Molecular Microbiology
DIAGNOSTIC PRINCIPLES AND PRACTICE
THIRD EDITION
Contents

Contributors ix
Preface xv

Section I

Novel and Emerging Technologies

1. Nucleic Acid Amplification Methods
 Overview / 3
 FREDERICK S. NOLTE AND CARL T. WITTWER

2. Application of Identification of Bacteria by DNA Target Sequencing in a Clinical Microbiology Laboratory / 19
 KARISSA D. CULBREATH, KEITH E. SIMMON, AND CATHY A. PETTI

3. Microbial Whole-Genome Sequencing: Applications in Clinical Microbiology and Public Health / 32
 M. E. TÖRÖK AND S. J. PEACOCK

4. Digital PCR and Its Potential Application to Microbiology / 49
 JIM F. HUGGETT, JEREMY A. GARSON, AND ALEXANDRA S. WHALE

5. Massively Parallel DNA Sequencing and Microbiology / 58
 ULF GYLLENSTEN, RUSSELL HIGUCHI, AND DAVID PERSING

6. Next-Generation Sequencing / 68
 CHARLES CHIU AND STEVE MILLER

7. Pathogen Discovery / 80
 EFREM S. LIM AND DAVID WANG

 ALEX VAN BELKUM, VICTORIA GIRARD, MAUD ARSAC, AND ROBIN PATEL

9. Multiplex Technologies / 102
 KEVIN ALBY AND MELISSA B. MILLER

Section II

Metagenomics: Implications for Diagnostics

10. The Skin Microbiome: Insights into Potential Impact on Diagnostic Practice / 117
 ELIZABETH A. GRICE

11. The Gastrointestinal Microbiome / 126
 ABRIA MAOEE, JAMES VERSALOVIC, AND RUTH ANN LUNA

12. The Vaginal Microbiome / 138
 DAVID N. FREDRICKS

13. Microbial Communities of the Male Urethra / 146
 BARBARA VAN DER POL AND DAVID E. NELSON

14. The Human Virome in Health and Disease / 156
 KRISTINE M. WYLIE AND GREGORY A. STORCH

Section III

Health Care-Associated Infections

15. Molecular Detection of *Staphylococcus aureus* Colonization and Infection / 169
 KATHY A. MANGOLD AND LANCE R. PETERSON

16. Molecular Diagnostics for *Clostridium difficile* / 185
 FRÉDÉRIC BARBUT AND CURTIS J. DONSKEY

17. Overview of Molecular Diagnostics in Multiple-Drug-Resistant Organism Prevention: Focus on Multiple-Drug-Resistant Gram-Negative Bacterial Organisms / 197
 KAEDÉ V. SULLIVAN AND DANIEL J. DIEKEMA
18 Detection of Vancomycin-Resistant Enterococci / 212
ALLISON J. McGEER AND BARBARA M. WILLEY

19 The Impact of Molecular Diagnostics on Surveillance of Foodborne Infections / 235
JOHN BESSE, HEATHER CARLETSON, RICHARD GOERING, AND PETER GERNER-SMIDT

20 Role of Molecular Methods in Improving Public Health Surveillance of Infections Caused by Antimicrobial-Resistant Bacteria in Health Care and Community Settings / 245
FRED C. TENOVER

21 Molecular Diagnostics: Huge Impact on the Improvement of Public Health in China / 256
HUI WANG, BIN CAO, Yawei ZHANG, AND SHUGUANG LI

22 Surveillance and Epidemiology of Norovirus Infections / 266
JOHN P. HARRIS

23 Molecular Diagnostic Assays for the Detection and Control of Zoonotic Diseases / 275
J. SCOTT WEESE

24 Molecular Approaches to the Diagnosis of Meningitis and Encephalitis / 287
KAREN C. BLOCH AND YI-WEI TANG

25 Using Nucleic Acid Amplification Techniques in a Syndrome-Oriented Approach: Detection of Respiratory Agents / 306
KATHERINE LOENS AND MARGARETA IEVEN

26 Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections / 336
ONYA OPOTA, KATIA JATON, GUY PRODP'HOM, AND GILBERT GREUB

27 Molecular Diagnosis of Gastrointestinal Infections / 362
BENJAMIN A. PINSKY AND NIAZ BANAEI

28 Diagnostic Approaches to Genitourinary Tract Infections / 386
CLAIRE C. BRISTOW AND JEFFREY D. KLAUSNER

29 Syndromic Diagnostic Approaches to Bone and Joint Infections / 401
ALEXANDER J. McADAM

30 Molecular Detection and Characterization of Human Immunodeficiency Virus Type 1 / 417
ANGELA M. CALIENDO AND COLLEEN S. KRAFT

31 Molecular Detection and Characterization of Hepatitis C Virus / 430
MICHAEL S. FORMAN AND ALEXANDRA VALSAMAKIS

32 Molecular Detection and Characterization of Hepatitis B Virus / 449
JEFFREY J. GERMER AND JOSEPH D. C. YAO

33 Molecular Detection of Human Papillomaviruses / 465
DENISE L. QUIGLEY AND ELIZABETH R. UNGER

34 Molecular Diagnostics for Viral Infections in Transplant Recipients / 476
MATTHEW J. BINNICKER AND RAYMUND R. RAZONABLE

35 Molecular Detection and Identification of Fungal Pathogens / 489
KATRIEN LAGROU, JOHAN MAERTENS, AND MARIE PIERRE HAYETTE

36 Molecular Approaches for Diagnosis of Chagas' Disease and Genotyping of Trypanosoma cruzi / 501
PATRICIO DIOSQUE, NICOLAS TOMASINI, AND MICHEL TIBAYRENC

37 Molecular Approaches for Diagnosis of Malaria and the Characterization of Genetic Markers for Drug Resistance / 516
LISA C. RANFORD-CARTWRIGHT AND LAURA CIUFFREDA

38 Molecular Detection of Gastrointestinal Parasites / 530
JACO J. VERWEIJ, ALEX VAN BELKUM, AND C. RUNE STENSVOLD
section VIII

POINTER-OF-CARE/NEAR-CARE DIAGNOSTICS

39 Molecular Diagnostics and the Changing Face of Point-of-Care / 545
DAVID L. DOLINGER AND ANNE M. WHALEN

40 Point-of-Care Technologies for the Diagnosis of Active Tuberculosis / 556
GRANT THERON

41 Molecular Diagnostics for Use in HIV/AIDS Care and Treatment in Resource-Limited Settings / 580
MAURINE M. MURTAGH

42 Rapid Point-of-Care Diagnosis of Malaria and Dengue Infection / 589
LIESÈLOTTE CNOPS, MARJAN VAN ESBROECK, AND JAN JACOBS

section IX

THE HOST AND HOST RESPONSE

43 Implications of Pharmacogenetics for Antimicrobial Prescribing / 613
AR KAR AUNG, ELIZABETH J. PHILLIPS, TODD HULGAN, AND DAVID W. HAAS

44 Exploiting MicroRNA (miRNA) Profiles for Diagnostics / 634
ABHIJEET BAKRE AND RALPH A. TRIPP

45 Host Response in Human Immunodeficiency Virus Infection / 655
PAUL J. MCLAREN AND AMALIO TELENTI

46 Biomarkers of Gastrointestinal Host Responses to Microbial Infections / 663
RANA E. EL FEGHALY, HANSRAJ BANGAR, AND DAVID B. HASLAM

section X

INFORMATION TECHNOLOGY

47 Point-of-Care Medical Device Connectivity: Developing World Landscape / 685
JEFF BAKER

48 WHONET: Software for Surveillance of Infecting Microbes and Their Resistance to Antimicrobial Agents / 692
JOHN STELLING AND THOMAS E. O'BRIEN

49 Cloud-Based Surveillance, Connectivity, and Distribution of the GeneXpert Analyzers for Diagnosis of Tuberculosis (TB) and Multiple-Drug-Resistant TB in South Africa / 707
WENDY S. STEVENS, BRAD CUNNINGHAM, NASEEM CASSIM, NATASHA GOUS, AND LESLEY E. SCOTT

section XI

QUALITY ASSURANCE

50 Molecular Method Verification / 721
DONNA M. WOLK AND ELIZABETH M. MARLOWE

51 Molecular Microbiology Test Quality Assurance and Monitoring / 745
MATTHEW J. BANKOWSKI

52 Proficiency Testing and External Quality Assessment for Molecular Microbiology / 754
ROBERTA M. MADEJ

53 Practices of Sequencing Quality Assurance / 766
KARA L. NORMAN AND DAVID M. DINAUER

54 Verification and Validation of Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry-Based Protocols / 784
MATTHEW L. FARON, BLAKE W. BUCHAN, AND NATHAN A. LEDEBOER

section XII

THE BUSINESS OF DIAGNOSTICS

55 Improved Diagnostics in Microbiology: Developing a Business Case for Hospital Administration / 799
ELIZABETH M. MARLOWE, SUSAN M. NOVAK-WEEKLEY, AND MARK LAROCCHIO

56 Molecular Diagnostics and the Changing Legal Landscape / 803
MARK L. HAYMAN, JING WANG, AND JEFFREY M. LIBBY

Index 811

CONTRIBUTORS

KEVIN ALBY
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104

MAUD ARSAC
bioMérieux SA, R&D Microbiology, 3 Route de Port Michaud, 38390 La Balme Les Grottes, France

AR KAR AUNG
Department of General Medicine and Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia

JEFF BAKER
JESA Consulting, 63 Putnam Street, Suite 203, Saratoga Springs, NY 12866

ABHIJEET BAKRE
University of Georgia, Dept. of Infectious Diseases, Athens, GA 30602

NIAZ BANAEI
Stanford University School of Medicine, Stanford, CA 94305, and Clinical Microbiology Laboratory, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital, Palo Alto, CA 94304

HANSRAJ BANGAR
Division of Infectious Disease, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229

MATTHEW J. BANKOWSKI
Diagnostic Laboratory Services, Inc. (The Queen’s Medical Center), Microbiology Department, Aiea, HI 96701, and John A. Burns School of Medicine and the University of Hawaii at Manoa, Department of Pathology, Honolulu, HI 96813

FRÉDÉRIC BARBUT
UHLIN (Unité d’Hygiène et de Lutte contre les Infections Nosocomiales), National Reference Laboratory for Clostridium difficile, Groupe Hospitalier de l’Est Parisien (HUEP), Site Saint-Antoine, 75012 Paris, France

JOHN BESSER
Enteric Disease Laboratory Branch, Centers for Disease Control & Prevention, 1600 Clifton Rd, Atlanta, GA 30333

MATTHEW J. BINNICKER
Mayo Clinic, Clinical Microbiology, 200 First Street SW - Hilton 454, Rochester, MN 55905

KAREN C. BLOCH
Vanderbilt University Medical Center, A-2200 MCN, Nashville, TN 37232

CLAIRe C. BRISTOW
Division of Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093

BLAKE W. BUCHAN
Department of Pathology, Medical College of Wisconsin, 9200 West Wisconsin Ave., Milwaukee, WI 53226

ANGELA M. CALIENDO
Department of Medicine, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903

BIN CAO
China-Japan Friendship Hospital, Beijing, China 100029

HEATHER CARLETON
Enteric Disease Laboratory Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333

NASEEM CASSIM
Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Third Floor, Room 3B22, Parktown, Johannesburg, South Africa

CHARLES CHIU
University of California, San Francisco, Laboratory Medicine, 185 Berry Street, Suite 290, Box #0134, San Francisco, CA 94107
LAURA CIUFFREDA
University of Glasgow, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, 120 University Place, Glasgow, Scotland G12 8TA, United Kingdom

LIESELOTTE CNOPS
Institute of Tropical Medicine, Clinical Sciences, Kronenburgstraat 43/3, Antwerp, 2000, Belgium

KARISSA D. CULBREATH
Department of Pathology, University of New Mexio Health Sciences Center, and TriCore Reference Laboratories, Albuquerque, NM 87102

BRAD CUNNINGHAM
Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Third Floor, Room 3B22, Parktown, Johannesburg, South Africa

DANIEL J. DIEKEMA
University of Iowa Carver College of Medicine, Division of Infectious Diseases, 200 Hawkins Drive, Iowa City, IA 52242

DAVID M. DINAUER
Thermo Fisher Scientific, 9099 N Deerbrook Trail, Brown Deer, WI 53223

PATRICIO DIOSQUE
Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET, Argentina

DAVID L. DOLINGER
FIND, Geneve, Geneva CH1211, Switzerland

CURTIS J. DONSKEY
Infectious Diseases Section 1110(W), Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106

RANA E. EL FEGHALY
Department of Pediatrics, Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS 39216

MATTHEW L. FARON
Department of Pathology, Medical College of Wisconsin, 9200 West Wisconsin Ave., Milwaukee, WI 53226

MICHAEL S. FORMAN
Department of Pathology, The Johns Hopkins Hospital, 600 North Wolfe Street, Meyer B1-193, Baltimore, MD 21287

DAVID N. FREDRICKS
Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109

JEREMY A. GARSON
Research Department of Infection, Division of Infection and Immunity, UCL, London, United Kingdom

JEFFREY J. GERMER
Division of Clinical Microbiology, Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN 55905

PETER GERNER-SMIDT
Enteric Disease Laboratory Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, Georgia 30333

VICTORIA GIRARD
bioMérieux SA, R&D Microbiology, 3 Route de Port Michaud, 38390 La Balme Les Grottes, France

RICHARD GOERING
Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178

NATASHA GOUS
Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Third Floor, Room 3B22, Parktown, Johannesburg, South Africa

GILBERT GREUB
Institute of Microbiology and Infectious Diseases Service, University of Lausanne and University Hospital Center, Lausanne, Switzerland

ELIZABETH A. GRICE
University of Pennsylvania, Perelman School of Medicine, Department of Dermatology, 421 Curie Blvd, 1007 BRB II/III, Philadelphia, PA 19104

ULF GYLLENSTEN
Uppsala University, Department of Immunology, Genetics and Pathology, Science of Life Laboratory Uppsala, Biomedical Center, Box 815, SE-751 08 Uppsala, Sweden

DAVID W. HAAS
Vanderbilt Health - One Hundred Oaks, 719 Thompson Lane, Suite 47183, Nashville, TN 37204

JOHN P. HARRIS
Public Health England, Centre for Infectious Disease Surveillance and Control, 61 Colindale Avenue, Colindale, London, NW9 5EQ, United Kingdom

DAVID B. HASLAM
Division of Infectious Disease, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229

MARIE PIERRE HAYETTE
University Hospital of Liège, Liège, Belgium

MARK L. HAYMAN
Intellectual Property Practice Group, Morgan Lewis & Bockius LLP, One Federal Street, Boston, MA 02110

RUSSELL HIGUCHI
Cepheid, 904 Caribbean Dr., Sunnyvale, CA 94089

JIM F. HUGGETT
Molecular and Cell Biology, LGC, Queens Road, Teddington, Middlesex, TW11 0LY, United Kingdom

TODD HULGAN
Vanderbilt University School of Medicine, Department of Medicine, A2200 MCN, 1161 21st Avenue South, Nashville, TN 37232
MARGARETA IEVEN
University Hospital Antwerp, Department of Medical Microbiology, Wilrijkstraat 10, Antwerp, 2650, Belgium

JAN JACOBS
Institute of Tropical Medicine, Clinical Sciences, Kronenburgstraat 43/3, Antwerp, 2000, Belgium

KATIA JATON
Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland

JEFFREY D. KLAUSNER
Division of Infectious Diseases, Department of Medicine, University of California Los Angeles, and Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90024

COLLEEN S. KRAFT
Department of Pathology and Laboratory Medicine, Division of Infectious Diseases, Emory University, 1364 Clifton Rd, NE, Atlanta, GA 30322

KATRIEN LAGROU
KU Leuven—University of Leuven, Department of Microbiology and Immunology, and University Hospitals Leuven, Department of Laboratory Medicine and National Reference Center for Mycosis, B-3000 Leuven, Belgium

MARK LaROCCO
MTL Consulting, Erie, PA 16506

NATHAN A. LEDEBOER
Department of Pathology, Medical College of Wisconsin, 9200 West Wisconsin Ave., Milwaukee, WI 53226

SHUGUANG LI
Peking University People’s Hospital, Beijing, China 100044

JEFFREY M. LIBBY
Mendel Biological Solutions, LLP, 3935 Point Eden Way, Hayward, CA 94545

EFREM S. LIM
Washington University in St. Louis, Department of Molecular Microbiology and Pathology & Immunology, 660 S. Euclid Avenue, Campus Box 8230, Saint Louis, MO 63110

KATHERINE LOENS
University Hospital Antwerp, Department of Medical Microbiology, Wilrijkstraat 10, Antwerp, 2650, Belgium

RUTH ANN LUNA
Department of Pathology & Immunology, Baylor College of Medicine, 1102 Bates Street, Feigin Center Suite 830, Houston, TX 77030

ROBERTA M. MADEJ
Alta Bates Summit Medical Center, Clinical Laboratory-Microbiology, Berkeley, CA 94705

JOHAN MAERTENS
KU Leuven—University of Leuven, Department of Microbiology and Immunology, and University Hospitals Leuven, Department of Hematology, B-3000 Leuven, Belgium

ABRIA MAGEE
Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030

KATHY A. MANGOLD
NorthShore University HealthSystem, Department of Pathology and Laboratory Medicine, 2650 Ridge Ave., Burch Bldg., Room 116, Evanston, IL 60201

ELIZABETH M. MARLOWE
The Permanente Medical Group, Berkeley, CA 94710

ALEXANDER J. McADAM
Infectious Diseases Diagnostic Laboratory, Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA 02115

