disease, 761–762
hepatic sinusoidal-obstruction
syndrome, 761
immune-reconstitution inflammatory
syndrome, 761
liver transplantation, 760–761
neoplasms in immunocompromised hosts,
762–763
neutropenic enterocolitis, 772
parasitic infections, 772–777
Cryptosporidium spp., 772–773
Giardia intestinalis, 774
microsporidia, 774–776
Strongyloides stercoralis, 776–777
Toxoplasma gondii, 773–774
special techniques, 777–778
viral infections, 763–768
adenovirus, 767–768
cytomegalovirus (CMV), 765
erpes simplex virus, 766
HSV, 766–767
measles, 767
parvovirus B19, 765–766
polymaviruses, 763–765
respiratory-syncytial virus, 767
varicella zoster virus, 767
Susceptibility testing
actinomycetes, aerobic, 404–405
adenovirus, 223
antimicrobial resistance of anaerobes, 508,
510–512
bacteria, aerobic, 484–487
bacterial infections, 669–670
cytomegalovirus (CMV), 108–109,
116–117
enteroviruses and parechoviruses, 285
fungi, filamentous, 327–328
genitourinary tract infections, 584
influenza virus, 259
mycobacteria, 381–383
Mycobacterium tuberculosis complex,
381–383
nontuberculous mycobacteria, 383
skin and soft tissue infections, 701
yeast infection, 351–354
Trichosporon spp., infection by, 345
Tropism assay, HIV-1, 66
Trypanosoma cruzi, 437–442
central nervous system infection,
569–570, 641
clinical presentation, 438–440
acute infection, 438–439
chronic infection, 439–440
control, 442
diagnosis, 440–441
culture, 440
direct detection, 440, 441
molecular methods, 440
serology, 440–441
epidemiology, 438
life cycle and transmission, 438
pathophysiology, 438
treatment, 441–442
Tsukamurella spp.
culture, 402
microscopy and direct visualization,
399
susceptibility testing, 405
taxonomy and epidemiology, 395
Tuberculosis, surgical pathologic diagnosis,
769–770
Typing, adenovirus, 222–223
Tzanck smear, 139, 146
U
Urinary antigen studies, lower respiratory
tract infections, 552–553
Urinary tract infections (UTIs), 569–588,
see also Genital tract infections
agents causing, 569–570
bacteria, 569–570
fungi, 570
viruses, 570
clinical syndromes, 573–574
diagnosis, 577–578
clinical diagnosis, 577
microbiological diagnosis, 579–584
radiographic imaging, 577–579
surgical pathology and cytology, 579
viral, 584–586
hospital-associated infections, 743, 748
host factors and patient groups,
574–577, 578
microbiological diagnosis
specimen handling, 579–580
susceptibility testing, 584
urinalysis, 581
urine microscopy, 581
pathophysiology of, 570, 572–573
therapy, monitoring and prognosis of,
586–588
viral diagnosis
adenovirus, 584–585
BK virus, 585–586
CMV, 586
serology, 584
Urinary tract infections, mycobacterial
infections and, 373
Urethritis, 592, 603
V
Valganciclovir, 17
Vasculitis, 189
Varicella zoster virus, 326–327
Viral pneumonia, 573–574
Viral infections, 569–570
Viral hepatitis, 83–84
viral hepatitis, 83–84
Viral diagnosis, adenovirus, 584–585
BK virus, 585–586
CMV, 586
serology, 584
Virus, 203
Mycobacterium tuberculosis, 381–383
Vitamins, 146
W
Wegener’s granulomatosis, 761
Whole-blood culturing, 403
Whole-blood lymphocyte stimulation,
cytomegalovirus (CMV), 108–110
X
Xeroderma pigmentosum, 345
Xenopus laevis, 345
Y
Yersinia pestis, 345
Yersinia pseudotuberculosis, 345
Z
Ziehl-Neelsen stain, 109
V
Vaccinations, cervical cancer, 188–190
Vaccine-associated paralytic poliomyelitis (VAPP), enteroviruses and parechoviruses, 279–280
Vancomycin-resistant enterococci (VRE), hospital-associated infections, 736, 738, 745
Varicella zoster virus (VZV), 143–150
antiviral sensitivity testing, 150
description of agent and pathophysiology, 143–144
epidemiology, 145
goals of laboratory testing, 145
herpes zoster (HZ) disease spectrum, 144
host factors and subgroups, 144
infection in immunocompromised patients, 144
laboratory methods for diagnosis, 145–150
antigen-based assays, 146–147, 148
culture, 146, 148
morphological tests, 146, 148
nucleic acid-based assays, 147, 149
quantitative DNAemia, 147, 149, 150
serology, 145–146, 148
morbidly and mortality, 144
skin and soft tissue infections, 697, 698
surgical pathologic diagnosis, 767
therapy, 150
Ventilator-associated pneumonia (VAP), 712, 736–737, 743
Vibrio spp., 424
bloodstream infections, 657
gastrointestinal infections, 619
gram-negative bacteria, 471, 472, 473
skin and soft tissue infections, 692, 700
Viral culture
adenovirus, 220, 224
cytomegalovirus (CMV), 101, 102
enteroviruses and parechoviruses, 283–284
herpes simplex virus (HSV), 138–139, 140
human herpesviruses (HHV-6 and HHV-7), 164, 165
parvovirus, 304
polyomaviruses, 205
respiratory RNA viruses, 241, 243–245
varicella zoster virus (VZV), 146, 148
Viruses
bloodstream infections, 660, 661
central nervous system infections, 635–637
gastrointestinal infections, 614, 617–618
hospital-associated infections, 740–741
surgical pathologic diagnosis, 763–768
vitekMS, 674
VZV, see Varicella zoster virus (VZV)
Western blot, for HIV, 56, 58
Williamsia spp.
culture, 402
microscopy and direct visualization, 400
taxonomy and epidemiology, 397
X
X-linked agammaglobulinemia (X-LA), 7–8, 13
X-linked lymphoproliferative syndrome, 128
Xpert MRSA/SA BC Assay, 671–672
Yeasts
antifungal susceptibility testing, 351–354
bloodstream infections, 659–660
description and diagnosis, 702
diagnosis of infections, 346–351
antigen detection, 348–350
beta-D-glucan, 349–350
biochemical methods, 346
cryptococcal polysaccharide-capsule antigen, 348–349
culture-based methods, 346–348
direct microscopic examination, 348
molecular methods, 347–348
morphological examination, 346
non-culture-based methods, 348–351
nucleic acid amplification testing (NAAT), 350–351
nucleic acid-based identification, 347
nucleic acid detection, 350–351
PNA-FISH (peptide nucleic acid-fluorescence in situ hybridization), 350
Proteomic-based identification, 347–348
proteomic method, 351
infectious agents
ascomycetous yeasts, 343–344
basidiomycetous yeasts, 344–346
Candida spp., 343
Cryptococcus spp., 344–345
Geotrichum spp., 343–344
Malassezia spp., 345–346
Rhodotorula spp., 346
Saccharomyces spp., 344
Saprochaete spp., 344
Trichosporon spp., 343–346
taxonomy, 343–346
therapeutic options, 351–354
Z
Ziehl-Neelsen stain, 376
Zygomycosis (mucormycosis)
central nervous system infection, 631, 633, 639
gastrointestinal infection, 614
hospital-associated infections, 740
lower respiratory tract infection, 552
skin and soft tissue infections, 693–694