Molecular Microbiology
DIAGNOSTIC PRINCIPLES AND PRACTICE
THIRD EDITION

EDITORS IN CHIEF
David H. Persing
Cepheid, Sunnyvale, California
Fred C. Tenover
Cepheid, Sunnyvale, California

EDITORS
Randall T. Hayden
St. Jude Children’s Research Hospital, Memphis, Tennessee
Margareta leven
Vaccine and Infectious Disease Institute (VIDI), University of Antwerp, Antwerp, Belgium
Melissa B. Miller
University of North Carolina School of Medicine, Chapel Hill, North Carolina
Frederick S. Nolte
Medical University of South Carolina, Charleston, South Carolina
Yi-Wei Tang
Memorial Sloan Kettering Hospital, New York, New York
Alex van Belkum
bioMérieux, La Balme Les Grottes, France

ASM PRESS
Washington, DC
CONTENTS

Contributors
- ix

Preface
- xv

Section I

Novel and Emerging Technologies

1. Nucleic Acid Amplification Methods
 Overview / 3
 FREDERICK S. NOLTE AND CARL T. WITTWER

2. Application of Identification of Bacteria by DNA Target Sequencing in a Clinical Microbiology Laboratory / 19
 KARISSA D. CULBREATH, KEITH E. SIMMON, AND CATHY A. PETTI

3. Microbial Whole-Genome Sequencing: Applications in Clinical Microbiology and Public Health / 32
 M. E. TÖRÖK AND S. J. PEACOCK

4. Digital PCR and Its Potential Application to Microbiology / 49
 JIM F. HUGGETT, JEREMY A. GARSON, AND ALEXANDRA S. WHALE

5. Massively Parallel DNA Sequencing and Microbiology / 58
 ULF GYLENSTEN, RUSSELL HIGUCHI, AND DAVID PERSING

6. Next-Generation Sequencing / 68
 CHARLES CHIU AND STEVE MILLER

7. Pathogen Discovery / 80
 EFREM S. LIM AND DAVID WANG

 ALEX VAN BELKUM, VICTORIA GIRARD, MAUD ARSAC, AND ROBIN PATEL

9. Multiplex Technologies / 102
 KEVIN ALBY AND MELISSA B. MILLER

Section II

Metagenomics: Implications for Diagnostics

10. The Skin Microbiome: Insights into Potential Impact on Diagnostic Practice / 117
 ELIZABETH A. GRICE

11. The Gastrointestinal Microbiome / 126
 ABRIA MAGEE, JAMES VERSALOVIC, AND RUTH ANN LUNA

12. The Vaginal Microbiome / 138
 DAVID N. FREDRICKS

13. Microbial Communities of the Male Urethra / 146
 BARBARA VAN DER POL AND DAVID E. NELSON

14. The Human Virome in Health and Disease / 156
 KRISTINE M. WYLIE AND GREGORY A. STORCH

Section III

Health Care-Associated Infections

15. Molecular Detection of *Staphylococcus aureus* Colonization and Infection / 169
 KATHY A. MANGOLD AND LANCE R. PETERSON

16. Molecular Diagnostics for *Clostridium difficile* / 185
 FRÉDÉRIC BARBUT AND CURTIS J. DONSKEY

17. Overview of Molecular Diagnostics in Multiple-Drug-Resistant Organism Prevention: Focus on Multiple-Drug-Resistant Gram-Negative Bacterial Organisms / 197
 KAEDÉ V. SULLIVAN AND DANIEL J. DIEKE MA
18 Detection of Vancomycin-Resistant Enterococci / 212
ALLISON J. McGEER AND BARBARA M. WILLEY

section IV
MOLECULAR DIAGNOSTICS AND PUBLIC HEALTH

19 The Impact of Molecular Diagnostics on Surveillance of Foodborne Infections / 235
JOHN BESSER, HEATHER CARLETON, RICHARD GOERING, AND PETER GERNER-SMIDT

20 Role of Molecular Methods in Improving Public Health Surveillance of Infections Caused by Antimicrobial-Resistant Bacteria in Health Care and Community Settings / 245
FRED C. TENOVER

21 Molecular Diagnostics: Huge Impact on the Improvement of Public Health in China / 256
HUI WANG, BIN CAO, Yawei ZHANG, and SHGUANG LI

22 Surveillance and Epidemiology of Norovirus Infections / 266
JOHN P. HARRIS

23 Molecular Diagnostic Assays for the Detection and Control of Zoonotic Diseases / 275
J. SCOTT WEESE

section V
SYNDROMIC DIAGNOSTICS

24 Molecular Approaches to the Diagnosis of Meningitis and Encephalitis / 287
KAREN C. BLOCH AND YI-WEI TANG

25 Using Nucleic Acid Amplification Techniques in a Syndrome-Oriented Approach: Detection of Respiratory Agents / 306
KATHERINE LOENS AND MARGARETA IEVEN

26 Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections / 336
ONYA OPOTA, KATIA JATON, GUY PROD’HOM, AND GILBERT GREUB

27 Molecular Diagnosis of Gastrointestinal Infections / 362
BENJAMIN A. PINSKY AND NIAZ BANAEI

28 Diagnostic Approaches to Genitourinary Tract Infections / 386
CLAIRE C. BRISTOW AND JEFFREY D. KLAUSNER

section VI
VIROLOGY

30 Molecular Detection and Characterization of Human Immunodeficiency Virus Type 1 / 417
ANGELA M. CALIENDO AND COLLEEN S. KRAFT

31 Molecular Detection and Characterization of Hepatitis C Virus / 430
MICHAEL S. FORMAN AND ALEXANDRA VALSAMAKIS

32 Molecular Detection and Characterization of Hepatitis B Virus / 449
JEFREY J. GERMER AND JOSEPH D. C. YAO

33 Molecular Detection of Human Papillomaviruses / 465
DENISE I. QUIGLEY AND ELIZABETH R. UNGER

34 Molecular Diagnostics for Viral Infections in Transplant Recipients / 476
MATTHEW J. BINNICKER AND RAYMUND R. RAZONABLE

section VII
FUNGI AND PROTOZOA

35 Molecular Detection and Identification of Fungal Pathogens / 489
KATRIN LAGROU, JOHAN MAERTENS, AND MARIE PIERRE HAYETTE

36 Molecular Approaches for Diagnosis of Chagas’ Disease and Genotyping of Trypanosoma cruzi / 501
PATRICIO DIOSQUE, NICOLAS TOMASINI, AND MICHEL TIBAYRENC

37 Molecular Approaches for Diagnosis of Malaria and the Characterization of Genetic Markers for Drug Resistance / 516
LISA C. RANFORD-CARTWRIGHT AND LAURA CIUFFREDA

38 Molecular Detection of Gastrointestinal Parasites / 530
JACO J. VERWEI, ALEX VAN BELKUM, AND C. RUNE STENSVOLD
CONTENTS

section VIII

POINT-OF-CARE/NEAR-CARE DIAGNOSTICS

39 Molecular Diagnostics and the Changing Face of Point-of-Care / 545
DAVID L. DOLINGER AND ANNE M. WHALEN

40 Point-of-Care Technologies for the Diagnosis of Active Tuberculosis / 556
GRANT THERON

41 Molecular Diagnostics for Use in HIV/AIDS Care and Treatment in Resource-Limited Settings / 580
MAURINE M. MURTAGH

42 Rapid Point-of-Care Diagnosis of Malaria and Dengue Infection / 589
LIESELOTTE CNOPS, MARJAN VAN ESBROECK, AND JAN JACOBS

section IX

THE HOST AND HOST RESPONSE

43 Implications of Pharmacogenetics for Antimicrobial Prescribing / 613
AR KAR AUNG, ELIZABETH J. PHILLIPS, TODD HULGAN, AND DAVID W. HAAS

44 Exploiting MicroRNA (miRNA) Profiles for Diagnostics / 634
ABHIJEET BAKRE AND RALPH A. TRIPP

45 Host Response in Human Immunodeficiency Virus Infection / 655
PAUL J. MCLAREN AND AMALIO TELENTI

46 Biomarkers of Gastrointestinal Host Responses to Microbial Infections / 663
RANA E. EL FEGHALY, HANSRAJ BANGAR, AND DAVID B. HASLAM

section X

INFORMATION TECHNOLOGY

47 Point-of-Care Medical Device Connectivity: Developing World Landscape / 685
JEFF BAKER

48 WHONET: Software for Surveillance of Infecting Microbes and Their Resistance to Antimicrobial Agents / 692
JOHN STELLING AND THOMAS F. O'BRIEN

49 Cloud-Based Surveillance, Connectivity, and Distribution of the GeneXpert Analyzers for Diagnosis of Tuberculosis (TB) and Multiple-Drug-Resistant TB in South Africa / 707
WENDY S. STEVENS, BRAD CUNNINGHAM, NASEEM CASSIM, NATASHA GOUS, AND LESLEY E. SCOTT

section XI

QUALITY ASSURANCE

50 Molecular Method Verification / 721
DONNA M. WOLK AND ELIZABETH M. MARLOWE

51 Molecular Microbiology Test Quality Assurance and Monitoring / 745
MATTHEW J. BANKOWSKI

52 Proficiency Testing and External Quality Assessment for Molecular Microbiology / 754
ROBERTA M. MADEJ

53 Practices of Sequencing Quality Assurance / 766
KARA L. NORMAN AND DAVID M. DINAUER

54 Verification and Validation of Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry-Based Protocols / 784
MATTHEW L. FARON, BLAKE W. BUCHAN, AND NATHAN A. LEDEBOER

section XII

THE BUSINESS OF DIAGNOSTICS

55 Improved Diagnostics in Microbiology: Developing a Business Case for Hospital Administration / 799
ELIZABETH M. MARLOWE, SUSAN M. NOVAK-WEEKLEY, AND MARK LAROCCH

56 Molecular Diagnostics and the Changing Legal Landscape / 803
MARK L. HAYMAN, JING WANG, AND JEFFREY M. LIBBY

Index 811
CONTRIBUTORS

KEVIN ALBY
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104

MAUD ARSAC
bioMérieux SA, R&D Microbiology, 3 Route de Port Michaud, 38390 La Balme Les Grottes, France

AR KAR AUNG
Department of General Medicine and Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia

JEFF BAKER
JESA Consulting, 63 Putnam Street, Suite 203, Saratoga Springs, NY 12866

ABHIJEET BAKRE
University of Georgia, Dept. of Infectious Diseases, Athens, GA 30602

NIAZ BANAEI
Stanford University School of Medicine, Stanford, CA 94305, and Clinical Microbiology Laboratory, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital, Palo Alto, CA 94304

HANSRAJ BANGAR
Division of Infectious Disease, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229

MATTHEW J. BANKOWSKI
Diagnostic Laboratory Services, Inc. (The Queen’s Medical Center), Microbiology Department, Aiea, HI 96701, and John A. Burns School of Medicine and the University of Hawaii at Manoa, Department of Pathology, Honolulu, HI 96813

FRÉDÉRIC BARBUT
UHLIN (Unité d’Hygiène et de Lutte contre les Infections Nosocomiales), National Reference Laboratory for Clostridium difficile, Groupe Hospitalier de l’Est Parisien (HUEP), Site Saint-Antoine, 75012 Paris, France

JOHN BESSER
Enteric Disease Laboratory Branch, Centers for Disease Control & Prevention, 1600 Clifton Rd, Atlanta, GA 30333

MATTHEW J. BINNICKER
Mayo Clinic, Clinical Microbiology, 200 First Street SW - Hilton 454, Rochester, MN 55905

KAREN C. BLOCH
Vanderbilt University Medical Center, A-2200 MCN, Nashville, TN 37232

CLAIREE C. BRISTOW
Division of Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093

BLAKE W. BUCHAN
Department of Pathology, Medical College of Wisconsin, 9200 West Wisconsin Ave., Milwaukee, WI 53226

ANGELA M. CALIENDO
Department of Medicine, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903

BIN CAO
China-Japan Friendship Hospital, Beijing, China 100029

HEATHER CARLETON
Enteric Disease Laboratory Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333

NASEEM CASSIM
Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Third Floor, Room 3B22, Parktown, Johannesburg, South Africa

CHARLES CHIU
University of California, San Francisco, Laboratory Medicine, 185 Berry Street, Suite 290, Box #0134, San Francisco, CA 94107
MARGARETA IEVEN
University Hospital Antwerp, Department of Medical Microbiology, Wilrijkstraat 10, Antwerp, 2650, Belgium

JAN JACOBS
Institute of Tropical Medicine, Clinical Sciences, Kronenburgstraat 43/3, Antwerp, 2000, Belgium

KATIA JATON
Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland

JEFFREY D. KLAUSNER
Division of Infectious Diseases, Department of Medicine, University of California Los Angeles, and Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90024

COLLEEN S. KRAFT
Department of Pathology and Laboratory Medicine, Division of Infectious Diseases, Emory University, 1364 Clifton Rd, NE, Atlanta, GA 30322

KATRIEN LAGROU
KU Leuven—University of Leuven, Department of Microbiology and Immunology, and University Hospitals Leuven, Department of Laboratory Medicine and National Reference Center for Mycosis, B-3000 Leuven, Belgium

MARK LaROCCO
MTL Consulting, Erie, PA 16506

NATHAN A. LEDEBOER
Department of Pathology, Medical College of Wisconsin, 9200 West Wisconsin Ave., Milwaukee, WI 53226

SHUGUANG LI
Peking University People's Hospital, Beijing, China 100044

JEFFREY M. LIBBY
Mendel Biological Solutions, LLP, 3935 Point Eden Way, Hayward, CA 94545

EFREM S. LIM
Washington University in St. Louis, Department of Molecular Microbiology and Pathology & Immunology, 660 S. Euclid Avenue, Campus Box 8230, Saint Louis, MO 63110

KATHERINE LOENS
University Hospital Antwerp, Department of Medical Microbiology, Wilrijkstraat 10, Antwerp, 2650, Belgium