ALLISON J. McGEER
Infection Control, Room 210, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5

PAUL J. McLAREN
School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

STEVE MILLER
University of California, San Francisco, Laboratory Medicine, 185 Berry Street, Suite 290, Box #0100, San Francisco, CA 94107

MELISSA B. MILLER
Clinical Microbiology Laboratory, UNC Hospitals, 101 Manning Drive, East Wing 1033, Chapel Hill, NC 27514

MAURINE M. MURTAGH
The Murtagh Group, LLC, 2134 Stockbridge Avenue, Woodside, CA 94062

DAVID E. NELSON
Indiana University School of Medicine, Department of Microbiology & Immunology, Indianapolis, IN 46202

FREDERICK S. NOLTE
Medical University of South Carolina, Department of Pathology and Laboratory Medicine, 171 Ashley Avenue, MSC 908, Charleston, SC 29425

KARA L. NORMAN
Department of Research and Development, Thermo Fisher Quality Controls, Thermo Fisher Scientific, 6010 Egret Court, Benicia, CA 94510

SUSAN M. NOVAK-WEEKLEY
Southern California Permanente Medical Group, Microbiology, 11668 Sherman Way, North Hollywood, CA 91605
CONTRIBUTORS

THOMAS F. O'BRIEN
Brigham and Women's Hospital, Microbiology Laboratory, WHO Collaborating Centre for Surveillance of Antimicrobial Resistance, 75 Francis Street, Boston, MA 02115

ONYA OPOTA
Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland

ROBIN PATEL
Mayo Clinic, Division of Clinical Microbiology, Division of Infectious Diseases, Rochester, MN 55905

S. J. PEACOCK
University of Cambridge, Department of Medicine, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom

DAVID PERSING
Cepheid, 904 Caribbean Dr., Sunnyvale, CA 94089

LANCE R. PETERSON
NorthShore University HealthSystem, Department of Pathology and Laboratory Medicine, 2650 Ridge Ave., Burch Bldg., Room 116, Evanston, IL 60201

CATHY A. PETTI
4HealthSpring Global, Inc., Bradenton, FL 34209

ELIZABETH J. PHILLIPS
Vanderbilt University, 1493 Willowbrooke Circle, Franklin, TN 37069

BENJAMIN A. PINSKY
Stanford University School of Medicine, Stanford, CA 94305, and Clinical Virology Laboratory, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital, Palo Alto, CA 94304

GUY PRODHOM
Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland

DENISE I. QUIGLEY
Cytogenetics and Molecular Genetics Laboratory, Kaiser Permanente North West Regional Laboratory, 13705 North East Airport Way, Portland, OR 97230

LISA C. RANFORD-CARTWRIGHT
University of Glasgow, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, 120 University Place, Glasgow, Scotland G12 8TA, United Kingdom

RAYMUND R. RAZONABLE
Mayo Clinic, Clinical Microbiology, 200 First Street SW - Hilton 454, Rochester, MN 55905

LESLEY E. SCOTT
Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Third Floor, Room 3B22, Parktown, Johannesburg, South Africa

KEITH E. SIMMON
Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108

JOHN STELLING
Brigham and Women's Hospital, Microbiology Laboratory, WHO Collaborating Centre for Surveillance of Antimicrobial Resistance, 75 Francis Street, Boston, MA 02115

C. RUNE STENSVOLD
Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark

WENDY S. STEVENS
Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Third Floor, Room 3B22, Parktown, Johannesburg, South Africa

GREGORY A. STORCH
Washington University School of Medicine, Pediatrics, 660 S Euclid Avenue, Campus Box 8116, St. Louis, MO 63110

KAEDE V. SULLivan
University of Pennsylvania, Pathology & Laboratory Medicine, 34th Street & Civic Center Blvd., Main Building, Room 5112A, Philadelphia, PA 19104

YI-WEI TANG
Memorial Sloan-Kettering Cancer Center, Clinical Microbiology Service, 1275 York Avenue, S328, New York, NY 10065

AMALIO TELENTI
J. Craig Venter Institute, La Jolla, CA 92037

FRED C. TENOVER
Cepheid, 904 Caribbean Drive, Sunnyvale, CA 94089

GRANT THERON
DST/NRF of Excellence for Biomedical Tuberculosis Research, and MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Lung Infection and Immunity Unit, Department of Medicine, University of Cape Town, Observatory, Cape Town, South Africa

MICHEL TIBAYRENC
Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), IRD Center, Montpellier, France

NICOLAS TOMASINI
Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET, Argentina, Salta, Argentina

M. E. TÖRÖK
University of Cambridge, Department of Medicine, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
RALPH A. TRIPP
University of Georgia, Animal Health Research Center, 111 Carlton Street, Athens, GA 30602

ELIZABETH R. UNGER
Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, 1600 Clifton Road, MS G41, Atlanta, GA 30333

ALEXANDRA VALSAMAKIS
Department of Pathology, The Johns Hopkins Hospital, 600 North Wolfe Street, Meyer B1-193, Baltimore, MD 21287

ALEX VAN BELKUM
bioMérieux SA, R&D Microbiology, 3 Route de Port Michaud, 38390 La Balme Les Grottes, France

BARBARA VAN DER POL
The University of Alabama at Birmingham School of Medicine, Department of Medicine, 703 19th Street South, Birmingham, AL 35294

MARJAN VAN ESBROECK
Institute of Tropical Medicine, Clinical Sciences, Kronenbergstraat 43/3, Antwerp, 2000, Belgium

JAMES VERSALOVIC
Texas Children’s Hospital, Pathology, 1102 Bates Avenue, Houston, TX 77030

JACO J. VERWEIJ
St. Elisabeth Hospital, Laboratory of Medical Microbiology and Immunology, Tilburg, Netherlands

DAVID WANG
Washington University in St. Louis, Department of Molecular Microbiology and Pathology & Immunology, 660 South Euclid Avenue, Campus Box 8230, Saint Louis, MO 63110

HUI WANG
Peking University People's Hospital, Beijing, China, No. 11 Xizihmen South Street, Xicheng District, Beijing 100044, P.R. China

JING WANG
Intellectual Property Practice Group, Morgan Lewis & Bockius LLP, One Federal Street, Boston, MA 02110

J. SCOTT WEENE
Dept of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G2W1, Canada

ALEXANDRA S. WHALE
Molecular and Cell Biology, LGC, Queens Road, Teddington, Middlesex, TW11 0LY, United Kingdom

ANNE M. WHALEN
FIND, Chemin des Mines 9, CH-1211, Geneva, Switzerland

BARBARA M. WILLEY
Department of Microbiology, Room 1480, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5

CARL T. WITTWER
University of Utah, Department of Pathology, University of Utah Medical School, Salt Lake City, UT 84132

DONNA M. WOLK
Geisinger Health System, Department of Laboratory Medicine, and Weis Center for Research, Danville, PA 17822-0131, and Wilkes University, Wilkes-Barre, PA 18701

KRISTINE M. WYLIE
Washington University School of Medicine, Pediatrics, 660 S Euclid Avenue, Campus Box 8116, Saint Louis, MO 63110

JOSEPH D. C. YAO
Division of Clinical Microbiology, Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN 55905

YAWEI ZHANG
Peking University People's Hospital, Beijing, China 100044
In the 5 years since the 2011 edition of this book, the molecular diagnostics landscape has changed dramatically. In the 1990s, molecular diagnostics was the domain of only a few reference laboratories; it took almost 20 years for these techniques to make their way into about half of the CLIA high-complexity laboratories in the United States. The full potential of this technology was slow to be realized largely because the methods used by these laboratories were not capable of delivering on-demand results or being conducted at the point of care. Over the past year, with the advent of CLIA-waived molecular testing spurred on by the inexorable force of innovation, molecular diagnostics have become increasingly democratized to the extent that physician office laboratories and sexual health clinics are now performing molecular testing on the premises, often delivering results in minutes or a few hours.

Laboratory professionals may at times find themselves a bit bewildered in this rapidly evolving landscape. Adding to this, enter next-generation sequencing (NGS) technology, as described in several chapters in this book (chapters 2, 3, 5, 6, 10–14, and 53). NGS-based analysis of microbial genomes and populations is in some ways similar to where PCR was in 1987: full of opportunities and challenges. For the first time, identification of the full range of pathogens—viruses, bacteria, fungi, and protozoa—can be addressed by using the same core technology. Microbial population analysis can be carried out at unprecedented depth, opening up the field of metagenomics (chapters 10–14). Whole-genome analysis goes beyond organism identification to predict drug resistance and detect pathogenic determinants. As diagnosticians, it seems likely that as this field evolves, so will our job descriptions. Still, much progress remains to be made before NGS can move beyond its current status as a research tool. NGS systems need to become more automated and less expensive to operate. The analysis of complex data sets provided by these systems needs to be simplified; the interpretation of results cannot require a PhD in bioinformatics for delivery of routine results. However, as complex as it is now, NGS too will eventually become democratized by the integration of workflow automation, improvements in sequencing technology, and information technology (IT).

Speaking of which, IT itself is about to play an increasing role in how and to whom our results are delivered (section X). A rapid molecular result is only as good as the downstream action taken in the treatment and management of patients. As we speak, patients in London, along with providers, are getting “push notifications” of results from their sexual health tests, resulting in a dramatically shortened time to therapy. Cloud-based aggregation of molecular test data is providing snapshots of emerging pathogens and drug resistance in real time by collecting de-identified test data directly from testing platforms. From the respiratory cloud to the digital cloud, we are watching the emergence of a new generation of global surveillance capabilities which will be of enormous public health benefit. Rapid detection technologies are also likely to evolve in the direction of on-demand multiplexing for simultaneous detection of treatment-informing targets. The convergence of rapid molecular assays with improvements in IT to deliver actionable information to health care providers is becoming a reality.

In 2015, the White House announced a $20 million prize for innovative diagnostic tests that will lead to more precise antimicrobial therapeutic decisions. In addition, the United Kingdom has announced the Longitude Prize, a challenge with a £10 million award for developing a point-of-care diagnostic test that also will identify when antibiotics are needed and which one to use. Thus, it seems that the importance of molecular diagnostic testing is finally being appreciated at the highest levels, especially to address the global problem of antimicrobial resistance. Let’s not disappoint them.

David H. Persing, MD, PhD
Executive Vice President
Chief Medical and Technology Officer
Cepheid, Sunnyvale, California

Fred C. Tenover, PhD
Vice President, Scientific Affairs
Cepheid, Sunnyvale, California
AB Biodisk Macro-Etest, for Enterococcus, 221–222
Abacavir, pharmacogenetics of, 620, 623, 659
AB-Biodisk Etest, for Enterococcus, 221–222
Abbott HBV Sequencing Assay, 458, 460
Abbott m2000 RealTime system for HBV, 456–457
for HIV, 582
Abbott Molecular m2000 RealTime system, 421–422, 425
Abbott RealTime CT/NG assay, 390
Agar screen test, for Enterococcus, 26
Adenovirus(es), 26
Adefovir, for hepatitis B, 454
Agrilaser, 26
AIDS, see also Human immunodeficiency virus (HIV)
Agranulocytosis, 26
Agnostic data, 109
Alignment, sequence, 35
AmpC beta-lactamases, 200
AmpC + ESBL Detection Set, 201
AmpC beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin(s)
AmpC-beta-lactamases, 200–205
AmpC-resistant Enterococcus faecium, 212
Amplicon(s)
Ampicillin-resistant Enterococcus faecium, 212
Amplicon melting, for PCR, 12
Amplicon sequencing, for outbreak investigation, 242–243
Amplicor CT/NG: DNA, 390
Amplicor melting, for PCR, 12
Amplicon sequencing, for outbreak investigation, 242–243
Amplicor melting, for PCR, 12
Amplicon sequencing, for outbreak investigation, 242–243
Amplicos, 131
AmpC beta-lactamases, 200–205
AmpC-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
AmpC-beta-lactamases, 200–205
AmpC + ESB Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
Amplification,
Amplicor Qualitative DNA assay, 422
Amplicor HPV test, 469
Amplicor HIV Monitor test, 422
Amplicor HCV Monitor test, 437
812-
Antibody(ies), for hybrid capture method, 4
see
Analysis of residuals, 741
Anal cancer, 468
Anaerobiospirillum
Anaerobes
AmpliScreen HCV, 442
Amplifier molecule, 3
Analytical phase, quality assurance in, 746
Analytical study designs, 743
ANOVA (analysis of variance), 739
Animals
isothermal, 549
loop-mediated, 15–16
for microRNA detection, 640–647
for next-generation sequencing, 33-34
quality assurance in, 746
solid-phase, 33–34
strand displacement, 13–15, 386, 390–392
target, 3–16; see also PCR
for viral sequencing, 158–159
Amplified MTB Direct Test, 565
Amplitube molecule, 3
AmpliScreen HCV, 442
AmpliVue HSV 1+2 Assay, 293
AmpliVue test, for Cladostereum difficile, 187–188
Amsel criteria, 142–143, 388
Anaplasas
DNA target sequencing for, 21, 26
in gastrointestinal microbiome, 128
in male urethra microbial communities, 147
in osteoarticular infections, 402
in vaginal microbiome, 139
Anapathotrophillus, 26
Anaplasa, 3
Anastrous, 26
Anal cancer, 468
Analysis of residuals, 741
Analysis of variance (ANOVA), 739–740, 788
Analyte-specific reagents, verification of, 721–722
Analytical measurement range, 749
Analytical phase, quality assurance in, 746–747
Analytical sensitivity, 724–725, 742, 752, 791–792
Analytical specificity, 741, 752
Analytical study designs, 743
Anaplasma, meningocoeptilusitis due to, 290
Analoctoma duodenale, 533–534
Anelloviruses, 82, 160–162
Animals
diseases acquired from, see Zoonotic diseases
organism surveillance in, 247
ANOVA (analysis of variance), 739–740, 788
Anthrax, see Bacillus anthracis
Antibiotic-resistant organisms, surveillance of, 245–255
Antibiotics, see Antimicrobial(s)
Antibody(ies), for hybrid capture method, 4
Antibody tests
for dengue virus, 591–593
for HIV infections, 587
Antigen tests
for astrovirus, 370–371
for dengue virus, 591–592
for Entamoeba histolytica, 372
for meningocoeptilusitis microorganisms, 292
for Mycobacterium tuberculosis, 565, 567, 573
for Plasmidum, 593–594
Antimalarial drugs, resistance to, 523–524
Antimicrobial(s), see also Drug resistance; specific antimicrobials
development of, 43
gastrointestinal microbe infections on, 130–131
host response to, see Pharmacogenetics novel, 43
susceptibility testing for, see Susceptibility, antimicrobial
Antiretroviral drugs
monitoring of, 580–588
whole-genome sequencing for, 44
Antiviral agents, for hepatitis C, 430
AP (atovaqone-proguanil), resistance to, 523–524
Apicomplexa, 532–533
APOBEC3G factor, in HIV immunity, 659
Apophysomyces tapeformis, whole-genome sequencing for, 42
Applications (apps), for health care, 688–689
Applied Biosystems 7500 Fast Dx, 176
Applied Biosystems Genetic Analyzer, 458
Aptima Combo 2 assay, 390–392
Aptima HBV Quant Assay, 456–457
Aptima HIV-1 RNA Qualitative Assay, 422
Aptima T. vaginalis assay, 387
Arcanobacterium, 27
Arcanobacterium pleomorphum, 26
Ardeid, 147, 26
Artemisinin and derivatives
pharmacogenetics of, 615, 619
resistance to, 523–524
Artesunate, pharmacogenetics of, 615
Arthritis, infectious, 403–410; see also Osteoarticular infections
Arthrodema, 495
artus CMV RTQ-MXs, 479
artus HIV-1 RGQ-RGQ RT-PCR system, 583
artus instruments, HBV, 456–457
artus MRSAs/QS-RGQ, 173–174, 178
Arcas, biomarkers of, 672
Ascomycota
Bacteriocins, in vagina, 139
Bacterial pellet, for bloodstream infection
Bacterial, 27, 129
Bacillus anthracis
in bloodstream, 343
digital PCR for, 55
DNA target sequencing for, 27
MALDI-TOF for, 93
zoonotic origin of, 276, 279
Bacillus dermaphis, 118
Background, in sequencing, 769
Backward compatibility, 238
Bat/TAlert system, for fungi, 491
BACTEC 460 aerobic 6B blood culture, 404
BACTEC Mycobacterial Growth Indicator Tube liquid cultures, 357
Bactec system, for fungi, 491
Bacteremia, sepsis in, see Sepsis
Bacterial pellet, for bloodstream infection detection, 345
Bacterial vaginosis, 139–143, 150, 388
Bacteriocytes, in vagina, 139
Bacteriophages
in acne, 120
in gastrointestinal tract, 160
in sewage, 164
in skin microbiome, 118–119
in vaginal microbiome, 138–139
Bacteroides
in gastrointestinal microbiome, 127, 131
MALDI-TOF for, 93
in male urethra microbial communities, 147
in osteoarticular infections, 402
Bacteroides fragilis, 134
Bacteroides
in gastrointestinal microbiome, 127–134
in skin microbiome, 119
Balantium mandrillaris, 288, 291, 292
BAM (German Federal Institute for Materials Research and Testing), 758
Barcoding
in fungal identification, 82
in massively parallel DNA sequencing, 62
in next-generation sequencing, 72
in skin microbiome studies, 118
Barnsella, 151
Astroviruses, 160, 370–371
Asymmetric capillary convective PCR, for enterovirus 71, 259–260
Arteznavir, pharmacogenetics of, 615, 620
ATHENA (Addressing THE NEed for Advanced HPV Diagnostics) study, 470
Atopic dermatitis, 121–123
Atopobium vaginae, 141–142
Atovaqone-proguanil (AP), resistance to, 524
atG gene, 26
Australian Group on Antimicrobial Resistance, 248–249
Autism spectrum disorders, 132
Automation, of point-of-care testing, 545
Avco Corporation, 693
Avian bornavirus, 85
Avian influenza virus, 261, 278
Avian polyoma virus, 281
Avoparcin, 213
B. pertussis real-time kit, 314
B cells
evolution of, 658
microRNA interaction with, 636
bac detection assay, 459
Bacillus, 27, 129
Bacillus anthracis
in bloodstream, 343
digital PCR for, 55
DNA target sequencing for, 27
MALDI-TOF for, 93
zoonotic origin of, 276, 279
Bacillus dermaphis, 118
Background, in sequencing, 769
Backward compatibility, 238
Bact/TAlert system, for fungi, 491
BACTEC 460 aerobic 6B blood culture, 404
BACTEC Mycobacterial Growth Indicator Tube liquid cultures, 357
Bactec system, for fungi, 491
Bacteremia, sepsis in, see Sepsis
Bacterial pellet, for bloodstream infection detection, 345
Bacterial vaginosis, 139–143, 150, 388
Bacteriocytes, in vagina, 139
Bacteriophages
in acne, 120
in gastrointestinal tract, 160
in sewage, 164
in skin microbiome, 118–119
in vaginal microbiome, 138–139
Bacteroides
in gastrointestinal microbiome, 127, 131
MALDI-TOF for, 93
in male urethra microbial communities, 147
in osteoarticular infections, 402
Bacteroides fragilis, 134
Bacteroides
in gastrointestinal microbiome, 127–134
in skin microbiome, 119
Balantium mandrillaris, 288, 291, 292
BAM (German Federal Institute for Materials Research and Testing), 758
Barcoding
in fungal identification, 82
in massively parallel DNA sequencing, 62
in next-generation sequencing, 72
in skin microbiome studies, 118
Barnsella, 151
for Mycobacterium tuberculosis, 573
Bio-Rad Strip test, 596
Biotest, 534
Calprotectin, 191, 667, 670
Bacteroides fragilis, 277
for bloodstream, 340, 343, 347, 349
Bacteroides thetaiotaomicron, 251
in gastrointestinal microbiome, 129, 134
surveillance of, 235, 247
zoonotic origin of, 276
Candida

