Contents

Contributors ix
Preface xv

Section I
Novel and Emerging Technologies

1. **Nucleic Acid Amplification Methods**
 Overview / 3
 Frederick S. Nolte and Carl T. Wittwer

2. **Application of Identification of Bacteria by DNA Target Sequencing in a Clinical Microbiology Laboratory** / 19
 Kariissa D. Culbreath, Keith E. Simmon, and Cathy A. Petti

3. **Microbial Whole-Genome Sequencing: Applications in Clinical Microbiology and Public Health** / 32
 M. E. Török and S. J. Peacock

4. **Digital PCR and Its Potential Application to Microbiology** / 49
 Jim E. Huggett, Jeremy A. Garson, and Alexandra S. Whale

5. **Massively Parallel DNA Sequencing and Microbiology** / 58
 Ulf Gyllensten, Russell Higuchi, and David Persing

6. **Next-Generation Sequencing** / 68
 Charles Chiu and Steve Miller

7. **Pathogen Discovery** / 80
 Efrem S. Lim and David Wang

8. **Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Microbial Identification in Clinical Microbiology** / 92
 Alex van Belkum, Victoria Girard, Maud Arsac, and Robin Patel

9. **Multiplex Technologies** / 102
 Kevin Alby and Melissa B. Miller

Section II
Metagenomics: Implications for Diagnostics

10. **The Skin Microbiome: Insights into Potential Impact on Diagnostic Practice** / 117
 Elizabeth A. Grice

11. **The Gastrointestinal Microbiome** / 126
 Abria Magee, James Versalovic, and Ruth Ann Luna

12. **The Vaginal Microbiome** / 138
 David N. Fredricks

13. **Microbial Communities of the Male Urethra** / 146
 Barbara Van der Pol and David E. Nelson

14. **The Human Virome in Health and Disease** / 156
 Kristine M. Wylie and Gregory A. Storch

Section III
Health Care-Associated Infections

15. **Molecular Detection of Staphylococcus aureus Colonization and Infection** / 169
 Kathy A. Mangold and Lance R. Peterson

16. **Molecular Diagnostics for Clostridium difficile** / 185
 Frédéric Barbut and Curtis J. Donskey

17. **Overview of Molecular Diagnostics in Multiple-Drug-Resistant Organism Prevention: Focus on Multiple-Drug-Resistant Gram-Negative Bacterial Organisms** / 197
 Kaeđe V. Sullivan and Daniel J. Diekema
18 Detection of Vancomycin-Resistant Enterococci / 212
ALLISON J. McGEER AND BARBARA M. WILLEY

section IV
MOLECULAR DIAGNOSTICS AND PUBLIC HEALTH

19 The Impact of Molecular Diagnostics on Surveillance of Foodborne Infections / 235
JOHN BESSER, HEATHER CARLETON, RICHARD GOERING, AND PETER GERNER-SMIDT

20 Role of Molecular Methods in Improving Public Health Surveillance of Infections Caused by Antimicrobial-Resistant Bacteria in Health Care and Community Settings / 245
FRED C. TENOVER

21 Molecular Diagnostics: Huge Impact on the Improvement of Public Health in China / 256
HUI WANG, BIN CAO, Yawei ZHANG, AND SHUGUANG LI

22 Surveillance and Epidemiology of Norovirus Infections / 266
JOHN P. HARRIS

23 Molecular Diagnostic Assays for the Detection and Control of Zoonotic Diseases / 275
J. SCOTT WEESE

section V
SYNDROMIC DIAGNOSTICS

24 Molecular Approaches to the Diagnosis of Meningitis and Encephalitis / 287
KAREN C. BLOCH AND YI-WEI TANG

25 Using Nucleic Acid Amplification Techniques in a Syndrome-Oriented Approach: Detection of Respiratory Agents / 306
KATHERINE LOENS AND MARGARETA IEVEN

26 Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections / 336
ONYA OPOTA, KATIA JATON, GUY PROD'HOM, AND GILBERT GREUB

27 Molecular Diagnosis of Gastrointestinal Infections / 362
BENJAMIN A. PINSKY AND NIAZ BANAEI

28 Diagnostic Approaches to Genitourinary Tract Infections / 386
CLAIRE C. BRISTOW AND JEFFREY D. KLAUSNER

section VI
VIROLOGY

30 Molecular Detection and Characterization of Human Immunodeficiency Virus Type 1 / 417
ANGELA M. CALIENDO AND COLLEEN S. KRAFT

31 Molecular Detection and Characterization of Hepatitis C Virus / 430
MICHAEL S. FORMAN AND ALEXANDRA VALSAMAKIS

32 Molecular Detection and Characterization of Hepatitis B Virus / 449
JEFFREY J. GERMER AND JOSEPH D. C. YAO

33 Molecular Detection of Human Papillomaviruses / 465
DENISE I. QUIGLEY AND ELIZABETH R. UNGER

34 Molecular Diagnostics for Viral Infections in Transplant Recipients / 476
MATTHEW J. BINNICKER AND RAYMUND R. RAZONABLE

section VII
FUNGI AND PROTOZOA

35 Molecular Detection and Identification of Fungal Pathogens / 489
KATRIEN LAGROU, JOHAN MAERTENS, AND MARIE PIERRE HAYETTE

36 Molecular Approaches for Diagnosis of Chagas' Disease and Genotyping of Trypanosoma cruzi / 501
PATRICIO DIOSQUE, NICOLAS TOMASINI, AND MICHEL TIBAYREN

37 Molecular Approaches for Diagnosis of Malaria and the Characterization of Genetic Markers for Drug Resistance / 516
LISA C. RANFORD-CARTWRIGHT AND LAURA CIUFFREDA

38 Molecular Detection of Gastrointestinal Parasites / 530
JACO J. VERWEIJ, ALEX VAN BELKUM, AND C. RUNE STENSVOLD
section VIII

POINT-OF-CARE/NEAR-CARE DIAGNOSTICS

39 Molecular Diagnostics and the Changing Face of Point-of-Care / 545
DAVID L. DOLINGER AND ANNE M. WHALEN

40 Point-of-Care Technologies for the Diagnosis of Active Tuberculosis / 556
GRANT THERON

41 Molecular Diagnostics for Use in HIV/AIDS Care and Treatment in Resource-Limited Settings / 580
MAURINE M. MURTAGH

42 Rapid Point-of-Care Diagnosis of Malaria and Dengue Infection / 589
LIESELOTTE CNOPS, MARJAN VAN ESBROECK, AND JAN JACOBS

section IX

THE HOST AND HOST RESPONSE

43 Implications of Pharmacogenetics for Antimicrobial Prescribing / 613
AR KAR AUNG, ELIZABETH J. PHILLIPS, TODD HULGAN, AND DAVID W. HAAS

44 Exploiting MicroRNA (miRNA) Profiles for Diagnostics / 634
ABHIJEET BAKRE AND RALPH A. TRIPP

45 Host Response in Human Immunodeficiency Virus Infection / 655
PAUL J. MCLAREN AND AMALIO TELENTI

46 Biomarkers of Gastrointestinal Host Responses to Microbial Infections / 663
RANA E. EL FEGHALY, HANSRAJ BANGAR, AND DAVID B. HASLAM

section X

INFORMATION TECHNOLOGY

47 Point-of-Care Medical Device Connectivity: Developing World Landscape / 685
JEFF BAKER

48 WHONET: Software for Surveillance of Infecting microbes and Their Resistance to Antimicrobial Agents / 692
JOHN STELLING AND THOMAS E. O'BRIEN

49 Cloud-Based Surveillance, Connectivity, and Distribution of the GeneXpert Analyzers for Diagnosis of Tuberculosis (TB) and Multiple-Drug-Resistant TB in South Africa / 707
WENDY S. STEVENS, BRAD CUNNINGHAM, NASEEM CASSIM, NATASHA GOUS, AND LESLEY E. SCOTT

section XI

QUALITY ASSURANCE

50 Molecular Method Verification / 721
DONNA M. WOLK AND ELIZABETH M. MARLOWE

51 Molecular Microbiology Test Quality Assurance and Monitoring / 745
MATTHEW J. BANKOWSKI

52 Proficiency Testing and External Quality Assessment for Molecular Microbiology / 754
ROBERTA M. MADEJ

53 Practices of Sequencing Quality Assurance / 766
KARA L. NORMAN AND DAVID M. DINAUER

54 Verification and Validation of Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry-Based Protocols / 784
MATTHEW L. FARON, BLAKE W. BUCHAN, AND NATHAN A. LEDEBOER

section XII

THE BUSINESS OF DIAGNOSTICS

55 Improved Diagnostics in Microbiology: Developing a Business Case for Hospital Administration / 799
ELIZABETH M. MARLOWE, SUSAN M. NOVAK-WEEKLEY, AND MARK LAROCCH

56 Molecular Diagnostics and the Changing Legal Landscape / 803
MARK L. HAYMAN, JING WANG, AND JEFFREY M. LIBBY

Index 811
Contributors

KEVIN ALBY
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104

MAUD ARSAC
bioMérieux SA, R&D Microbiology, 3 Route de Port Michaud, 38390 La Balme Les Grottes, France

AR KAR AUNG
Department of General Medicine and Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia

JEFF BAKER
JESA Consulting, 63 Putnam Street, Suite 203, Saratoga Springs, NY 12866

ABHIJEET BAKRE
University of Georgia, Dept. of Infectious Diseases, Athens, GA 30602

NIAZ BANAEI
Stanford University School of Medicine, Stanford, CA 94305, and Clinical Microbiology Laboratory, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital, Palo Alto, CA 94304

HANSRAJ BANGAR
Division of Infectious Disease, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229

MATTHEW J. BANKOWSKI
Diagnostic Laboratory Services, Inc. (The Queen’s Medical Center), Microbiology Department, Aiea, HI 96701, and John A. Burns School of Medicine and the University of Hawaii at Manoa, Department of Pathology, Honolulu, HI 96813

FRÉDÉRIC BARBUT
UHLIN (Unité d’Hygiène et de Lutte contre les Infections Nosocomiales), National Reference Laboratory for Clostridium difficile, Groupe Hospitalier de l’Est Parisien (HUEP), Site Saint-Antoine, 75012 Paris, France

JOHN BESSER
Enteric Disease Laboratory Branch, Centers for Disease Control & Prevention, 1600 Clifton Rd, Atlanta, GA 30333

MATTHEW J. BINNICKER
Mayo Clinic, Clinical Microbiology, 200 First Street SW - Hilton 454, Rochester, MN 55905

KAREN C. BLOCH
Vanderbilt University Medical Center, A-2200 MCN, Nashville, TN 37232

CLAIRE C. BRISTOW
Division of Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093

BLAKE W. BUCHAN
Department of Pathology, Medical College of Wisconsin, 9200 West Wisconsin Ave., Milwaukee, WI 53226

ANGELA M. CALIENDO
Department of Medicine, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903

BIN CAO
China-Japan Friendship Hospital, Beijing, China 100029

HEATHER CARLETON
Enteric Disease Laboratory Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333

NASEEM CASSIM
Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Third Floor, Room 3B22, Parktown, Johannesburg, South Africa

CHARLES CHIU
University of California, San Francisco, Laboratory Medicine, 185 Berry Street, Suite 290, Box #0134, San Francisco, CA 94107
CONTRIBUTORS

LAURA CIUFFREDA
University of Glasgow, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, 120 University Place, Glasgow, Scotland G12 8TA, United Kingdom

LIESELOTTE CNOPS
Institute of Tropical Medicine, Clinical Sciences, Kronenburgstraat 43/3, Antwerp, 2000, Belgium

KARISSA D. CULBREATH
Department of Pathology, University of New Mexio Health Sciences Center, and TriCore Reference Laboratories, Albuquerque, NM 87102

BRAD CUNNINGHAM
Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Third Floor, Room 3B22, Parktown, Johannesburg, South Africa

DAVID J. DIEKEMA
University of Iowa Carver College of Medicine, Division of Infectious Diseases, 200 Hawkins Drive, Iowa City, IA 52242