RUTH ANN LUNA
Department of Pathology & Immunology, Baylor College of Medicine, 1102 Bates Street, Feigin Center Suite 830, Houston, TX 77030

ROBERTA M. MADEJ
Alta Bates Summit Medical Center, Clinical Laboratory-Microbiology, Berkeley, CA 94705

JOHAN MAERTENS
KU Leuven—University of Leuven, Department of Microbiology and Immunology, and University Hospitals Leuven, Department of Hematology, B-3000 Leuven, Belgium

ABRIA MAGEE
Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030

KATHY A. MANGOLD
NorthShore University HealthSystem, Department of Pathology and Laboratory Medicine, 2650 Ridge Ave., Burch Bldg., Room 116, Evanston, IL 60201

ELIZABETH M. MARLOWE
The Permanente Medical Group, Berkeley, CA 94710

ALEXANDER J. McADAM
Infectious Diseases Diagnostic Laboratory, Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA 02115

ALLISON J. McGEER
Infection Control, Room 210, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5

PAUL J. McLAREN
School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

STEVE MILLER
University of California, San Francisco, Laboratory Medicine, 185 Berry Street, Suite 290, Box #0100, San Francisco, CA 94107

MELISSA B. MILLER
Clinical Microbiology Laboratory, UNC Hospitals, 101 Manning Drive, East Wing 1033, Chapel Hill, NC 27514

MAURINE M. MURTAGH
The Murtagh Group, LLC, 2134 Stockbridge Avenue, Woodside, CA 94062

DAVID E. NELSON
Indiana University School of Medicine, Department of Microbiology & Immunology, Indianapolis, IN 46202

FREDERICK S. NOLTE
Medical University of South Carolina, Department of Pathology and Laboratory Medicine, 171 Ashley Avenue, MSC 908, Charleston, SC 29425

KARA L. NORMAN
Department of Research and Development, Thermo Fisher Quality Controls, Thermo Fisher Scientific, 6010 Egret Court, Benicia, CA 94510

SUSAN M. NOVAK-WEEKLEY
Southern California Permanente Medical Group, Microbiology, 11668 Sherman Way, North Hollywood, CA 91605
THOMAS F. O’BRIEN
Brigham and Women’s Hospital, Microbiology Laboratory,
WHO Collaborating Centre for Surveillance of Antimicrobial
Resistance, 75 Francis Street, Boston, MA 02115

ONYA OPOTA
Institute of Microbiology, University of Lausanne and
University Hospital Center, Lausanne, Switzerland

ROBIN PATEL
Mayo Clinic, Division of Clinical Microbiology, Division of
Infectious Diseases, Rochester, MN 55905

S. J. PEACOCK
University of Cambridge, Department of Medicine, Box 157
Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ,
United Kingdom

DAVID PERSING
Cepheid, 904 Caribbean Dr., Sunnyvale, CA 94089

LANCE R. PETERSON
NorthShore University HealthSystem, Department of
Pathology and Laboratory Medicine, 2650 Ridge Ave., Burch
Bldg., Room 116, Evanston, IL 60201

CATHY A. PETTI
4HealthSpring Global, Inc., Bradenton, FL 34209

ELIZABETH J. PHILLIPS
Vanderbilt University, 1493 Willowbroke Circle, Franklin,
TN 37069

BENJAMIN A. PINSKY
Stanford University School of Medicine, Stanford, CA 94305,
and Clinical Virology Laboratory, Stanford Hospital & Clinics
and Lucile Packard Children’s Hospital, Palo Alto, CA 94304

GUY PRODHOM
Institute of Microbiology, University of Lausanne and
University Hospital Center, Lausanne, Switzerland

DENISE I. QUIGLEY
Cytogenetics and Molecular Genetics Laboratory, Kaiser
Permanente North West Regional Laboratory, 13705 North
East Airport Way, Portland, OR 97230

LISA C. RANFORD-CARTWRIGHT
University of Glasgow, Institute of Infection, Immunity and
Inflammation, College of Medical, Veterinary and Life
Sciences, Sir Graeme Davies Building, 120 University Place,
Glasgow, Scotland G12 8TA, United Kingdom

RAYMUND R. RAZONABLE
Mayo Clinic, Clinical Microbiology, 200 First Street SW -
Hilton 454, Rochester, MN 55905

LESLEY E. SCOTT
Faculty of Health Sciences, University of the Witwatersrand,
7 York Road, Third Floor, Room 3B22, Parktown,
Johannesburg, South Africa

KEITH E. SIMMON
Department of Biomedical Informatics, University of Utah,
Salt Lake City, UT 84108

 JOHN STELLING
Brigham and Women’s Hospital, Microbiology Laboratory,
WHO Collaborating Centre for Surveillance of Antimicrobial
Resistance, 75 Francis Street, Boston, MA 02115

C. RUNE STENSVOLD
Department of Microbiology and Infection Control, Statens
Serum Institut, Copenhagen, Denmark

WENDY S. STEVENS
Faculty of Health Sciences, University of the Witwatersrand,
7 York Road, Third Floor, Room 3B22, Parktown,
Johannesburg, South Africa

GREGORY A. STORCH
Washington University School of Medicine, Pediatrics, 660 S
Euclid Avenue, Campus Box 8116, St. Louis, MO 63110

KADEE V. SULLIVAN
University of Pennsylvania, Pathology & Laboratory
Medicine, 34th Street & Civic Center Blvd., Main Building,
Room 5112A, Philadelphia, PA 19104

YI-WEI TANG
Memorial Sloan-Kettering Cancer Center, Clinical
Microbiology Service, 1275 York Avenue, S328, New York,
NY 10065

AMALIO TELENTI
J. Craig Venter Institute, La Jolla, CA 92037

FRED C. TENOVER
Cepheid, 904 Caribbean Drive, Sunnyvale, CA 94089

GRANT THERON
DST/NRF of Excellence for Biomedical Tuberculosis
Research, and MRC Centre for Molecular and Cellular
Biology, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch
University, Tygerberg, South Africa; Lung Infection and
Immunity Unit, Department of Medicine, University of Cape
Town, Observatory, Cape Town, South Africa

MICHEL TIBAYRENC
Maladies Infectieuses et Vecteurs Ecologie, Gênétique,
Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-
UM1-UM2), IRD Center, Montpellier, France

NICOLAS TOMASINI
Unidad de Epidemiología Molecular, Instituto de Patología
Experimental, CONICET, Argentina, Salta, Argentina

M. E. TÖRÖK
University of Cambridge, Department of Medicine, Box 157
Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ,
United Kingdom
RALPH A. TRIPP
University of Georgia, Animal Health Research Center, 111 Carlton Street, Athens, GA 30602

ELIZABETH R. UNGER
Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, 1600 Clifton Road, MS G41, Atlanta, GA 30333

ALEXANDRA VALSAMAKIS
Department of Pathology, The Johns Hopkins Hospital, 600 North Wolfe Street, Meyer B1-193, Baltimore, MD 21287

ALEX VAN BELKUM
bioMérieux SA, R&D Microbiology, 3 Route de Port Michaud, 38390 La Balme Les Grottes, France

BARBARA VAN DER POL
The University of Alabama at Birmingham School of Medicine, Department of Medicine, 703 19th Street South, Birmingham, AL 35294

MARJAN VAN ESBROECK
Institute of Tropical Medicine, Clinical Sciences, Kronenburgstraat 43/3, Antwerp, 2000, Belgium

JAMES VERSALOVIC
Texas Children’s Hospital, Pathology, 1102 Bates Avenue, Houston, TX 77030

JACO J. VERWEIJ
St. Elisabeth Hospital, Laboratory of Medical Microbiology and Immunology, Tilburg, Netherlands

DAVID WANG
Washington University in St. Louis, Department of Molecular Microbiology and Pathology & Immunology, 660 South Euclid Avenue, Campus Box 8230, Saint Louis, MO 63110

HUI WANG
Peking University People’s Hospital, Beijing, China, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, P.R. China

JING WANG
Intellectual Property Practice Group, Morgan Lewis & Bockius LLP, One Federal Street, Boston, MA 02110

J. SCOTT WEESE
Dept of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G2W1, Canada

ALEXANDRA S. WHALE
Molecular and Cell Biology, LGC, Queens Road, Teddington, Middlesex, TW11 0LY, United Kingdom

ANNE M. WHALEN
FIND, Chemin des Mines 9, CH-1211, Geneva, Switzerland

BARBARA M. WILLEY
Department of Microbiology, Room 1480, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5

CARL T. WITTWER
University of Utah, Department of Pathology, University of Utah Medical School, Salt Lake City, UT 84132

DONNA M. WOLK
Geisinger Health System, Department of Laboratory Medicine, and Weis Center for Research, Danville, PA 17822-0131, and Wilkes University, Wilkes-Barre, PA 18701

KRISTINE M. WYLIE
Washington University School of Medicine, Pediatrics, 660 S Euclid Avenue, Campus Box 8116, Saint Louis, MO 63110

JOSEPH D. C. YAO
Division of Clinical Microbiology, Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN 55905

Yawei Zhang
Peking University People’s Hospital, Beijing, China 100044
Preface

In the 5 years since the 2011 edition of this book, the molecular diagnostics landscape has changed dramatically. In the 1990s, molecular diagnostics was the domain of only a few reference laboratories; it took almost 20 years for these techniques to make their way into about half of the CLIA high-complexity laboratories in the United States. The full potential of this technology was slow to be realized largely because the methods used by these laboratories were not capable of delivering on-demand results or being conducted at the point of care. Over the past year, with the advent of CLIA-waived molecular testing spurred on by the inexorable force of innovation, molecular diagnostics have become increasingly democratized to the extent that physician office laboratories and sexual health clinics are now performing molecular testing on the premises, often delivering results in minutes or a few hours.

Laboratory professionals may at times find themselves a bit bewildered in this rapidly evolving landscape. Adding to this, enter next-generation sequencing (NGS) technology, as described in several chapters in this book (chapters 2, 3, 5, 6, 10–14, and 53). NGS-based analysis of microbial genomes and populations is in some ways similar to where PCR was in 1987: full of opportunities and challenges. For the first time, identification of the full range of pathogens—viruses, bacteria, fungi, and protozoa—can be addressed by using the same core technology. Microbial population analysis can be carried out at unprecedented depth, opening up the field of metagenomics (chapters 10–14). Whole-genome analysis goes beyond organism identification to predict drug resistance and detect pathogenic determinants. As diagnosticians, it seems likely that as this field evolves, so will our job descriptions. Still, much progress remains to be made before NGS can move beyond its current status as a research tool. NGS systems need to become more automated and less expensive to operate. The analysis of complex data sets provided by these systems needs to be simplified; the interpretation of results cannot require a PhD in bioinformatics for delivery of routine results. However, as complex as it is now, NGS too will eventually become democratized by the integration of workflow automation, improvements in sequencing technology, and information technology (IT).

Speaking of which, IT itself is about to play an increasing role in how and to whom our results are delivered (section X). A rapid molecular result is only as good as the downstream action taken in the treatment and management of patients. As we speak, patients in London, along with providers, are getting “push notifications” of results from their sexual health tests, resulting in a dramatically shortened time to therapy. Cloud-based aggregation of molecular test data is providing snapshots of emerging pathogens and drug resistance in real time by collecting de-identified test data directly from testing platforms. From the respiratory cloud to the digital cloud, we are watching the emergence of a new generation of global surveillance capabilities which will be of enormous public health benefit. Rapid detection technologies are also likely to evolve in the direction of on-demand multiplexing for simultaneous detection of treatment-informing targets. The convergence of rapid molecular multiplexing with improvements in IT to deliver actionable information to health care providers is becoming a reality.

In 2015, the White House announced a $20 million prize for innovative diagnostic tests that will lead to more precise antimicrobial therapeutic decisions. In addition, the United Kingdom has announced the Longitude Prize, a challenge with a £10 million award for developing a point-of-care diagnostic test that also will identify when antibiotics are needed and which one to use. Thus, it seems that the importance of molecular diagnostic testing is finally being appreciated at the highest levels, especially to address the global problem of antimicrobial resistance. Let’s not disappoint them.