Candida glabrata, 27

Candida albicans, 109

Candida parapsilosis, 485

Candida tropicalis, 109

Candida auris, 485

Candida dubliniensis, 109

Candida lusitaniae, 485

Candida krusei, 109

Candida glabrata, 485

Candida parapsilosis, 27

Candida tropicalis, 485

Candida auris, 27

Candida dubliniensis, 485

Candida lusitaniae, 27

Candida krusei, 485

Candida glabrata, 27

Candida parapsilosis, 485

Candida tropicalis, 27

Candida auris, 485

Candida dubliniensis, 27

Candida lusitaniae, 485

Candida krusei, 27

Candida glabrata, 485

Candida parapsilosis, 27

Candida tropicalis, 485

Candida auris, 27

Candida dubliniensis, 485

Candida lusitaniae, 27

Candida krusei, 485

Candida glabrata, 27

Candida parapsilosis, 485

Candida tropicalis, 27

Candida auris, 485

Candida dubliniensis, 27

Candida lusitaniae, 485

Candida krusei, 27

Candida glabrata, 485

Candida parapsilosis, 27

Candida tropicalis, 485

Candida auris, 27

Candida dubliniensis, 485

Candida lusitaniae, 27

Candida krusei, 485

Candida glabrata, 27

Candida parapsilosis, 485

Candida tropicalis, 27

Candida auris, 485

Candida dubliniensis, 27

Candida lusitaniae, 485

Candida krusei, 27

Candida glabrata, 485

Candida parapsilosis, 27

Candida tropicalis, 485

Candida auris, 27

Candida dubliniensis, 485

Candida lusitaniae, 27

Candida krusei, 485

Candida glabrata, 27

Candida parapsilosis, 485

Candida tropicalis, 27

Candida auris, 485

Candida dubliniensis, 27

Candida lusitaniae, 485

Candida krusei, 27

Candida glabrata, 485

Candida parapsilosis, 27

Candida tropicalis, 485

Candida auris, 27

Candida dubliniensis, 485

Candida lusitaniae, 27

Candida krusei, 485

Candida glabrata, 27

Candida parapsilosis, 485

Candida tropicalis, 27

Candida auris, 485

Candida dubliniensis, 27

Candida lusitaniae, 485

Candida krusei, 27

Candida glabrata, 485

Candida parapsilosis, 27

Candida tropicalis, 485

Candida auris, 27

Candida dubliniensis, 485

Candida lusitaniae, 27

Candida krusei, 485

Candida glabrata, 27

Candida parapsilosis, 485

Candida tropicalis, 27

Candida auris, 485

Candida dubliniensis, 27

Candida lusitaniae, 485

Candida krusei, 27

Candida glabrata, 485

Candida parapsilosis, 27

Candida tropicalis, 485

Candida auris, 27

Candida dubliniensis, 485

Candida lusitaniae, 27

Candida krusei, 485

Candida glabrata, 27

Candida parapsilosis, 485

Candida tropicalis, 27

Candida auris, 485

Candida dubliniensis, 27

Candida lusitaniae, 485

Candida krusei, 27

Candida glabrata, 485

Candida parapsilosis, 27

Candida tropicalis, 485

Candida auris, 27
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>whole-genome sequencing</td>
<td>36–39, 41</td>
</tr>
<tr>
<td>...in male urethra microbial communities</td>
<td>147</td>
</tr>
<tr>
<td>optimal testing strategies for</td>
<td>189–190</td>
</tr>
<tr>
<td>reducing delays in diagnosis</td>
<td>190</td>
</tr>
<tr>
<td>surveillance of, 247</td>
<td></td>
</tr>
<tr>
<td>zoonotic origin of, 278</td>
<td></td>
</tr>
<tr>
<td>Clostridium sporogenes</td>
<td>26</td>
</tr>
<tr>
<td>Cloud computing, 707–718</td>
<td></td>
</tr>
<tr>
<td>advantages of, 708</td>
<td></td>
</tr>
<tr>
<td>data security in, 716–718</td>
<td></td>
</tr>
<tr>
<td>overview of, 707–708</td>
<td></td>
</tr>
<tr>
<td>platforms for, 74</td>
<td></td>
</tr>
<tr>
<td>for point-of-care testing, 710–712</td>
<td></td>
</tr>
<tr>
<td>for South African HIV and TB management, 708–718</td>
<td></td>
</tr>
<tr>
<td>for surveillance, 712–716</td>
<td></td>
</tr>
<tr>
<td>Cloverleaf test, modified, 202</td>
<td></td>
</tr>
<tr>
<td>CLSI, see Clinical and Laboratory Standards Institute</td>
<td></td>
</tr>
<tr>
<td>Cluster alerts, 700–702</td>
<td></td>
</tr>
<tr>
<td>...see cobas Liat system, for HIV, 585</td>
<td></td>
</tr>
<tr>
<td>...cobas HBV test, 45</td>
<td></td>
</tr>
<tr>
<td>...cobas AmpliScreen HBV test, 455</td>
<td></td>
</tr>
<tr>
<td>...cobas AmpliPrep HIV-1 Monitor, 421</td>
<td></td>
</tr>
<tr>
<td>...cobas AmpliPrep/cobas TaqMan system, for HIV, 582</td>
<td></td>
</tr>
<tr>
<td>...and AmpliScreen HBV test, 45</td>
<td></td>
</tr>
<tr>
<td>...and cobas HIV test, 45</td>
<td></td>
</tr>
<tr>
<td>...and cobas HPV test, 470</td>
<td></td>
</tr>
<tr>
<td>...and cobas Liat system, for HIV, 585</td>
<td></td>
</tr>
<tr>
<td>...and cobas MRSA/SA, 173–174, 177, 178</td>
<td></td>
</tr>
<tr>
<td>...and cobas TaqMan HBV, 456</td>
<td></td>
</tr>
<tr>
<td>...and cobas TaqMan test, 421–422, 438, 565</td>
<td></td>
</tr>
<tr>
<td>...and cobas TaqScreen MPX Test, 441–442, 455–456</td>
<td></td>
</tr>
<tr>
<td>Coccidia, 373–374</td>
<td></td>
</tr>
<tr>
<td>Coefficient of variation (CV), 736, 738</td>
<td></td>
</tr>
<tr>
<td>Collin, in gastrointestinal infections, 667</td>
<td></td>
</tr>
<tr>
<td>“Cohesive end,” in sequencing, 766</td>
<td></td>
</tr>
<tr>
<td>Collaborating Centre for the Surveillance of Antimicrobial Resistance, 694</td>
<td></td>
</tr>
<tr>
<td>College of American Pathologists MALDI-TOF mass spectrometry daily testing checklist for, 793</td>
<td></td>
</tr>
<tr>
<td>proficiency testing requirements of, 760 quality assurance requirements of, 745 verification definition of, 784</td>
<td></td>
</tr>
<tr>
<td>Collinsella, 132</td>
<td></td>
</tr>
<tr>
<td>Colloidal dye immunofiltration assay, 262</td>
<td></td>
</tr>
<tr>
<td>Colonization of Enterococcus, 222–223</td>
<td></td>
</tr>
<tr>
<td>...of gastrointestinal microbiome, 127–128, 132</td>
<td></td>
</tr>
<tr>
<td>...of MRSA, 170</td>
<td></td>
</tr>
<tr>
<td>...of skin, 119</td>
<td></td>
</tr>
<tr>
<td>...of vagina, 138</td>
<td></td>
</tr>
<tr>
<td>Colonoscopy, for Clostridium difficile infections, 191</td>
<td></td>
</tr>
<tr>
<td>Colony-forming units, in sequencing, 775</td>
<td></td>
</tr>
<tr>
<td>ColorKRE, 200–201</td>
<td></td>
</tr>
<tr>
<td>Colorimetric method, for microRNA detection, 638</td>
<td></td>
</tr>
<tr>
<td>Combination therapy, for HIV, 659</td>
<td></td>
</tr>
<tr>
<td>Commissurals in gastrointestinal microbiome, 126 next-generation sequencing for, 75</td>
<td></td>
</tr>
<tr>
<td>Commercial assays, controls for, 779</td>
<td></td>
</tr>
<tr>
<td>Commercial proficiency testing providers, 758–760</td>
<td></td>
</tr>
<tr>
<td>Communication, of point-of-care testing results, 552</td>
<td></td>
</tr>
<tr>
<td>Commutability, in proficiency testing, 758</td>
<td></td>
</tr>
<tr>
<td>Companion animals, pathogens in, 276, 278</td>
<td></td>
</tr>
<tr>
<td>Comparative genome analysis, for HPV, 118</td>
<td></td>
</tr>
<tr>
<td>Comparative statistics, 740–743</td>
<td></td>
</tr>
<tr>
<td>Competency, of personnel in MALDI-TOF mass spectrometry, 793 in quality assurance, 751, 753</td>
<td></td>
</tr>
<tr>
<td>Competition, business case and, 799</td>
<td></td>
</tr>
<tr>
<td>Complementary metal-oxide semiconductors, 689</td>
<td></td>
</tr>
<tr>
<td>Complex precision test, 743</td>
<td></td>
</tr>
<tr>
<td>Composition, endpoint detection by, in multiplex amplification, 104</td>
<td></td>
</tr>
<tr>
<td>Computed tomography, for Clostridium difficile infections, 191</td>
<td></td>
</tr>
<tr>
<td>Computer technology, see Cloud computing; Information technology Concerning threats, in antibiotic resistance, 251–252</td>
<td></td>
</tr>
<tr>
<td>Confidence interval, 724, 736 Confidence value, for MALDI-TOF mass spectrometry, 787</td>
<td></td>
</tr>
<tr>
<td>Confidentiality in cloud computing, 707 in medical device systems, 687</td>
<td></td>
</tr>
<tr>
<td>Confirmative testing, 546 Conformité Européenne (CE) requirements, 468</td>
<td></td>
</tr>
</tbody>
</table>
Culture (continued)
meningitis microorganisms, 292
MRSA, 171
multiple-drug-resistant organisms, 200–201
Mycoplasma pneumoniae, 310–312
for novel pathogen discovery, 80
osteocartilaginous organisms, 404–406, 409–410
skin microbiota, 117
Streptococcus pyogenes, 308
Vibrio, 365
for whole-genome sequencing, 32
for zoonotic diseases, 276
Culture-independent diagnostic tests, 241–242
Camitech, procedures of, 746
Cutoff CV value, in method verification, 724, 726, 729
CV (coefficient of variation), 736
CXCRs, see Chemokines and chemokine receptors
Cyanobacteria, in gastrointestinal microbiome, 127, 130
Cytochrome(s), polymorphisms of, 614
Cystoisospora
Cystic fibrosis, respiratory tract virome in, 162
CyScope, 569
Cyclic reversible termination, 35
Cycle threshold, for noroviruses, 269
dCXCRs, 573
CV (coefficient of variation), 736
Data-field standardization, 686
Data analysis
for method verification, 721
for quality assurance, 751
for sequencing, 776
in WHONET, 697
Data collection, for method verification, 733, 736
Data integration, of medical device systems, 687
Data management, see also Information technology
for next-generation sequencing, 74
for verification, 724
for WHONET, 697
Data ownership, in medical device systems, 687
Data security, in cloud computing, 716–718
Data sharing, in medical device connectivity, 689
Data storage, for medical device connectivity, 687

Data analyses
for method verification, 721
for quality assurance, 751
for sequencing, 776
in WHONET, 697

Data analyses
for method verification, 721
for quality assurance, 751
for sequencing, 776
in WHONET, 697

Data collection, for method verification, 733, 736

Data integration, of medical device systems, 687

Data management, see also Information technology
for next-generation sequencing, 74
for verification, 724
for WHONET, 697