DAVID M. DINAUER
Thermo Fisher Scientific, 9099 N Deerbrook Trail, Brown Deer, WI 53223

PATRICIO DIOSQUE
Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET, Argentina

DAVID L. DOLINGER
FIND, Geneve, Geneva CH1211, Switzerland

CURTIS J. DONSKEY
Infectious Diseases Section 1110(W), Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106

RANA E. EL FEGHALY
Department of Pediatrics, Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS 39216

MATTHEW L. FARON
Department of Pathology, Medical College of Wisconsin, 9200 West Wisconsin Ave., Milwaukee, WI 53226

MICHAEL S. FORMAN
Department of Pathology, The Johns Hopkins Hospital, 600 North Wolfe Street, Meyer B1-193, Baltimore, MD 21287

DAVID N. FREDRICKS
Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109

JEREMY A. GARSON
Research Department of Infection, Division of Infection and Immunity, UCL, London, United Kingdom

JEFFREY J. GERMER
Division of Clinical Microbiology, Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN 55905

PETER GERNER-SMIDT
Enteric Disease Laboratory Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, Georgia 30333

VICTORIA GIRARD
bioMérieux SA, R&D Microbiology, 3 Route de Port Michaud, 38390 La Balme Les Grottes, France

RICHARD GOERING
Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178

NATASHA GOUS
Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Third Floor, Room 3B22, Parktown, Johannesburg, South Africa

GILBERT GREUB
Institute of Microbiology and Infectious Diseases Service, University of Lausanne and University Hospital Center, Lausanne, Switzerland

ELIZABETH A. GRICE
University of Pennsylvania, Perelman School of Medicine, Department of Dermatology, 421 Curie Blvd, 1007 BRB II/III, Philadelphia, PA 19104

ULF GYLLENSTEN
Uppsala University, Department of Immunology, Genetics and Pathology, Science of Life Laboratory Uppsala, Biomedical Center, Box 815, SE-751 08 Uppsala, Sweden

DAVID W. HAAS
Vanderbilt Health - One Hundred Oaks, 719 Thompson Lane, Suite 47183, Nashville, TN 37204

JOHN P. HARRIS
Public Health England, Centre for Infectious Disease Surveillance and Control, 61 Colindale Avenue, Colindale, London, NW9 5EQ, United Kingdom

DAVID B. HASLAM
Division of Infectious Disease, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229

MARIE PIERRE HAYETTE
University Hospital of Liège, Liège, Belgium

MARK L. HAYMAN
 Intellectual Property Practice Group, Morgan Lewis & Bockius LLP, One Federal Street, Boston, MA 02110

RUSSELL HIGUCHI
Cepheid, 904 Caribbean Dr., Sunnyvale, CA 94089

JIM F. HUGGETT
Molecular and Cell Biology, LGC, Queens Road, Teddington, Middlesex, TW11 0LY, United Kingdom

TODD HULGAN
Vanderbilt University School of Medicine, Department of Medicine, A2200 MCN, 1161 21st Avenue South, Nashville, TN 37232
MARGARETA IEVEN
University Hospital Antwerp, Department of Medical Microbiology, Wilrijkstraat 10, Antwerp, 2650, Belgium

JAN JACOBS
Institute of Tropical Medicine, Clinical Sciences, Kronenburgstraat 43/3, Antwerp, 2000, Belgium

KATIA JATON
Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland

JEFFREY D. KLAUSNER
Division of Infectious Diseases, Department of Medicine, University of California Los Angeles, and Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90024

COLLEEN S. KRAFT
Department of Pathology and Laboratory Medicine, Division of Infectious Diseases, Emory University, 1364 Clifton Rd, NE, Atlanta, GA 30322

KATRIEN LAGROU
KU Leuven—University of Leuven, Department of Microbiology and Immunology, and University Hospitals Leuven, Department of Laboratory Medicine and National Reference Center for Mycosis, B-3000 Leuven, Belgium

MARK LAROCCO
MTL Consulting, Erie, PA 16506

NATHAN A. LEDEBOER
Department of Pathology, Medical College of Wisconsin, 9200 West Wisconsin Ave., Milwaukee, WI 53226

SHUGUANG LI
Peking University People’s Hospital, Beijing, China 100044

JEFFREY M. LIBBY
Mendel Biological Solutions, LLP, 3935 Point Eden Way, Hayward, CA 94545

EFREM S. LIM
Washington University in St. Louis, Department of Molecular Microbiology and Pathology & Immunology, 660 S. Euclid Avenue, Campus Box 8230, Saint Louis, MO 63110

KATHERINE LOENS
University Hospital Antwerp, Department of Medical Microbiology, Wilrijkstraat 10, Antwerp, 2650, Belgium

RUTH ANN LUNA
Department of Pathology & Immunology, Baylor College of Medicine, 1102 Bates Street, Feigin Center Suite 830, Houston, TX 77030

ROBERTA M. MADEJ
Alta Bates Summit Medical Center, Clinical Laboratory-Microbiology, Berkeley, CA 94705

JOHAN MAERTENS
KU Leuven—University of Leuven, Department of Microbiology and Immunology, and University Hospitals Leuven, Department of Hematology, B-3000 Leuven, Belgium

ABRIA MAGEE
Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030

KATHY A. MANGOLD
NorthShore University HealthSystem, Department of Pathology and Laboratory Medicine, 2650 Ridge Ave., Burch Bldg., Room 116, Evanston, IL 60201

ELIZABETH M. MARLOWE
The Permanente Medical Group, Berkeley, CA 94710

ALEXANDER J. McADAM
Infectious Diseases Diagnostic Laboratory, Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA 02115

ALLISON J. McGEER
Infection Control, Room 210, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5

PAUL J. McLAREN
School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

STEVE MILLER
University of California, San Francisco, Laboratory Medicine, 185 Berry Street, Suite 290, Box #0100, San Francisco, CA 94107

MELISSA B. MILLER
Clinical Microbiology Laboratory, UNC Hospitals, 101 Manning Drive, East Wing 1033, Chapel Hill, NC 27514

MAURINE M. MURTAGH
The Murtagh Group, LLC, 2134 Stockbridge Avenue, Woodside, CA 94062

DAVID E. NELSON
Indiana University School of Medicine, Department of Microbiology & Immunology, Indianapolis, IN 46202

FREDERICK S. NOLTE
Medical University of South Carolina, Department of Pathology and Laboratory Medicine, 171 Ashley Avenue, MSC 908, Charleston, SC 29425

KARA L. NORMAN
Department of Research and Development, Thermo Fisher Quality Controls, Thermo Fisher Scientific, 6010 Egret Court, Benicia, CA 94510

SUSAN M. NOVAK-WEEKLEY
Southern California Permanente Medical Group, Microbiology, 11668 Sherman Way, North Hollywood, CA 91605
THOMAS F. O'BRIEN
Brigham and Women's Hospital, Microbiology Laboratory, WHO Collaborating Centre for Surveillance of Antimicrobial Resistance, 75 Francis Street, Boston, MA 02115

ONYA ODOTA
Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland

ROBIN PATEL
Mayo Clinic, Division of Clinical Microbiology, Division of Infectious Diseases, Rochester, MN 55905

S. J. PEACOCK
University of Cambridge, Department of Medicine, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom

DAVID PERSING
Cepheid, 904 Caribbean Dr., Sunnyvale, CA 94089

LANCE R. PETERSON
NorthShore University HealthSystem, Department of Pathology and Laboratory Medicine, 2650 Ridge Ave., Burch Bldg., Room 116, Evanston, IL 60201

CATHY A. PETTI
4HealthSpring Global, Inc., Bradenton, FL 34209

ELIZABETH J. PHILLIPS
Vanderbilt University, 1493 Willowbrooke Circle, Franklin, TN 37069

BENJAMIN A. PINSKY
Stanford University School of Medicine, Stanford, CA 94305, and Clinical Virology Laboratory, Stanford Hospital & Clinics and Lucile Packard Children's Hospital, Palo Alto, CA 94304

GUY PRODYHOM
Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland

DENISE I. QUIGLEY
Cytopathology and Molecular Genetics Laboratory, Kaiser Permanente North West Regional Laboratory, 13705 North East Airport Way, Portland, OR 97230

LISA C. RANFORD-CARTWRIGHT
University of Glasgow, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, Glasgow, Scotland G12 8TA, United Kingdom

RAYMUND R. RAZONABLE
Mayo Clinic, Clinical Microbiology, 200 First Street SW - Hilton 454, Rochester, MN 55905

LESLEY E. SCOTT
Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Third Floor, Room 3B22, Parktown, Johannesburg, South Africa

KEITH E. SIMMON
Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108

JOHN STELLING
Brigham and Women's Hospital, Microbiology Laboratory, WHO Collaborating Centre for Surveillance of Antimicrobial Resistance, 75 Francis Street, Boston, MA 02115

C. RUNE STENSVOLD
Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark

WENDY S. STEVENS
Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Third Floor, Room 3B22, Parktown, Johannesburg, South Africa

GREGORY A. STORCH
Washington University School of Medicine, Pediatrics, 660 S Euclid Avenue, Campus Box 8116, St. Louis, MO 63110

KADEE V. SULLIVAN
University of Pennsylvania, Pathology & Laboratory Medicine, 34th Street & Civic Center Blvd., Main Building, Room 5112A, Philadelphia, PA 19104

YI-WEI TANG
Memorial Sloan-Kettering Cancer Center, Clinical Microbiology Service, 1275 York Avenue, S328, New York, NY 10065

AMALIO TELENTI
J. Craig Venter Institute, La Jolla, CA 92037

FRED C. TENOHER
Cepheid, 904 Caribbean Drive, Sunnyvale, CA 94089

GRANT THERON
DST/NRF of Excellence for Biomedical Tuberculosis Research, and MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Lung Infection and Immunity Unit, Department of Medicine, University of Cape Town, Observatory, Cape Town, South Africa

MICHEL TIBAYRENC
Maladies Infectieuses et Vecteurs Ecologie, Génétique, Évolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), IRD Center, Montpellier, France

NICOLAS TOMASINI
Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET, Argentina, Salta, Argentina

M. E. TÖRÖK
University of Cambridge, Department of Medicine, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
RALPH A. TRIPP
University of Georgia, Animal Health Research Center, 111
Carlton Street, Athens, GA 30602

ELIZABETH R. UNGER
Centers for Disease Control and Prevention, National Center
for Emerging and Zoonotic Infectious Diseases, 1600 Clifton
Road, MS G41, Atlanta, GA 30333

ALEXANDRA VALSAMAKIS
Department of Pathology, The Johns Hopkins Hospital, 600
North Wolfe Street, Meyer B1-193, Baltimore, MD 21287

ALEX VAN BELKUM
bioMérieux SA, R&D Microbiology, 3 Route de Port
Michaud, 38390 La Balme Les Grottes, France

BARBARA VAN DER POL
The University of Alabama at Birmingham School of
Medicine, Department of Medicine, 703 19th Street South,
Birmingham, AL 35294

MARJAN VAN ESBROECK
Institute of Tropical Medicine, Clinical Sciences,
Kronenburgerstraat 43/3, Antwerp, 2000, Belgium

JAMES VERSALOVIC
Texas Children’s Hospital, Pathology, 1102 Bates Avenue,
Houston, TX 77030

JACO J. VERWEIJ
St. Elisabeth Hospital, Laboratory of Medical Microbiology
and Immunology, Tilburg, Netherlands

DAVID WANG
Washington University in St. Louis, Department of Molecular
Microbiology and Pathology & Immunology, 660 South
Euclid Avenue, Campus Box 8230, Saint Louis, MO 63110

HUI WANG
Peking University People's Hospital, Beijing, China, No. 11
Xizimen South Street, Xicheng District, Beijing 100044, P.R.
China

JING WANG
Intellectual Property Practice Group, Morgan Lewis &
Bockius LLP, One Federal Street, Boston, MA 02110

J. SCOTT WEESE
Dept of Pathobiology, Ontario Veterinary College, University
of Guelph, Guelph, ON, N1G2W1, Canada

ALEXANDRA S. WHALE
Molecular and Cell Biology, LGC, Queens Road, Teddington,
Middlesex, TW11 0LY, United Kingdom

ANNE M. WHALEN
FINND, Chemin des Mines 9, CH-1211, Geneva, Switzerland

BARBARA M. WILLEY
Department of Microbiology, Room 1480, Mount Sinai
Hospital, 600 University Avenue, Toronto, Ontario, Canada
M5G 1X5

CARL T. WITTWER
University of Utah, Department of Pathology, University of
Utah Medical School, Salt Lake City, UT 84132

DONNA M. WOLK
Geisinger Health System, Department of Laboratory
Medicine, and Weis Center for Research, Danville, PA
17822-0131, and Wilkes University, Wilkes-Barre,
PA 18701

KRISTINE M. WYLIE
Washington University School of Medicine, Pediatrics,
660 S Euclid Avenue, Campus Box 8116, Saint Louis,
MO 63110

JOSEPH D. C. YAO
Division of Clinical Microbiology, Department of Laboratory
Medicine & Pathology, Mayo Clinic, Rochester, MN 55905

Yawei Zhang
Peking University People's Hospital, Beijing, China 100044
In the 5 years since the 2011 edition of this book, the molecular diagnostics landscape has changed dramatically. In the 1990s, molecular diagnostics was the domain of only a few reference laboratories; it took almost 20 years for these techniques to make their way into about half of the CLIA high-complexity laboratories in the United States. The full potential of this technology was slow to be realized largely because the methods used by these laboratories were not capable of delivering on-demand results or being conducted at the point of care. Over the past year, with the advent of CLIA-waived molecular testing spurred on by the inexorable force of innovation, molecular diagnostics have become increasingly democratized to the extent that physician office laboratories and sexual health clinics are now performing molecular testing on the premises, often delivering results in minutes or a few hours.