David H. Persing, MD, PhD
Executive Vice President
Chief Medical and Technology Officer
Cepheid, Sunnyvale, California

Fred C. Tenover, PhD
Vice President, Scientific Affairs
Cepheid, Sunnyvale, California
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB Biodisk Macro-Etest VRE, for Enterococcus, 221–222</td>
</tr>
<tr>
<td>Abacavir, pharmacogenetics of, 620, 623, 659</td>
</tr>
<tr>
<td>AB-Biodisk Etest, for Enterococcus, 221–222</td>
</tr>
<tr>
<td>Abbott HBV Sequencing Assay, 458, 460</td>
</tr>
<tr>
<td>Abbott m2000 RealTime system for HBV, 456–457</td>
</tr>
<tr>
<td>Abbott Molecular m2000 RealTime system, 421–422, 425</td>
</tr>
<tr>
<td>Abbott RealTime HBV, 456–457</td>
</tr>
<tr>
<td>ABI 7500, 203</td>
</tr>
<tr>
<td>ABI Prism instruments, 457</td>
</tr>
<tr>
<td>Acinetobacter baumannii, 205–206</td>
</tr>
<tr>
<td>Acinetobacter parvus, surveillance of, 258</td>
</tr>
<tr>
<td>Acne, 119–120</td>
</tr>
<tr>
<td>AccuPower Norovirus PCR assay, 370</td>
</tr>
<tr>
<td>AccuProbe Staphylococcus aureus Culture Identification, 175, 179</td>
</tr>
<tr>
<td>Absolute power, 734</td>
</tr>
<tr>
<td>Abiotic genotypes, 618</td>
</tr>
<tr>
<td>Actinobaculum, 27</td>
</tr>
<tr>
<td>Actinomadura, 27</td>
</tr>
<tr>
<td>Actinomyces, 27</td>
</tr>
<tr>
<td>Actinomyces spp., 27</td>
</tr>
<tr>
<td>Active surveillance testing, 169–170, 266</td>
</tr>
<tr>
<td>Acute disseminated encephalomyelitis, 288</td>
</tr>
<tr>
<td>Acute viral infections, 156–157</td>
</tr>
<tr>
<td>Adaptor molecules, as microRNA targets, 636</td>
</tr>
<tr>
<td>Addressing THE NEed for Advanced HPV Diagnostics (ATHENA) study, 470</td>
</tr>
<tr>
<td>Adeovir, for hepatitis B, 454</td>
</tr>
<tr>
<td>Adefovir, for hepatitis B, 454</td>
</tr>
<tr>
<td>Adenovirus(es), 221–222</td>
</tr>
<tr>
<td>Adenovirus(es) identification of, 80–81</td>
</tr>
<tr>
<td>infections due to gastrointestinal, 371</td>
</tr>
<tr>
<td>in transplant recipients, 476–477, 482</td>
</tr>
<tr>
<td>NAATs for, 315–354</td>
</tr>
<tr>
<td>sequencing of, 160, 162–163</td>
</tr>
<tr>
<td>Administration, hospital, business case preparation for, 799–802</td>
</tr>
<tr>
<td>Adverse drug reactions, types of, 613</td>
</tr>
<tr>
<td>Aemose device, 573</td>
</tr>
<tr>
<td>Aeromonas, 26, 363</td>
</tr>
<tr>
<td>Affordable Care Act business case for, 799, 802</td>
</tr>
<tr>
<td>intellectual property and, 803</td>
</tr>
<tr>
<td>Affordable testing, 548, 598</td>
</tr>
<tr>
<td>Agar Gradient MIC testing, for Enterococcus, 221–222</td>
</tr>
<tr>
<td>Agar screen test, for Enterococcus, 222–223</td>
</tr>
<tr>
<td>Aggregatibacter, 26</td>
</tr>
<tr>
<td>Agilent microarrays, 109</td>
</tr>
<tr>
<td>Agrobacterium, 26</td>
</tr>
<tr>
<td>AID CAP assays, for respiratory agents, 321</td>
</tr>
<tr>
<td>AIDS, see also Human immunodeficiency virus (HIV) epidemiology of, 417</td>
</tr>
<tr>
<td>viral load and, 418–419, 421, 424–425</td>
</tr>
<tr>
<td>d-Alanyl-t-alanine operons, in vancomycin resistance, 213–220</td>
</tr>
<tr>
<td>d-Alanyl-t-alanine precursors, in vancomycin resistance, 212–213</td>
</tr>
<tr>
<td>d-Alanyl-t-lactate precursors, in vancomycin resistance, 213</td>
</tr>
<tr>
<td>d-Alanyl-t-serine operons, in vancomycin resistance, 220</td>
</tr>
<tr>
<td>d-Alanyl-t-serine precursors, in vancomycin resistance, 213</td>
</tr>
<tr>
<td>Alcaligenes, 26</td>
</tr>
<tr>
<td>Aldolase, of Plasmodium, 518</td>
</tr>
<tr>
<td>Alere q system, 572, 584–585</td>
</tr>
<tr>
<td>Alere I Influenza system, 325</td>
</tr>
<tr>
<td>Alsterias, 131</td>
</tr>
<tr>
<td>Alkaline phosphatase, for hybrid capture method, 4</td>
</tr>
<tr>
<td>Allowable systematic error, 743</td>
</tr>
<tr>
<td>Alpha error (type I), 731</td>
</tr>
<tr>
<td>Alpha inductible protein, in gastrointestinal infections, 670</td>
</tr>
<tr>
<td>Alternative hypothesis, 731, 739</td>
</tr>
<tr>
<td>Alternative proficiency testing program, 762–764</td>
</tr>
<tr>
<td>Alzheimer's Disease Neuroimaging Initiative, 634</td>
</tr>
<tr>
<td>Ambler classification of beta-lactamases, 199–200</td>
</tr>
<tr>
<td>Ameliasis, 372–373, 664, 671–672</td>
</tr>
<tr>
<td>American Association for Laboratory Accreditation, 758</td>
</tr>
<tr>
<td>American Association of Veterinary Pathologists, 758</td>
</tr>
<tr>
<td>American Society for Clinical Pathology, cervical cancer guidelines of, 468</td>
</tr>
<tr>
<td>American Legion Convention, legionnaire's disease and, 313–314</td>
</tr>
<tr>
<td>American Cancer Society, cervical cancer guidelines of, 468</td>
</tr>
<tr>
<td>American Society for Clinical Pathology, cervical cancer guidelines of, 468</td>
</tr>
<tr>
<td>American Society of Veterinary Clinical Pathologists, 280</td>
</tr>
<tr>
<td>American trypanosomiasis, see Chagas' disease</td>
</tr>
<tr>
<td>Aminoglycosides, pharmacogenetics of, 622</td>
</tr>
<tr>
<td>Amodiaquine, pharmacogenetics of, 615, 619</td>
</tr>
<tr>
<td>Amoebobioza, 531–532</td>
</tr>
<tr>
<td>Aminoxillin-clavulanate, pharmacogenetics of, 615, 620–621</td>
</tr>
<tr>
<td>AmpC beta-lactamases, 200–205</td>
</tr>
<tr>
<td>AmpC + ESBL Detection Set, 201</td>
</tr>
<tr>
<td>AmpC-resistant Enterococcus faecium, 212</td>
</tr>
<tr>
<td>Amplicon(s) self-probing, 8 sequencing of, 74</td>
</tr>
<tr>
<td>Amplicon melting, for PCR, 12</td>
</tr>
<tr>
<td>Amplicon sequencing, for outbreak investigations, 242–243</td>
</tr>
<tr>
<td>Amplicor CT/NG: DNA, 390</td>
</tr>
</tbody>
</table>
Amplification, Amplicor TB detection kit, 565
Amplicor Qualitative DNA assay, 422–812
Antigen tests
Antibody tests
Analysis of residuals, 741
Anal cancer, 468
Anaerococcus
Anaerobiospirillum
Anaerobes
AmpliVue HSV 1+2 Assay, 293
AmpliScreen HCV , 442
Amplifier molecule, 3
Amplified MTB Direct Test, 565
Analytical sensitivity, 724
Analytical phase, quality assurance in, 746
Analytical measurement range, 749
Anaplasma
Analytical study designs, 743
ANOVA (analysis of variance), 739
Antibiotic-resistant organisms, surveillance of, 245–255
Antibiotics, see Antimicrobial(s)
Antibody(ies), for hybrid capture method, 4
Antibody tests
for dengue virus, 591–593
for HIV infections, 587
Antigen tests
for astrovirus, 370–371
for dengue virus, 591–592
for Entamoeba histolytica, 372
for meningococcal meningitis microbiorganisms, 292
for Mycobacterium tuberculosis, 565, 567, 573
for Plasmodium, 593–594
Antimalarial drugs, resistance to, 523–524
Antimicrobial(s), see also Drug resistance; specific antimicrobials
development of, 43
gastrointestinal microbiome effects on, 130–131
host response to, see Pharmacogenetics novel, 43
susceptibility testing for, see Susceptibility, antimicrobial
Antiretroviral drugs
monitoring of, 580–588
whole-genome sequencing for, 44
Antiviral agents, for hepatitis C, 430
AP (avapaoquone-proguanil), resistance to, 523–524
ApoComplexa, 532–533
APOBEC3G factor, in HIV immunity, 659
Apophysomyces napefomosis, whole-genome sequencing for, 42
Applications (apps), for health care, 688–690
Applied Biosystems 7500 Fast Dx, 176
Applied Biosystems Genetic Analyzer, 458
Aptima Combo 2 assay, 390–392
Aptima HBV Quant Assay, 456–457
Aptima HIV-1 RNA Qualitative Assay, 422
Aptima T. vaginalis assay, 387
Arcanobacterium, 27
Archaea, in gastrointestinal microbiome, 130
Arcobacter, 27
Argene Biosoft kit, for caliciviruses, 371
Argene Calicivirus/Astrovirus consensus test,
Argene BioSoft kit, for caliciviruses, 371
Argene B. pertussis real-time kit, 314
B cells
evolution of, 658
microRNA interaction with, 636
BAC detection assay, 429
Bacillus, 27, 129
Bacillus anthracis
in bloodstream, 343
digital PCR for, 55
DNA target sequencing for, 27
MALDI-TOF for, 93
zoonotic origin of, 276, 279
Bacillus dorematis, 118
Background, in sequencing, 769
Backward compatibility, 238
Bact/Alert system, for fungi, 491
BACTEC 460 aerobic 6B blood culture, 404
BACTEC Mycobacterial Growth Indicator Tube liquid cultures, 557
Bactec system, for fungi, 491
Bacteremia, sepsis in, see Sepsis
Bacterial pellet, for bloodstream infection detection, 345
Bacterial vaginosis, 139–143, 150, 388
Bacteriotoxins, in vagina, 139
Bacteriophages
in acne, 120
in gastrointestinal tract, 160
in sewage, 164
in skin microbiome, 118–119
in vaginal microbiome, 138–139
Bacteria
in gastrointestinal microbiome, 127, 131
MALDI-TOF for, 93
in male urethra microbial communities, 147
in osteoarticular infections, 402
Bacteroides fragilis, 134
Bacteroides
in gastrointestinal microbiome, 127–134
in skin microbiome, 119
Balantium mansfieldii, 288, 291, 292
BAM (German Federal Institute for Materials Research and Testing), 758
Barcoding
in fungal identification, 82
in massively parallel DNA sequencing, 62
in next-generation sequencing, 72
in skin microbiome studies, 118
Barnesiella, 151
whole-genome sequencing, 36–39, 41
in male urethra microbial communities, 147
optimal testing strategies for, 189–190
reducing delays in diagnosis, 190
surveillance of, 247
zoonotic origin of, 278
Clostridium sp., 26
Cloud computing, 707–718
advantages of, 708
data security in, 716–718
overview of, 707–708
platforms for, 74
for point-of-care testing, 710–712
for South African HIV and TB management, 708–718
for surveillance, 712–716
Cloverleaf test, modified, 202
CLSI, see Clinical and Laboratory Standards
Institute
Cluster analysis, 700–702
cobas AmpliCycler Analyzer, 391–392
cobas Ampliprep CMV Monitor test, 479–480
cobas Ampliprep CT/NG, 389
cobas Ampliprep HBV Monitor Test, 456
cobas AmpliPrep, 437–438
cobas Ampliprep HIV-1 Monitor, 421
cobas AmpliPrep/cobas TaqMan system, for HIV, 582
cobas AmpliScreen HBV test, 455
cobas AmpliScreen HBV, 456
cobas TaqMan test, 421–422, 438, 565
cobas TaqScreen MPX Test, 441–442, 455–456
Coccidia, 373–374
Coefﬁcient of variation (CV), 736, 738
Coflin, in gastrointestinal infections, 667
“Cohesive end,” in sequencing, 766
Collaborating Centre for the Surveillance of
Antimicrobial Resistance, 694
College of American Pathologists
MALDI-TOF mass spectrometry daily testing
checklist for, 793
proficiency testing requirements of, 760
quality assurance requirements of, 745
veriﬁcation deﬁnition of, 784
Collinsella, 132
Colloidal dye immunofiltration assay, 262
Colonization
of Enterococcus, 222–223
of gastrointestinal microbiome, 127–128, 132
of MRSA, 170
of skin, 119
of vagina, 138
Colonoscopy, for Clostridium difﬁcile infectious, 191
Colony-forming units, in sequencing, 775
Colorex KPC, 200–201
Colorimetric method, for microRNA detection, 638
Combination therapy, for HIV, 659
Conﬁdence control for, 22
Continuous quality improvement programs, 760–761
Controls, see also External controls; Quality control;
Standard(s) for DNA target sequencing, 23
internal, 23, 747
for method veriﬁcation, 729–731
negative, 23
Communication, point-of-care testing results, 552
Communality, in proﬁciency testing, 758
Companion animals, pathogens in, 276, 278
Comparative genome analysis, for HPV, 118
Comparative statistics, 740–743
Competency, of personnel
MALDI-TOF mass spectrometry, 793
in quality assurance, 751, 753
Competition, business case and, 799
Complementary metal-oxide semiconductors, 689
Complex precision test, 743
Composition, endpoint detection by, in multiplex ampliﬁcation, 104
Computed tomography, for
MALDI-TOF for, 92
in male urethra microbial communities, 147–148
for South African tuberculosis diagnosis, 712
for point-of-care testing, 710–712
for South African HIV and TB management, 708–718
for surveillance, 712–716
Clostridium difﬁcile infections, 191
Computer software
BioNumerics, 237
for DNA target sequencing, 23–28
FPQuest, 237
Galaxy, 74
Geneious, 23–24, 74
HVBeo, 460
RipSeq, 23
SeqHepB, 460
SeQuMan NGen, 23
WHONET, 248–249, 692–706
Computer technology, see Cloud computing;
Information technology
Concerning threats, in antibiotic resistance, 251–252
Conﬁdence interval, 724, 736
Conﬁdence value, for MALDI-TOF mass spectrometry, 787
Conﬁdentiality in cloud computing, 707
in medical device systems, 687
Conﬁrmative testing, 546
Conformité Européenne (CE) requirements, 468
Connectivity, 685–692
current landscape of, 686–688
definitions of, 685–686
devices for, 552, 602–603, 685–691
example of, 690–691
future of, 689–690
obstacles to, 687–688
for point-of-care testing, 685–691
for South African tuberculosis diagnosis, 707–718
Connectivity Industry Consortium (South Africa), 710
Constellation dPCR platform, 50
Contamination
control of, 72–74, 76
versus infection, 22
in method veriﬁcation, 725, 742
in pathogen identiﬁcation, 87
in sequencing, 774–776
Contigs, in massively parallel DNA sequencing, 58
Contiguous spread, in osteoarticular infections, 401–402
Continuous data, 733
Continuous quality improvement programs, 760–761
Controls, see also External controls; Quality control;
Standard(s) for DNA target sequencing, 23
internal, 23, 747
for method veriﬁcation, 729–731
negative, 23
positive, 777, 779
for proﬁciency testing, 763
for quality assurance, 747–751
for sequencing, 777, 779
sources of, 748
in validation, 773
variability in, 723
Convenience samples, 733
Conventional DNA and PCR, for Trypanosoma cruzi, 502–504
Copan Wasp system, 200
Corynebacterium
disorders caused by, 120
in gastrointestinal microbiome, 129
MALDI-TOF for, 92
in male urethra microbial communities, 147–148
in skin microbiome, 117, 119
Coryneform bacteria, 27
Cost(s) of next-sequencing platforms, 70–71
of sequencing instruments, 85
Cost effectiveness, of medical device connectivity, 689
Cost/beneﬁt analysis, of point-of-care testing, 552
Costila barnetti, 22
meningococcal meningitis due to, 291
NAATs for, 315–316
zoonotic origin of, 276, 278–279
CpsA gene, 309
CPY enzymes, polymorphisms of, drug response and, 614–623
C-reactive protein, in gastrointestinal infections, 665
Critical Path Predictive Safety Testing
Consortium, 634
Crohn disease, 86, 131, 134
Cross-contamination, control of, 74
Crossing point, in quality assurance, 748
Cryptins, in gastrointestinal infections, 670
Cryptosporidium meleagridis, 530–532, 664, 670
Cryptosporidium hominis, 530–532, 533–533
Cryptosporidium meleagridis, 532–533
Cryptosporidium parvum, 373–374, 532–533
CTX enzymes, 199–200, 202–203
Culture
adenoviruses, 477, 481
astroviruses, 370–371
blood, see Blood culture
Canula, 491
Clostridium difﬁcile, 186–187, 191, 366
dengue virus, 591–592
DNA preparation from, 22
encephalitis microorganisms, 292
Enterococcus, 199
Escherichia coli, 362
fungi, 493
genitorinary tract organisms, 387, 389, 394
herpes simplex virus, 481
Legionella, 313–314
for MALDI-TOF, 92–93
male urethra microbial communities, 146–148
...
DRESS/DIHS (drug reaction with eosinophilia and systemic symptoms/ drug-induced hypersensitivity reaction), 618–619, 622
Dried blood samples, for HIV testing, 580–581
Droplet dPCR, 53
Drug reaction with eosinophilia and systemic symptoms/ drug-induced hypersensitivity reaction (DRESS/DIHS), 618–619, 622
Drug resistance, see also Multiple drug-resistant organisms; specific drugs and microorganisms
Detection of, 42–43
Enterococcus, see Vancomycin-resistant enterococci
Mechanisms of, 699
Methicillin, Staphylococcus aureus, see MRSA (methicillin-resistant Staphylococcus aureus)
Mycobacterium tuberculosis, 11
PCR for, 11
Surveillance for, 245–255, 692–706
Molecular tools for, 249–250
Recommendations for, 250–251
Systems for, 245–249
Threat levels of, 251–252
Vancomycin, 199, 204; see also Vancomycin-resistant enterococci
in viruses, 44
dsDNA, in helicase-dependent amplification, 16
DTUs, Trypanosoma cruzi, 506–507, 510–511
Dual hybridization probes, 8, 12
Duplex PCR, for MDRO surveillance, 202
Dyes, see also SYBR Green dyes
for melting curve analysis, 9
for real-time PCR, 7
Dysentery, 36–38