Data ownership, in medical device systems, 687

Data security, in cloud computing, 716–718

Data sharing, in medical device connectivity, 689

Data storage, for medical device connectivity, 687

Databases
DNA target sequencing, 24–25
for DNA target sequencing, 24–25
ETaxon database, 81
for fungi, 496
for HIV, 422, 425
Human miRNA and Disease Database, 635
for MALDI-TOF mass spectrometry, 93
National Center for Biological Information, 74
reference, 772
regulations for, 76
ribosomal, 24–25, 74, 81, 148
sequencing, 776–777
University of Maryland School of Medicine, 776
for viromes, 159–160
Data-field standardization, 686
De novo assemblies, 36
Dead volume, for digital PCR, 50
deficiency, aminoglycoside-induced, 622
decentralization, for medical device connectivity, 687
deconvolution, 198–199, 205
deep sequencing, 58–67
defensins, 666, 670
degenerate PCR, 81–82
deliverable criteria, 548, 598
demodex mites, 118
dendritic cells, in gastrointestinal infections, 670
Dendrograms, for Nocardia, 95
dengue virus clinical symptoms of, 590–591
compared with Plasmodium, 589
diagnostic needs of, 591
epidemiology of, 591
genetic distribution of, 589–590
point-of-care testing for, 592–599, 603
sequence types of, 589–590
treatment of, 591
dengue virus Ag Strip test, 592–593, 595
deoxyribonucleoside triphosphate, in next-
generation sequencing, 35
deoxyribonucleotide monomer, for PCR, 5
dependent Student t test, 739
dependent variables, definition of, 731–732
dephasing, in next-generation sequencing, 35
depression, 132
depth, sequencing, 86
dermabacter hominis, 27
dermatitis atopic, 121–123
seborrheic, 121
dermatophytes
identification of, 495
molecular detection of, 493
Descriptive statistics, 736–738
Descriptive studies, 732
design, experimental, for method verification, 732–738
design patents, 803
desquamiation, 117
desulfobrevibacter, 26
detector probes, 14
Determine TB LAM Ag Test, 573
dhps gene, in pyrimethamine resistance, 524
Diagnosis, as intellectual property, 808–809
diabetes, 132
diarrhea bacterial, 362–366
Clostridium difficile, see Clostridium difficile
parasitic, 372–375
viral, 161–163, 366–372
Didanosine, pharmacogenetics of, 622
Dideoxy method, in sequencing, 766
Dientamoeba fragilis, 373, 531–532
diet, gastrointestinal microbiome composition
and, 127, 129–130
Difco BHI agar, for Enterococcus, 223
digital droplet PCR, for microRNAs, 644–645
digital PCR, 10–11, 49–57, 770
applications of, 54–55
benefits of, 52
errors in, 51–54
experimental considerations for, 49–50
quantification by, 49–51, 54
dioxetane, in dDNA amplification, 3
direct acting antivirals, for hepatitis, 430–443
Direct detection methods, for microRNAs, 637–640
direct high-throughput sequencing, 83–84
direct PCR, in sequencing, 769–770
direct plating, of MRSA, 171
direct sequencing for HBV, 457
for HCV, 439, 441
Directigen E group A streptococcus test, 309
Directigen 1-2-3 Group A Strept Test Kit, 309
directional hypothesis, 731
discrepant analysis, 724
disk diffusion for Enterococcus, 222–223
WHONET reports of, 699
disposal error, 738
dNA Baser Assembler, 23
dNA Databank of Japan, for DNA target sequencing, 24
dNA extraction for Mycobacterium tuberculosis detection., 568, 570
for sequencing, 768, 779
dNA libraries, see Libraries
dNA microarray analysis, see Microarray technology
dNA polymerses in next-generation sequencing, 35
in PCR, 8
DNA sequencing, massively parallel, 58–67
DNA target sequencing, 19–31
amplification for, 22–23
c controis for, 23
criteria for identification in, 25–27
databases for, 24–25
definitions in, 23
dNA preparation for, 22
gene targets for, 19–20
reporting results of, 28
sequencing for, 22–23
software for, 23–28
dna/ gene, 366
DNA-like gene-based tagman assay, 533
dNase, for next-generation sequencing, 72
dNase B gene, 308–309
dNase-sequence-independent single primer amplification, 82
documentation of proficiency testing results, 762
dNase, of quality assurance, 749
Dolutegravir, pharmacogenetics of, 615, 620
dorea, in gastrointestinal microbiome, 131
double strand-specific nuclease, for micro-
RNA detection, 640
double-stranded probes, 9
PCRs for, 5
quality assurance programs for, 443–444
quantitative tests for, 437–439, 441–443
resistance in, 11
RNA extraction, 437–438
sequencing for, 766–768, 775
subtyping of, 439–440
Hepatitis G virus, 163
Hepatotoxicity, of drugs, 618, 620–622
Heritability, of HIV genes, 656–657
Herpes B virus, meningencephalitis due to, 291
Herpes simplex virus assays for, 722–723
helicase-dependent amplification for, 16
infections
encephalitis, 288, 292–293
genital, 393–394
male urethritis, 394
meningoencephalitis, 289–290, 293–294
in transplant recipients, 481–482
NAATs for, 315–316
PCR for, 15
in vaginal microbiome, 139, 143
Herpes simerehpe, 294
Heperviruses
disorders caused by, 122
sequencing of, 160, 163
Heteroduplex analysis, 9, 441
Heteroresistance, 11
Hfq protein, in gastrointestinal infections, 662
HFV gene, in pyrimethamine resistance, 524
HHV-6 (human herpesvirus-6) infections, in transplant recipients, 480–482
Hidden Markov model, 159
High Pure PCR template, for Trypanosoma cruzi, 503
High Pure System Viral Nucleic Acid Test, HBV, 456
High Pure/cobasTaqMan system, 438
High-density microarray technology, 112
High-quality single nucleotide polymorphism analysis, for outbreak investigation, 239–240
High-risk HPV types, 465–471
hpO gene, 364
HiSeq sequencers, 37, 85, 159
HiSeq X Ten instrument, 65
Histidine-rich protein, of Plasmodium, 593–594
Histograms, 736–737
Histoplasmata capitatum, 290
HIV, see Human immunodeficiency virus
(HIV)
HIV-Grade HBV Resistance Interpretation Tool, 460
HLA genes, 655–657, 659
HMIPv, see Human metapneumovirus (HMPV)
Hedgehog (modified cloverleaf) test, 202
Hologic/Oen-Probe assay, 13
Holocentric technology, 602–603
“Home brews,” see Laboratory-developed tests
Home-based testing, 547
Hookworms, 534, 672
Hospital administration, business case preparation for, 799–802
Host response to dengue virus, 592
in gastrointestinal infections, 662–668
to HIV, 655–662
microRNAs in, 634–654
pharmacogenetics and, 613–633
HPVs, see Human papillomavirus(es) (HPVs)
HRDR-200 device, 603
HRVs, see Rhinoviruses
hp60 gene, 366
HSV, see Herpes simplex virus
Human bocavirus, 83–84, 315–324
Human Genome Project, 545, 766
Human herpesvirus-6
in central nervous system infections, 295
digital PCR for, 54
in meningencephalitis, 292, 293
resistance in, 11
in transplant recipients, 480–482
Human herpesvirus-8, 80–81
Human immunodeficiency virus (HIV), 417–429
bDNA assay for, 3
description of, 417–418
digital PCR for, 54
diversity of, 581
etiologic explanation of, 656–657
genotyping of, 419–420, 423–426
history of, 417
identification of, 86
in infants, 587
infection due to
acute retroviral syndrome in, 419
antitropical drugs for, 417–419
cloud computing management of, 707–718
diagnosis of, 580
disease progression of, 655–659
epideralitis, 288
genitourinary, 388, 393
hepatitis C with, 435
monitoring of, 581
staging of, 580–581
tuberculosis with, 249
latency of, 657–658
life cycle of, 427
medical decision interval for, 727
microRNA detection in, 646–647
molecular detection of qualitative proviral assays, 422
resistance testing, 419–420, 423–424
tropism assays, 420–424
viral load assays, 418–425
mutations in, 419–420
PCR for, 5, 15
pharmacogenetics of, 659
point-of-care testing for, 546–547, 550
proteome analysis of, 658–659
proviral DNA and RNA tests for, 419
quasispecies of, 419
resistance in, 11, 419–420, 423–424
sequencing of, 766–767, 775, 777
subtypes of, 417
susceptibility to, 655–659
TMA for, 13
transcriptome analysis of, 657–658
transmission of, 138, 655
treatment of, in resource-limited settings, 580–588
tropism assays, 420, 424
viral load testing in, 580–588
virome and, 163
whole-genome sequencing for, 44
Human leukocyte antigens
in HIV infections, 655–657, 659
polymorphisms of, drug response and, 655–657
Subject Index

- Human metapneumovirus (HMPV)
- Identification of, 82, 83
- NAA Ts for, 307, 315–324
- Sequencing of, 162
- Human Microbiome Project, 75, 86, 119
- Human miRNA and Disease Database, 635
- Human papillomavirus(es) (HPVs), 465–475
- Cancer due to, 465–470
- Clinical applications and, 466–468
- Description of, 465–466
- Genotyping of, 122
- Hybrid capture method for, 4
- Infections due to, 466–468
- Invader assays for, 4
- Laboratory issues in, 471–472
- Multiplex hybridization for, 102
- Point-of-care testing for, 552–553
- Sequencing of, 157–165
- In skin microbiome, 118
- TMA for, 13
- In vaginal microbiome, 139
- Human polyoma viruses, in skin microbiome, 118
- Human virome, 156–166
- Cancer, 164–165
- Description of, 160–162
- Gastrentestinal, 160–162
- Plasma, 163
- Respiratory tract, 162–163
- Sewage, 164
- Skin, 163–164
- Study methods for, 156–160
- Hybrid Capture II HPV test, 469
- Hybridization system, 3–4
- Hybridization
- Dual, 8, 12
- In situ, 99
- For library preparation, 770
- For MDRO surveillance, 202
- Microarray technology for, see Microarray technology
- Multiplex, 102–103
- Probes for, 9
- Hybridization protection assay, 11
- HYDRA test, for Mycobacterium tuberculosis, 369
- Hydrolysis probes, 7–8
- For gastrointestinal parasites, 533
- For HBV, 457
- For multiplex amplification, 105–107
- Real-time, 105–107
- For Trypanosoma cruzi, 505–506
- Hydroxymethylbilane synthase, detection of, 389
- Hyperplex MBL ID, 202
- Hypersensitivity, to drugs, 618–621
- Hypervariable regions, 74–75, 117
- Hyplex ESB ID, 202
- Hyplex MBL ID, 202
- Hyplex MRSA, 174, 179
- Hypothesis, formulation of, 731, 739
- Ibis Biosensor, 104
- Ibis PLEX-ID system, 94
- IDI-MRSA Test, 171, 172
- IFI16 protein, in HIV immunity, 659
- IgM tests, dengue virus and, 593, 597
- IL28B G gene, polymorphisms of, 621
- Illus, in Clostridium difficile infections, 191–192
- Illness, severity of, in surveillance, 266–267
- Illumigene assays, for respiratory agents, 320
- Illumigene kit, for Mycoplasma pneumoniae, 311–312
- Illumina MiSeq, 464
- Illumina systems, 69–70, 71, 766
- For massively parallel DNA sequencing, 58–60, 62, 64–65
- For pathogen identification, 84–85
- For virome studies, 159
- Imaging, in next-generation sequencing, 34–35
- Immune electron microscopy, for norovirus, 269
- Immune response, see Host response
- Immunizations, antigens in, versus natural infections, 276, 278–279
- Immunoassays
- For adenoviruses, 371
- For Entamoeba, 372–373
- For osteocartilagenous organisms, 405–406
- For rotavirus, 568
- Immunoblot assay, recombinant, 435
- Immunochromatographic tests, for malaria, 518
- Immunodiagnostic methods, for parasites, 261–262, 535
- Immunofluorescence techniques
- For malaria, 518
- For West Nile virus, 259
- Immunoglobulin(s), dengue virus and, 592–593
- Immunohistochemical test, for HPV, 471
- Immunological colloidal-gold test, for influenza virus, 261
- Immunomagnetic enrichment, 171
- Immunoscreening, for novel pathogen discovery, 80
- Import screening, for zoonotic diseases, 276, 278
- “Improved gold standard” phenomenon, 724
- In vitro diagnostics, 545, 550–552; see also Point-of-care and near-care testing
- Independent Student t test, 739
- Indinavir, pharmacogenetics of, 616
- Indirect hemagglutination test for Schistosoma, 262
- For Trypanosoma cruzi, 501
- Indirect immunofluorescence assay, for Trypanosoma cruzi, 501
- Individualized Quality Control Plan, 723
- Indocidin, in gastrointestinal infections, 670
- Infectious arthritis
- Clinical context of, 403–404
- Molecular tests for, 404–410
- Infectious Diseases Society of America, streptococcal pharyngitis sampling guidelines of, 306–307
- Infectious endocarditis, 346–347
- Inference, in method verification, 738–741
- Inferential statistics, 739–740
- Influenza A+B assay, 323
- Influenza virus(es)
- NAA Ts for, 307, 315–324
- Next-generation sequencing for, 74
- Point-of-care testing for, 549
- Surveillance of, 260–261
- Whole-genome sequencing for, 42
- Zoonotic origin of, 276, 278
- Information technology, see also Computer software; Data analysis; Data management
- For point-of-care testing, 685–691
- for South Africa tuberculosis diagnosis, 707–718
- Infrastructure integration, of medical device systems, 687
- Infringement, of patent, 805
- Inhibition, in method verification, 725
- In situ hybridization, 102
- In “house tests,” see Laboratory-developed tests
- Innate immunity, Toll-like receptors in, 635–636
- Inno-LiPA HBV assays, 457–459
- Inosine triphosphatase, 619
- Institute of Tropical Medicine, 552
- Instructions, for test kits, 602–601
- Instrument management systems, 710–711
- Integration, of medical device systems, 687
- Intellectual property
- Legal landscape changes and, 808–809
- Overview of, 803–805
- Role of, 803
- Valuation of, 809–810
- Intelligent systems, in cloud computing, 715–716
- Interactive Health Solutions, 728
- Interactomics, 658
- Interassay variability, 726
- Interferon(s)
- Antiviral response of, 658–659
- In gastrointestinal infections, 664–672
- For hepatitis B, 454
- For hepatitis C, 433–434
- Pharmacogenetics of, 616, 621–622
- Response of, to HIV, 657
- Interferon alpha, for hepatitis C, 432
- Interferon regulatory factors, in gastrointestinal infections, 669
- Intergenic spaces, 532
- Interleukins, in gastrointestinal infections, 664–672
- Internal amplification controls, for Trypanosoma cruzi, 505
- Internal controls, 747
- Internal proficiency testing, 750
- Internal transcribed spacer regions, 75, 82, 118
- International Agency for Research on Cancer, 465
- International Journal of Systematic and Evolutionary Microbiology, 27–28
- International Medical Device Regulatory Forum, 553, 601
- International Nucleotide Sequence Collaboration, 24
- International Organization for Standardization (ISO), 601, 755–757, 760
- International Sequence Database Collaboration, 776
- International Society of Human and Animal Mycology, 492
- International Working Group on the Classification of Staphylococcal Cassette Chromosomal Elements, 198
- Internet, for cloud computing, 707–718
- Interoperability, of medical device connectivity, 686–687
- Interpretation, of results, in quality assurance, 751
- Interval data, 733
- Intra-assay variability, 725
- iNTRON kit, 225
- iN A gene, 365
- Invader assays, 4, 440
Laboratory configuration module, for WHONET, 696–697
Laboratory director, responsibilities of, 722
Laboratory services, as intellectual property, 808–809
Laboratory-developed tests controls for, 729–731
MALDI-TOF mass spectrometry, 785 from research laboratory to clinical laboratory, 721
verification of, 721
Lactophenol, 131
Lactate dehydrogenase, parasite type, 518, 594
Lactic acid, in vagina, 139
Lactobacillus
against ADA, 238–239
against viable patient samples,” 725 Koch’s postulates, 86–87
Kocuria, 25
KPC+MBL Confirm Kit, 202
Kryptococcus, 25
La Crosse virus, 289
Labeling, of test kits, 600–601
Luminex instruments, for microarrays, 109–110
Lyme disease, see *Borrelia burgdorferi*
Lymphocytotropic choriomeningitis virus, meningoencephalitis due to, 288, 292
Lymphoma, primary CNS, in Epstein-Barr virus infections, 295
Lymphocytic choriomeningitis virus, meningoencephalitis due to, 288, 292
Lyra assays, for respiratory agents, 323
Lyra Direct HSV 1+2/VZV assay, 482
Lyra Direct Strep Assay, 309
Lyra assays, for gastrointestinal parasites, 533
Malaria pigment, 604
Malaria, 516–529
asymptomatic, 590
burden of, 591
clinical symptoms of, 589–590
diagnosis of, 591
economic impact of, 516
epidemiology of, 516
microorganism causing, see Plasmodium malariae, 516
pathophysiology of, 281
prevalence of, 288, 589
Treatment of, 591
Malaria pigment, 604
Lymphoma, primary CNS, in Epstein-Barr virus infections, 295
Lyme disease, 292
LyticA gene, 310
m2000 RealTime, 390
MacroEtest, for Enterococcus, 223
Macrophage(s), in gastrointestinal infections, 670
Macrophage inflammatory protein, in gastrointestinal infections, 664–670
Magicplex Sepsis Real-time, 173, 175, 178
Magicplex Sepsis system, 342, 348
MagNAlyzer, for bloodstream organisms, 347
MagNA Pure Easymag, 493–494
Magnetic beads, for nucleic acid extraction, 221
Maxwell 16 L V , 493
Mate–pair libraries, 60
Mate pair reads, 36
MegaSphaera, 172, 198
Megasphaera hominica, 172
Megasphaera-like bacteria, in vaginal microbiome, 142
Megasphaera hominica, 142
Megasphaera-like bacteria, in vaginal microbiome, 142–144
Melanoma, 531
Melanoma differentiation-associated gene, in skin microbiome, 142
Melanocytic nevi, 531
Metabolism of drugs, pharmacogenetics and, 806–808
Methods comparison study, for accuracy, 788–789
Metrics, in business case, 801–802
Methicillin-susceptible *Staphylococcus aureus*, 806–808
Methicillin-resistant *S. aureus* (MRSA), 808–809
Methicillin-resistant *Staphylococcus aureus* (MRSA), 807–808
Metrohm, for noroviruses, 271–272
Metallo-beta-lactamases, 200, 202
Methionine, 584
Methylotrophic bacteria, in vaginal microbiome, 142
MEGA, 107
MDROs, see Methicillin-resistant *Staphylococcus aureus*
MDROs, see Methicillin-susceptible *Staphylococcus aureus*
MDROs, see Methicillin-resistant *Staphylococcus aureus*
MIC determination, WHONET reports of, 699
MICROarray technology, 107–113
MIC determination, WHONET reports of, 764
MHC test, for Enterococcus, 223
mHealth tool, 685–686
mHVR, as target for restriction fragment length polymorphism analysis, 522
M.I.C. Evaluator, for *Microsporidia*, 374
Methods comparison study, for accuracy, 788–789
Methods validation, 764
Methods comparison study, for accuracy, 788–789
Metrics, in business case, 801–802
Methotrexate for bacterial vaginosis, 142
for Clostridium difficile, 185
Methionine, 807–808
Methicillin-resistant *S. aureus* (MRSA), 808–809
MICROarray technology, 107–113
Methicillin-resistant *S. aureus* (MRSA), 807–808
Methicillin-resistant *Staphylococcus aureus*, 806–808
Methicillin-susceptible *Staphylococcus aureus*, 807–808
Methicillin-resistant *Staphylococcus aureus* (MRSA), 807–808
MHC test, for Enterococcus, 223
mHealth tool, 685–686
mHVR, as target for restriction fragment length polymorphism analysis, 522
M.I.C. Evaluator, for *Enterococcus*, 221–222
MIC determination, WHONET reports of, 699
Microarray technology, 107–113
for adenoviruses, 482
applications of, 112
for bloodstream organisms, 340–341, 343
challenges of, 112–113
definition of, 107
high-density, 112
in situ synthesized, 109
low-density, 112–113
for microRNA detection, 639, 642, 647
for microsporidia, 374
for novel virus discovery, 82–83
printed, 107–109
for respiratory agents, 315–316, 319
for surveillance, 249
suspension bead, 109–112
for zoonotic diseases, 277
Microbiological alerts, in WHONET, 697
Microbiological rules, for WHONET, 720
Microbiomes, gastrointestinal, 126–137
next-generation sequencing for, 75
skin, 117–125
whole-genome sequencing for, 43