Laboratory professionals may at times find themselves a bit bewildered in this rapidly evolving landscape. Adding to this, enter next-generation sequencing (NGS) technology, as described in several chapters in this book (chapters 2, 3, 5, 6, 10–14, and 53). NGS-based analysis of microbial genomes and populations is in some ways similar to where PCR was in 1987: full of opportunities and challenges. For the first time, identification of the full range of pathogens—viruses, bacteria, fungi, and protozoa—can be addressed by using the same core technology. Microbial population analysis can be carried out at unprecedented depth, opening up the field of metagenomics (chapters 10–14). Whole-genome analysis goes beyond organism identification to predict drug resistance and detect pathogenic determinants. As diagnosticians, it seems likely that as this field evolves, so will our job descriptions. Still, much progress remains to be made before NGS can move beyond its current status as a research tool. NGS systems need to become more automated and less expensive to operate. The analysis of complex data sets provided by these systems needs to be simplified; the interpretation of results cannot require a PhD in bioinformatics for delivery of routine results. However, as complex as it is now, NGS too will eventually become democratized by the integration of workflow automation, improvements in sequencing technology, and information technology (IT).

Speaking of which, IT itself is about to play an increasing role in how and to whom our results are delivered (section X). A rapid molecular result is only as good as the downstream action taken in the treatment and management of patients. As we speak, patients in London, along with providers, are getting “push notifications” of results from their sexual health tests, resulting in a dramatically shortened time to therapy. Cloud-based aggregation of molecular test data is providing snapshots of emerging pathogens and drug resistance in real time by collecting de-identified test data directly from testing platforms. From the respiratory cloud to the digital cloud, we are watching the emergence of a new generation of global surveillance capabilities which will be of enormous public health benefit. Rapid detection technologies are also likely to evolve in the direction of on-demand multiplexing for simultaneous detection of treatment-informing targets. The convergence of rapid molecular multiplexing with improvements in IT to deliver actionable information to health care providers is becoming a reality.

In 2015, the White House announced a $20 million prize for innovative diagnostic tests that will lead to more precise antimicrobial therapeutic decisions. In addition, the United Kingdom has announced the Longitude Prize, a challenge with a £10 million award for developing a point-of-care diagnostic test that will also identify when antibiotics are needed and which one to use. Thus, it seems that the importance of molecular diagnostic testing is finally being appreciated at the highest levels, especially to address the global problem of antimicrobial resistance. Let’s not disappoint them.

David H. Persing, MD, PhD
Executive Vice President
Chief Medical and Technology Officer
Cepheid, Sunnyvale, California

Fred C. Tenover, PhD
Vice President, Scientific Affairs
Cepheid, Sunnyvale, California
Subject Index

AB Biodisk Macro-Etest VRE, for Enterococcus, 221–222
Abacavir, pharmacogenetics of, 620, 623, 659
AB-Biodisk Etest, for Enterococcus, 221–222
Abbott HBV Sequencing Assay, 458, 460
Abbott m2000 system for HBV, 456–457
for HIV, 582
Abbott Molecular m2000 RealTime system, 421–422, 425
Abbott RealTime CT/NG assay, 390
Abbott RealTime HBV, 456–457
ABCC genes, polymorphisms of, 619
ABI 7500, 203
ABI Prism instruments, 457
Absolutely power, 734
Actinobaculum, 27
Actinobacillus, 26
Actinobacter
DNA target sequencing for, 26
in skin microbiota, 117
Actinobacter baumannii
in bloodstream, 350–351
DNA target sequencing for, 26
MALDI-TOF for, 94
whole-genome sequencing for, 39, 41
Actinobacter paurus, surveillance of, 258
Acne, 119–120
AcoMetrix reference material, 779
Acridinium esters, for PCR, 11, 13
Actinobacillus, 26
Actinobacteria
in gastrointestinal microbiome, 127, 128, 131
in skin microbiome, 119
Actinomadura, 27
Actinomyces, 27
Actinomyctes, 27
Active surveillance testing, 169–170, 266
Active disseminated encephalomyelitis, 288
Acute viral infections, 156
Acute disseminated encephalomyelitis, 288
Adefovir, for hepatitis B, 454
Adenovirus(es)
identification of, 80–81
infections due to gastrointestinal, 371
in transplant recipients, 476–477, 482
NAATs for, 315–324
sequencing of, 160, 162–163
Adverse drug reactions, types of, 613
Aemose device, 573
Aeromonas, 26, 363
Affordable Care Act
business case for, 799, 802
intellectual property and, 803
Affordable testing, 548, 598
Agar Gradient MIC testing, for Enterococcus, 221–222
Agar screen test, for Enterococcus, 222–223
Aggregatibacter, 26
Agilent microarrays, 109
Agrobacterium, 26
AID CAP assays, for respiratory agents, 321
AIDS, see also Human immunodeficiency virus (HIV)
epidemiology of, 417
viral load and, 418–419, 421, 424–425
d-Alanylier-alanine operons, in vancomycin resistance, 213–220
d-Alanylier-alanine precursors, in vancomycin resistance, 212–213
d-Alanylier-lactic acid precursors, in vancomycin resistance, 213
d-Alanylier-serine operons, in vancomycin resistance, 220
AmpC beta-lactamases, 200–205
AmpC + ESBL Detection Set, 201
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
self-probing, 8
sequencing of, 74
Amplicon melting, for PCR, 12
Amplicon sequencing, for outbreak investigation, 242–243
Amplicor CT/NG: DNA, 390
Alere q Influenza system, 572, 584–585
Alice Corp v. CLS Bank International, 808
Alignment, sequence, 35–36, 771
Allosteres, 131
Alkaline phosphatase, for hybrid capture method, 4
Allowable systematic error, 743
Alpha error (type I), 731
Alpha inactivable protein, in gastrointestinal infections, 670
Alternative hypothesis, 731, 739
Alternative proficiency testing program, 762–764
Alzheimer’s Disease Neuroimaging Initiative, 634
Ambler classification, of beta-lactamases, 199–200
Amebiasis, 372–373, 664, 671–672
American Association for Clinical Pathology, 280
American Association for Laboratory Accreditation, 758
American Cancer Society, cervical cancer guidelines of, 468
American Legion Convention, legionnaire’s disease and, 313–314
American Society for Clinical Pathology, cervical cancer guidelines of, 468
American Society for Microbiology, 758
American Society of Veterinary Clinical Pathology, 280
American trypanosomiasis, see Chagas’ disease
Amersham-GE MegaBace system, 767
Aminoglycosides, pharmacogenetics of, 622
Amodiaquine, pharmacogenetics of, 615, 619
Ampicillin-resistant Enterococcus faecium, 212
Amplicon(s)
self-probing, 8
sequencing of, 74
Anthrax due to Bacillus anthracis, 585
Amplicor HCV Monitor test, 437
Amplicor HIV Monitor test, 422
Amplicor HPV test, 469
Amplicor Qualitative DNA assay, 422
Amplicor TB detection kit, 565
Amplication, see also Nucleic acid amplification techniques (NAATs); contamination control in, see Contamination, control of for DNA target sequencing, 22–23 helicase-dependent, 16 isothermal, 549 loop-mediated, 15–16 for microRNA detection, 640–647 for next-generation sequencing, 33–34 quality assurance in, 746 solid-phase, 33–34 strand displacement, 13–15, 386, 390–392 target, 3–16; see also PCR for viral sequencing, 158–159 Amplified MTB Direct Test, 565 Amplifier molecule, 3 AmpliScreen HCV, 442 AmpliVue HCV 1+2 Assay, 293 AmpliVue test, for Clostridium difficile, 187–188 Amsel criteria, 142–143, 388 Anabaena DNA target sequencing for, 21, 26 in gastrointestinal microbiome, 128 in male urethra microbial communities, 147 in osteoarticular infections, 402 in vaginal microbiome, 139 Anaerobiospirillum, 26 Anaerococcus, 26 Anal cancer, 468 Analysis of residuals, 741 Analysis of variance (ANOVA), 739–740, 788 Analyte-specific reagents, verification of, 721–722 Analytical measurement range, 749 Analytical phase, quality assurance in, 746–747 Analytical sensitivity, 724–725, 742, 752, 791–792 Analytical specificity, 741, 752 Analytical study designs, 743 Anaplasm, meningoencephalitis due to, 290 Anaplasma, meningoencephalitis due to, 290 Ancylostoma duodenale, 533–534 Anelloviruses, 82, 160 Antigen tests
for Plasmodium, 593–594
Antimalarial drugs, resistance to, 523–524
Antimicrobial(s), see also Drug resistance; specific antimicrobials
development of, 43 gastrointestinal microbiome effects on, 130–131 host response to, see Pharmacogenetics novel, 43 susceptibility testing for, see Susceptibility, antimicrobial Antiretroviral drugs
in bloodstream infections, 347 identification of, 81–82 Aseptic meningitis, 288 Aspergillus
in bloodstream infections, 347 identification of, 81–82 MALDI-TOF for, 93–94 in meningoencephalitis, 297–298 molecular detection of, 490–492, 495 rapid antigen test for, 292 in skin microbiome, 118 species identification of, 495 Aspergillus fumigatus
in bloodstream, 343 digital PCR for, 55 DNA target sequencing for, 27 MALDI-TOF for, 93 zoonotic origin of, 276, 279 Bacillus dermatis, 118 Background, in sequencing, 769 Backward compatibility, 238 Bact/Alert system, for fungi, 491 BACTEC 460 aerobic 6B blood culture, 457 BACTEC Mycobacterial Growth Indicator Tube liquid cultures, 557 Bactec system, for fungi, 491 Bacteremia, sepsis in, see Sepsis Bacterial pellet, for bloodstream infection detection, 345 Bacterial vaginosis, 139–143, 150, 388 Bacteriotoxins, in vagina, 139 Bacteriophages
in acne, 120 in gastrointestinal tract, 160 in sewage, 164 in skin microbiome, 118–119 in vaginal microbiome, 138–139 Bacteroides in gastrointestinal microbiome, 127, 131 MALDI-TOF for, 93 in male urethra microbial communities, 147 in osteoarticular infections, 402 Bacteroides fragilis, 134 Bacteroides
in gastrointestinal microbiome, 127–134 in skin microbiome, 119 Balamuthia mandrillaris, 288, 291, 292 BAM (German Federal Institute for Materials Research and Testing), 758 Barcoding in fungal identification, 82 in massively parallel DNA sequencing, 62 in next-generation sequencing, 72 in skin microbiome studies, 118 Barnsiella, 131
whole-genome sequencing, 36–39, 41 in male urethra microbial communities, 147
optimal testing strategies for, 189–190 reducing delays in diagnosis, 190 surveillance of, 247 zoonotic origin of, 278
Clostridium sporogenes, 26
Cloverleaf test, modified, 202
Cobas Amplicor Analyzer, 391–392
Cobas Amplicor CMV Monitor test, 479–480
Cobas Amplicor CT/NG, 389
Cobas Amplicor HBV Monitor Test, 456
Cobas Amplicor HIV-1 Monitor, 421
Cobas AmpliPrep/Cobas TaqMan system, for HIV, 582
Cobas AmpliScreen HBV test, 455
Cobas AmpliScreen HBV Monitor Test, 456
Cobas Amplicor HBV Monitor Test, 456
Cobas Amplicor CMV Monitor test, 480
Cobas Amplicor HBV test, 456
Cobas AmpliPrep/Cobas TaqMan system, for cobas AmpliPrep HIV-1 Monitor, 421 cobas TaqMan HBV, 456
cobas TaqMan test, 421–422, 438, 565
cobas TaqScreen MPX Test, 441–442, 455–456
Coccidia, 373–374
Coefficient of variation (CV), 736, 738
Colilin, in gastrointestinal infections, 667
“Cohesive end,” in sequencing, 766
Collaborating Centre for the Surveillance of Antimicrobial Resistance, 694
College of American Pathologists MALDI-TOF mass spectrometry daily testing checklist for, 793 proficiency testing requirements of, 760 quality assurance requirements of, 745 verification definition of, 784
Collinsella, 132
Colloidal dye immunofiltration assay, 262
Colonoscopy, for Clostridium difficile infections, 191 Colony-forming units, in sequencing, 775 Colorex KPC, 200–201 Colorimetric method, for microRNA detection, 638 Combination therapy, for HIV, 659
Commercial assays, 394 in gastrointestinal microbiome, 126 next-generation sequencing for, 75 Commercial assays, controls for, 779
Commercial proficiency testing providers, 758–760
Communication, of point-of-care testing results, 552
Commutability, in proficiency testing, 758
Companion animals, pathogens in, 276, 278 Comparative genome analysis, for HPV, 118 Comparative statistics, 740–743 Competency, of personnel in MALDI-TOF mass spectrometry, 793 in quality assurance, 751, 753 Competition, business case and, 799
Complementary metal-oxide semiconductors, 689
Complex precision test, 743
Composition, endpoint detection by, in multiplex amplification, 104
Computed tomography, for Clostridium difficile infections, 191
Computer technology, see Cloud computing; Information technology Concerning threats, in antibiotic resistance, 251–252
Confidence interval, 724, 736
Confidence value, for MALDI-TOF mass spectrometry, 787
Confidentiality in cloud computing, 707 in medical device systems, 687
Confirmative testing, 546
Conformité Européenne (CE) requirements, 468
Connectivity, 685–692
current landscape of, 686–688
definitions of, 685–686
devices for, 552, 602–603, 685–691 example of, 690–691
future of, 689–690
obstacles to, 687–688 for point-of-care testing, 685–691 for South African tuberculosis diagnosis, 707–718
Connectivity Industry Consortium (South Africa), 710
Constellation dPCR platform, 50
Contamination control of, 72–74, 76 versus infection, 22 in method verification, 725, 742 in pathogen identification, 87 in sequencing, 774–776 Contigs, in massively parallel DNA sequencing, 58 Contiguous spread, in osteoarticular infections, 401–402
Continuous data, 733
Continuous quality improvement programs, 760–761
Controls, see also External controls; Quality control; Standard(s) for DNA target sequencing, 23 internal, 23, 747 for method verification, 729–731 negative, 23
positive, 777, 779 for proficiency testing, 763 for quality assurance, 747–751 for sequencing, 777, 779 sources of, 748 in validation, 773
variability in, 723
Convenience samples, 733
Conventional DNA and PCR, for Trypanosoma cruzi, 502–504
Copan Wasp system, 200
Cuprococcus, 129
Copyrights, 803–804
Corneocytes, 117
Coronaviruses identification of, 83
NAATs for, 307, 315–324
Correlation coefficient, 740–741 Corynebacterium disorders caused by, 120 in gastrointestinal microbiome, 129 MALDI-TOF for, 92 in male urethra microbial communities, 147–148 in skin microbiome, 117, 119 Coryneform bacteria, 27 Cost(s) of next-sequencing platforms, 70–71 of sequencing instruments, 85
Cost effectiveness, of medical device connectivity, 689
Cost/benefit analysis, of point-of-care testing, 552
Coxiella burnetii, 22 meningococcal meningitis due to, 291 NAATs for, 315–316 zoonotic origin of, 276, 278–279 CpsA gene, 309
CPY enzymes, polymorphisms of, drug response and, 614–623 C-reactive protein, in gastrointestinal infections, 665
Critical Path Predictive Safety Testing Consortium, 634
Crohn disease, 86, 131, 134
Cross-contamination, control of, 74
Crossing point, in quality assurance, 747
Cryptins, in gastrointestinal infections, 670
Cryptococcus neoformans, 495
Cryptosporidium, 350–352, 664, 670
Cryptostegonidom cubinom, 373–374, 532–533
Cryptostegonidom meleagridis, 373–374, 532–533
Cryptostegonidom parum, 373–374, 532–533
CTX enzymes, 199–200, 202–203
Culture adenoviruses, 477, 481 astroviruses, 370–371 blood, see Blood culture Canadula, 491
Clostridium difficile, 186–187, 191, 366 dengue virus, 591–592 DNA preparation from, 22 encephalitis microorganisms, 292 Enterococci, 199
Escherichia coli, 362
fungi, 493
genitourinary tract organisms, 387, 389, 394
herpes simplex virus, 481
Legionella, 313–314
for MALDI-TOF, 92–93
male urethra microbial communities, 146–148
SUBJECT INDEX
Echovirus, NAATs for, 315
genes, in Epstein-Barr virus infections,
eazyplex MRSA, 174
Ecosystems, connected, 689
Drug resistance, see also Multiple drug-
resistant organisms; specific drugs and
microorganisms assessment of, 177
in bloodstream infections, 350–352
detection of, 42–43
Enterococcus, see Vancomycin-resistant
enterococci
mechanisms of, 699
methicillin, Staphylococcus aureus, see
MRSA (methicillin-resistant Staphy-
lococcus aureus)
Mycobacterium tuberculosis, 11
PCR for, 11
surveillance for, 245–255, 692–706
molecular tools for, 249–250
recommendations for, 250–251
systems for, 245–249
threat levels of, 251–252
vancomycin, 199, 204; see also Vancomycin-
resistant enterococci
diagnosis in viruses, 44
disDNA, in helicase-dependent amplification,
16
DTUs, Trypanosoma cruzi, 506–507, 510–511
Dual hybridization probes, 8, 12
Duplex PCR, for MRSA surveillance, 202
Dyes, see SYBR Green dyes
for melting curve analysis, 9
for real-time PCR, 7
Diabetes, 36–38