EaeA gene, 363
Early infant diagnosis, of HIV infection, 580, 587
EARS-Net (European Antimicrobial Resistance Surveillance Network), 245–246, 694, 697
EARSs (European Antimicrobial Resistance Surveillance System), 694, 696–697
Eastern equine encephalitis virus, 291
EastFlex, 249
easyMAG, 203
easyNat TB, 569–570
easyQ KPC assay, 203
easyplex MRSA, 174
EBER genes, in Epstein-Barr virus infections, 480
Echinococcus multilocularis, 279
Echovirus, NAATS for, 315–316
Economic justification index, 800–80
Ecosystems, connected, 689–690
Edwardiella, 26
Efavirenz, pharmacogenetics of, 615–616, 659
Effector molecules, as microRNA targets, 636
Effector proteins, in gastrointestinal infections, 667
Efficiency
in assays, 725
in PCR, 743
Egg(s), of gastrointestinal parasites, 533–535
Eggerthella, 26
Eggerthella-like bacteria, in vaginal microbiome, 141–142
eHealth tool, 685–686
Ehrlichia
meningoencephalitis due to, 288
serologic tests for, 292
Ehrlichia chaffensis
in bloodstream, 349
meningoencephalitis due to, 296
Eikenella, 26
Electrochemical nanosensing, for microRNAs, 638–640
Electron microscopy, for norovirus, 269
Electrophoresis
capillary, 23, 106, 767–768
pulsed-field, see Pulsed-field gel electrophoresis (PFGE)
for respiratory agents, 315–316
in sequencing, 766–769
Electrospay ionization, in mass spectrometry, 94, 104–105
Emerging diseases, zoonotic origin of, 279
Empirical therapy, for Clostridium difficile, 191
“Empty SCCmec cassette,” 172
EMRSA (epidemic methicillin-resistant Staphylococcus aureus), 36
Emulsion PCR, 68–69
for massively parallel DNA sequencing, 58–60
for next-generation sequencing, 33–34
Encephalitis, 287–305
Classification of, 288
Culture for, 292
Infectious, 347–350
Pathogenicity of, 287–288
Rapid antigen test for, 292
Serologic testing for, 291
Sporadic, 288
Tropheryma whipplei, 297
Viral, 292–296
Encephalitozoon, 374–375
Encephalomyelitis, 287, 288
ENCORE study, 618
Endocarditis
Borelia, 27
Infectious, 346–347
Staphylococcal, 25
End-of-treatment response, in hepatitis C treatment, 436–437, 443
Endpoint detection, in multiplex amplification, 104
Enrichment, of virus samples, 157
Ensemble method, 74
Entacapone, for hepatitis B, 454
Entamoeba Celia PAT, 372
Entamoeba dysenteriae, 530–532
Entamoeba histolytica, 372–373, 530–532, 664, 671–672
Enteric fever, Salmonella enterica serovar Typhi, 36–38
Enteric infections, see Gastrointestinal infections
Enterobacter, 26
in bloodstream, 340
Surveillance of, 251
WHONET data on, 693
Enterobacter cloacae
Massively parallel DNA sequencing for, 65–66
Norovirus interactions with, 272
Whole-genome sequencing for, 39, 41
Enterobacteriaceae, 364–365
Beta-lactamas of, 199
Detection of, 199–201
DNA target sequencing for, 26
Massively parallel DNA sequencing for, 65
In osteoarticular infections, 402–404, 408
Resistance threat of, 251
Whole-genome sequencing for, 43
Zoonotic origin of, 275
Enterococcal Agar, 222
Enterococcus
Animal species of, 213
In bloodstream, 340, 349–350
DNA target sequencing for, 25–26
PNA-FISH for, 103
Surveillance of, 247, 248
Vancomycin resistance in, see Vancomycin-resistant enterococci
Enterococcus casseliflavus, 26, 213
Enterococcus faecalis
Methicillin-resistant, 199
Vancomycin-resistant, see Vancomycin-resistant enterococci
Enterococcus faecium
Ampicillin-resistant, 212
Methicillin-resistant, 199
Vancomycin-resistant, see Vancomycin-resistant enterococci
Whole-genome sequencing for, 4, 39, 41
Enterococcus gallinarum, 213
Enterocytogon, 374–375
Enterocytogon hennie, 530
Enterohemorrhagic Escherichia coli, 362–363
Enterovirus 71, 259–260, 296
Enterovirus(es)
in meningitis, 288
In meningoencephalitis, 289–290, 293, 296
NAATS for, 315–316
PCR for, 5
Enterplex microarray, 112
enet gene, HIV, 417
Enzyme immunoassays
for astroviruses, 370–371
for Clostridium difficile, 389
for Clostridium difficile, 185–187, 189, 191
for Escherichia coli, 362
for herpes simplex virus, 394
for Neisseria gonorrhoeae, 389
for respiratory agents, 318
Enzyme method, for library preparation, 60–61
Enzyme-based DNA strand separation, 549
Enzyme-linked immunosorbent assay
for dengue virus, 592
for hepatitis B virus, 260
for Mycobacterium tuberculosis, 567
for Plasmodium, 395
for Trypanosoma cruzi, 501
for West Nile virus, 259
Eoscape-HIV Rapid RNA Assay System, 585
EOSCAPE-TB System, 569
Eotaxin-1, in gastrointestinal infections, 672
EP Evaluator, 733, 736, 742
Epidemic methicillin-resistant Staphylococcus aureus, 36
Epidemiologic markers, 699
Epidemiology, whole-genome sequencing for, 32–33, 36–38
Epidermis, 117
HBV, see Hepatitis B virus (HBV)
HBV Star software, 460
HCV, see Hepatitis C virus (HCV)
Health information exchange, 685–686
Health records, electronic, see Information technology
Health care-associated infections, surveillance of, 245–255
Heartland virus, 84–85
Heat shock proteins, as targets, for sequencing, 20, 23
Helicase-dependent amplification, 16, 188, 603
Helicobacter, 27, 408
Helicobacter pylori, 620
biomarkers of, 664, 669
in gastrointestinal microbiome, 129, 134
Helminths
biomarkers of, 664, 672
soil-transmitted, 531, 533–534
Hematoaogenous spread, in osteoarticular infection, 402–403
Hemimodified restriction endonuclease recognition, 14
“Hemi-nested” PCR, 6
HemoCue test, 710–711
hemoFISH tests, 173, 175, 179
Hemolytic uremic syndrome, 362–363
Hemorrhagic cystitis, in transplant recipients, 477–478
Hemocoxin, 604
Hendra virus, zoonotic origin of, 279
Hepatitis A virus, whole-genome sequencing for, 42
Hepatitis B virus (HBV), 449–464
antigens of, 450–454
in cancer, 164
description of, 449–452
digital PCR for, 54
discovery of, 449
genome of, 449–450
genotyping of, 453–454, 457–458
infection due to
natural history of, 450–452
treatment of, 453–454
NAATs for, 452–460
qualitative assays for, 452–453, 459
quantitative assays for, 453–455, 459
replication of, 450
resistance testing, 454, 457–460
sequencing of, 775
structure of, 449–450
surveillance of, 260
test, 450–451
Hepatitis C virus (HCV)
bDNA amplification for, 3
blood screening for, 441
description of, 430
digital PCR for, 55
discovery of, 80
drug susceptibility, 440–442
epidemiology of, 430
genome of, 430
genotyping of, 430, 439–440, 621–622
immunoscreening of, 80
infections due to
acute, 434–435, 441
chronic, 434–441
PCR for, 432–434, 436–441, 621–622
multiplex amplification for, 105
multiple hybridization for, 102
NAATs for, 434, 439, 444
PCR for, 5
quality assurance programs for, 443–444
quantitative tests for, 437–439, 441–443
resistance in, 11
RNA extraction, 437–438
sequencing for, 766–768, 775
subtyping of, 439–440
Hepatitis B virus (HBV), 463
Hepatotoxicity, of drugs, 618, 620–622
Heritability, of HIV genes, 656–657
HIV, 657–658
HIV-1, 449, 621
HIV-2, 290
HIV-Grade HBV Resistance Interpretation Tool, 460
HLA genes, 655–657, 659
HMPV, see Human metapneumovirus (HMPV)
Hodge (modified cloverleaf) test, 202
Hologene/Gen-Probe assay, 13
Holomic technology, 602–603
“Home brews,” see Laboratory-developed tests
Home-based testing, 547
Hookworms, 534, 672
Hospital administration, business case preparation for, 799–802
Host response to
dengue virus, 592
in gastrointestinal infections, 662–682
to HIV, 655–662
microRNAs in, 634–654
pharmacogenetics and, 613–633
HPVs, see Human papillomavirus(es) (HPVs)
HRDR-200 device, 603
HRVs, see Rhinoviruses
Hsp60 gene, 366
HSV, see Herpes simplex virus
Human bocavirus, 83–84, 315–324
Human Genome Project, 545, 766
Human herpessivirus-6
in central nervous system infections, 295
digital PCR for, 54
in meningencephalitis, 292, 293
resistance in, 11
in transplant recipients, 480–482
Human herpessivirus-8, 80–81
Human immunodeficiency virus (HIV), 417–429
bDNA assay for, 3
description of, 417–418
digital PCR for, 54
diversity of, 581
genetic variation of, 656–657
genotyping of, 419–420, 423–426
history of, 417
identification of, 86
in infants, 587
infection due to
acute retroviral syndrome in, 419
antiviral drugs for, 417–419
cloud computing management of, 707–718
diagnosis of, 580
disease progression of, 655–659
everlasting, 288
genitourinary, 388, 393
hepatitis C with, 435
monitoring of, 581
staging of, 580–581
tuberculosis with, 249
latency of, 657–658
life cycle of, 427
medical decision interval for, 727
microRNA detection in, 646–647
molecular detection of
qualitative proviral assays, 422
resistance testing, 419–420, 423–424
tropism assays, 420–424
viral load assays, 418–425
mutations in, 419–420
PCR for, 5, 15
pharmacogenetics of, 659
point-of-care testing for, 546–547, 550
proteome analysis of, 658–659
proviral DNA and RNA tests for, 419
quasispecies of, 419
resistance in, 11, 419–420, 423–424
sequencing of, 766–767, 775, 777
subtypes of, 417
susceptibility to, 655–659
TMA for, 13
transcriptome analysis of, 657–658
transmission of, 138, 655
treatment of, in resource-limited settings, 580–588