Luminex instruments, for microarrays, 109–110
Lyme disease, see *Borrelia burgdorferi*
Lymphocytotropic choriomeningitis virus, meningoencephalitis due to, 288, 292
Lymphoma, primary CNS, in Epstein-Barr virus infections, 295
Lyme disease, 292
LyticA gene, 310
m2000 RealTime, 390
MacroEtest, for Enterococcus, 223
Macrophage(s), in gastrointestinal infections, 670
Macrophage inflammatory protein, in gastrointestinal infections, 664–670
Magicplex Sepsis Real-time, 173, 175, 178
Magicplex Sepsis system, 342, 348
MagNAlyzer, for bloodstream organisms, 347
MagNA Pure Easymag, 493–494
Magnetic beads, for nucleic acid extraction, 221
Maxwell 16 L V , 493
Mate–pair libraries, 60
Mate pair reads, 36
MegaSphaera, 172, 198
Megasphaera hominica, 172
Megasphaera-like bacteria, in vaginal microbiome, 142
Megasphaera hominica, 142
Megasphaera-like bacteria, in vaginal microbiome, 142–144
Melanoma, 531
Melanoma differentiation-associated gene, in skin microbiome, 142
Melanocytic nevi, 531
Metabolism of drugs, pharmacogenetics and, 806–808
Methods comparison study, for accuracy, 788–789
Metrics, in business case, 801–802
Methicillin-susceptible *Staphylococcus aureus*, 806–808
Methicillin-resistant *S. aureus* (MRSA), 808–809
MIC determination, WHONET reports of, 699
Microarray technology, 107–113
for adenoviruses, 482
applications of, 112
for bloodstream organisms, 340–341, 343
challenges of, 112–113
definition of, 107
high-density, 112
in situ synthesized, 109
low-density, 112–113
for microRNA detection, 639, 642, 647
for microsporidia, 374
for novel virus discovery, 82–83
printed, 107–109
for respiratory agents, 315–316, 319
for surveillance, 249
suspension bead, 109–112
for zoonotic diseases, 277
Microbiological alerts, in WHONET, 697
Microbiological rules, for WHONET, 720
Microbiomes, gastrointestinal, 126–137
next-generation sequencing for, 75
skin, 117–125
whole-genome sequencing for, 43
Microflex LT, 493
Microfluidic devices
for Mycobacterium tuberculosis, 257
for point-of-care testing, 548
for respiratory agents, 324
Microhematocrit test, for Trypanosoma cruzi, 502
Microimmunofluorescence, Chlamydia pneumoniae, 311
Microreactors, 59, 68
Migratory animals, pathogens in, 278
Minor groove binders, 8
Minimum spanning tree method, for genotyp-
Mites, 25, 340
Mobile cloud, for respiratory agents, 324
for point-of-care testing results, 552, 602–603
Mobile devices
in medical device systems, 688–689
for point-of-care testing results, 552, 602–603
Mobiluncus, in vaginal microbiome, 142
Modaplex system, 106
Mode, definition of, 736
MolBio Diagnostics, 549
Molecular amplification methods, for Myco-
Molecular beacons, 8
for microRNA detection, 640
for Mycobacterium tuberculosis, 564
for parasites, 373
Molecular colonies (polonies), 59–60
Molecular methods, 452–460
for enterovirus 71, 259–260
for HIV, 417–429
for osteocartilaginous organs, 404–410
for parasites, 261–262
Molecular theranostics, for respiratory agents, 318
Molecular protocol, 61
Molluscum contagiosum virus, 122, 164
Monokine induced by interferon (MIG), in gastro-
Monocyte chemoattractant protein, in gastro-
Mycobacterium tuberculosis
MTBDR plus, 565
MTBDR Expert Cartridge Assay, 548
Mycobacterium, in gastrointestinal infections, 667, 670–671
Mucormycota, 495
Mucosal immune system, 126
Multi Locus Sequence Typing database, 776
MultiCode technology, for HSV detection, 293
MultiCode-RTx kit, 394
Multiplex assays, for respiratory agents, 324
for gastrointestinal parasites, 533, 534
for Neisseria meningitidis, 257–258
for Streptococcus suis, 257
for Trypanosoma cruzi, 507–508
Multilocus variable number tandem repeat analysis
for outbreak investigations, 238
for Yersinia pestis, 258
for zoonotic diseases, 280
Multiple displacement amplification-PCR
Multiple drug-resistant organisms
asymptomatic carriage of, 200, 205
Mycobacterium tuberculosis, 257, 707–718
prevention of
culture-based screening for, 200–201
importance of, 197
molecular detection for, 202–206
phenotypic studies of, 201–202
prevention of, collaborative effort for, 197–200
strain typing of, 250
surveillance of, 197–211, 245–255
Multiplex assays, see also Multiplex PCR
for blood transfusion testing, 441
for Escherichia coli, 362–363
for fungi, 490–491
for gastrointestinal parasites, 534
for parasitic gastroenteritis, 374
quality assurance for, 749
for sequencing, 768
for Vibrio, 365
for viral gastroenteritis, 366–372
Multiplex ELISA, for Mycobacterium tuberculo-
sis, 575
Multiple microarrays
controls for, 747
quality assurance for, 749
Multiplex NAATs, for respiratory agents, 318–324
Multiplex PCR
for bacterial meningitis, 296
for bloodstream organisms, 341–344, 346–347
for caliciviruses, 369
for gastrointestinal parasites, 530–535
for gastrointestinal infections, 371–372
for HBV, 459–460
for hepatitits viruses, 455–456
for HSV, 294
for human papillomavirus, 122
for MDRO surveillance, 202
for microsporidia, 374
for Mycobacterium tuberculosis, 256
for Streptococcus pyogenes, 309
for Vibrio, 363–366
for zoonotic diseases, 277
Multiplex technology, 102–114
amplification, 103–107
for HSV, 293
hybridization, 102–103
microarray, 107–113
for osteoarticular organisms, 407–408
signal amplification, 103
Mumps virus, meningoencephalitis due to, 291
Mupirocin, for MRSA decolonization, 170–171
Murine retrovirus-derived sequences, 87
Musculoskeletal Infections Society, 408–409
Mutations
digital PCR for, 53
HIV, 419–420
sequenced revealed in, 776–778
MX2 protein, in HIV immunity, 659
MycoAssay Aspergillus test, 492
MycoAssay Pneumocystis kit, 492
Mycobacteria, LAMP for, 16
Mycobacterial LAMP synthase, 43
Mycobacterial interspersed repetitive unit–variable-number tandem repeats, 257
Mycobacterium
MALDI-TOF for, 96
nontuberculous
NAATs for, 315–316
in osteoarticular infections, 403, 406–407
Mycobacterium abscessus
MALDI-TOF for, 93
resistance to, 41
whole-genome sequencing for, 39, 41, 43
Mycobacterium genitalium
in cervicitis, 390, 393
in male urethritis, 394
Mycobacterium phocaicum, 258
Mycobacterium tuberculosis
digital PCR for, 53, 55
disease caused by, see Tuberculosis
dNA probes for, 8
evolution of, 38–39
extensively resistant, 43
in meningitis, 294
in meningoencephalitis, 290
microarrays for, 112
multidrug-resistant, 249, 707–718
multiplex hybridization for, 102
in osteoarticular infections, 47, 403
PCR for, 6, 8, 14, 15
point-of-care testing for, 547, 548–549
single nucleotide polymorphism tests for, 565, 567
future, 567–573
infrastructure for, 557
in intermediate-level laboratories, 557
NAATs for, 560–573
in peripheral-level laboratories, 557
shortcomings of, 573–574
sputum smear microscopy for, 558–560
target product profiles and, 557, 561–562
volatile organic chemical detection, 560–573
rapid tests for, 556–557
resistance in, 11, 38–39, 43
sequencing of, 767, 774, 776–777
single nucleotide polymorphism analysis for, 239
surveillance of, 249–250, 256–257
TMA for, 13
whole-genome sequencing for, 38–39, 41, 43
Mycobacterium ulcerans, 406–407
Mycoplasma, in male urethral microbial communities, 146, 149–150
Mycoplasma hominis, 27
Mycoplasma pneumoniae
LAMP for, 16
meningoencephalitis due to, 290
NAATs for, 306–307, 310–312, 319–323
in osteoarticular infections, 408
MyXtra kit, 492
Myriad Genetics, Inc., patent applications of, 806–807
NAATs, see Nucleic acid amplification techniques (NAATs)
Naegleria, 290
Naegleria fowleri, 288, 291
Nail disorders, 121–122
Nanobiopsy system, for HIV, 587
NanoCHIP Infection Control Panel, 225
Nanometer-scale arrays, for massively parallel DNA sequencing, 58
Nanopores, in next-generation sequencing, 35, 69–70
Nanosphere Verigene system, 105
Nanotechnology
for influenza virus, 261
for microRNAs, 638–640
in multiplex signal amplification, 103
for point-of-care testing, 549–550
for respiratory agents, 324
NARMS (National Antimicrobial Resistance Monitoring System), 247
NARVAL trial, of HIV therapy, 420
Nasal screen, for MRSA, 169–170
NASBAs, see Nucleic acid sequence-based amplification assays (NASBAs)
NAT genes, polymorphisms of, 619–620
National Antimicrobial Resistance Monitoring System (NARMS), 247
National Center for Biological Information, sequence databases of, 74
National Healthcare Safety Network (NHSN), 247
National Institute of Allergy and Infectious Diseases, 573
National Institute of Standards and Technology, 779
National Institutes of Health Chongqing Clinical Pharmacology Center, 225
National Library of Medicine, point-of-care test definition of, 545
National Nosocomial Infection Surveillance System (WHONET), 247
National Tuberculosis Control Program, 257
NCBI Viral Genotyping Tool, 460
NCI Early detection Research Network, 634
Near-care testing, see Point-of-care and near-care testing
Necator americanus, 533–534
Needleman-Wunsch software, 24
Negative controls
for DNA target sequencing, 23
for sequencing, 777, 779
Negative predictive values, in method verification, 725
Nevirapine
pharmacogenetics of, 614, 618–620, 622, 659
resistance to, 419, 423
New Delhi metallo-beta-lactamase, 200
Nextera method, 60–61, 70
Next-generation sequencing, 68–79; see also Whole-genome sequencing
applications of, 68, 72, 74–76
barcoding in, 72
bioinformatics in, 74
contamination in, 72–74
current equipment for, 766
DNA preparation for, 22
for eukaryotic identification, 75
for gastrointestinal microbiome characterization, 126
genome alignment and assembly in, 35–36
history of, 766
for HIV, 657
imaging in, 34–35
libraries for, 72
for male urethra microbial communities, 149–152
massively parallel, 58–67
for metagenomic analysis, 75
methods for, 68–70
for microbiome analysis, 75
for microRNAs, 646–647
ongoing quality control in, 777, 779
Subject Index

Nifurtimox, for Chagas’ disease, 501

Nipah virus, 291

Nitric oxide, in gastrointestinal infections, 667, 668, 670, 672

Nitric oxide synthase, in gastrointestinal infections, 669

Nocardia, 21, 27, 93, 95

NOD1-RICK pathway, in gastrointestinal infections, 672

Nondirectional hypothesis, 731

Nongonoccal nonchlamydial urethritis, 146–148

Nongonoccal urethritis, 146–148

Noninferiority statistics, 739

Norobovinosity of patent, 805

Nonparametric statistical tests, 736

Nontreponemal tests, for Treponema pallidum, 393

Normal distribution, in statistics, 736

NORM-Vet, 694

Noroviruses, 266–274, 368–370 asymptomatic, 269 epidemiology of, 266 surveillance for, 241–242, 266–272 whole-genome sequencing for, 42

Northern hybridization, for microRNAs, 643

Norwalk virus, identification of, 80

Northern hybridization, for microRNAs, 643

Northern hybridization, for microRNAs, 643

Northwestern hybridization, for microRNAs, 643

Novel pathogens

discovery of, 27–28 bioinformatics for, 86 challenges in, 86–87 consensus PCR for, 81–82 direct high-throughput sequencing for, 83–84 DNase-SISPA for, 82 history of, 80 immunoscreening for, 80 metagenomics and, 86 microarray technology for, 82–83, 112–113 next-generation sequencing for, 84–86 random arbitrary primer binding for, 82 representational difference analysis for, 80–81 16S PCR for, 81 VIDISSA for, 83 viruses, 156–157 zoonotic, 275, 276

Novelty, of patent, 803–804

NS1 (nonstructural protein 1) antigen, in dengue virus, 591–592, 594–598

NS genes, Streptococcus pyogenes, 308–309

Nuclear factor-κB pathway in gastrointestinal infections, 665–666, 668–669, 671 as microRNA target, 636 Nucleic acid(s) extraction of, 493–494, 531, 746–747 isolation of, 530–531 Nucleic acid(s), isolation of, extraction techniques for, see Extraction, of nucleic acids Nucleic acid amplification techniques (NAATs), see also specific methods for BK virus, 478 for bloodstream organisms, 338–352 for Clostridium difficile, 187–189 for genitourinary tract organisms, 366–395 for HCV, 430–444 limit of detection of, 603 for male urethra microbial communities, 146 for meningitis microorganisms, 292–298 for Mycobacterium tuberculosis, 568–573 overview of, 3–18 signal, see Signal amplification techniques syndrome, 375 target, 4–16; see also PCR Nucleic acid sequence-based amplification assays (NASBAs), 11, 13 for caliciviruses, 370 for HIV, 583 for meningitis microorganisms, 293–298 quantitative, for Plasmodium, 518–519 for respiratory agents, 319 Nucleotide Sequence Database, 24 NucliSENS EASYmag instrument, 176 NucliSENS EasyQ, 13 NucliSENS EasyQ HIV assay, 583 Nugent criteria, for bacterial vaginosis, 142–143 Null hypothesis, 739 Numeric values, for quantitative testing, 747–748 NWG2F Savanna Viral Load Test and Platform, 586

OAS1 protein, in gastrointestinal infections, 670

Oxidative stress, in gastrointestinal infections, 670

Oxoid BHI agar, for Mycobacterium tuberculosis, 568–573 Oxyimino-beta-lactam, 201