eaeA gene, 363
Early infant diagnosis, of HIV infection, 580, 587
EARS-MET (European Antimicrobial Resis-
tance Surveillance Network), 245–246, 694, 697
EARS-SS (European Antimicrobial Resistance
Surveillance System), 694, 696–697
Eastern equine encephalitis virus, 291
EastFlex, 249
easyMAG, 203
easyNat TB, 569–570
easyQ KPC assay, 203
easyplex MRSA, 174
EBER genes, in Epstein-Barr virus infections,
480
Echococcus multilocularis, 279
Echovirus, NAATs for, 315–316
Economic justification index, 800–80
Ecosystems, connected, 689–690
Edwardiella, 26
Eflavirenz, pharmacogenetics of, 615–616, 659
Effector molecules, as microRNA targets, 636
Effector proteins, in gastrointestinal infec-
tions, 667
Efficiency
in assays, 725
in PCR, 743
Egg(s), of gastrointestinal parasites, 533–535

Eggerthella, 26
Eggerthella-like bacteria, in vaginal micro-
biome, 141–142
eHealth tool, 685–686
Ehrlichia
meningoencephalitis due to, 288
serologic tests for, 292
Ehrlichia chaffeensis
in bloodstream, 349
meningoencephalitis due to, 296
Eikenella, 26
Electrochemical nanosensing, for microRNAs, 638–640
Electron microscopy, for norovirus, 269
Electrophoresis
capillary, 23, 106, 767
for respiratory agents, 315–316
in sequencing, 766–769
Electrospore visualization, in mass spectrometry,
94, 104–105
Emerging diseases, zoonotic origin of, 279
Empirical therapy, for Clostridium difficile,
191
“Empty SCCmec cassette,” 172
EMRSA (epidemic methicillin-resistant
Staphylococcus aureus), 36
Emulsion PCR, 68–69
for massively parallel DNA sequencing, 58–60
for next-generation sequencing, 33–34
Encephalitis, 287–305
classification of, 288
culture for, 292
infectious versus inflammatory, 288
microbiology of, 288–290
molecular diagnosis for, 292
molecular pathology of, 287–288
rapid antigen test for, 292
serologic testing for, 291
sporadic, 288
Tropheryma whipplei, 297
viral, 292–296
Encephalitoxin, 374–375
Encephalomyelitis, 287, 288
ENCORE study, 618
Endocarditis
Borrelia, 27
infectious, 346–347
staphylococcal, 25
End-of-treatment response, in hepatitis C
treatment, 436–437, 443
Endpoint detection, in multiplex amplifica-
tion, 104
Enrichment, of virus samples, 157
Ensemble method, 74
Entacavir, for hepatitis B virus, 260
Entamoeba histolytica, 372–373, 530–532, 664,
671–672
Entropic fever, Salmonella enterica serovar
Typhi, 36–38
Enteric infections, see Gastrointestinal infec-
tions
Enterobacter, 26
in bloodstream, 340
surveillance of, 251
WHONET data on, 693
Enterobacter cloacae
massively parallel DNA sequencing for, 65–66
norovirus interactions with, 272
whole-genome sequencing for, 39, 41
Enterobacteriaceae, 364–365
beta-lactamases of, 199
detection of, 199–201
DNA target sequencing for, 26
massively parallel DNA sequencing for, 65
in osteoarticular infections, 402–404, 408
resistance threat of, 251
whole-genome sequencing for, 43
zoonotic origin of, 275
Enterococcal Agar, 222
Enterococcus
animal species of, 213
in bloodstream, 340, 349–350
DNA target sequencing for, 25–26
PNA-FISH for, 103
surveillance of, 247, 248
vancomycin resistance in, see Vancomycin-
resistant enterococci
Enterococcus casseliflavus, 26, 213
Enterococcus faecalis
methicillin-resistant, 199
vancomycin-resistant, see Vancomycin-
resistant enterococci
Enterococcus faecium
ampicillin-resistant, 212
methicillin-resistant, 199
vancomycin-resistant, see Vancomycin-
resistant enterococci
whole-genome sequencing for, 4, 39, 41
Enterococcus gallinarum, 213
Enterocytotyphus, 374–375
Enterocytotyphus heneaus, 530
Enterorrhagophagous Escherichia coli, 362–363
Enterovirus 71, 259–260
Enterovirus(es)
in meningitis, 288
in meningoencephalitis, 289–290, 293, 296
NAATS for, 313–316
PCR for, 5
Entherplex microarray, 112
ene gene, HIV, 417
Enzyme immunoassays
for astroviruses, 370–371
for Clamydia trachomatis, 389
for Clostridium difficile, 185–187, 189, 191
for Escherichia coli, 362
for herpes simplex virus, 394
for Neisseria gonorrhoeae, 389
for respiratory agents, 318
Enzyme method, for library preparation,
60–61
Enzyme-based DNA strand separation, 549
Enzyme-linked immunosorbent assay
for dengue virus, 592
for hepatitis B virus, 260
for Mycobacterium tuberculosis, 567
for Pseudomium, 395
for Trypanosoma cruzi, 501
for West Nile virus, 259
Eoscape-HIV Rapid RNA Assay System, 585
Eoscapate-TB System, 569
Eotaxin-1, in gastrointestinal infections, 672
EP Evaluator, 733, 736, 742
Epidemic methicillin-resistant Staphylococcus
aureus, 36
Epidemiologic markers, 699
Epidemiology, whole-genome sequencing for,
32–33, 36–38
Epidemiis, 117