tropism assays, 420, 424
viral load testing in, 580–588
virome and, 136
whole-genome sequencing for, 44
Human leukocyte antigens
in HIV infections, 655–657, 659
polymorphisms of, drug response and, 655–657
Luminex instruments, for microarrays, 109–110
Lyme disease, see *Borrelia burgdorferi*
Lymphocytic choriomeningitis virus, meningoencephalitis due to, 288, 292
Lymphoma, primary CNS, in Epstein-Barr virus infections, 295
Lymphotaxis, in gastrointestinal infections, 670
Lyra assays, for respiratory agents, 323
Lyra Direct HSV 1+2/VZV assay, 482
Lyra Direct Strept Assay, 309
Lysis, for MALDI-TOF, 93
lytA gene, 310
m2000 RealTime, 390
MacroEtest, for *M.2000 RealTime*, 390
Lyra Direct HSV 1+2/VZV assay, 482
Lyra Direct Strept Assay, 309
Lysis, for MALDI-TOF, 93
lytA gene, 310
Malaria, 516–529
asymptomatic, 590
burden of, 591
clinical symptoms of, 589–590
diagnostic needs of, 591
epidemiology of, 516
microorganism causing, see *Plasmodium* misdiagnosis of, 516
prevention of, 591
“Malaria pigment” (hemozoin), 604
Malaria Rapid Diagnostic Test Performance, 552
Malassezia disorders caused by, 121
identification of, 82
next-generation sequencing for, 75
in skin microbiome, 118
MALDI Biotyper systems, 96, 173, 175, 178
Magnetic beads, for nucleic acid extraction, 491–494
Magnetic beads, for nucleic acid extraction, 491–494
Magnetic beads, for nucleic acid extraction, 491–494
MagnetNAlyzer, for bloodstream organisms, 347
Magnetic beads, for nucleic acid extraction, 491–494
Magnetic beads, for nucleic acid extraction, 491–494
Magnetic beads, for nucleic acid extraction, 491–494
Malaria, 516–529
asymptomatic, 590
burden of, 591
clinical symptoms of, 589–590
diagnostic needs of, 591
epidemiology of, 516
microorganism causing, see *Plasmodium* misdiagnosis of, 516
prevention of, 591
“Malaria pigment” (hemozoin), 604
Malaria Rapid Diagnostic Test Performance, 552
Malassezia disorders caused by, 121
identification of, 82
next-generation sequencing for, 75
in skin microbiome, 118
MALDI Biotyper systems, 96, 173, 175, 178
MALDI-TOF, see Matrix-associated laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry
Male urethra discharge from, 394
microbial communities of, 146–155
cultivation-independent methods for, 148–149
diagnostic studies of, 149–152
historical understanding of, 146–148
Malnutrition, gastrointestinal microbiome composition and, 129
mapA gene, 364
Maratinioc, for HIV, 424
Mass spectrometry see also Matrix-associated laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry
global quantitation with iTRAQ, for HIV, 424
for MALDI-TOF, 94, 96
in multiplex amplification, 104
for *Mycobacterium tuberculosis*, 573
PCR-electrospray ionization, for bloodstream organisms, 348–350
with phosphoproteomics, 658
for *Schistosoma*, 262
Massively parallel DNA sequencing, 58–67
applications of, 65–66
barcoding for, 62
DNA fragment libraries for, 60–62
methods for, 58–60
platforms for, 64–65
pre-enrichment for, 62
sequencing chemistries for, 62
single-molecule long-read, 63–64
Mast cells, in gastrointestinal infections, 670
MAY Group kits, 202
Mate pair reads, 36
Mate-pair libraries, 60–62, 769–770
Matrix-associated laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, 92–101
for antimicrobial susceptibility testing, 93–94
for bloodstream organisms, 339–340, 344–345, 351
clinical impact of, 96–97
databases for, 93
DNA target sequencing with, 19, 21, 26
for fungi, 491, 493
history of, 92
microbial identification with, 93, 95
for molecular diagnosis, 94, 96
multicenter studies of, 97
multiple instrument validation, 793
overview of, 92
for pathogen identification, 32
proficiency testing of, 973
sample preparation for, 92–93
semiannuual validation of, 973
verification/validation of, 784–796
for WHONET, 703–704
Maxwell 16 L V, 493–494
Maxo Collaborative Services v. Prometheus Laboratories, Inc., 807–808
MDROs, see Multiple drug-resistant organisms
Mean, 736
Measles virus, meningencephalitis due to, 292
Meningoencephalitis due to, see *Borrelia burgdorferi*
Meningococci, see *Neisseria meningitidis*
Meningoencephalitis, see also Encephalitis; Meningitis
definition of, 287
Methicillin assay, for gastrointestinal parasites, 533
Merkel cell carcinoma, 122, 163–165
Merkel cell polyomavirus, 84–85, 118, 122, 163–165
Metabolic syndrome, fecal transplantation for, 134
Metabolism of drugs, pharmacogenetics and, 614, 618–620
Metabolomics, male urethra microbial community studies with, 149–152
Metastase stages of, tapeworms, 335
Metagenomic(s), for outbreak investigation, 242–243
Metagenomic sequencing, 75
limitations of, 87
for microbiomes, 86
for noroviruses, 271–272
Metallo-beta-lactamases, 200, 202
Metamondads, 531–533
MetaPhlAn classifier, 86
Mexitil-resistant *Staphylococcus aureus*, see MRSA (methicillin-resistant Staphylococcus aureus)
Mexitil-susceptible *Staphylococcus aureus*, see MSSA (methicillin-susceptible Staphylococcus aureus)
Method validation, see Validation
Method-based proficiency testing, 764
Methods comparison study, for accuracy, 788–789
Metrics, in business case, 801–802
Metronidazole for bacterial vaginosis, 142
for *Clostridium difficile*, 185
MHA test, for *Enterococcus*, 223
mHealth tool, 685–686
mHVR, as target for restriction fragment length polymorphism analysis, 512
M.I.C. Evaluator, for *Enterococcus*, 221–222
MIC determination, WHONET reports of, 699
Microarrays technology, 107–113
for adenoviruses, 482
applications of, 112
for bloodstream organisms, 340–341, 343
challenges of, 112–113
definition of, 107
high-density, 112
in situ synthesized, 109
low-density, 112–113
for microRNA detection, 639, 642, 647
for microsporidia, 374
for novel virus discovery, 82–83
printed, 107–109
for respiratory agents, 315–316, 319
for surveillance, 249
suspension bead, 109–112
for zoonotic diseases, 277
Microbiological alerts, in WHONET, 697
Microbiological rules, for WHONET, 700
Microbiomes gastrointestinal, 126–137
next-generation sequencing for, 75
skin, 117–125
whole-genome sequencing for, 43
for osteoarticular organisms, 407–408
signal amplification, 103
Mumps virus, meningoencephalitis due to, 291
Mupirocin, for MRSA decolonization, 170
Mycobacterium abscessus, 258
Mycobacterium bovis, 214
Mycobacterium leprae, 258
Mycobacterium tuberculosis, 147
Mycobacterium ulcerans, 406–407
Mycoplasma, in male urethral microbial communities, 146, 149–150
Mycoplasma hominis, 27
Mycoplasma pneumoniae
microarray for, 112
Mycoplasma pneumoniae
LAMP for, 16
Mycoplasma pneumoniae
MALDI-TOF for, 93
Mycoplasma pneumoniae
MALDI-TOF for, 239
Mycoplasma pneumoniae
NAATs for, 315–316
in osteoarticular infections, 403, 406–407
Mycobacterium abscessus
MALDI-TOF for, 93
resistance in, 41
whole-genome sequencing for, 39, 41, 43
Mycoplasma genitalium
in cervicitis, 390, 393
in male urethritis, 394
Mycoplasma hominis, 27
Mycoplasma pneumoniae
digital PCR for, 53
polymorphisms of, 619
in osteoarticular infections, 405, 408
NASBAs, for microRNAs, 646
for microbiome analysis, 75
for microRNAs, 647
for microRNAs, 647
for point-of-care testing, 549
Mycobacterium tuberculosis
whole-genome sequencing for, 38
TMA for, 13
whole-genome sequencing for, 38–39, 41, 43
Mycoplasma ulcerans, 406–407
Mycoplasma hominis, 27
Mycoplasma pneumoniae
LAMP for, 16
Mycoplasma pneumoniae
TMA for, 13
whole-genome sequencing for, 38–39, 41, 43
Mycoplasma pneumoniae, in adult respiratory infections, 665
Mycoplasma pneumoniae, in gastrointestinal infections, 665
TMA for, 13
in vaginal microbiome, 143
WHONET data on, 692
Neisseria meningitidis
in bloodstream, 349
DNA target sequencing for, 26
in meningitis, 288
NAATs for, 315–316
in osteoarticular infections, 405, 408
surveillance of, 257–258
WHONET data on, 692
Nelfinavir, pharmacogenetics of, 616, 619–620
Nematodes, gastrointestinal, 531
Neocallimastigomycota, 297
Neuroborreliosis, 297
Neurologic disorders, in meningoencephalitis, 287–288
Neurophilophils, 291
Neutropenia, bloodstream organisms in, 347
Neutrophil(s), in gastrointestinal infections, 666–667, 670
Neutrophil chemotactic factor, in gastrointestinal infections, 665
Nevirapine
pharmacogenetics of, 614, 618–620, 622, 659
resistance to, 419, 423
New Delhi metallo-beta-lactamase, 200
Nextera method, 60–61
Next-generation sequencing, 68–79; see also Whole-genome sequencing
applications of, 68, 72, 74–76
barcoding in, 72
bioinformatics in, 74
contamination in, 72–74
current equipment for, 766
DNA preparation for, 22
for eukaryotic identification, 75
for gastrointestinal microbiome characterization, 126
genome alignment and assembly in, 35–36
history of, 766
for HIV, 657
imaging in, 34–35
libraries for, 72
for male urethral microbial communities, 149–152
massively parallel, 58–67
for metagenomic analysis, 75
methods for, 68–70
for microbiome analysis, 75
for microRNAs, 646–647
ongoing quality control in, 777, 779