Parabacteroides DNA target sequencing for, 26 in gastrointestinal microbiome, 131 Panainfluenza virus(es), NAATs for, 315–324
Parametric statistics, 739–740
Paramyxoviridae, 82
Parasites, see also specific parasites
gastrointestinal, 372–375, 530–540
next-generation sequencing for, 75
surveillance of, 261–262
whole-genome sequencing for, 33
Parasitological methods, for Trypanosoma cruzi, 501–502
Paritaprevir, for hepatitis C, 433
Partitioning, in PCR, 10–11, 49–55
Partition-specific competitive PCR, 53
“Partnership for Diagnostics to Address Anti-
microbial Resistance of Select Bacterial Pathogens,” 177
Parvimonas micra, 26
Parvovirus(es), 163
identification of, 82
infections due to, in transplant recipients, 481–483
Passive surveillance, 266
Pasteurella, 26
Pasteurella multocida, 402
Patent(s)
definition of, 803–804
molecular diagnostics and, 805–808
obtaining, 804–805
termination of, 803
validity of, 805
validation of, 809–810
Patent Interservice System, 804
Pathogen-associated molecular patterns (PAMPs), microRNAs and, 635–636
Pathogenicity islands, in gastrointestinal infections, 668
Pathogen-specific surveillance, 235–236
Pattern recognition receptors (PPRs), micro-
RNAs and, 635–636
PCR, 5–11; see also specific microorganisms
advantages of, 5
broad-range, 345–346, 408–410
for central nervous system infections, 292–298
clinical applications of, 5
clonal, 31–35
circular, 81–82
digital, see Digital PCR
dyes for, 7
efficiency of, 725, 743
emulsion, 33–34, 58–60, 68–69
for Enterococcus, 223–225
for fungi, 489–500
for genitourinary tract organisms, 386
“hemi-nested,” 6
history of, 5
for HIV, 580–587
for Leishmania, 262
for male urethra microbial communities, 148–152
for MDRO surveillance, 202–205
for meningococcal meningitis microorganisms, 288, 292–298
for MRSA, 171, 256
multiplex, see Multiplex PCR
nested, see Nested PCR
for novel bacteria discovery, 258
for osteoarticular organisms, 404–410
panel, 407–408
for Plasmodium, 262
probes for, 7–9
quantitative, see Quantitative PCR
rapid, 314
real time, see Real-time PCR
reverse-transcriptase, 5–6
for SARS, 258
for Schistosoma, 262
for Streptococcus suis, 257
subtype-specific, 441
for surveillance, 249–252, 256–262
for Trypanosoma cruzi, 502–501
for vaginal microbiome, 141–143
for viral infections, 476–484
for zoonotic diseases, 280
PCR-electrospray ionization mass spectrometry
for bloodstream organisms, 343, 348–350
for osteoarticular organisms, 408–409
PCR-oligochromatography, 502, 504
Pearson correlation coefficient, 741
Pediatric patients
HIV testing in, 419, 423, 587
overparticular infections in, 408
Penicillin-binding protein, in MRSA, 198
Penicillin
identification of, 81–82
molecular detection of, 490
in skin disorders, 121
in skin microbiome, 118
Peptide nucleic acid fluorescence in situ hybridization (PNA-FISH), 102–103, 171–173, 179, 491
Peptidomimic profiling, for hepatitis B virus, 260
Peptoniphilus asaccharolyticus, 26
Peptostreptococcus, 147
Peptostreptococcus anaerobius, 26
Percent agreement (qualitative accuracy), in method verification, 725
Percent carryover, 742
Percent contamination, in method verifica-
tion, 725
Percent identity, for sequences, 23
Percent inhibition, in method verification, 725
Percent separation, for sequences, 23
Personnel, proficiency testing of, 726
pfmdr gene mutation, in antimalarial resis-
tance, 524
PFGE, see Pulsed-field gel electrophoresis (PFGE)
Phenytoin
pfmdr gene mutation, in antimalarial resis-
tance, 524
Pharmacogenetic
studies of, 614–618
Pharmacokinetic
metabolism genes in, 614, 618
Phage typing
Pharyngitis, streptococcal, 307
Phenol
as reagent, 236
PhenolSense
HIV tests, 423–424
PhenolSense Integrase test, 423–424
Phenotyping
carbapenemases, 201–202
DNA target sequencing for, 19–29
versus genotyping, 767
HIV, 419–420, 423, 426, 656–657
sequencing of, 776
whole-genome sequencing for, 44
Phoenix assay, for Enterococcus, 221
Photolithographic masks, for microarrays, 109
PHRED algorithm, 769, 772
Phyched score, 23
Phycocyanin, for microarrays, 109–110
Physical testing area, for validation, 573
Picornavirales, 82
Picornaviruses, 82
Pneumococci, 262
PneumoVir microarray, 112
Pneumonitis, herpes simplex virus, 481
Pneumoviruses, 489
Pneumoviruses jirovecii, 489, 492–493
Pneumolysin, 309
Pneumonia, 489
Pneumonia, NAAVs for, 315–335
Pneumonia, herpes simplex virus, 481
Pneumovir microarray, 112
Point-of-care and near-care testing
adoption strategy for, 550–551
ASSURED challenge in, 457–550
challenges for, 550–551
changing face of, 545–555
communication of results for, 551
connectivity for, 685–691
cost/benefit analysis of, 552–553
current status of, 546–547
definitions of, 545–546
for HIV/AIDS, 580–588, 707–718
implementation planning for, 550–551
innovations for, 547–550
for Mycobacterium tuberculosis, 556–579,
707–718
quality assurance needs in, 547–552
sample preparation in, 550
Strategic direction for, 547
Polonies (molecular colonies), 59–60
Polyacrylamide gel, for massively parallel
DNA sequencing, 58–59
Polymerase chain reaction, see PCR
Polymicrobial infections, osteoarticular, 402
Polymorphisms
sequencing of, 777, 779
verification and, 723
Phage typing
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymaviruses, 84, 157–165</td>
<td></td>
</tr>
<tr>
<td>Pork tapeworm, 535</td>
<td></td>
</tr>
<tr>
<td>Porphyromonadaceae, 129</td>
<td></td>
</tr>
<tr>
<td>Porphyromonas</td>
<td></td>
</tr>
<tr>
<td>DNA target sequencing for, 26 in male urethra microbial communities, 147</td>
<td></td>
</tr>
<tr>
<td>in osteocartilaginous infections, 402</td>
<td></td>
</tr>
<tr>
<td>Portrait Toxigenic C difficile Assay, 187–188</td>
<td></td>
</tr>
<tr>
<td>Positive controls for DNA target sequencing, 23 for sequencing, 777, 779</td>
<td></td>
</tr>
<tr>
<td>Positive predictive values, in method verification, 725</td>
<td></td>
</tr>
<tr>
<td>Postamplification methods, for HIV, 582</td>
<td></td>
</tr>
<tr>
<td>Posttest, in study design, 732</td>
<td></td>
</tr>
<tr>
<td>Posttransplant lymphoproliferative disease, 480</td>
<td></td>
</tr>
<tr>
<td>Potassium hydroxide test, for genitourinary tract organisms, 386, 388</td>
<td></td>
</tr>
<tr>
<td>Powassan virus, meningoencephalitis due to, 291</td>
<td></td>
</tr>
<tr>
<td>Power analysis, in method verification, 733–734</td>
<td></td>
</tr>
<tr>
<td>PPVs (predictive values), in method verification, 725</td>
<td></td>
</tr>
<tr>
<td>Premultiplication methods, for HIV, 582</td>
<td></td>
</tr>
<tr>
<td>Pre-analytical phase, quality assurance in, 745–746</td>
<td></td>
</tr>
<tr>
<td>Prebiotics, gastrointestinal microbiome and, 132</td>
<td></td>
</tr>
<tr>
<td>Precision of MALDI-TOF mass spectrometry, 785–788</td>
<td></td>
</tr>
<tr>
<td>in method verification, 752</td>
<td></td>
</tr>
<tr>
<td>in statistics, 743</td>
<td></td>
</tr>
<tr>
<td>testing of, 725</td>
<td></td>
</tr>
<tr>
<td>in validation, 773</td>
<td></td>
</tr>
<tr>
<td>Prediction, in statistics, 741</td>
<td></td>
</tr>
<tr>
<td>Predictive values, in method verification, 725</td>
<td></td>
</tr>
<tr>
<td>Predictor (independent) variables, 731–732</td>
<td></td>
</tr>
<tr>
<td>Pre-enrichment, in massively parallel DNA sequencing, 62</td>
<td></td>
</tr>
<tr>
<td>Prescriptions, individualized, see Pharmacogenetics</td>
<td></td>
</tr>
<tr>
<td>PreTect HPV-Proofer, 469, 471</td>
<td></td>
</tr>
<tr>
<td>Preact, in study design, 732</td>
<td></td>
</tr>
<tr>
<td>Prevalence models, in method verification, 725</td>
<td></td>
</tr>
<tr>
<td>Prevotella</td>
<td></td>
</tr>
<tr>
<td>DNA target sequencing for, 26 in gastrointestinal microbiome, 128</td>
<td></td>
</tr>
<tr>
<td>in male urethra microbial communities, 147, 149</td>
<td></td>
</tr>
<tr>
<td>in osteocartilaginous infections, 402</td>
<td></td>
</tr>
<tr>
<td>in skin microbiome, 119</td>
<td></td>
</tr>
<tr>
<td>Primaqine, pharmacogenetics of, 617, 619</td>
<td></td>
</tr>
<tr>
<td>Primary surveillance screening, 222–223</td>
<td></td>
</tr>
<tr>
<td>Primer-specific extension analysis, for HCV, 441</td>
<td></td>
</tr>
<tr>
<td>Primo Star iLED microscope, 559</td>
<td></td>
</tr>
<tr>
<td>Privacy, in medical device systems, 687</td>
<td></td>
</tr>
<tr>
<td>Pro Assays, for respiratory agents, 322</td>
<td></td>
</tr>
<tr>
<td>Probability, in method verification, 736</td>
<td></td>
</tr>
<tr>
<td>Probe(s)</td>
<td></td>
</tr>
<tr>
<td>for bDNA amplification, 3 detector, 14</td>
<td></td>
</tr>
<tr>
<td>double-stranded, 9</td>
<td></td>
</tr>
<tr>
<td>dual hybridization, 8, 12</td>
<td></td>
</tr>
<tr>
<td>for genotyping, 9</td>
<td></td>
</tr>
<tr>
<td>hairpin, 8</td>
<td></td>
</tr>
<tr>
<td>for hybrid capture method, 3–4</td>
<td></td>
</tr>
<tr>
<td>for hybridization, 9</td>
<td></td>
</tr>
<tr>
<td>hydrolysis, see Hydrolysis probes for in situ synthesized microarray technology, 109</td>
<td></td>
</tr>
<tr>
<td>for Invader assays, 4</td>
<td></td>
</tr>
<tr>
<td>for multiplex hybridization, 102–103</td>
<td></td>
</tr>
<tr>
<td>for PCR, 7–9</td>
<td></td>
</tr>
<tr>
<td>scorpion, 8</td>
<td></td>
</tr>
<tr>
<td>single hybridization, 12</td>
<td></td>
</tr>
<tr>
<td>TaqMan, 7–8, 425</td>
<td></td>
</tr>
<tr>
<td>for transcription-based amplification methods, 11</td>
<td></td>
</tr>
<tr>
<td>unlabeled, 12</td>
<td></td>
</tr>
<tr>
<td>PROBETEC HSV, 293</td>
<td></td>
</tr>
<tr>
<td>ProbeTec System, 365</td>
<td></td>
</tr>
<tr>
<td>ProbeTec, gastrointestinal microbiome and, 132</td>
<td></td>
</tr>
<tr>
<td>Probit analysis, 724</td>
<td></td>
</tr>
<tr>
<td>ProbeTec HSV Qx test, 394</td>
<td></td>
</tr>
<tr>
<td>Procalcitonin, in gastrointestinal infections, 665</td>
<td></td>
</tr>
<tr>
<td>Procedural manual, quality assurance details in, 749</td>
<td></td>
</tr>
<tr>
<td>Process integration, of medical device systems, 687</td>
<td></td>
</tr>
<tr>
<td>Procleix assays, for HBV, 455</td>
<td></td>
</tr>
<tr>
<td>ProdesseProCastro Cq assay, 187–188</td>
<td></td>
</tr>
<tr>
<td>Product profiles, for point-of-care testing, 552</td>
<td></td>
</tr>
<tr>
<td>Prognostic value, 754</td>
<td></td>
</tr>
<tr>
<td>with alternative procedures, 762–764</td>
<td></td>
</tr>
<tr>
<td>with commercially produced samples, 758–760</td>
<td></td>
</tr>
<tr>
<td>conducting of, 760</td>
<td></td>
</tr>
<tr>
<td>definitions of, 755</td>
<td></td>
</tr>
<tr>
<td>for HCV assays, 443–444</td>
<td></td>
</tr>
<tr>
<td>for HIV viral load and genotyping, 426</td>
<td></td>
</tr>
<tr>
<td>for HPV assays, 472</td>
<td></td>
</tr>
<tr>
<td>internal, 750</td>
<td></td>
</tr>
<tr>
<td>in MALDI-TOF mass spectrometry, 793</td>
<td></td>
</tr>
<tr>
<td>providers of, 756</td>
<td></td>
</tr>
<tr>
<td>in quality assurance, 750–751</td>
<td></td>
</tr>
<tr>
<td>quality improvement with, 760–762</td>
<td></td>
</tr>
<tr>
<td>regulations on, 754–757</td>
<td></td>
</tr>
<tr>
<td>reporting results of, 760</td>
<td></td>
</tr>
<tr>
<td>of sequencing tests, 779</td>
<td></td>
</tr>
<tr>
<td>Progumil, pharmacogenetics of, 617, 619</td>
<td></td>
</tr>
<tr>
<td>PromethION system, 70</td>
<td></td>
</tr>
<tr>
<td>Proof of concept, in method verification, 722</td>
<td></td>
</tr>
<tr>
<td>Property right, patent as, 805</td>
<td></td>
</tr>
<tr>
<td>Propionibacterium acnes, 26</td>
<td></td>
</tr>
<tr>
<td>Propionibacterium, 22, 93</td>
<td></td>
</tr>
<tr>
<td>Propionibacterium acnes, 26</td>
<td></td>
</tr>
<tr>
<td>bacteriophages of, 119</td>
<td></td>
</tr>
<tr>
<td>disorders caused by, 119–120</td>
<td></td>
</tr>
<tr>
<td>next-generation sequencing for, 75 in osteocartilaginous infections, 403, 404</td>
<td></td>
</tr>
<tr>
<td>in skin microbiota, 117</td>
<td></td>
</tr>
<tr>
<td>Protaglandins, in gastrointestinal infections, 670, 671</td>
<td></td>
</tr>
<tr>
<td>Prostatitis, 148</td>
<td></td>
</tr>
<tr>
<td>Prosthetic joint infections, 408–409</td>
<td></td>
</tr>
<tr>
<td>Protease inhibitors, pharmacogenetics of, 619–620</td>
<td></td>
</tr>
<tr>
<td>Protection of Personal Information Act (South Africa), 710</td>
<td></td>
</tr>
<tr>
<td>Proteins, genetic interactions with, 658</td>
<td></td>
</tr>
<tr>
<td>Protecobacteria, 86</td>
<td></td>
</tr>
<tr>
<td>in gastrointestinal microbiome, 127, 129–131, 133–134 in skin microbiome, 119</td>
<td></td>
</tr>
<tr>
<td>Proteomics of HIV, 658</td>
<td></td>
</tr>
<tr>
<td>male urethra microbial community studies with, 149–152</td>
<td></td>
</tr>
<tr>
<td>Proteus, 26, 340</td>
<td></td>
</tr>
<tr>
<td>Proteus mirabilis, 249</td>
<td></td>
</tr>
<tr>
<td>Proton pump inhibitors, pharmacogenetics of, 620</td>
<td></td>
</tr>
<tr>
<td>Protozoa, gastrointestinal, 531–533</td>
<td></td>
</tr>
<tr>
<td>Proveit Bone & Joint test, 173–174, 178, 409</td>
<td></td>
</tr>
<tr>
<td>Proveit Sepsis test, 173, 175, 178, 341</td>
<td></td>
</tr>
<tr>
<td>Proventricular dilation disease, 85</td>
<td></td>
</tr>
<tr>
<td>Providencia, 26</td>
<td></td>
</tr>
<tr>
<td>Provilal DNA and RNA tests, for HIV, 419</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas, 26</td>
<td></td>
</tr>
<tr>
<td>DNA target sequencing for, 26 in male urethra microbial communities, 148</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa beta-lactamase of, 220</td>
<td></td>
</tr>
<tr>
<td>in bloodstream, 336, 340, 350</td>
<td></td>
</tr>
<tr>
<td>disorders caused by, 120</td>
<td></td>
</tr>
<tr>
<td>DNA target sequencing for, 26</td>
<td></td>
</tr>
<tr>
<td>NAATs for, 315–316</td>
<td></td>
</tr>
<tr>
<td>in osteocartilaginous infections, 402</td>
<td></td>
</tr>
<tr>
<td>PNA-FISH for, 103</td>
<td></td>
</tr>
<tr>
<td>whole-genome sequencing for, 39</td>
<td></td>
</tr>
<tr>
<td>Public health antimicrobial-resistant organism surveillance for, 245–255</td>
<td></td>
</tr>
<tr>
<td>surveillance for, 256–265, 686</td>
<td></td>
</tr>
<tr>
<td>whole-genome sequencing for, 32–48</td>
<td></td>
</tr>
<tr>
<td>PulseNet surveillance by, 236, 240</td>
<td></td>
</tr>
<tr>
<td>for zoonotic diseases, 280</td>
<td></td>
</tr>
<tr>
<td>Pyrimerhamine, resistance to, 524</td>
<td></td>
</tr>
<tr>
<td>Pyrosequencing, 35</td>
<td></td>
</tr>
<tr>
<td>for fungi, 495</td>
<td></td>
</tr>
<tr>
<td>for gastrointestinal parasites, 534</td>
<td></td>
</tr>
<tr>
<td>history of, 766</td>
<td></td>
</tr>
<tr>
<td>for novel pathogen discovery, 43</td>
<td></td>
</tr>
<tr>
<td>platforms for, 37</td>
<td></td>
</tr>
<tr>
<td>systems for, 68–69, 84–85</td>
<td></td>
</tr>
<tr>
<td>Qiacube nucleic acid extractor, 493–494</td>
<td></td>
</tr>
<tr>
<td>QIagen hybrid capture assays, 4</td>
<td></td>
</tr>
<tr>
<td>QIagen PyroMark system, 766QHME (Quantitative Insights Into Microbial Ecology), 75, 86</td>
<td></td>
</tr>
<tr>
<td>QIAamp DNA Minikit, 494</td>
<td></td>
</tr>
<tr>
<td>QLA-symphony RQG system, 457</td>
<td></td>
</tr>
<tr>
<td>Qualitative accuracy, in method verification, 724</td>
<td></td>
</tr>
<tr>
<td>Qualitative alternative hypothesis, 739</td>
<td></td>
</tr>
<tr>
<td>Qualitative null hypothesis, 739</td>
<td></td>
</tr>
<tr>
<td>Qualitative PCR, Streptococcus pneumoniae, 309</td>
<td></td>
</tr>
<tr>
<td>Qualitative tests proficiency testing of, 760</td>
<td></td>
</tr>
<tr>
<td>qualitative assurance for, 747</td>
<td></td>
</tr>
<tr>
<td>quality assurance in, 747–749</td>
<td></td>
</tr>
<tr>
<td>verification of, 742</td>
<td></td>
</tr>
<tr>
<td>Quality assays, for Trypanosoma cruzi, 505</td>
<td></td>
</tr>
<tr>
<td>Quality assessment/assurance, 745–753 with alternative procedures, 762</td>
<td></td>
</tr>
<tr>
<td>see also Quality control; Quality improvement; Verification/validation calibration for, 749</td>
<td></td>
</tr>
<tr>
<td>cloud computing for, 717–718</td>
<td></td>
</tr>
<tr>
<td>components of, 745, 750–751</td>
<td></td>
</tr>
</tbody>
</table>
Random amplified polymorphic DNA (RAPD) analysis
for pathogen identification, 82
Trypanosoma cruzi, 506–507
Random error, 51, 738
Random extension termination, in sequencing, 768–769
Random sampling, 733
Random termination, in sequencing, 766
Range, definition of, 736
RANTES (regulated on activation, normal T-cell expressed and secreted), in gastrointestinal infections, 664–665, 668–669
Rasvillia, 26
RapID ANA II System, Clostridium difficile, 187
Rapid antigen tests
for meningococcal infections, 292
for Streptococcus pyogenes, 309
Rapid detection methods, for MDROs, 197–198
Rapid diagnostic test (immunochromatographic test), 518
Rapid diagnostic tests, see also Point-of-care and near-care testing
description of, 546–547
Rapid PCR, for bloodstream organisms, 344
Rapid testing, for point-of-care testing, 548
RAZOR EX-thermocycler, for respiratory agents, 325
rDNA gene
13S, Mycobacterium tuberculosis, 312
16S, Chlamydia pneumoniae, 312
Mycobacterium pneumoniae, 312
18S, as target, for fungi sequencing, 494–495
Reaction volume, for digital PCR, 50
Real length, 70–71, 86, 160, 769
Readers, for medical device systems, 689–690
Reagents
contamination of, 87
costs of, business case and, 800
verification of, 749
Real Time High Risk HPV test, 469–470
RealStar Influenza S&RT-PCR, 317–318
Real-time detection, in multiplex amplification, 105–107
RealTime HCV Genotype II test, 439
RealTime HCV test, 438, 440
Real-time PCR, 7
for adenoviruses, 477
for astrovirus, 370–371
for BK virus, 478
for bloodstream organisms, 346–347
for calciviruses, 369–370
for Campylobacter, 363, 364
for Clostridium difficile, 366
for CMV, 479
for coccidial, 374
for Enterobacteriaceae, 365
for enterovirus 71, 259–260
for Epstein-Barr virus, 480
for flaviviruses, 373
for fungi, 489–503
in clinical samples, 489–493
diagnosis, 491–493
for species identification, 493–496
target selection for, 494
for gastrointestinal parasites, 532–535
for genitourinary tract organisms, 389–393
for HBV, 456
for HCV, 435–436, 441
for HHV-6, 480–481
for HIV, 421–422, 583–584
for influenza virus, 260–261
for MDRO surveillance, 202
for Mycobacterium tuberculosis, 256
for noroviruses, 369–370
for parasites, 373
for Plasmodium, 518–519
quantitative, for microRNAs, 639, 644–646
for rabies virus, 296
for rotavirus, 368
for Vibrio, 365–366
for zoonotic diseases, 281
RealTime TaqMan HIV-1 test, 421–422
Real-Time Transcription-Mediated Amplification Platform, 583–584
qPCR, genes as targets for sequencing, 20, 309
RECall software, 777, 779
Receiver operating characteristic (ROC) analysis, 725
Recombination immunoassay, for hepatitis C, 435
Recovery experiments, 743
Recovery study, for accuracy, 788–789
Rectal swabs, for MDROs, 200–201
REDUCE-MRSA trial, 205
Reference intervals/ranges, 743
for digital PCR, 10–11
in MALDI-TOF mass spectrometry, 789, 791
Reference laboratories, verification of, 721
Reference materials, 749, 779
Reference standard method, new method comparison with, 742
Reflexive culturing, 242
Regression analysis, 741
Regressors (independent variables), 731–732
“Regulated analytes,” 756
Regulations
for next-generation sequencing, 76
for point-of-care testing, 553
for proficiency testing, 754–757
for zoonotic disease detection, 280–281
Relative frequency, 736
Remel Spectra RE, 200
Remote monitoring dashboard, in cloud computing, 714–715
RenDx FungiPlex assay, 490–491
Reportable disease, zoonotic, 276, 278
Reportable range, 722–723, 791
Reporting
of antimicrobial susceptibility test results, 698
DNA target sequencing, 28
health-associated infections report of, 247 of WHONET data, 697
or zoonotic diseases, 276, 278
Representational difference analysis, 80–81
Reproducibility, 743
“Research-only” tests, verification of, 721–722
Reservoirs, in surveillance, 266–267
ResFinder, 240
Residuals, analysis of, 741
Resistance, drug, see Drug resistance
Resistant-like molecule β, 72
ResFinder kit, 323
Respiratory agents, 315–335, see also Respiratory viruses; specific viruses
commercially available assays for, 320–323
infections due to, in transplant recipients, 476
Ribavirin