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Thu, 11 Jul 2019 00:45:15
HBV, see Hepatitis B virus (HBV)
HBV Star software, 460
HCV, see Hepatitis C virus (HCV)
Health information exchange, 685–686
Health records, electronic, see Information technology
Health-care-associated infections, surveillance of, 245–255
Heartland virus, 84–85
Heat shock proteins, as targets, for sequencing, 20, 23
Helicase-dependent amplification, 16, 188, 189
Helicobacter, 27, 408
Helicobacter pylori, 620
biomarkers of, 664, 669
in gastrointestinal microbiome, 129, 134
Helminths
biomarkers of, 664, 672
soil-transmitted, 531, 533–534
Hemorrhagic cystitis, in transplant recipients, 480–482
Hepatitis B virus (HBV), 449
Hepatitis A virus, whole-genome sequencing for, 42
Hepatitis B virus (HBV), 449–464
antigens of, 450–454
in cancer, 164
description of, 449–452
digital PCR for, 54
discovery of, 449
genome of, 449–450
genotyping of, 453–454, 457–458
infection due to
natural history of, 450–452
treatment of, 453–454
NAATs for, 452–460
qualitative assays for, 452–453, 459
quantitative assays for, 453–455, 459
replication of, 450
resistance testing, 454, 457–460
sequencing of, 775
structure of, 449–450
surveillance of, 260
transmission of, 450–451
Hematology
HematoFISH tests, 173, 175, 179
Hemochromatosis, 710
Hemorrhagic cystitis, in transplant recipients, 480–482
Hepatitis B virus (HBV), 449
Hepatitis C virus (HCV), 434, 439, 444
PCR for, 5
quality assurance programs for, 443–444
quantitative tests for, 437–439, 441–443
resistance in, 11
RNA extraction, 437–438
sequencing for, 766–768, 775
subtyping of, 439–440
Hepatitis G virus, 163
Hepatotoxicity, of drugs, 618, 620–622
Heritability, of HIV genes, 656–657
Hepatitis B virus, meningocerephalitis due to, 291
Hepatitis simplex virus
assays for, 722–723
helicase-dependent amplification for, 16
infections
encephalitis, 288, 292–293
genital, 393–394
male urethritis, 394
meningoencephalitis, 289–290, 293–294
in transplant recipients, 481–482
NAATs for, 315–316
PCR for, 15
in vaginal microbiome, 139, 143
Hepatitis sine hepere, 294
Herpesviruses
disorders caused by, 122
sequencing of, 160, 163
Heteroduplex analysis, 9, 441
Heteroresistance, 11
Hfq protein, in gastrointestinal infections, 662
NAATs for, 315–316
in gastrointestinal infections, 668
hfr gene, in pyrimethamine resistance, 524
HHV-6 (human herpesvirus-6) infections, in infants, 587
Hepatitis C virus (HCV)
see
HIV
High-quality single nucleotide polymorphism detection
High-density microarray technology, 112
High-density microarray technology, 112
High-dose microarray technology, 112
High-quality single nucleotide polymorphism analysis, for outbreak investigation, 239–240
High-risk HPV types, 465–471
Hpo (gene), 364
Hseq1 sequence instrument, 37, 85, 159
Hseq X Ten instrument, 65
Histidine-rich protein, of Plasmodium, 593–594
Histograms, 736–737
Histoplasma capsulatum, 290
HIV, see Human immunodeficiency virus (HIV)
HIV-Grade HBV Resistance Interpretation Tool, 460
HLA genes, 655–657, 659
HMIPv, see Human metapneumovirus (HMPV)
Hodge (modified cloverleaf) test, 202
Hologic/Gen-Probe assay, 13
Holomic technology, 602–603
“Home brews,” see Laboratory-developed tests
Home-based testing, 547
Hookworms, 534, 672
Hospital administration, business case preparation for, 799–802
Host response
to dengue virus, 592
in gastrointestinal infections, 662–682
to HIV, 655–662
microRNAs in, 634–654
pharmacogenetics and, 613–633
HPVs, see Human papillomavirus(es) (HPVs)
HRDR-200 device, 603
HRVs, see Rhinoviruses
hp60 gene, 366
HSV, see Herpes simplex virus
Human bocavirus, 83–84, 315–324
Human Genome Project, 545, 766
Human herpesvirus-6
in central nervous system infections, 295
digital PCR for, 54
in meningoencephalitis, 292, 293
resistance in, 11
in transplant recipients, 480–482
Human herpesvirus-8, 80–81
Human immunodeficiency virus (HIV), 417–429
DNA assay for, 3
description of, 417–418
digital PCR for, 54
diversity of, 581
genetic variation of, 656–657
genotyping of, 419–420, 423–426
history of, 417
identification of, 86
in infants, 587
infection due to
acute retroviral syndrome in, 419
antiviral drugs for, 417–419
cloud computing management of, 707–718
diagnosis of, 580
disease progression of, 655–659
encephalitis, 288
in genitourinary, 388, 393
hepatitis C with, 435
monitoring of, 581
staging of, 580–581
tuberculosis with, 249
latency of, 657–658
life cycle of, 427
medical decision interval for, 727
microRNA detection in, 646–647
molecular detection of
qualitative proviral assays, 422
resistance testing, 419–420, 423–424
tropism assays, 420–424
viral load assays, 418–425
mutations in, 419–420
PCR for, 5, 15
pharmacogenetics of, 659
point-of-care testing for, 546–547, 550
proteome analysis of, 658–659
proviral DNA and RNA tests for, 419
quasispecies of, 419
resistance in, 11, 419–420, 423–424
sequencing of, 766–767, 775, 777
subtypes of, 417
susceptibility to, 655–659
TMA for, 13
transcriptome analysis of, 657–658
transmission of, 138, 655
treatment of, in resource-limited settings, 580–588
tropism assays, 420, 424
viral load testing in, 580–588
virome and, 163
whole-genome sequencing for, 44
Human leukocyte antigens
in HIV infections, 655–657, 659
polymorphisms of, drug response and, 655–657
Human metapneumovirus (HMPV)
identification of, 82, 83
NAATs for, 307, 315–324
 sequencing of, 162
Human Microbiome Project, 75, 86, 119
Human miRNA and Disease Database, 635
Human papillomavirus(es) (HPVs), 465–475
 assays for, 468–471
cancer due to, 465–470
 clinical applications and, 466–468
description of, 465–466
genotyping of, 122
 hybrid capture method for, 4
 infections due to, 466–468
 Invader assays for, 4
 laboratory issues in, 471–472
 multiplex hybridization for, 102
 point-of-care testing for, 552–553
 sequencing of, 157–165
 in skin microbiome, 118
 TMA for, 13
 in vaginal microbiome, 139
 Human polyoma viruses, in skin microbiome, 118
 Human virome, 156–166
cancer, 164–165
description of, 160–162
gastrointestinal, 160–162
 plasma, 163
 respiratory tract, 162–163
 sewage, 164
 skin, 163–164
 study methods for, 156–160
 Hybrid Capture II HPV test, 469
 Hybridization system, 3–4
 Hybridization dual, 8, 12
 in situ, 99
 for library preparation, 770
 for MDRO surveillance, 202
 microarray technology for, see Microarray technology
 multiplex, 102–103
 probes for, 9
 Hybridization protection assay, 11
 HYDRA test, for Mycobacterium tuberculosis, 369
 Hydrolysis probes, 7–8
 for gastrointestinal parasites, 533
 for HBV, 457
 for multiplex amplification, 105–107
 real-time, 105–107
 for Trypanosoma cruzi, 505–506
 Hydroxymethylbilane synthase, detection of, 389
 Hyperplex MBL ID, 202
 Hypersensitivity, to drugs, 618–621
 Hypervariable regions, 74–75, 117
 Hyplex ESBL ID, 202
 Hyplex MRSA, 174, 179
 Hypothesis, formulation of, 731, 739
 Ibis Biosensor, 104
 Ibis PLEX-ID system, 94
 IDI-MRSA Test, 171, 172
 IFI16 protein, in HIV immunity, 659
 IgM tests, dengue virus and, 593, 597
 IL28B G gene, polymorphisms of, 621
 Illeus, in Clostridium difficile infections, 191–192
 Illness, severity of, in surveillance, 266–267
 IllumiGene assays, for respiratory agents, 320
 Illumina MiSeq, 646
 Illumina systems, 69–70, 71, 766
 for massively parallel DNA sequencing, 58–60, 62, 64–65
 for pathogen identification, 84–85
 for virome studies, 159
 Imaging, in next-generation sequencing, 34–35
 Immune electron microscopy, for norovirus, 269
 Immune response, see Host response
 Immunizations, antigens in, versus natural infections, 276, 278–279
 Immunoassays
 for adenoviruses, 371
 for Enterobactera, 372–373
 for osteocarticular organisms, 405–406
 for rotavirus, 368
 Immunoblots assay, recombinant, 435
 Immunochromatographic tests, for malaria, 518
 Immunodiagnostic methods, for parasites, 261–262, 535
 Immunofluorescence techniques
 for malaria, 518
 for West Nile virus, 259
 Immunoglobulin(s), dengue virus and, 592–593
 Immunohistochemical test, for HPV, 471
 Immunological colloidal-gold test, for influenza, 261
 Immunomagnetic enrichment, 171
 Immunoscreening, for novel pathogen discovery, 80
 Import screening, for zoonotic diseases, 276, 278
 “Improved gold standard” phenomenon, 724
 In vitro diagnostics, 545, 550–552; see also Point-of-care and near-care testing
 Independent Student t test, 739
 Indinavir, pharmacogenetics of, 616, 621–622
 response of, to HIV, 657
 Interferon alfa, for hepatitis C, 432
 Interferon(s)
 antiviral response of, 658–659
 in gastrointestinal infections, 664–672
 for hepatitis B, 454
 for hepatitis C, 433–434
 pharmacogenetics of, 616, 621–622
 role of, 803
 validation of, 809–810
 Intelligent systems, in cloud computing, 715–716
 Interactive Health Solutions, 728
 Interactomes, 658
 Interassay variability, 726
 Interferon
 for hepatitis C, 433–434
 molecular tests for, 404–410
 Infectious Diseases Society of America, streptococcal pharyngitis sampling guide lines of, 306–307
 Infectious endocarditis, 346–347
 Inference, in method verification, 738–741
 Inferential statistics, 738–739
 Influenza A+ B assay, 323
 Influenza virus(es)
 NAATs for, 307, 315–324
 next-generation sequencing for, 74
 point-of-care testing for, 549
 surveillance of, 260–261
 whole-genome sequencing for, 42
 zoonotic origin of, 276, 278
 Information technology, see also Computer software; Data analysis; Data management
 for point-of-care testing, 685–691
 for South Africa tuberculosis diagnosis, 707–718
 Infrastructure integration, of medical device systems, 687
 Infringement, of patent, 805
 Inhibition, in method verification, 725
 In situ hybridization, 102
 “In-house tests,” see Laboratory-developed tests
 Invasive immunity, Toll-like receptors in, 635–636
 Inno-LiPA HBV assays, 457–459
 Inosine triphosphatase, 619
 Institute of Tropical Medicine, 552
 Instructions, for test kits, 600–601
 Instrument management systems, 710–711
 Integration, of medical device systems, 687
 Intellectual property
 legal landscape changes and, 808–809
 overview of, 803–805
 role of, 803
 validation of, 809–810
 Intelligent systems, in cloud computing, 715–716
 Interactive Health Solutions, 728
 Interactomes, 658
 Interassay variability, 726
 Interferon(s)
 antiviral response of, 658–659
 in gastrointestinal infections, 664–672
 for hepatitis B, 454
 for hepatitis C, 433–434
 pharmacogenetics of, 616, 621–622
 response of, to HIV, 657
 Interferon alfa, for hepatitis C, 432
 Interferon regulatory factors, in gastrointestinal infections, 669
 Intragenic spaces, 352
 Interleukins, in gastrointestinal infections, 664–672
 Internal amplification controls, for Trypanosoma cruzi, 505
 Internal controls, 747
 Internal proficiency testing, 750
 Internal transcribed spacer regions, 75, 82, 118
 International Agency for Research on Cancer, 465
 International Journal of Systematic and Evolutionary Microbiology, 27–28
 International Medical Device Regulatory Forum, 553, 601
 International Nucleotide Sequence Collaboration, 24
 International Organization for Standardization (ISO), 601, 755–757, 760
 International Sequence Database Collaboration, 776
 International Society of Human and Animal Mycology, 492
 International Working Group on the Classification of Staphylococcal Cassette Chromosomal Elements, 198
 Internet, for cloud computing, 707–718
 Interoperability, of medical device connectiv ity, 686–687
 Interpretation, of results, in quality assurance, 751
 Interval data, 733
 Intra-assay variability, 725
 iNtRON kit, 225
 invA gene, 365
 Invader assays, 4, 440