For more information, visit www.asmscience.org.
Parvovirus(es), 163
Parvimonas micra
Partition-specific competitive PCR, 53
Patent(s)
Pasteurella multocida
Pattern recognition receptors (PPRs), micro-
Parentreevirus, for hepatitis C, 433–434
Partitioning, in PCR, 10–11, 49–55
Partition-specific competitive PCR, 53
“Partnership for Diagnostics to Address Anti-
Mycobacterium micrurus
Paramyxoviridae, 82
Parasites, see also specific parasites
gastrointestinal, 372–375, 530–540
next-generation sequencing for, 75
surveillance of, 261–262
whole-genome sequencing for, 33
Parasitological methods, for Trypanosoma cruzi, 501–502
Paratuberculosis, for Mycobacterium avium, 128–129
Paratyping for viral infections, 189
Parvimonas micra

9
4
3
2
1
0

Random amplified polymorphic DNA (RAPD) analysis
for pathogen identification, 82
Trypanosoma cruzi, 506–507
Random error, 51, 738
Random extension termination, in sequencing, 768–769
Random sampling, 733
Random termination, in sequencing, 766
Range, definition of, 736
RANTES (regulated on activation, normal T-cell expressed and secreted), in gastrointestinal infections, 664–665, 668–669
Rausvalla, 26
RapID ANA II System, Clostridium difficile, 187
Rapid antigen tests
for meningococcal infections, 292
for Streptococcus pyogenes, 309
Rapid detection methods, for MDROs, 197–198
Rapid diagnostic test (immunochromatographic test), 518
Rapid diagnostic tests, see also Point-of-care and near-care testing
description of, 546–547
Rapid PCR, for bloodstream organisms, 344
Rapid testing, for point-of-care testing, 548
RAZOR EX-thermocycler, for respiratory agents, 325
rDNA gene
13S, Mycobacterium tuberculosis, 312
16S, Chlamydia pneumoniae, 312
Mycobacterium pneumoniae, 312
18S, as target, for fungi sequencing, 494–495
Reaction volume, for digital PCR, 50
Read length, 70–71, 86, 160, 761
Readers, for medical device systems, 689–690
Reagents
contamination of, 87
costs of, business case and, 800
verification of, 749
Real Time High Risk HPV test, 469–470
RealStar Influenza S&I RT-PCR, 317–318
Real-time detection, in multiplex amplification, 105–107
Real-Time HCV Genotype II test, 439
Real-Time HCV test, 438, 440
Real-time PCR, 7
for adenoviruses, 477
for astrovirus, 370–371
for BK virus, 478
for bloodstream organisms, 346–347
for caliciviruses, 369–370
for Campylobacter, 363, 364
for Clostridium difficile, 366
for CMV, 479
for coxsackia, 374
for Enterobacteriaceae, 365
for enterovirus 71, 259–260
for Epstein-Barr virus, 480
for flagellates, 373
for fungi, 489–500
in clinical samples, 489–493
for diagnosis, 491–493
for species identification, 493–496
target selection for, 494
for gastrointestinal parasites, 532–535
for genitourinary tract organisms, 389–393
for HBV, 456
for HCV, 435–436, 441
for HHV-6, 480–481
for HIV, 421–422, 583–584
for influenza virus, 260–261
for MDRO surveillance, 202
for Mycobacterium tuberculosis, 256
for noroviruses, 369–370
for parasites, 373
for Plasmodium, 518–519
quantitative, for microRNAs, 639, 644–646
for rabbit virus, 296
for rotavirus, 368
for Vibrio, 365–366
for zoonotic diseases, 281
RealTime TaqMan HIV-1 test, 421–422
Real-Time Transcription-Mediated Amplification Platform, 583–584
rec genes, as targets for sequencing, 20, 309
RECall software, 777, 779
Receiver operating characteristic (ROC) analysis, 725
Recombinant immunoblot assay, for hepatitis C, 435
Recovery experiments, 743
Recovery study, for accuracy, 788–789
Rectal swabs, for MDROs, 200–201
REDUCE-MRSA trial, 205
Reference intervals/ranges, 743
for digital PCR, 10–11
in MALDI-TOF mass spectrometry, 789, 791
Reference laboratories, verification of, 721
Reference materials, 749, 779
Reference standard method, new method comparison with, 742
Reflexive culturing, 242
Regression analysis, 741
Regressors (independent variables), 756
Regulations
for next-generation sequencing, 76
for point-of-care testing, 553
for proficiency testing, 754–757
for zoonotic disease detection, 280–281
Relative frequency, 736
Remel Spectra RE, 200
Remote monitoring dashboard, in cloud computing, 714–715
RenDX FungiPlex assay, 490–491
Reportable disease, zoonotic, 276, 278
Reportable range, 722–723, 791
Reporting
of antimicrobial susceptibility test results, 698
DNA target sequencing, 28
health-associated infections report of, 247 of WHONET data, 697
of zoonotic diseases, 276, 278
Representational difference analysis, 80–81
Reproducibility, 743
“Research-only” tests, verification of, 721–722
Reservoirs, in surveillance, 266–267
ResFinder, 240
Residuals, analysis of, 741
Resistance, drug, see Drug resistance
Resistant-like molecule β, 72
RespiFinder kit, 323
Respiratory agents, 315–315; see also Respiratory viruses; specific viruses commercially available assays for, 320–323
infections due to, in transplant recipients, 476
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory agents (continued)</td>
</tr>
<tr>
<td>multiplex amplification for, 105</td>
</tr>
<tr>
<td>NAATs for</td>
</tr>
<tr>
<td>multiplex, 318–319, 323–325</td>
</tr>
<tr>
<td>PCR for, 6</td>
</tr>
<tr>
<td>Respiratory syncytial virus, NAATs for, 307, 315–324</td>
</tr>
<tr>
<td>Respiratory tract, virome of, 162</td>
</tr>
<tr>
<td>Restriction fragment length polymorphism analysis for gastrointestinal parasites, 333–335</td>
</tr>
<tr>
<td>for HCV, 441</td>
</tr>
<tr>
<td>for male urethra microbial communities, 148</td>
</tr>
<tr>
<td>for Mycobacterium tuberculosis, 257</td>
</tr>
<tr>
<td>for Streptococcus suis, 257</td>
</tr>
<tr>
<td>for Trypanosoma cruzi, 511</td>
</tr>
<tr>
<td>Restriction fragment length polymorphism subtyping, see Pulsed-field gel electrophoresis (PFGE)</td>
</tr>
<tr>
<td>Results of point-of-care testing, communication of, 552, 602–603</td>
</tr>
<tr>
<td>of quality assurance, 751</td>
</tr>
<tr>
<td>Retinoic acid-inducible gene (RIG)-like receptors, 669</td>
</tr>
<tr>
<td>Return on investment, business case and, 800–801</td>
</tr>
<tr>
<td>Reverse hybridization for HBV, 459–460</td>
</tr>
<tr>
<td>for HCV, 439, 441</td>
</tr>
<tr>
<td>Reverse transcriptase PCR, 5–6</td>
</tr>
<tr>
<td>for enteroviruses, 296</td>
</tr>
<tr>
<td>for influenza virus, 260–261</td>
</tr>
<tr>
<td>for norovirus, 268–269, 272</td>
</tr>
<tr>
<td>reagent contamination in, 87</td>
</tr>
<tr>
<td>Reverse transcription LAMP method, for influenza virus, 261</td>
</tr>
<tr>
<td>Reversible terminators, 37</td>
</tr>
<tr>
<td>RFLP, see Restriction fragment length polymorphism analysis</td>
</tr>
<tr>
<td>Rhabdoviruses, identification of, 85</td>
</tr>
<tr>
<td>Rhinovirus, 162, 307, 315–317</td>
</tr>
<tr>
<td>Rhodobacter, 26</td>
</tr>
<tr>
<td>Rhodococcus, 27, 213</td>
</tr>
<tr>
<td>Ribavirin for hepatitis C, 432, 433–434</td>
</tr>
<tr>
<td>Ribosomal Database Project, 74, 81, 148</td>
</tr>
<tr>
<td>classifier of, 24</td>
</tr>
<tr>
<td>for DNA target sequencing, 24–25</td>
</tr>
<tr>
<td>Ribosomal Differentiation of Microorganisms database, 24–25</td>
</tr>
<tr>
<td>Ricetettia rickettisi in bloodstream, 349</td>
</tr>
<tr>
<td>meningococcal meningitis due to, 288, 290</td>
</tr>
<tr>
<td>zoonotic origin of, 281</td>
</tr>
<tr>
<td>RIDAGENE Clostridium difficile & Toxin A/B, 187–188</td>
</tr>
<tr>
<td>RIDAGENE Norovirus tests, 370</td>
</tr>
<tr>
<td>Rifampin, resistance to, 6, 43</td>
</tr>
<tr>
<td>Rilpivirine, pharmacogenetics of, 620</td>
</tr>
<tr>
<td>RipSeq software, 23</td>
</tr>
<tr>
<td>Risk assessment, in method verification, 725</td>
</tr>
<tr>
<td>Risk management, in verification, 723</td>
</tr>
<tr>
<td>Ritonavir for hepatitis C, 433–434</td>
</tr>
<tr>
<td>RM Solution, 715</td>
</tr>
<tr>
<td>RNA, see also rRNA</td>
</tr>
<tr>
<td>extraction of, 437–438</td>
</tr>
<tr>
<td>isolation of, 638–640; see also Nucleic acid(s), isolation of</td>
</tr>
<tr>
<td>RNA polymerase in microRNA processing, 634</td>
</tr>
<tr>
<td>in PCR, 11, 13</td>
</tr>
<tr>
<td>RNA tests for HCV, 437–438</td>
</tr>
<tr>
<td>for HIV, 422–423, 425</td>
</tr>
<tr>
<td>RNA viruses, digital PCR for, 53</td>
</tr>
<tr>
<td>RNA-induced silencing complex, 634</td>
</tr>
<tr>
<td>RNAs, small, see MicroRNAs</td>
</tr>
<tr>
<td>RNase, for next-generation sequencing, 72</td>
</tr>
<tr>
<td>RNA-Seq (transcriptome profiling), 76</td>
</tr>
<tr>
<td>ROC (receiver operating characteristic) analysis, 725</td>
</tr>
<tr>
<td>Roche 454 Genome Sequencer, 159</td>
</tr>
<tr>
<td>Roche 424 instrument, 68, 71</td>
</tr>
<tr>
<td>Roche LightCyclers, see LightCyclers</td>
</tr>
<tr>
<td>Roche LightCyclers, 203, 583</td>
</tr>
<tr>
<td>Rosco kits, 202</td>
</tr>
<tr>
<td>Roseburia, 118</td>
</tr>
<tr>
<td>Roseooviruses, 160</td>
</tr>
<tr>
<td>Rosemonas macosa, surveillance of, 258</td>
</tr>
<tr>
<td>Rotational systems, for drug resistance, 11</td>
</tr>
<tr>
<td>Rotavirus, 367–368, 664, 669–670</td>
</tr>
<tr>
<td>Rothia, 27</td>
</tr>
<tr>
<td>Rotor-Gene Q, 203, 583</td>
</tr>
<tr>
<td>rpo genes</td>
</tr>
<tr>
<td>Streptococcus pyogenes, 308–309</td>
</tr>
<tr>
<td>as target for sequencing, 20, 23, 26</td>
</tr>
<tr>
<td>RQ-PCRs, see Quantitative PCR</td>
</tr>
<tr>
<td>rRNA gene 5.8S, in skin microbiome studies, 118</td>
</tr>
<tr>
<td>16S for bacterial identification, 81</td>
</tr>
<tr>
<td>in bloodstream organisms, 345–346</td>
</tr>
<tr>
<td>in DNA target sequencing, 19–31</td>
</tr>
<tr>
<td>in gastrointestinal microbiome, 126</td>
</tr>
<tr>
<td>in massively parallel sequencing, 65–66</td>
</tr>
<tr>
<td>in next-generation sequencing, 74–75</td>
</tr>
<tr>
<td>in osteoarticular organisms, 406–410</td>
</tr>
<tr>
<td>skin microbiome studies, 117–118</td>
</tr>
<tr>
<td>in Streptococcus suis, 257</td>
</tr>
<tr>
<td>structure of, 19–20</td>
</tr>
<tr>
<td>18S, in eukaryocytes, 75</td>
</tr>
<tr>
<td>small subunit, in gastrointestinal parasites, 531–535</td>
</tr>
<tr>
<td>RS II system, 63–64</td>
</tr>
<tr>
<td>RSV Direct assay, 318</td>
</tr>
<tr>
<td>RT-CPA HIV-1 viral load test, 586–587</td>
</tr>
<tr>
<td>Rubella virus, meningococcal meningitis due to, 291</td>
</tr>
<tr>
<td>Ruminococcus, 129, 131</td>
</tr>
<tr>
<td>Run controls in sequencing, 777–778</td>
</tr>
<tr>
<td>in validation, 773</td>
</tr>
<tr>
<td>Run parameters, 772</td>
</tr>
<tr>
<td>16S gene, rRNA, see rRNA gene, 16S</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae, in vaginal microbe, 139</td>
</tr>
<tr>
<td>Safety, in quality assurance, 751, 753</td>
</tr>
<tr>
<td>St. Louis encephalitis virus, 289</td>
</tr>
<tr>
<td>Salmonella, 364–365</td>
</tr>
<tr>
<td>biomarkers of, 664, 666–667</td>
</tr>
<tr>
<td>in gastrointestinal microbiome, 129</td>
</tr>
<tr>
<td>in osteoarticular infections, 403</td>
</tr>
<tr>
<td>sequencing for, 768</td>
</tr>
<tr>
<td>surveillance of, 235–237, 240, 242, 247</td>
</tr>
<tr>
<td>zoonotic origin of, 277–278</td>