Respiratory agents (continued)
microarrays for, 112
multiplex amplification for, 105
multiplex PCR for, 7
NAATs for
bacteria, 308–317
multiplex, 318–319, 323–325
viruses, 317–318
PCR for, 6
sampling of, 306–308
Respiratory syncytial virus, NAATs for, 307, 315–324
Respiratory tract, virome of, 162–163
Respiratory viruses, PCR for, 5
ResFLEX assays
for respiratory virus, 261
for respiratory agents, 319, 323–324
Response (dependent) variables, 731
Retinoic acid-inducible gene (RIG)-like receptors, 669
Retinoic acid inducible gene
Results
of point-of-care testing, communication of, 552, 602–603
of quality assurance, 751
Retroviral drug resistance
RFLP, see multiplex amplification for, 105
microarrays for, 112
sampling of, 306
PCR for, 6
for DNA target sequencing, 24
classifier of, 24
pharmacogenetics of, 617, 619
meningoencephalitis due to, 288, 290
in bloodstream, 349
for DNA target sequencing, 23
for dengue virus, 591–592
for enteroviruses, 296
for influenza virus, 260–261
for norovirus, 268–269, 272
reagent contamination in, 87
Reverse transcription LAMP method, for influenza virus, 261
Reversible terminators, 37
RFLP, see Restriction fragment length polymorphism analysis
Rhabdoviruses, identification of, 85
Rhinoviruses, 162, 307, 315–317
Rhodomonas, 26
Rhodococcus, 27, 213
Ribavirin
for hepatitis C, 432, 433–434
pharmacogenetics of, 617, 619
Ribosomal Database Project, 74, 81, 148
classifier of, 24
for DNA target sequencing, 24–25
Ribosomal Differentialiation of Microorganisms database, 24–25
Rickettsia rickettsii
in bloodstream, 349
meningoencephalitis due to, 288, 290
zoonotic origin of, 281
RIDAGENE Clostridium difficile & Toxin A/B, 187–188
RIDAGENE Norovirus tests, 370
Rifampin, resistance to, 6, 43
Rilpivirine, pharmacogenetics of, 620
RipSeq software, 23
Risk assessment, in method verification, 725
Risk management, in verification, 723
Ritonavir
for hepatitis C, 433–434
pharmacogenetics of, 619–620
RM Solution, 715
RNA, see also RNA
extraction of, 437–438
isolation of, 638–640; see also Nucleic acid(s), isolation of
RNA polymerase
in microRNA processing, 634
in PCR, 11, 13
RNA tests
for HCV, 437–438
for HIV, 422–423, 425
RNA viruses, digital PCR for, 53
RNA-induced silencing complex, 724
RNAs, small, see MicroRNAs
RNAse, for next-generation sequencing, 76
ROC (receiver operating characteristic) analysis, 725
Roche 454 Genome Sequencer, 159
Roche 454 instrument, 68, 71
Roche LightCyclers, see LightCycler(s)
Rosco kits, 202
Rosella, 127, 129, 131, 134
Roseoloviruses, 160
Rosomonas mucosa, surveillance of, 258
Rotational systems, for drug resistance, 11
Rotavirus, 367–368, 664, 669–670
Rothia, 27
Rotor-Gene Q, 203, 583
rpo genes
Streptococcus pyogenes, 308–309
as target for sequencing, 20, 23, 26
RQ-PCRs, see Quantitative PCR
RNA gene
5.8S, in skin microbiome studies, 118
16S
for bacterial identification, 81
in bloodstream organisms, 345–346
in DNA target sequencing, 19–31
in gastrointestinal microbiome studies, 126
in massively parallel sequencing, 65–66
in next-generation sequencing, 74–75
in osteoarticular organisms, 406–410
in skin microbiome studies, 117–118
in Streptococcus suis, 257
structure of, 19–20
18S, in eukaryocytes, 75
small subunit, in gastrointestinal parasites, 531–535
RS II system, 63–64
RSV Direct assay, 318
RTP tSET HIV-1 viral load test, 586–587
Rubella virus, meningoencephalitis due to, 291
Ruminococcus, 129, 131
Run controls
in sequencing, 777–778
in validation, 771
Run parameters, 772
16S gene, rRNA, see RNA gene, 16S
Saccharomyces cerevisiae, in vaginal microbiome, 139
Safety, in quality assurance, 751, 753
St. Louis encephalitis virus, 289
Salmonella, 364–365
biomarkers of, 664, 666–667
in gastrointestinal microbiome, 129
in osteoarticular infections, 403
sequencing for, 768
surveillance of, 235–237, 240, 242, 247
zoonotic origin of, 277–278
Salmonella bongori, 87
Salmonella enterica, 363
Salmonella enterica serovar Typhi, 36–38
SAMBA Flu duplex test, 325
SAMBA HIV test, 422
SAMBA viral load testing, 584
“Same clinical encounter,” care during, 545–546
SAMHD1, in HIV immunity, 659
Samples
challenge, 758, 762
for next-generation sequencing, 72
for point-of-care testing, 550
for proficiency testing, 757–760
size of, for method verification, 732–733
Sandwich hybridization, in branched DNA assays, 3
Sanger sequencing, 32, 71
current equipment for, 766
for HBV, 457–458
history of, 766
for male urethra microbial communities, 149
versus massively parallel DNA sequencing, 755
versus next-generation sequencing, 766–767
ongoing quality control in, 777, 779
verification of, 771–777
work flow optimization in, 768–769
SaphiX, 341
Saposin, 368–370
SARS (severe acute respiratory syndrome) virus, 81, 258
SatDNA, Trypanosoma cruzi, 502–506
SatDNA OligoC-test, 504
Satellite technology, for cloud computing, 711–712
Scalability, in medical device connectivity, 687
Scalable transcriptional analysis routine (STAR), 106
Scattergrams, 741
Scatterplots, 699
Sclerotomias, 262, 531
Schistosomiasis, 535
SciEX GenomeLab GeXP, 767
Scorpion primers, for HSV, 482
Scorpion primers, for HBV, 457–458
SD (standard deviation), 736
SD Bioline test, 596
SD (standard deviation), 736
SD Bioline test, 596
SciEX GenomeLab GeXP, 767
Scorpion primers, for HSV, 482
Sexually transmitted infections, 8
Severe acute respiratory syndrome (SARS) 8
Semantic feasibility, in medical device connectivity, 689
Semiconductor interoperability, 687
Semiconductor chip, 68
Sensitivity, 598
in MALDI-TOF mass spectrometry, 789
in method verification, 724–725, 742
in point-of-care testing, 547–548
in validation, 773–774
Sensor network model, 704–705
Sepsis, microRNA detection in, 646–647
SeptiTest, 175, 178, 342
Septicemia, see Bloodstream infections
SeptiFast test, 106
for bloodstream organisms, 342, 346–347
for fungi, 490
for osteoarticular organisms, 407
for SARS-CoV-2, 38
for tuberculosis, 707
for urinary tract infections
for West Nile virus, 295
for Zika virus, 338
Serologic tests
in method verification, 724
in validation, 773
in point-of-care testing, 547
for bloodstream organisms, 342, 346
for norovirus, 271
for osteoarticular organisms, 407
for fungi, 490
for dengue virus, 592
for hepatitis A, 417
for Lassa fever, 308
for malaria, 447
for methicillin-resistant Staphylococcus aureus (MRSA), 308
for meningococcal disease, 407
for meningococcal meningitis, 407
for neuraminidase, 507
for respiratory syncytial virus (RSV), 592
for tularemia, 308
for West Nile virus, 295
for yellow fever, 592
for Zika virus, 338
for SARS-CoV-2, 38
applications of, 766
anomalies in, 769
controls for, 747
depth of sequencing data in, 747
diagnosis of, 768
errors in, 769
deep sequencing data in, 747
diagnostic accuracy of, 767
depth of sequencing data in, 747
diagnostics of, 767
determination of, 766
history of, 766
interfering substances in, 766
ongoing quality control in, 777–779
overview of, 766
principles of, 766–783
quality assurance for, 749
specimen handling in, 768
for antibiotic resistance, 251–252
pyrosequencing in, 771–777
pyrosequencing verification in, 771–777
work flow optimization in, 768–771
pyrosequencing-by-synthesis, 770–771
serial dilution technique, 742–743
Serological tests for dengue virus, 592
for HCV, 435
for HIV, 419
for meningococcal meningitis, 407
for Mycoplasma pneumoniae, 310–312
for parvovirus, 481–483
for Trypanosoma cruzi, 501–502
for West Nile virus, 295
Seratia, WHONET data on, 693
Serratia marcescens, 251, 340
Serum antibodies, 151
Severe acute respiratory syndrome (SARS) virus, 83, 258
Sewage virome, 164
Sexually transmitted infections, see also Genitourinary tract infections
male genital microbe and, 146–152
Sexually transmitted microorganisms, see also specific microorganisms
Shell vial culture, for meningococcal meningitis organisms, 292
Shiga toxin-producing organisms, 362–363, 664–666
Shigella, 363, 364–365
biomarkers of, 664, 666
in bloodstream, 343, 345
MALDI-TOF for, 93, 96
surveillance of, 247
as target for sequencing, 26
Shigella dysenteriae, 362, 664–666
Shigella sonnei, 36–38
Shingles, in transplant recipients, 482
Shotgun sequencing, 58, 75
for outbreak investigation, 238, 242–243
for skin microbiome samples, 118–119
SHV beta-lactamases, 199, 201
Sidalase, in vaginal microbiome, 142
SimpsonGentV340 analyzer, for hDNA, 3
Sigmoidoscopy, for Clostridium difficile infections, 191
Signal amplification techniques, 3–4
advantages of, 3
branched DNA assays, 3
cleavage-invader, 4
hybrid capture, 3–4
multiplex, 103
Signal dephasing, in next-generation sequencing, 35
“Signatures,” in 16S rDNA molecule, 19
Signalled values, in sequencing, 769
Silva database, 24, 81
Simprrevir, 433–434, 440–441
Simian immunodeficiency virus, 417
Simian virus 40 infections, 477–478, 482
Simple linearity experiments, 742–743
Simple method comparison approach, to experiment, 732
Simple precision test, 743
Simplex H1/2 assay, 481
Simplex B. pertussis/B. parapertussis assay, 314
Simplex C. difficile Universal Direct, 187–188
Simplex Flu A/B&RSV assay, 318
Simplex HSV 1 & 2 Direct assay, 481
Simplexa Flu A/B&RSV assay, 318
Simplexa Flu A/B&RSV assay, 318
Simplex H-1/2 assay, 481
Simplexa HSV 1 & 2 Direct assay, for HIV, 294
Simplification, for medical device connectivity, 678
Simultaneous amplification and testing technology, for enterovirus, 71, 260
Sin Nombre hantavirus, identification of, 82
Single base chain extension, in microarrays, 110–112
Single cell chain extension, in microarrays, 110–112
Single cell analysis, for HIV, 658
Single hybridization probe, 12
Single molecule real-time sequencing, 37
Single nucleotide addition, 35
Single nucleotide analysis, 9
Single nucleotide polymorphism analysis digital PCR for, 53
for gastrointestinal parasites, 532, 534
in hepatitis C virus, 441
microarrays for, 111–112
for outbreak investigation, 239–240
Single nucleotide variants, 36, 44
Single-cell genomics, 44
Single-focus approach, Trypanosoma cruzi, 507
Single-molecule, long-read DNA sequencing technology (SMRT) cell, 63–65, 85
Single-molecule real-time sequencing, 35
Single-strand restriction endonuclease, 13–15
SHP tumors, skin, 119
SKS/STEN (Stevens-Johnson syndrome/toxic epidermal necrolysis), 618–619, 622
Skewed distribution, 736
Skin microbiome, 117–125
diagnostic applications of, 122–123
disorders associated with, 120–122
habitats for, 117
overview of, 117–119
Skin virome, 163–164
Small, in gastrointestinal microbiome, 131
Small ribosomal subunit sequences, 24
Smart phones, in medical device systems, 690
SmartCycler B. pertussis/B. parapertussis assay, 314
SmartCycler II, for MDRO, 203
SmartCycler instruments, 172, 323
SmartGene database, for DNA target sequencing, 23–25
SmartHBV assay, 456, 457
SmartNorovirus test, 370
SMRT (single-molecule, long-read DNA sequencing technology) cell, 63–65, 85
SMS option, for cloud computing, 711–712
“Snapback primers,” 9, 12
Sneathia
in male urethra microbial communities, 150
in skin microbiome, 119
in vaginal microbiome, 141–142
sod genes, as targets for sequencing, 20, 23, 366
Sofoabubvir, for hepatitis C, 433–434
Software, see Computer software
Soil-transmitted helminths, 531, 533–534
SOLiD system, 68–69
Solid-phase amplification, for next-generation sequencing, 71
Solid-phase hybridization, 102–103
Solution hybridization-antibody capture method, 3–4
Solution-based chemistries, for microarrays, 110–112
Solution-based RNA isolation, 642–643
Somatic hypermutation, of B cells, 658
Sorensen's index of similarity, 150–151
South Africa, tuberculosis diagnosis in, 707–718
Southwest Pacific Clone, Staphylococcus aureus, 250
SP (sulfadoxine-pyrimethamine), resistance to, 524
Spacer oligonucleotide typing, for Mycobacterium tuberculosis, 257
Spanish Mycology Reference Laboratory, 490
Species, fungal, identification of, 493–496
Specificity, 742
in MALDI-TOF mass spectrometry, 789
in point-of-care testing, 547–548
testing of, 598, 728
in validation, 773–774
Specimens
collection of, for point-of-care testing, 552
DNA target sequencing from, 27
sampling of, for method verification, 732–733
for sequencing, 768–769
SpectraWave and SpectraNet, 604
Spectrophotometry, versus digital PCR, 54
Spectroscopy, for Plantidium, 604
Spectrum bias, 736
Spike specimens for controls, 747
for proficiency testing, 763
Sputum, 572–573
microscopy of, 558–560
Sporobacter, 308–309
Sporobolomyces, 740
Stakeholders, business case for, 800
Staff requirements, for quality assurance, 751, 753
Stable malaria, 590
Standard(s) for:
HBV tests, 457–458
HCV tests, 442
HPV tests, 472
reference, 727
Stegostoma, 186
Stentor, 117
Stentor coeruleus, 592
Stentor argensonii, 525
Stentor diaphanus, 512
Stenotrophomonas, 16
STARD (Standards for Reporting of Diagnostic Accuracy), 738
STAR software, 460
STAR (scalable transcriptional analysis routine), 106
Star sample sequencing, 25
STAR-D (Standards for Reporting of Diagnostic Accuracy), 722, 738
STAT1 protein, in gastrointestinal infections, 687
Standardization, of medical device connectivity, 686–687
Standards for Reporting of Diagnostic Accuracy (STARD), 722, 738
Stanford HIV Drug Resistance Database, 423
Staphylococcal aureus, 341
Staphylococcus aureus, 316
as contaminant, 22
DNA target sequencing for, 24–25
in gastrointestinal microbiome, 129
in male urethra microbial communities, 147–149
next-generation sequencing for, 74
in osteoarticular infections, 402–403, 404
in skin microbiome, 119
Staphylococcus aureus in bloodstream, 340, 343, 349
in gastrointestinal infections, 420–423, 404
in skin microbiome, 119
Staphylococcus aureus as contaminant, 22
DNA target sequencing for, 24–25
in gastrointestinal microbiome, 129
in male urethra microbial communities, 147–149
next-generation sequencing for, 74
in osteoarticular infections, 402–403, 404
in skin microbiome, 119
Staphylococcus aureus in bloodstream, 340, 343, 349
in gastrointestinal infections, 420–423, 410
DNA target sequencing for, 25
genotyping of, 32–33
MALDI-TOF for, 94
methicillin-resistant, see MRSA (methicillin-resistant Staphylococcus aureus) multidrug-resistant, 698
NAATs for, 315–316
in osteoarticular infections, 402–403, 410
PNA-FISH for, 103
in skin microbiome, 118–119
surveillance of, 248
vancomycin-resistant, 213, 251
Staphylococcus aureus PNA FISH, 175
Staphylococcus epidermidis, 117, 119–120
Staphylococcus hominis, 117
Staphylococcus lugdunensis, 25
Staphylococcus QuickFISH BC, 172–173, 175
Staphylococcus warneri, 25
STAR (scalable transcriptional analysis routine), 106
Star software, 460
STAR-D (Standards for Reporting of Diagnostic Accuracy), 722, 738
STAT1 protein, in gastrointestinal infections, 670
Statistical(s)
bias in, 738
central tendency in, 736–738
comparative, 740–743
data collection for, 733, 736
descriptive, 732, 736–738
importance of, 731
inferential, 738–741
parametric, 739–740
personnel for, 735, 736
software for, 734, 736
tests for, selection of, 741
for verification, 732–738
“Statistical clusters,” 701
Statistical significance, 733
Stata software, 736
Stavudine, pharmacogenetics of, 622
STCan software, 701, 704
Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), 618–619, 622
STING protein, in HIV immunity, 659
Stool and stool specimens
Clostridium difficile toxins in, 185–193
for coccidia detection, 373–374
for gastrointestinal microbiome characterization, 126
for microsporidia detection, 374
for norovirus detection in, 269–272
parasites in, 530–535
Stool cytotoxicity assay, Clostridium difficile, 186
Strain typing, see also Genotyping
MALDI-TOF for, 94
for surveillance, 250
Strains, collections of, for point-of-care testing, 552
Stratification, 733
Strand displacement amplification, 13–15,
386, 390–392
Stratified sampling, 733
Stratum corneum, 117
Stratified sampling, 733
Stratified sampling, 733
Streptococcus pyogenes in meningitis, 288
MALDI-TOF for, 93
Streptococcus pneumoniae in bloodstream, 336, 340, 350
MALDI-TOF for, 93
in meningitis, 288
in meningococcal meningitis, 292
microscopy for, 292
NAATs for, 307, 309–310, 315–324
in osteoarticular infections, 402, 403
surveillance of, 248
Streptococcus pyogenes genotyping of, 32, 34
NAATs for, 306–309, 315–316
in osteoarticular infections, 403
surveillance of, 251
Streptococcus suis, 257, 315–316
Streptomyces, 27
Streptomyces coelicolor, 213
Strongyloides stercoralis, 534
Strovit test, for Trypanosoma cruzi, 502
Student t test, 739
stx genes, 363
Stx toxins, 665–666
Subculture, for bloodstream organisms, 344
Subdoligtranum, 131
Subject matter, in patent, 803, 805–808
Subscriber ID numbers, 689
Subset, of samples, 732
Subtype-specific PCR, HCV, 441
Subtyping, in WHONET, 702–704
Sulfadoxine-pyrimethamine, resistance to, 524
SuperBug ID products, 202
SUPERCARBA, 201
Support oligonucleotide ligation, 35
Surface plasmon resonance imaging, 638
SURFI software, 771, 777
Surveillance
in China, 256–265
definition of, 245
of foodborne infections, 235–244
of HIV infections, 707–718
information technology for, 686, 692–706
of noroviruses, 266–272
in South Africa, 707–718
of tuberculosis, 707–718
Susceptibility, antimicrobial enterococci, 221–223
HCV, 440–442
MALDI-TOF for, 93–94
Mycobacterium tuberculosis, 570
whole-genome sequencing for, 32
WHONET reports of, 699–702
Suspension beads, in microarray analysis, 109–112
Sustainability, in medical device connectivity, 687
Sustained virologic response, in hepatitis C treatment, 436
Sweat glands, 117
Swiftgene Norovirus GI/GII test, 370
SWOT analysis, for business case, 799–800
SYBR Green dyes
for astrovirus, 371
for caliciviruses, 369
for gastrointestinal parasites, 533
for microRNAs, 648–645
for multiplex PCR, 104
for parasites, 373
for Trypanosoma cruzi, 505–506
Syndromic NAATs, 375
Syndromic surveillance, 235–236
Synthetical interoperability, 687
Syphilis, 393
Systematic error, 738
Systemic autoimmune reaction, 738
SystemOne, 690–691
T cells
CD4+, in HIV infection, 580–581
in gastrointestinal infections, 670
microRNA interaction with, 636
t tests, 739–740
Taenia saginata, 531
“Tagmentation,” for library preparation, 60–61
Talin, in gastrointestinal infections, 667
Tannarella, 26
Tapeworms, 531, 535
TagMan techniques
for HBV, 260
for HCV, 442
for HIV, 425
for microRNAs, 644–645
for multiplex amplification, 105–107
for PCR, 7–8
for transplant recipients, 482
Target amplification techniques, 4–16; see also PCR.