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Thu, 11 Jul 2019 00:45:15
Invasion, in gastrointestinal infections, 668
Ion AmpliSeq kit, 62
Ion Chef template instrument, 770
Ion Proton instruments, 37, 58, 60, 62, 65, 84
Ion T AmpliSeq technology, 770
Ion Torrent instruments, 35, 60, 68–71, 766, 771
for massively parallel DNA sequencing, 58, 62, 65
for pathogen identification, 84, 85
personal genome machine, 646
IRIDICA system, 94, 104
IrriBowel disease, 131
Isentrio database, 25
ISO (International Organization for Standardization), 601, 745, 755–757, 760
IonAmp HSV Assay, 293, 394
Isoctydine probes, for bDNA amplification, 3
Iso-guanine, for bDNA amplification, 3
Isocytidine probes, for bDNA amplification, 3
IsoAmp HSV Assay, 293, 394
Isothermal process, SDA as, 15
Isothermal amplification, 549, 603
Isospora belli
IsoAmp HSV Assay, 293, 394
ISO 2005 EN1276, 350
ITS region, as sequencing target, 494, 534
IVD Industry Connectivity Consortium
IVD Industry Information Network
IVD Industry Standardization, 601, 745, 755–760
Irritable bowel disease, 131
JMP Statistical Discovery software, 736
Japanese encephalitis virus, 289
Janus kinase pathway, microRNAs and, 636
Joint infections, 721
Joint infections, see Infectious arthritis;
Osteoarticular infections
Kageyama probe sets, 369
Kanza, Elsie, 689
Kaposi's sarcoma, 81
Kinetoplast DNA and PCR, 502–506
Kinglea, 26
Klebsiella
DNA target sequencing for, 26
WHONET data on, 693
Klebsiella kingae, in osteoarticular infections, 403–408
Klebsiella oxytoca
massively parallel DNA sequencing for, 65
surveillance of, 249
Klebsiella pneumoniae
in bloodstream, 340, 349–350
carbapenem resistance in, 247
detection, 203, 205
ESBL, 201–206
massively parallel DNA sequencing for, 65–66
in osteoarticular infections, 403–404
PNA-FISH for, 103
resistance in, 39, 41
sequencing for, 768
surveillance of, 249–251
whole-genome sequencing for, 39, 41
Kmer-based approaches, for outbreak investigation, 238–239
“Known negative patient samples,” 725
Koivu's postulates, 86–87
Kocurini, 25
KPC+MBL Confirm Kit, 202
Kytococcus, 25
La Crosse virus, 289
Labeling, of test kits, 600–601
Laboratory configuration module, for WHO-NET, 696–697
Laboratory director, responsibilities of, 722
Laboratory services, as intellectual property, 808–809
Laboratory-developed tests
controls for, 729–731
MALDI-TOF mass spectrometry, 785
from research laboratory to clinical laboratory, 721
verification of, 721
Lactophages, 131
Lactate dehydrogenase, parasite type, 518, 594
Lactic acid, in vagina, 139
Lactobacillus
in gastrointestinal microbiome, 127, 131
in male urethra microbial communities, 146–147, 149
as probiotic, 132
in skin microbiome, 119
in vaginal microbiome, 138–143
Lactoferrin, in gastrointestinal infections, 665, 667, 670
Lactoferrin test, for Clostridium difficile, 191
LAM ELISA test, 567
Laminidure, resistance to, 419, 454
LAMP, see Loop-mediated isothermal amplification (LAMP)
LAMP Malaria Diagnostic Kit, 603
Languages, multiple, in medical device connectivity, 687
Lansonpsoral, pharmacogenetics of, 616, 620
Large-ribosomal-subunit sequences, 24
Lateral flow immunochromatographic test, 518
for dengu virus, 592–593
for Mycobacterium tuberculosis, 567
for Plasmodium, 592–593
Lateral flow test readers, 689–690
Latin American Network for Surveillance and Monitoring of Antimicrobial Resistance (RelAVRA), 696
Leaky gut theory, 86
Leaky-Smith America Invents Act, 803–804
“Leaky gut theory,” 132
Lectins, in gastrointestinal infections, 671
Leditapavin, for hepatitis C, 433–434
Legal issues, 803–810; see also Intellectual property; Patent(s)
Legionella
DNA target sequencing for, 26
in osteoarticular infections, 408
Legionella pneumophila
whole-genome sequencing for, 41
Legionnaire's disease, 313–314
Leishmania
surveillance of, 262
zoonotic origin of, 279
Leptin, in gastrointestinal infections, 664–665, 672
Leptospira
MALDI-TOF for, 93
sequencing for, 768
zoonotic origin of, 276
Leptotrichia, in male urethra microbial communities, 147, 149
Lett-7i, in gastrointestinal infections, 670
Liat Analyzer, 549
Libraries
in massively parallel DNA sequencing, 60–62
for next-generation sequencing, 72
preparation of, 72, 769–771
Life Sciences instruments, 766
Life Sciences project, 766
Ligation platforms for, 37
sequencing by, 35
LightCycler (s), 106
for MDRO, 203
for MRSAMSSA, 173–178, 198
for osteoarticular organisms, 407
for respiratory agents, 319
for Streptococcus pyogenes, 309
LightCycler MRSA, 198
LightCycler SeptiFast system, 436–437
LightCycler TB detection kit, 565
LightCycler VRE Detection Kit, 224
Light-emitting diode microscopy, for Mycobacterium tuberculosis, 559
LightMix kits, for respiratory agents, 331
Limit of detection, 724, 742
in NAATs, 603
quality assurance and, 747, 749, 751
in sequencing, 774–775
in validation, 773
Limit of quantitation, 725–726, 727, 743
Line of equality, in method verification, 727–728
Line probe assays, for Mycobacterium tuberculosis, 565
Linear range, accuracy measurement across, 726–727
Linear regression, 741
Linearity experiments, 743
Linetosil, 43, 622
Liofilchips strips, for Enterococcus, 221–222
Lipocalin, in gastrointestinal infections, 667
Lipopolysaccharides, in gastrointestinal infections, 665, 669
Liquid-phase hybridization, 102–103
Listener
in bloodstream, 340
zoonotic origin of, 277
Listener monocytogenes microcopy for, 290
NAATs for, 315–316
surveillance of, 235–236
whole-genome sequencing for, 41
Liver flukes, 531, 534
Livestock, pathogens in, 278
LOD (limit of detection), in method verification, 724
Long-read libraries, 61–62
Loopamp Norovirus GI and GII, 370
Loop-mediated isothermal amplification (LAMP), 15–16
for Clostridium difficile, 188
for gastrointestinal parasites, 534–535
for microRNAs, 644–645
for Mycobacterium tuberculosis, 256–257, 560, 565, 569
for Plasmodium, 262, 518–522, 603
for point-of-care testing, 549
for Schistosoma, 262
for Streptococcus pneumoniae, 309
LOQ (limit of quantitation), 725–727, 743
Low-density arrays, 112–113
Lower limit of quantitation, for MALDI-TOF mass spectrometry, 788
Low-risk HPV types, 465–471
Low-stringency single specific primer PCR, 519
LT2-Andromas system, 493
Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Thu, 11 Jul 2019 00:45:15
Luminex instruments, for microarrays, 109–110
Lyme disease, see *Borrelia burgdorferi*
Lymphocytic choriomeningitis virus, meningoencephalitis due to, 288, 292
Lymphoma, primary CNS, in Epstein-Barr virus infections, 295
Lymphotactin, in gastrointestinal infections, 670
Lyra assays, for respiratory agents, 323
LytaA gene, 310
M2000 RealTime, 390
MacroEtest, for *Enterococcus*, 223
Macrophase(s), in gastrointestinal infections, 670
Macrophase inflammatory protein, in gastrointestinal infections, 664–670
Magicplex Sepsis Real-time, 173, 175, 178
Magicplex Sepsis system, 342, 348
MagNAPure Easymag, 493
Magicplex Sepsis Real-time, 173, 175
Malaria, 516–529
asymptomatic, 590
burden of, 591
clinical symptoms of, 589–590
diagnostic needs of, 591–592
diagnosis of, 591
economic impact of, 516
epidemiology of, 516
history of, 92
Malaria pigment (hemozoin), 604
Malaria Rapid Diagnostic Test Performance, 552
Malassezia disorders caused by, 121
identification of, 82
next-generation sequencing for, 75
in skin microbiome, 118
MALDI Biotyper systems, 96, 173, 175, 179, 185
MALDI-TOF, see Matrix-associated laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry
Male urethra discharge from, 394
microbial communities of, 146–155
cultivation-independent methods for, 148–149
diagnostic studies of, 149–152
historical understanding of, 146–148
Malnutrition, gastrointestinal microbiome composition and, 129
mapA gene, 364
Maravilox, for HIV, 424
Mass spectrometry see also Matrix-associated laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry
global quantitation with iTRAQ, for HIV, 6558
for MALDI-TOF, 94, 96
in multiplex amplification, 104
for *Mycobacterium tuberculosis*, 573
PCR-electrospray ionization, for bloodstream organisms, 348–350
with phosphoproteomics, 658
for *Spirochaeta*, 262
Massively parallel DNA sequencing, 58–67
applications of, 65–66
barcoding for, 62
DNA fragment libraries for, 60–62
methods for, 58–60
platforms for, 64–65
pre-enrichment for, 62
sequencing chemistries for, 62
single-molecule long-read, 63–64
Mast cells, in gastrointestinal infections, 670
M AST Group kits, 202
Mate pair reads, 36
Mate-pair libraries, 60–62, 769–770
Matrix-associated laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, 92–101
for antimicrobial susceptibility testing, 93–94
for bloodstream organisms, 339–340, 344–345, 351
clinical impact of, 96–97
databases for, 93
DNA target sequencing with, 221
for Enterococcus, 221
for fungi, 491, 493
history of, 92
microbial identification with, 93, 95
for molecular diagnosis, 94, 96
multicenter studies of, 97
multiple instrument validation, 793
overview of, 92
for pathogen identification, 32
proficiency testing of, 793
sample preparation for, 92–93
sentinel validation of, 973
verification/validation of, 784–796
for WHONET, 703–704
Maxwell 16 LE, 493–494
Mayo Collaborative Services v. Prometheus Laboratories, Inc., 807–808
MDROs, see Multiple drug-resistant organisms
Mean, 736
Measles virus, meningoencephalitis due to, 292
Median, definition of, 736
Medical decision interval, 727
Mefloquine, resistance to, 534
Megasphaera in male urethra microbial communities, 150
in vaginal microbiome, 142
Megasphaera-like bacteria, in vaginal microbiome, 141–142
Melanoma differentiation-associated gene, in gastrointestinal infections, 669
Melting curve analysis, 8–9, 12, 723
controls for, 747
for *Cryptosporidium*, 533
for multiplex amplification, 106
Meningitis, 287–305
aseptic, 288
bacterial, 288, 296
classification of, 288
culture for, 298
molecular microbiology of, 288, 290
microscopy for, 290, 292
molecular diagnosis of, 292–298
pathophysiology of, 281
rapid antigen test for, 292
serologic testing for, 292
tick-borne rickettsial, 296–297
Tropheryma whipplei, 297
tuberculous, 297
viral, 292–296
Meningococci, see *Neisseria meningitidis*
Meningococcal infections, see *Neisseria meningitidis*
Meningitis definition of, 287
Methicillin assay, for gastrointestinal parasites, 533