</tr>
<tr>
<td>Salmonella enterica, 87</td>
</tr>
<tr>
<td>Salmonella enterica serovar Typhi, 36–38</td>
</tr>
<tr>
<td>SAMBA Flu duplex test, 325</td>
</tr>
<tr>
<td>SAMBA HIV test, 422</td>
</tr>
<tr>
<td>SAMBA viral load testing, 584</td>
</tr>
<tr>
<td>“Same clinical encounter,” care during, 545–546</td>
</tr>
<tr>
<td>SAMHD1, in HIV immunity, 659</td>
</tr>
<tr>
<td>Samples challenge, 758, 762</td>
</tr>
<tr>
<td>for next-generation sequencing, 72</td>
</tr>
<tr>
<td>for point-of-care testing, 550</td>
</tr>
<tr>
<td>for proficiency testing, 757–760</td>
</tr>
<tr>
<td>size of, for method verification, 732–733</td>
</tr>
<tr>
<td>Sandwich hybridization, in branched DNA assays, 3</td>
</tr>
<tr>
<td>Sanger sequencing, 32, 71</td>
</tr>
<tr>
<td>current equipment for, 766</td>
</tr>
<tr>
<td>for HBV, 457–458</td>
</tr>
<tr>
<td>history of, 766</td>
</tr>
<tr>
<td>for male urethra microbial communities, 149</td>
</tr>
<tr>
<td>versus massively parallel DNA sequencing, 58</td>
</tr>
<tr>
<td>versus next-generation sequencing, 766–767</td>
</tr>
<tr>
<td>ongoing quality control in, 777, 779</td>
</tr>
<tr>
<td>verification of, 771–777</td>
</tr>
<tr>
<td>work flow optimization in, 768–769</td>
</tr>
<tr>
<td>Saphlex, 341</td>
</tr>
<tr>
<td>Sapovirus, 368–370</td>
</tr>
<tr>
<td>SARS (severe acute respiratory syndrome) virus, 83, 258</td>
</tr>
<tr>
<td>SatDNA, Trypanosoma cruzi, 502–506</td>
</tr>
<tr>
<td>SatDNA OligoC-Tet, 504</td>
</tr>
<tr>
<td>Satellite technology, for cloud computing, 711–712</td>
</tr>
<tr>
<td>Scalability, in medical device connectivity, 687</td>
</tr>
<tr>
<td>Scalable transcriptional analysis routine (STAR), 106</td>
</tr>
<tr>
<td>Scattergrams, 741</td>
</tr>
<tr>
<td>Scatterplots, 699</td>
</tr>
<tr>
<td>Schistosoma, 262, 531</td>
</tr>
<tr>
<td>Schistosomiasis, 535</td>
</tr>
<tr>
<td>SciEX GenomeLab GeXP, 767</td>
</tr>
<tr>
<td>Scorpion primers, for HSV, 482</td>
</tr>
<tr>
<td>SD (standard deviation), 736</td>
</tr>
<tr>
<td>SD Bioline test, 596</td>
</tr>
<tr>
<td>SD Dengu Duo, 597</td>
</tr>
<tr>
<td>SDA (strand displacement amplification), 13–15, 386, 393–392</td>
</tr>
<tr>
<td>Sebaceous glands, 117</td>
</tr>
<tr>
<td>Seborrheic dermatitis, 121</td>
</tr>
<tr>
<td>Sebum, 117, 119</td>
</tr>
<tr>
<td>sec genes, as targets for sequencing, 20</td>
</tr>
<tr>
<td>Security, in cloud computing, 716–718</td>
</tr>
<tr>
<td>SeeGene RV15 One Step ACE Detection Kit, 318</td>
</tr>
<tr>
<td>Seeplex Diarrhea ACE Detection test, 188</td>
</tr>
<tr>
<td>Seeplex RV assay, 319, 323</td>
</tr>
<tr>
<td>Seeplex Sepsis assay, 407–408</td>
</tr>
<tr>
<td>Seeplex VRE kit, 225</td>
</tr>
</tbody>
</table>
Self-probing amplicons, 8
Semantic feasibility, in medical device connectivity, 689
Semantic interoperability, 687
Semiconductor chip, 68
Sensitivity, 598
in MALDI-TOF mass spectrometry, 789
in method verification, 724–725, 742
in point-of-care testing, 547–548
in validation, 773–774
Sensor network model, 704–705
Sepsis, microRNA detection in, 646–647
SepsitTest, 175, 178, 342
Septic arthritis, see also Infectious arthritis; Osteoarticular infections
Septicemia, see Bloodstream infections
SeptiFast test, 106
for bloodstream organisms, 342, 346–347
for fungi, 490
for osteoarticular organisms, 407
SeqHiPB software, 460
Sequence alignment, 23
Sequence analysis for
norovirus, 271
for zoonotic diseases, 280
Sequence read data, 36
Sequence, see also Next-generation sequencing
Pyrosequencing; Sanger sequencing
anomalies in, 769
applications of, 766–768
controls for, 747
deep, see Deep sequencing
direct high-throughput, 83–84
errors in, 769
history of, 766
ongoing quality control in, 777–779
overview of, 766
principles of, 766–783
quality assurance for, 749
specimen handling in, 768
using inorganic phosphate, see Pyrosequencing
verification in, 771–777
work flow optimization in, 768–771
Sequence-by-synthesis, 770–771
Serial dilution technique, 742–743
Serious threats, in antibiotic resistance, 251–252
Serologic tests
for meningococcal disease, 52
for Plasmodium falciparum, 531–533
for Toxoplasma gondii, 507–508
for West Nile virus, 295
Serratia, WHONET data on, 693
Serratia marcescens, 251, 340
Severe acute respiratory syndrome (SARS) virus, 83, 258
Sewage virome, 164
Sexually transmitted infections, see also Genitourinary tract infections
male urinary microbiome and, 146–152
Sexually transmitted microorganisms, see also Specific microorganisms
Shell vial culture, for meningococcal infections, 292
Shiga toxin-producing organisms, 362–363, 664–666
Shigella, 363, 364–365
biomarkers of, 664, 666
in bloodstream, 343, 345
MALDI-TOF for, 93, 96
surveillance of, 247
as target for sequencing, 26
Shigella dysenteriae, 362, 664–666
Shigella sonnei, 36–38
Shingles, in transplant recipients, 482–483
Shotgun sequencing, 58, 75
for outbreak investigation, 238, 242–243
for skin microbiome samples, 118–119
SHV beta-lactamasmes, 199, 201
Sialidase, in vaginal microbiome, 142
SiemensVentant 440 analyzer, for hDNA, 3
Sigmoidoscopy, for Clostridium difficile infections, 191
Signal amplification techniques, 3–4
advantages of, 3
branched DNA assays, 3
cleavage-invader, 4
hybrid capture, 3–4
multiplex, 103
Signal dephasing, in next-generation sequencing, 35
“Signatures,” in 16S rRNA molecule, 19
Signed values, in sequencing, 769
Silva database, 24, 81
Simple linearity experiments, 742
Simple method comparison approach, to
method comparison approach, to
Simple method comparison approach, to
SIM (simultaneous amplification and testing technique), 314
Simple precision test, 743
SimpleX H/1-2 assay, 481
Simplexa B. pertussis/B. parapertussis assay, 314
Simplexa C. difficile Universal Direct, 187–188
Simplexa Flu A/B&RSV assay, 318
Simplexa HSV 1 & 2 Direct assay, for HSV, 294
Simplication, for medical device connectivity, 687
Simultaneous amplification and testing technology, for enterovirus 71, 260
Sin Nombre hantavirus, identification of, 82
Single base chain extension, in microarrays, 294
Single base chain extension, in microarrays, 294
Single base chain extension, in microarrays, 294
Single base extension, 35
Single nucleotide addition, 35
Single nucleotide analysis, 9
Single nucleotide polymorphism analysis
digital PCR for, 53
for gastrointestinal parasites, 532, 534
in hepatitis C virus, 441
microarrays for, 111–112
for outbreak investigation, 239–240
Single nucleotide variants, 36, 44
Single-cell genomics, 44
Single-focus approach, Trypanosoma cruzi, 507
Single-molecule, long-read DNA sequencing technology (SMRT) cell, 63–65
Single-molecule sequencing, 33–34
Single-molecule real-time sequencing, 35
Single-strand restriction endonuclease, 13–15
Siphoviridae, in skin microbiome, 119
SJS/TEN (Stevens-Johnson syndrome/toxic epidermal necrolysis), 618–619, 622
Skeined distribution, 736
Skin microbiome, 117–125
diagnostic applications of, 122–123
disorders associated with, 120–122
habit for, 117
overview of, 117–119
Skin virome, 163–164
Slalak, in gastrointestinal microbiome, 131
SLOCO1B1 gene, polymorphisms of, 620
Small-ribosomal-subunit sequences, 24
Smart phones, in medical device systems, 690
SmartCycler B. pertussis/B. parapertussis assay, 314
SmartCycler II, for MDRO, 203
SmartCycler instruments, 172, 323
SmartGene database, for DNA target sequencing, 23–25
SmartHBV assay, 456, 457
SmartNorovirus test, 370
SMRT (single-molecule, long-read DNA sequencing technology) cell, 63–65, 85
SMS option, for cloud computing, 711–712
“Snapshot primers,” 9, 12
Sneathia
in male urethra microbial communities, 150
in skin microbiome, 119
in vaginal microbiome, 141–142
soil genes, as targets for sequencing, 20, 23, 366
Sofosbuvir, for hepatitis C, 433–434
Software, see Computer software
Soil-transmitted helminths, 531, 533–534
SOLiD system, 68–69
Solid-phase amplification, for next-generation sequencing, 71
Solid-phase hybridization, 102–103
Solution hybridization-antibody capture method, 3–4
Solution-based chemistries, for microarrays, 110–112
Solution-based RNA isolation, 642–643
Somatic hypermutation, of B cells, 658
Sorenson's index of similarity, 150–151
South Africa, tuberculosis diagnosis in, 707–718
Southwest Pacific Clone, Staphylococcus aureus, 250
SP (sulfadoxine-pyrimethamine), resistance to, 524
Spacer oligonucleotide typing, for Mycobacterium tuberculosis, 257
Spanish Mycology Reference Laboratory, 490
spe genes, Streptococcus pyogenes, 308–309
Species, fungal, identification of, 493–496
Specificity, 742
in MALDI-TOF mass spectrometry, 789
in point-of-care testing, 547–548
testing of, 598, 728
in validation, 773–774
Specimens
collection of, for point-of-care testing, 552
DNA target sequencing from, 27
sampling of, for method verification, 732–733
for sequencing, 768–769
SpectraWave and SpectraNet, 604
Spectrophotometry, versus digital PCR, 54
Spectroscopy, for Plantodium, 604
Spectrum bias, 738
Spiked specimens for controls, 747
for proficiency testing, 763
Sporobacter
Standard(s)
Stakeholders, business case for, 800
Staff requirements, for quality assurance, 751, 753
Statistic(s)
STAT1 protein, in gastrointestinal infections, 618–619, 622
STING protein, in HIV immunity, 659
Stool and stool specimens
Clostridium difficile toxins in, 185–193
for coccidia detection, 373–374
for gastrointestinal microbiome characterization, 126
for microsporidia detection, 374
for norovirus detection in, 269–272
parasites in, 530–535
Stool cytotoxicity assay, Clostridium difficile, 186
Streptococcus
Streptococcus agalactiae
in male urethra microbial communities, 403–404
MALDI-TOF for, 93
LAMP for, 16
Sustained virologic response, in hepatitis C treatment, 436
Susceptibility, antimicrobial enterococci, 221–223
Syphilis, 393
Tapeworms, 531, 535
Tapeworms, 531, 535
Taenia saginata
“Tegumentation,” for library preparation, 60–61
Talin, in gastrointestinal infections, 667
Tannerella, 26
TaqMan techniques
for HBV, 260
Strongyloides stercoralis, 534
Strout test, for Trypanosoma cruzi, 502
Student t test, 739
stx genes, 363
Sx toxins, 665–666
Subculture, for bloodstream organisms, 344
Subdoligranulum, 131
Subject matter, in patent, 803, 805–808
Subscriber identity modules, 689
Subset, of samples, 732
Subtype-specific PCR, HCV, 441
Subtyping, in WHONET, 702–704
Sulfadoxine-pyrimethamine, resistance to, 524
SuperBug ID products, 202
SUPERCARBA, 201
Support oligonucleotide ligation, 35
Surface plasmon resonance imaging, 638
SURFI software, 771, 777
Surveillance
in China, 256–265
definition of, 245
of foodborne infections, 235–244
of HIV infections, 707–718
information technology for, 686, 692–706
of noroviruses, 266–272
in South Africa, 707–718
of tuberculosis, 707–718
Susceptibility, antimicrobial enterococci, 221–223
Tannerella, 26
TaqMan techniques
for HBV, 260