Target generation, in strand displacement amplification, 13–15

Target product profiles, for HBV, 457

Taxonomy, in bioinformatics, 74

Taxonomic consensus, 81–82

TB, see Mycobacterium tuberculosis; Tuber-
culosis

TB Breathalyzer, 573

TB Dx system, 570

TB Gx Monitor, 717
tcd genes and Tcd toxins, 366, 367
in Clostridium difficile, 187–189
in gastrointestinal infections, 665

Technical interoperability, 687

Technomicrobial functionality, in medical device connectivity, 689

Telemedicine

connectivity for, 685–691
for point-of-care testing results, 552

Teleprevirin, for hepatitis C, 434

TEM beta-lactamases, 199

Telemedicine instruments, 687

Tensaflovir

for hepatitis B, 454
pharmacogenetics of, 617, 619

Termination, in sequencing, 768–769

Text kits, as intellectual property, 809–809

Test review bias, 738

Tests of equivalence, 739

Thielser’s disease-associated virus, 85

Thermofisher Scientific instruments, 767

Thymidine analogs, pharmacogenomics of, 622

Tick-borne diseases, 281

 Bordetella pertussis, 297
 rickettsiae, 296–297
 tick-borne encephalitis virus, 289

Tissierella, 26

Tissue factor, in gastrointestinal infections, 666

TLRs (Toll-like receptors), 635–636

The Biosciences instrument, 112

TMA, see Transcription-mediated amplification

Tolerance limit, in quantitative molecular assays, 727

Toll-like receptors, microRNAs and, 635–636

Toscana virus, meningocencephalitis due to, 635–636

Total ESBL + AmpC Confirm Kit, 201

Toxin(s), Clostridium difficile, see Clostridium difficile

Toxin-augmented pilus, in gastrointestinal infections, 668

Toxoplasma gondii, surveillance of, 262
toxR gene, 366

Trade secrets, 803–804

Trademarks, 803–804

TRLs (Toll-like receptors), 635–636

TRAIL (necrosis factor-related apoptosis-inducing ligand), in gastrointestinal infections, 670

Transcribed spacer regions, as target for fungi sequencing, 494

“Transcript filtering,” 83–84

Transcription-mediated amplification, 11, 13, 386

for genitourinary tract organisms, 390–392
for hepatitis C, 435

Transcriptomics for HIV, 657–658

male urethra microbial community studies with, 149–152
in next-generation sequencing, 75

Transforming growth factor, in gastrointestinal infections, 666

Transfusion medicine, HCV assays for, 441

Translocation, in next-generation sequencing, 35

Transplant recipients, viral infections in, 476–483

Transport genes, polymorphisms of, 614, 618–620

Transposon-mediated library, 769

Transposon-mediated library preparation, 60

Transposition, of library, 769

Travelers, dengue and malaria in, 591

TREK Sensititre, for Entero cocci, 221

Trematodes, foodborne, 531, 534

Trend analysis, for variability, 725

Treponema pallidum, 288, 291, 393

Treponemal tests, for Treponema pallidum, 393

Trichomonas hominis, 373

Trichomonas vaginalis, 387–388

asymptomatic carriage of, 394–395
in male urethra microbial communities, 146–147, 149
in male urethritis, 394–395

TMA for, 13

in vaginal microbiome, 143

Trichophyton

skin disorders caused by, 121–122
in skin microbiome, 118

Trichostrongylus, 534

Trichuris, 672

Trichuris suis, 534

Trichuris trichiura, 533–534

TRIM5alpha, in HIV immunity, 659

Trimethoprim-sulfamethoxazole, pharmacogenetics of, 618–619

Trisophosphate isomerase, 532

RNA gene

16S
in male urethra microbial communities, 148–152
in next-generation sequencing, 74–75

18S
for protozoa, 372–373
in skin microbiome studies, 118

28S, in eukaryocytes, 75

Trolite assay, for HIV, 420–424

Tropherymu uchlep, 19, 22, 466

identification of, 81

meningocencephalitis due to, 291, 297

Tropical Disease Research unit, 552

Tropism, of viruses, 420–424

TrueLab Real Time Micro PCR system, 570

TrueSeq method, 62

Trugene HBV genotyping assay, 458

Trugene HCV assay, 440

Trugene HIV-1 genotyping kit, 423, 426, 767

Trypanosoma cruzi

disease due to, see Chagas’ disease

genome of, 503
genotyping of, 506–511

polymorphisms of, 503

Trypanosomiasis, American, see Chagas’ disease

Tulipa bulbiliformis, 27

trBCA gene, 365

Tuberculosis

cloud computing management of, 707–718
diagnosis of, information technology for, 707–718

epidemiology of, 556

extrapulmonary, 564

meningitis in, 294

meningocencephalitis in, 290

organism causing, see Mycobacterium tuberculosis

osteoarticular, 47, 403

taf genes, as targets for sequencing, 20, 26

Tulip Group/BigTec Labs Joint Venture, 603

Tumor necrosis factor receptor p55, in gastrointestinal infections, 668

Tumor necrosis factor-α, in gastrointestinal infections, 664–671

Tumaround time, of multiple-drug-resistant organism detection methods, 197–202, 205–206

TwistDX fluorometric instrument, 549

TwistDX recombinase polymerase amplification assay, 572–573

UGT1A1 gene, polymorphisms of, 620

Ulcerc(s)

Buril, 406–407

genital, 393–394

Haemophilus daceyi, 394

herpes simplex virus, 393–394

Treponema pallidum, 393

skin, osteoarticular organisms spread from, 402

Ulcereative colitis, 131, 134

Ultracentrifugation, for next-generation sequencing, 72

Ultrion assays for HBV, 455

for HCV, 441–442

UMD tests, 173–175, 178

Unique patient identification systems, 687, 689

UNITAID TVB Diagnostics Landscape Technology Report, 570

United Kingdom, norovirus surveillance in, 266–272

United Kingdom National External Quality Assessment Service, 472

Universal bacterial identification, 74

Universal capture sequences, 112

Universal data file, for WHCNET, 694

“Universal tail sequences,” 83

University of Maryland School of Medicine, database of, 776

Unlabeled probe, 12

Upstream factors, in digital PCR, 52

Uracil-N-glycosylase, 22–23, 716

Urban wildlife, pathogens in, 278

Ureaplasma, in male urethra microbial communities, 146–150

Ureaplasma urealyticum, in male urethritis, 394

Urethra, male, microbial communities of, 146–155
Subject Index

Printed on: Sun, 10 Mar 2019 02:52:34

Western blot test for herpes simplex virus, 394
for osteoarticular organisms, 405–406
Western equine encephalitis virus, 291
Westgard rules, for controls, 729
Westmead Millennium Institute, 496
Whatman FTA filter, 494
Whipple’s disease, 19–22, 81, 281, 297, 406
Whole-blood PCR, for tick-borne rickettsial disease, 297
Whole-genome multilocus sequence typing (wgMLST), 240
Whole-genome sequencing, 32–48, 768, 769
applications of, 36–44
challenges with, 44
current paradigm of, 32–36
facilities for, 44
for gastrointestinal parasites, 534
for HPV, 118
for male urethra microbial communities, 152
for MRSA, 171
for outbreak investigation, 237–243
pulsed-field gel electrophoresis with, 240
of skin microbiome, 119
technologies for, 33–36
for zoonotic diseases, 280
WHONET software, 248–249, 692–706
analytical features of, 697–702
antimicrobial susceptibility and, 698–699
cluster alerts in, 700–702
data management in, 692–693
development of, 693–695
future developments in, 702–705
global microbial sensor network in, 704–705
isolate information in, 698, 700
modules in, 696–697
multidrug resistance profiles in, 699
objectives of, 692
organisms involved in, 692
scatterplots in, 699
subtyping in, 702–704
use of, 695–696
Whooping cough, see Bordetella pertussis
Wildlife, pathogens in, 276–278
Windows, for microarrays, 109
Workflow, in next-generation sequencing, 86
World Economic Forum, 689
World Health Assembly of 2015, 696
World Health Organization
- eHealth definition of, 686, 710
- Foundation of Innovative New Diagnostics, 594
- HIV viral load test guidelines of, 581
- malaria test supervision by, 600
- point-of-care testing guidelines of, 547, 550, 552
- Prequalification Program of, 550
- public health surveillance data definition of, 646
- Regional Office for Africa, 696
- Regional Office for Eastern Mediterranean, 696
- Regional Office for Europe, 696
- Regional Office for South-East Asia, 696
- Regional Office for the Western Pacific, 696
- STOP-TB Partnership, 557
- surveillance definition of, 245
- test standards of HBV, 457–458
- HCV, 442
- HPV, 472
- tuberculosis detection program of, 557
- verification strategy, 723
- WSX-1 protein, in gastrointestinal infections, 672
XCP Nucleic Acid Device, 570
Xenodiagnosis, for Trypanosoma cruzi, 502
Xenorhabdus, 26
Xenotropic murine leukemia virus-related virus, 87
XPert C. difficile assay, 187–188, 191–193
XPert Carba-R assay, 203, 249
XPert CT/NG, 389–390
XPert Flu assay, 324, 331
XPert HIV test, 422
Xpert HPV test, 469, 471
Xpert MDRO, 202–203
Xpert MRSA assay, 173–174, 179, 198
Xpert MRSA/SA BC, 341
Xpert MRSA/SA SSTI test, 404
Xpert MTB/RIF test, 249–250, 257, 297,
- 557–569, 573, 690–691, 710–718
Xpert TV, 387
Xpert van A/B assay, 224–225
XpertSMS, 717–718
XTAG instrument, 112
XTAG RVP assays, 318–319, 323–324
xtAO test, for adenoviruses, 482
Yeast Traffic Light PNA FISH, 491
Yeasts, see individual yeasts
YeastStar genomic DNA kit, 494
Yersinia
- biomarkers of, 664, 668
- in gastrointestinal microbiome, 129
- Yersinia enterocolitica, 129, 363–365
- Yersinia pestis
- in bloodstream infections, 343
- DNA target sequencing for, 27
- surveillance of, 258
- zoonotic origin of, 279
- Yersinia pseudotuberculosis, 27
Zalcitabine, pharmacogenetics of, 622
Zero-mode waveguides, 35, 70
Zidovudine, pharmacogenetics of, 622
ZipCode and cZipCode capture sequences, 112
Zoonotic diseases, detection of, 275–284
categories of, 275–280
cost/benefit of, 275–276
newly discovered, 275
regulation of, 280–281
reporting of, 281
with tests developed for humans, 280
veterinary academic cooperation with, 280
Zoster, in transplant recipients, 482–483
ZR/fungal/bacterial DNA kit, 494