Merkel cell carcinoma, 122, 163–165
Merkel cell polyomavirus, 84–85, 118, 122, 163–165
Metabolic syndrome, fecal transplantation for, 134
Metabolism of drugs, pharmacogenetics and, 614, 618–620
Metabolomics, male urethra microbial community studies with, 149–152
Metastage, stages of, for tapeworms, 335
Metagenomic(s), for outbreak investigation, 242–243
Metagenomic sequencing, 75
limitations of, 87
for microbiomes, 86
for noroviruses, 271–272
Metallo-beta-lactamases, 200, 202
Metamonomads, 531–532
MetaPhlAn classifier, 86
Methicillin-resistant *Staphylococcus aureus*, see MRSA (methicillin-resistant *Staphylococcus aureus*)
Methicillin-susceptible *Staphylococcus aureus*, see MSSA (methicillin-susceptible *Staphylococcus aureus*)
Method validation, see Validation
Method-based proficiency testing, 764
Methods comparison study, for accuracy, 788–789
Metrics, in business case, 801–802
Metronidazole for bacterial vaginosis, 142
for *Clostridium difficile*, 185
MHA test, for *Enterococcus*, 223
mHealth tool, 685–686
mHVR, see MHC class II, 65
Microarray technology, 107–113
for adenoviruses, 482
applications of, 112
for bloodstream organisms, 340–341, 343
challenges of, 112–113
definition of, 107
high-density, 112
in situ synthesized, 109
low-density, 112–113
for microRNA detection, 639, 642, 647
for microsporidia, 374
for novel virus discovery, 82–83
printed, 107–109
for respiratory agents, 315–316, 319
for surveillance, 249
suspension bead, 109–112
for zoonotic diseases, 277
Microbiological alerts, in WHONET, 697
Microbiological rules, for WHONET, 700
Microbiomes gastrointestinal, 126–137
next-generation sequencing for, 75
skin, 117–125
whole-genome sequencing for, 43
Micrococcalin, 25, 340
MicroDNAs, in HIV infections, 657
Microflex LT, 493
Microfluidic devices
for Mycobacterium tuberculosis, 257
for point-of-care testing, 548
for respiratory agents, 324
Microhemocrit test, for Trypanosoma cruzi, 502
Microimmunofluorescence, Chlamydia pneumoniae, 311
Microreactors, 59, 68–69
MicroRNAs, 634–654
deregulated, 636
detection of amplification-based, 640–647
direct, 638–640
diagnostic use of, 637
expression profiles of, 634–635, 637–638
function of, 634–635
immune response and, 635–636
list of, 647
stability of, 637
structure of, 634–635
MicroScan assay, for Enterococcus, 221
Microscopy
for cocciida, 373–374
for encephalitis microorganisms, 290, 292
for Enterobactera, 372, 373
for gastrointestinal parasites, 530, 532
for genitourinary tract organisms, 387–389, 393–394
for malaria, 517, 591
for meningitis microorganisms, 290, 292
for microsporidia, 374
for parasites, 372–375
for Pseudomonas, 517, 591
spatum, for Mycobacterium tuberculosis, 558–560
Microseq D2 LSU, 496
MicroSeq kit and library, for DNA target sequencing, 22
MicroSeq system, for DNA target sequencing, 23–25
Microsphere-based duplex immunosassay, for influenza virus, 260–261
Microspheres, in liquid bead suspension microarrays, 120–122
Microsporidia, 374, 531, 533
Microsporum, 493
Microtubules, in skin microbiome, 119
Middle East respiratory syndrome, 84–85
NAA Ts for, 317–324
whole-genome sequencing for, 42
Migratory animals, pathogens in, 278
Miniaturization, for point-of-care testing, 548
Minimum Information for Quantitative PCR Experiments, 5–6, 10
Minimum spanning tree method, for genotyping, 10
Minor groove binders, 8
MiSeq instrument, 85, 117–118, 159, 772
Mites, Demodex, 118
Mitochondrial DNA variants, 622–624
Mitogen-activated protein kinase, in gastrointestinal infections, 664–666, 668
“Mobile cloud,” 707
Mobile devices
in medical device systems, 688–689
for point-of-care testing results, 552, 602–603
Mobiluncus, in vaginal microbiome, 142
Modaplex system, 106
Mode, definition of, 736
MolBio Diagnostics, 549
Molecular amplification methods, for Mycoplasma pneumoniae, 311
Molecular beacons, 8
for microRNA detection, 640
for Mycobacterium tuberculosis, 564
for parasites, 373
Molecular colonies (polonies), 59–60
Molecular methods, 452–460
for enterovirus 71, 259–260
for HIV, 417–429
for osteocarticular organisms, 404–410
for parasites, 261–262
Molecular theranostics, for respiratory agents, 318
Molecule protocol, 61
Molluscum contagiosum virus, 122, 164
Monocyte chemoattractant protein, in gastrointestinal infections, 665
Monokine induced by interferon (MIG), in gastrointestinal infections, 668, 670
Monarcha, 26
Moraxella, 26
Moraxella catarhalis, 315–316
Morganella, 26
MOSCAR group, 198, 205
Mosquito-borne diseases, see Dengue virus;
MP Diagnostics AssureDentus IgA Rapid Test, 593
MRSA (methicillin-resistant Staphylococcus aureus), 169–184
in bloodstream, 336, 343
decolonization of, 170–171
detection of, 171–177, 204
commercial assays for, 171–172
commercial PCR for, 171
digital PCR for, 54
molecular assays for, 171
molecular targets for, 171
PCR for, 8, 280
PNA-FISH for, 171–177
premolecular methods for, 171
for prevention, 198–199
test choice for, 177, 179–180
TMA for, 13
evolution of, 36
medical impact of, 169–171
in osteoarticular infections, 404, 409
screening for current, 169–171
historical, 169
sequencing of, 779
spread of, 36
strain typing of, 250
surveillance of, 246–247, 250
whole-genome sequencing for, 39–40, 44
zoonotic origin of, 275, 278
MRSA/MSSA Elite MGB, 176
MRSA/SA ELITE MGB, 173–174
MSSA (methicillin-susceptible Staphylococcus aureus) detection of, 171–172, 176–177, 198
strain typing of, 250
surveillance of, 250
MTBDRplus, 565
MTBdr abbreviated name, 565
MTBDR Expert Cartridge Assay, 548
Mucin, in gastrointestinal infections, 667, 670–671
Mucormycota, 495
Mucosal immune system, 126
Multi Locus Sequence Typing database, 776
MultiCode technology, for HSV detection, 293
MultiCode-RTs kit, 394
Multiplex copy, for typing, Trypanosoma cruzi, 510–511
Multidrug resistance profiles, 699–700
Multidrug resistance protein, 619
Multilocus enzyme electrophoresis, Trypanosoma cruzi, 506–507
Multilocus microsatellite typing, 508–510
Multilocus sequence typing
for gastrointestinal parasites, 532, 533
for Neisseria meningitidis, 257–258
for Strepoccocus suis, 257
for Trypanosoma cruzi, 507–508
Multilocus variable number tandem repeat analysis
for outbreak investigations, 238
for Yersinia pestis, 258
for zoonotic diseases, 280
Multiple displacement amplification-PCR assay, 257
Multiple drug-resistant organisms
asymptomatic carriage of, 200, 205
Mycobacterium tuberculosis, 257, 707–718
prevention of culture-based screening for, 200–201
importance of, 197
molecular detection for, 202–206
phenotypic studies of, 201–202
prevention of, collaborative effort for, 197–200
strain typing of, 250
surveillance of, 197–211, 245–255
Multiplex assays, see also Multiplex PCR for blood transfusion testing, 441
for Escherichia coli, 362–363
for fungi, 490–491
for gastrointestinal parasites, 534
for parasitic gastroenteritis, 374
quality assurance for, 749
for sequencing, 768
for Vibrio, 365
for viral gastroenteritis, 366–372
Multiplex ELISA, for Mycobacterium tuberculosis, 575
Multiplex microarrays
controls for, 747
quality assurance for, 749
Multiplex NAAs, for respiratory agents, 318–324
Multiplex PCR, 6–7
for bacterial meningitis, 296
for bloodstream organisms, 341–344, 346–347
for caliciviruses, 369
for gastrointestinal parasites, 530–535
for gastrointestinal infections, 371–372
for HBV, 459–460
for hepatitis viruses, 455–456
for HSV, 294
for human papillomavirus, 122
for MDRO surveillance, 202
for microsporidia, 374
for Mycobacterium tuberculosis, 256
for Streptoccoccus pyogenes, 309
for Vibrio, 363–366
for zoonotic diseases, 277
Multiplex technology, 102–114
amplification, 103–107
for HAV, 293
hybridization, 102–103
microarray, 107–113
Mycobacterium
Mycobacterial interspersed repetitive unit
Mycobacteria, LAMP for, 16
Mupirocin, for MRSA decolonization, 170
Mumps virus, meningoencephalitis due to,
Mutations
digital PCR for, 53
HIV, 419–420
sequenced revealed in, 776–778
MX2 protein, in HIV immunity, 659
MycoAssay Aspergillus test, 492
MycoAssay Pneumocystis kit, 492
Mycobacteria, LAMP for, 16
Mycobacterial ATP synthase, 43
Mycobacterial interspersed repetitive unit–variable-number tandem repeats, 257
Mycobacterium
MALDI-TOF for, 96
neutrophilic
NAATs for, 315–316
in osteoarticular infections, 403, 406–407
Mycobacterium abscessus
MALDI-TOF for, 93
resistance in, 41
whole-genome sequencing for, 39, 41, 43
Mycobacterium genitalium
in cervicitis, 390, 393
in male urethritis, 394
Mycobacterium phocaeicum
Mycobacterium tuberculosis
disease caused by, see Tuberculosis
DNA probes for, 8
evolution of, 38–39
extensively resistant, 43
in meningitis, 294
in meningococcal meningitis, 290
microarrays for, 112
multidrug-resistant, 249, 707–718
multiplex hybridization for, 102
in osteoarticular infections, 47, 403
PCR for, 6, 8, 14, 15
point-of-care testing for, 547, 548–549
single nucleotide polymorphism tests for, 565, 567
future, 567–573
infrastructure for, 557
in intermediate-level laboratories, 557
NAATs for, 560–573
in peripheral-level laboratories, 557
shortcomings of, 573–574
sputum smear microscopy for, 558–560
target product profiles and, 557, 561–562
volatile organic chemical detection, 560–573
rapid tests for, 556–557
resistance in, 11, 38–39, 43
sequencing of, 767, 774, 776–777
single nucleotide polymorphism analysis for, 239
surveillance of, 249–250, 256–257
TMA for, 13
whole-genome sequencing for, 38–39, 41, 43
Mycobacterium ulcerans, 406–407
Mycoplasma, in male urethral microbial communities, 146, 149–150
Mycoplasma hominis, 27
Mycoplasma pneumoniae
LAMP for, 16
 meningococcal meningitis due to, 290
NAATs for, 306–307, 310–312, 319–323
in osteoarticular infections, 408
MyXtra kit, 492
Myriad Genetics, Inc., patent applications of, 806–807
NAATs, see Nucleic acid amplification techniques (NAATs)
Naegleria, 290
Naegleria fowleri, 288, 291
Nail disorders, 121–122
Nanobiosym system, for HIV, 587
NanoCHIP Infection Control Panel, 225
NanoChip Removes, for massively parallel DNA sequencing, 58
Nanopores, in next-generation sequencing, 567
whole-genome sequencing for, 38
TMA for, 13
NATs, see Nucleic acid amplification techniques (NAATs)
NATIONAL ANTIBACTERIAL RESISTANCE MONITORING SYSTEM, 247
NARMS (National Antimicrobial Resistance Monitoring System), 247
NARVAL trial, of HIV therapy, 420