832 ■ SUBJECT INDEX

Split-sample testing, 751, 761, 767
Spoligotyping, for Mycobacterium tuberculosis, 257
Sporobacter
Standard(s)
Stakeholders, business case for, 800
Staff requirements, for quality assurance, 751, 753
Statistic(s)
STAT1 protein, in gastrointestinal infections, 618–619, 622
STING protein, in HIV immunity, 659
Stool and stool specimens
Clostridium difficile toxins in, 185–193
for coccidia detection, 373–374
for gastrointestinal microbiome characterization, 126
for microsporidia detection, 374
for norovirus detection in, 269–272
parasites in, 530–535
Stool cytotoxicity assay, Clostridium difficile, 186
Streptococcus
Streptococcus agalactiae
in male urethra microbial communities, 403–404
MALDI-TOF for, 93
LAMP for, 16
Sustained virologic response, in hepatitis C treatment, 436
Susceptibility, antimicrobial enterococci, 221–223
Syphilis, 393
Tapeworms, 531, 535
Taenia saginata
“Tegumentation,” for library preparation, 60–61
Talin, in gastrointestinal infections, 667
Tannerella, 26
TaqMan techniques
for HBV, 260

832 ■ SUBJECT INDEX

Split-sample testing, 751, 761, 767
Spoligotyping, for Mycobacterium tuberculosis, 257
Sporobacter
Standard(s)
Stakeholders, business case for, 800
Staff requirements, for quality assurance, 751, 753
Statistic(s)
STAT1 protein, in gastrointestinal infections, 618–619, 622
STING protein, in HIV immunity, 659
Stool and stool specimens
Clostridium difficile toxins in, 185–193
for coccidia detection, 373–374
for gastrointestinal microbiome characterization, 126
for microsporidia detection, 374
for norovirus detection in, 269–272
parasites in, 530–535
Stool cytotoxicity assay, Clostridium difficile, 186
Streptococcus
Streptococcus agalactiae
in male urethra microbial communities, 403–404
MALDI-TOF for, 93
LAMP for, 16
Sustained virologic response, in hepatitis C treatment, 436
Susceptibility, antimicrobial enterococci, 221–223
Syphilis, 393
Tapeworms, 531, 535
Taenia saginata
“Tegumentation,” for library preparation, 60–61
Talin, in gastrointestinal infections, 667
Tannerella, 26
TaqMan techniques
for HBV, 260
for HCV, 442
for HIV, 425
for microRNAs, 644–645
for multiplex amplification, 105–107
for PCR, 7–8
for transplant recipients, 482
Target amplification techniques, 4–16; see also PCR.
fundamental characteristics of, 4–5
versus signal amplification techniques, 3
Target generation, in strand displacement
amplification, 13–15
Target product profiles, for Mycobacterium
tuberculosis tests, 557, 561–562
Target sequencing, 19–31, 75
Target-specific hybridization, for HBV, 457
Taxonomy, in bioinformatics, 74
Taxon-specific consensus, 81–82
TB, see Mycobacterium tuberculosis; Tuberculosis
TB Breathalyzer, 573
TBDx system, 570
TBDx system, 570
TB Breathalyzer, 573
Target product profiles, for medical device
Technical interoperability, 687
Target sequencing, 19
Taxonomy, in bioinformatics, 74
Target-specific hybridization, for HBV, 457
Tenofovir
Test kits, as intellectual property,
Tick-borne diseases, 281
Theiler
Tests of equivalence, 739
Test review bias, 738
Teleferin, for hepatitis C, 434
TEM beta-lactamases, 199–201
Temperature, melting, 9
Templates, 33–34, 768, 770
Tenofovir
for hepatitis B, 454
pharmacogenetics of, 617, 619
Termination, in sequencing, 768–769
Test kits, as intellectual property,
Test review bias, 738
Tests of equivalence, 739
Theiler's disease-associated virus, 85
Thermo Fisher Scientific instruments, 767
Thymidine analogs, pharmacogenetics of, 622
Tick-borne diseases, 281
Borreliaburgdorferi, 297
ricketsial, 296–297
tick-borne encephalitis virus, 289
Tissierella, 26
Tissue factor, in gastrointestinal infections,
666
TLRs (Toll-like receptors), 635–636
Tm Biosciences instrument, 112
TMA, see Transcription-mediated amplification
Tolerance limit, in quantitative molecular
assays, 727
Toll-like receptors, microRNAs and,
635–636
Toscana virus, meningocencephalitis due to,
635–636
Total ESBL + AmpC Confirm Kit, 201
Toxin(s), Clostridium difficile, see Clostridium
difficile
Toxin-coupled palis, in gastrointestinal
infections, 668
Toxoplasma gondii, surveillance of, 262
toxR gene, 366
Trade secrets, 803–804
Trademarks, 803–804
TRAIL (necrosis factor-related apoptosis-
inducing ligand), in gastrointestinal
infections, 670
Transcribed spacer regions, as target for fungi
sequencing, 494
“Transcript filtering,” 83–84
Transcription-mediated amplification, 11, 13,
386
for genitourinary tract organisms, 390–392
for hepatitis C, 435
Transcriptomics
for HIV, 657–658
male urethra microbial community studies
with, 149–152
in next-generation sequencing, 75
Transforming growth factor, in gastrointestinal
infections, 666
Transfusion medicine, HCV assays for, 441
Translocation, in next-generation sequencing,
35
Transplant recipients, viral infections in, 476–
483
Transport genes, polymorphisms of, 614, 618–
620
Transpososomes, for library preparation, 60–61
Transposon-mediated library, 769
Travelers, dengue and malaria in, 591
TREK Sensititre, for
Travelers, dengue and malaria in, 591
Treponema pallidum, 288, 291, 393
Treponemal tests, for
Trichomonas hominis
Trichomonas vaginalis
Trichomonas hominis
Trichomonas vaginalis
asymptomatic carriage of, 394–395
in male urethra microbial communities,
146–147, 149
in male urethritis, 394–395
TMA for, 13
in vaginal microbiome, 143
Trichophyton
skin disorders caused by, 121–122
in skin microbiome, 118
Trichosonny, 534
Trichuris suis, 534
Trichuris trichuria, 533–534
TRIMalpha, in HIV immunity, 659
Trimthoprim-sulfamethoxazole, pharmacoge-
genetics of, 618–619
Triosephosphate isomerase, 532
tRNA gene
16S
in male urethra microbial communities,
146–152
in next-generation sequencing, 74–75
for protozoa, 372–373
in skin microbiome studies, 118
28S, in eukaryocytes, 75
Trolife assay, for HIV, 420–424
Tropheymu uholemp, 19, 22, 426
identification of, 81
meningocencephalitis due to, 291, 297
Tropical Disease Research unit, 552
Tropism, of viruses, 420–424
TrueLab Real Time Micro PCR system, 570,
585–586
TrueLab TB Assay, 569
TrueSeq method, 62
Trugene TBS assay, 458
Trugene HCV assay, 440
Trugene HIV-1 genotyping kit, 423, 426, 767
Trypanosoma cruzi
infections due to, see Chagas' disease
geneome of, 503
genotyping of, 506–511
polymorphisms of, 503
Trypanosomiasis, American, see Chagas' dis-
ease
Tulip Group/BigTec Labs Joint Venture, 603
Tumor necrosis factor receptor p55, in gastro-
inestinal infections, 668
Tumor necrosis factor-α, in gastrointestinal
infections, 664–671
Tumaround time, of multiple-drug-resistant
organisms detection methods, 197–200,
205–206
TwistDX fluorometric instrument, 549
TwistDX recombinase polymerase amplifica-
tion assay, 572–573
UGT1A1 gene, polymorphisms of, 620
Ulcer(s)
Buril, 406–407
genital, 393–394
Haemophilus daceyi, 394
herpes simplex virus, 393–394
Trichomonas pallidum, 393
skin, osteoarticular organisms spread from,
402
Ulcerative colitis, 131, 134
Ultracentrifugation, for next-generation
sequencing, 72
Ultrio assays
for HCV, 442
for HCV, 441–442
UMD tests, 173–175, 178
Unique patient identification systems, 687,
689
UNITAID TVB Diagnostics Landscape Tech-
ology Report, 570
United Kingdom, norovirus surveillance in,
266–272
United Kingdom National External Quality
Assessment Service, 472
Universal bacterial identification, 74
Universal bacterial identification, 74
Universal capture sequences, 112
Universal data file, for WHONET, 694
Universal tail sequences,
for protozoa, 372
for HCV, 442
for HCV, 441
Universal tail sequences,
for HCV, 442
for HCV, 441
United States, norovirus surveillance in,
266–272
University of Maryland School of Medicine,
database of, 776
Unlabeled probe, 12
Upstream factors, in digital PCR, 52
Uracil-N-glycosylase, 22–23, 716
Urban wildlife, pathogens in, 278
Ureaplasma, in male urethra microbial com-
munities, 146–150
Ureaplasma urealyticum, in male urethritis, 394
Urethra, male, microbial communities of,
146–155

SUBJECT INDEX
Urethritis, 146–152, 394
Urgent threats, in antibiotic resistance, 251–252
Urinary antigen test
for Legionella, 313–314
for Mycobacterium tuberculosis, 567
Urine
MALDI-TOF analysis of, 93
microbial communities in, 148
Usefulness, of patent, 803–804
User experience integration, of medical device systems, 687
User-friendly criteria, 548, 598

Using Proficiency Testing to Improve the Clinical Laboratory, 756
Utility patents, 803

Vaccination, varicella-zoster virus, 483
Vaccinia virus, 291
Vaginal microbiome, 138
Vaccination, varicella-zoster virus, 483
Vaginosis, bacterial, 139
Vaginitis, 386
Validation, see also genes and operons, 199
Vancomycin
for Clostridium difficile, 185
history of, 212
resistance to, 199, 204
Vancomycin-resistant enterococci, 199, 212–231
Vancomycin-resistant Staphylococcus aureus, 213, 251
Variability, interassay, 725
Variable number of tandem repeat (VNTR) analysis, 238
Variables, for method verification, 732
Varicella, 51, 736, 740
Variant(s), digital PCR for, 53
Variant callers, 771
Variant-specific surface proteins, 670
Variation, descriptive measures, 736–738
Varicella-zoster virus (VZV) in encephalitis, 288
in meningoecephalitis, 289, 293–295
NAATs for, 315–316
in transplant recipients, 482–483
Vascularopathy, varicella-zoster virus, 294–295
Veillonella, 26
in gastrointestinal microbiome, 131
in male urethra microbial communities, 147–149, 151
Velvet software, 771
Vendor neutrality, in medical device connectivity, 687
Venereal equine encephalitis virus, 291
Verification, definition of, 745, 784
Verification/validation, 721–744
acceptable errors in, 733–734
of analytical sensitivity, 724–725, 742
of analytical specificity, 742
of assay efficiency, 726
of assays, 531
of bias, 738
biostatistics for, 732–738
of central tendency, 736–738
of clinical test performance, 725
of comparative statistics, 740–743
controls for, 726–729; see also Controls of data, 736
data collection for, 733, 736
data types in, 733
definition of, 721, 743
descriptive measures of variation, 736–738
document for, 723–724
experimental design for, 732–738
hypothesis for, 731
of inferential statistics, 738–741
of interassay variability, 726
of MALDI-TOF mass spectrometry, 784–796
of next-generation sequencing, 76, 771–777
path to, 722–724
planning for, 731
qualitative, 724, 742
in quality assurance, 748–753
quantitative, 725–728, 742–743
reference method comparison, 742
regulations for, 721–722
from research laboratory to clinical laboratory, 721–722
of Sanger sequencing, 771–777
software for, 736
of specimen-sampling strategy, 732–733
strategy for, 723
Verigene BC-Gp, 176
Verigene CDF test, 187–188
Verigene Gram-Negative Blood Culture system, 340–341, 343
Verigene Gram-Positive Blood Culture system, 340, 341, 343
Verigene systems, 105, 225
Verrucovirochila, 128, 131
Versant 440 analyzer, for bDNA, 3
Versant branched DNA test, for HIV, 424–426
Versant HBV DNA test, 456–457
Versant HCV genotype 2.0 assay, 440
Versant HCV RNA test, 437–438
Versant HIV-1 RNA test, 421–423
Versant kPCR molecular system, 582–583
Ventricular osteomyelitis, 401–402, 410
Veterinary academia, cooperation with, 280
Vibrio, 363, 365
biomarkers of, 664, 668–669
in gastrointestinal microbiome, 129
surveillance of, 247
Vibrio cholerae, 36–38, 365
Vibrio parahaemolyticus, 365
Vibrio vulnificus, 365
VIDISCA (virus discovery based on cDNA-amplified fragment length polymorphism), 83
VIM metallo-beta-lactamase, 200
Viperin, in gastrointestinal infections, 670
VIRA3001 study, of HIV therapy, 420
Viral load assays and tests
adenoviruses, 476–477
cytomegalovirus, 479–480
Epstein-Barr virus, 479–480
HBV, 453, 453–459
HIV, 418–419, 421, 424–425, 580–588
PCR for, 11
in proficiency testing, 760
Viretans streptococci, in osteoarticular infections, 402
Virochip DNA microarray analysis, 83
Viroime, human, 156–166
ViroSeq HIV-1 genotyping system, 423
Virtual specificity, 725
Virtualization, in cloud computing, 707
Virulence factors, whole-genome sequencing for, 32–33
VirulenceFinder, 240
Virus(es), see also Human virome; subjects starting with Viral; specific viruses
central nervous system, 288–290, 292–296
culture of, 80
discovery of, 81–82
enrichment of, 157
gastrointestinal, 356–372
 genotyping of, 44
identification of, 82
MALDI-TOF for, 96
microarrays for, 112–113
resistance in, 44
respiratory, see Respiratory viruses; specific viruses
signal amplification for, 103
skin disorders caused by, 122
in skin microbiome, 118–119
in transplant recipients, 476–483
whole-genome sequencing for, 33, 39, 42
Viruses discovery based on cDNA-amplified fragment length polymorphism (VIDISCA), 83
Vitek MS system, 493, 785
VITEK systems, 175
for Enterococcus, 221, 223
for MALDI-TOF, 96, 221
vivoDX, 179
VNTR (variable number of tandem repeat) analysis, 238
Volatile organic chemicals, in Mycobacterium tuberculosis, 573
Volunteer samples, 733
Voriconazole, pharmacogenetics of, 617
VPI gene, 259–260
VP4 gene and VP7 gene, 368
VYOO instrument, 175, 179
for MRSA/MSSA, 173
Warts
cutaneous, 122
in HPV infections, 465–466
Wave80 test, 569
Waveguides, 70, 85
Web, for cloud computing, 707–718
West Nile virus
meningoencephalitis due to, 288, 289, 292, 295
surveillance of, 258–259
whole-genome sequencing for, 42
Western blot test
for herpes simplex virus, 394
for osteoarticular organisms, 405–406
Western equine encephalitis virus, 291
Westgard rules, for controls, 729
Westmead Millennium Institute, 496
Whatman FTA filter, 494
Whipple’s disease, 19–22, 81, 281, 297, 406
Whole-blood PCR, for tick-borne rickettsial
disease, 297
Whole-genome multilocus sequence typing
(wgMLST), 240
Whole-genome sequencing, 32–48, 768, 769
applications of, 36–44
challenges with, 44
current paradigm of, 32–36
facilities for, 44
for gastrointestinal parasites, 534
for HPV, 118
for male urethra microbial communities,
152
for MRSA, 171
for outbreak investigation, 237–243
pulsed-field gel electrophoresis with, 240
of skin microbiome, 119
technologies for, 33–36
for zoonotic diseases, 280
WHONET software, 248–249, 692–706
analytical features of, 697–702
antimicrobial susceptibility and, 698–699
cluster alerts in, 700–702
data management in, 692–693
development of, 693–695
future developments in, 702–705
global microbial sensor network in, 704–705
isolate information in, 698, 700
modules in, 696–697
multidrug resistance profiles in, 699
objectives of, 692
organisms involved in, 692
scatterplots in, 699
subtyping in, 702–704
use of, 695–696
Whooping cough, see Bordetella pertussis
Wildlife, pathogens in, 276–278
Windows, for microarrays, 109
Workflow, in next-generation sequencing, 86
World Economic Forum, 689
World Health Assembly of 2015, 696
World Health Organization
eHealth definition of, 686, 710
Foundation of Innovative New Diagnostics,
594
HIV viral load test guidelines of, 581
malaria test supervision by, 620
point-of-care testing guidelines of, 547, 550, 552
Prequalification Program of, 550
public health surveillance data definition of, 646
Regional Office for Africa, 696
Regional Office for Eastern Mediterranean,
696
Regional Office for Europe, 696
Regional Office for South-East Asia, 696
Regional Office for the Western Pacific,
696
STOP-TB Partnership, 557
surveillance definition of, 245
test standards of HBV, 457–458
HCV, 442
HPV, 472
tuberculosis detection program of, 557
verification strategy, 723
WSX-1 protein, in gastrointestinal infections,
672
XCP Nucleic Acid Device, 570
Xenodiagnosis, for Trypanosoma cruzi, 502
Xenorhabdus, 26
Xenotropic murine leukemia virus-related
virus, 87
Xpert C. difficile assay, 187–188, 191–193
Xpert Carba-R assay, 203, 249
Xpert CT/NG, 389–390
Xpert Flu assay, 324, 331
Xpert HIV test, 422
Xpert HPV test, 469, 471
Xpert MDRO, 202–203
Xpert MRSA assay, 173–174, 179, 198
Xpert MRSA/SA BC, 341
Xpert MRSA/SA SSTI test, 404
Xpert MTB/RIF test, 249–250, 257, 297,
557–569, 573, 690–691, 710–718
Xpert TV, 387
Xpert van A/B assay, 224–225
XpertSMS, 717–718
xTAG instrument, 112
xTAG RVP assays, 318–319, 323–324
xTAG test, for adenoviruses, 482
Yeast Traffic Light PNA FISH, 491
Yeasts, see individual yeasts
YeastStar genomic DNA kit, 494
Yersinia
biomarkers of, 664, 668
in gastrointestinal microbiome, 129
Yersinia enterocolitica, 129, 363–365
Yersinia pestis
in bloodstream infections, 343
DNA target sequencing for, 27
surveillance of, 258
zoonotic origin of, 279
Yersinia pseudotuberculosis, 27
Zalcitabine, pharmacogenetics of, 622
Zero-mode waveguides, 35, 70
Zidovudine, pharmacogenetics of, 622
ZipCode and cZipCode capture sequences,
112
Zoonotic diseases, detection of, 275–284
categories of, 275–280
cost/benefit of, 275–276
newly discovered, 275
regulation of, 280–281
reporting of, 281
with tests developed for humans, 280
veterinary academic cooperation with, 280
Zoster, in transplant recipients, 482–483
ZR/fungal/bacterial DNA kit, 494