Nasal screen, for MRSA, 169
NATs, see Nucleic acid amplification techniques (NAATs)
NAT genes, polymorphisms of, 619–620
National Antimicrobial Resistance Monitoring System (NARMS), 247
National Center for Biological Information, sequence databases of, 74
National Healthcare Safety Network (NHSN), 247
National Institute of Allergy and Infectious Diseases, 573
National Institute of Standards and Technology, 779
National Institutes of Health Chongqing Tuberculosis Research Laboratory, 247
National Library of Medicine, point-of-care test definition of, 545
National Nosocomial Infection Surveillance System, 247
National Tuberculosis Control Program, 257
NCBI Viral Genotyping Tool, 460
NCI Early detection Research Network, 634
Necator americanus, 533–534
Needleman-Wunsch software, 24
Negative controls
for DNA target sequencing, 23
for sequencing, 777, 779
Negative predictive values, in method verification, 239
Negative predictions testing samples, 758
Neisseria, 26, 403
Neisseria gonorrhoeae
in male urethritis, 394
in cervicitis, 393
for osteoarticular infections, 405, 408
surveillance of, 257–258
WHONET data on, 692
Neisseria meningitidis
in bloodstream, 349
DNA target sequencing for, 26
in meningitis, 298
NAATs for, 315–316
in osteoarticular infections, 405, 408
surveillance of, 257–258
WHONET data on, 692
Nelfinavir, pharmacogenetics of, 616, 619–620
Nematodes, gastrointestinal, 531
Neocallimastigomycota
Neonatal sepsis, 347
Neonates
HIV testing in, 419, 423
Trypanosoma cruzi testing in, 502
Nephropathy, polyomavirus-associated, 477–478
Nephrototoxicity, pharmacogenetics and, 619
Nest PCR, 6
for adenoviruses, 482
for Aspergillus, 297–298
for astrovirus, 371
for gastrointestinal parasites, 532
for osteoarticular organisms, 405
for Plasmodium, 518–519
for rotavirus, 368
for Trypanosoma cruzi, 508–510
Nestcd reverse transcriptase PCR, for enterovirus 71, 239–260
Neuroborreliosis, 297
Neurologic disorders, in meningococcal meningitis, 287–288
Neurophilis, 291
Neutropenia, bloodstream organisms in, 347
Neutrophil(s), in gastrointestinal infections, 666–667
Neutrophil chemotactic factor, in gastrointestinal infections, 665
Nevirapine pharmacogenetics of, 614, 618–620, 622, 659
resistance to, 419, 423
New Delhi metallo-beta-lactamase, 200
Nextera method, 60–61, 70
Next-generation sequencing, 68–79; see also Whole-genome sequencing
applications of, 68, 72, 74–76
barcoding in, 72
bioinformatics in, 74
contamination in, 72–74
current equipment for, 766
DNA preparation for, 22
for eukaryotic identification, 75
gastrointestinal microbiome characterization, 126
genome alignment and assembly in, 35–36
history of, 766
for HIV, 657
imaging in, 34–35
libraries for, 72
for male urethral microbial communities, 149–152
massively parallel, 58–67
for metagenomic analysis, 75
methods for, 68–70
for microbiome analysis, 75
for miRNAs, 646–647
ongoing quality control in, 777, 779
subject index
Parasites, see also specific parasites
 gastrointestinal, 372–375, 530–540
 next-generation sequencing for, 75
 surveillance of, 261–262
 whole-genome sequencing for, 33
Parasitological methods, for
Paritaprevir, for hepatitis C, 433
Parvimonas micra
Partition-specific competitive PCR, 53
Pathogen-associated molecular patterns
Patent Interference System, 804
Pasteurella multocida
Pasteurella
Pattern recognition receptors (PRRs), micro-
Pattern recognition receptors (PRRs),
Pathogenicity islands, in gastrointestinal
surveillance of, 261
for HIV, 587
history of, 5
for male urethra microbial communities,
for fungi, 489
for infections due to, in transplant recipients,
identification of, 82
Partitioning, in PCR, 10–11, 49–55
Partition-specific competitive PCR, 53
“Partnership for Diagnostics to Address Anti-
 microbial Resistance of Select Bacteri-
 al Pathogens,” 177
Parvimonas micra, 26
Parvovirus(es), 163
identification of, 82
 infections due to, in transplant recipients,
481–483
Passive surveillance, 266
Pasteurellla, 26
Pasteurella multocida, 402
Patent(s)
definition of, 803–804
molecular diagnostics and, 805–808
obtaining, 804–805
time of, 803
validity of, 805
valuation of, 809–810
Patent Interference System, 804
Pathogen-associated molecular patterns
(PAMPs), microRNAs and, 635–636
Pathogenicity islands, in gastrointestinal
infections, 668
Pathogen-specific surveillance, 235–236
Pattern recognition receptors (PRRs), micro-
RNAs and, 635–636
PCR, 5–11; see also specific microorganisms
advantages of, 5
 broad-range, 345–346, 408–410
 for central nervous system infections, 292–298
 clinical applications of, 5
 clonal, 31–35
 for Clostridium difficile, 185, 187–190
 components of, 5
 degenerate, 81–82
 digital, see Digital PCR
 dyes for, 7
 efficiency of, 725, 743
 emulsion, 33–34, 58–60, 68–69
 for Enterococcus, 223–225
 for fungi, 489–500
 for genitourinary tract organisms, 386
 “hemi-nested,” 6
 history of, 5
 for HIV, 580–587
 for Leishmania, 262
 for male urethra microbial communities,
148–152
 for MDRO surveillance, 202–205
 for meningococcal microorganisms,
288, 292–298
 for MRSA, 171, 256
 multiplex, see Multiplex PCR
 nested, see Nested PCR
 for novel bacteria discovery, 258
 for osteoarticular organisms, 404–410
 panel, 407–408
 for Plasmidium, 262
 probes for, 7–9
 qualitative, 309
quantitative, see Quantitative PCR
 rapid, 314
 real time, see Real-time PCR
 reverse-transcriptase, 5–6
 for SARS, 258
 for Schistosoma, 262
 for Streptococcus suis, 257
 subtype-specific, 441
 for surveillance, 249–252, 256–262
 for Trypanosoma cruzi, 502–511
 for vaginal microbiome, 141–143
 for viral infections, 476–484
 for zoonotic diseases, 280
PCR-electrospray ionization mass spectrome-
try for bloodstream organisms, 343, 348–350
 for osteoarticular organisms, 408–409
PCR-oligochromatography, 502, 504
Pearson correlation coefficient, 741
Pediatric patients
 HIV testing for, 419, 423, 587
 overparticular infections in, 408
Penicillin-binding protein, in MRSA, 198
Penicilum
 identification of, 81–82
 molecular detection of, 490
 in skin disorders, 121
 in skin microbiome, 118
Peptide nucleic acid fluorescence in situ
hybridization (PNA-FISH), 102–103,
171–173, 179, 491
Peptidomic profiling, for hepatitis B virus, 260
Peptolobutus asaccharolyticus, 26
Peptonemtropoccus, 147
Peptonemtropoccus aerom novelty, 26
Percent agreement (qualitative accuracy), in
method verification, 725
Percent carryover, 742
Percent contamination, in method verifica-
tion, 725
Percent identity, for sequences, 23
Percent inhibition, in method verification, 725
Percent separation, for sequences, 23
Personnel, proficiency testing of, see
Proficiency testing
Perussis, see Bordetella perussis
Perussis toxin, 314
Pets, pathogens in, 276
Phenotype-specific, in antimicrobial
resistance, 524
PFGE, see Pulsed-field gel electrophoresis (PFGE)
phmdr gene mutation, in antimicrobial
resistance, 522
Pharmacogenetics, 613–613
immune response genes in, 620–622
 interindividual variability in, 613–617
 metabolism genes in, 614, 618–620
 mitochondrial DNA variants in, 622–624
 transport genes in, 614, 618–620
Pharyngitis, streptococcal, 307–308
PhenoSense HIV tests, 423–424
PhenoSense Integrate test, 423–424
Phenotyping
carbanepenemases, 201–202
DNA target sequencing for, 19–29
 versus genotyping, 767
HIV, 419–420, 423, 426, 565–657
sequencing of, 776
whole-genome sequencing for, 44
Phoenix assay, for Enterococcus, 221
Photolithographic masks, for microarrays, 109
PHRED algorithm, 769, 772
Phred score, 23
Phycocyanin, for microarrays, 109–110
Physical testing area, for validation, 753
Picornavirales, 160–161
Picornaviruses, 82–83, 160–163
PicoTiter Plate, 84–85
Pilosicoccal unit, 117
Pilot operational dashboard, 715
PI gene and operon, Mycobacterium pneu-
moniae, 312
Plague, surveillance of, 258
Plant patents, 803
Plaque reduction neutralization assay, for
West Nile virus, 259
Plasmodium, 163
Plasmid pYV, in gastrointestinal infections,
668
Plasmid compared with dengue virus, 589
 geographic distribution of, 589
 immunochromatographic tests for, 518
 infection due to, see Malaria
 microscopy for, 517
 PCR for, 518–522
 point-of-care testing for, 550, 591–603
 resistance in, 523–524
 surveillance of, 261–262
 test limitations for, 598
 Plesiomonas shigelloides, 363, 364–365
PLEX BAC Spectrum BC, 175
PLEX-IND, 104, 349–351
PLEX-ID BAC Spectrum Blood Culture Test,
179
PLEX-IND BSV Spectrum BC, for MRSA/
MRSA, 173
PM2K protein, in gastrointestinal infections,
665
PNA-FISH (peptide nucleic acid fluorescence
in situ hybridization), 102–103, 171–
173, 179, 491
Pneumococcal surface adhesion A, 309
Pneumococci, see Streptococcus pneumoniae
Pneumocystis jiroveci, 489, 492–493
Pneumolysin, 309
Pneumonia, NAATs for, 315–335
Pneumonitis, herpes simplex virus, 481
PneumoVir microarray, 112
Point-of-care and near-care testing
 adoption strategy for, 550–551
 ASSURED challenge in, 547–550
 challenges for, 550–551
 changing face of, 545–555
 communication of results for, 551
 connectivity for, 685–691
 cost/benefit analysis of, 552–553
 current status of, 546–547
 definitions of, 545–546
 for HIV/AIDS, 580–588, 707–718
 implementation planning for, 550–551
 innovations for, 547–550
 for Mycobacterium tuberculosis, 556–579,
707–718
 quality assurance needs in, 547–552
 sample preparation in, 550
 strategic direction for, 547
Polonies (molecular colonies), 60
Polyacrylamide gel, for massively parallel
DNA sequencing, 58–59
Polymerase chain reaction, see PCR
Polymicrobial infections, osteoarticular, 402
Polymorphisms
 sequencing of, 777, 779
 verification and, 723
Self-probing amplicons, 8
Semantic feasibility, in medical device connectivity, 689
Semiconductor interoperability, 687
Semiconductor chip, 68
Sensitivity, 598
in MALDI-TOF mass spectrometry, 789
in method verification, 724–725, 742
in point-of-care testing, 547–548
in validation, 773–774
Sensor network model, 704–705
Sepsis, microRNA detection in, 646–647
SepsiTest, 175, 178, 342
Septic arthritis, see Infectious arthritis; Osteoarticular infections
Septicemia, see Bloodstream infections
SeptiFast test, 106
for bloodstream organisms, 342, 346–347
for fungi, 490
for osteoarticular organisms, 407
Seq Herb software, 460
Sequence alignment, 23
Sequence analysis
for norovirus, 271
for zoonotic diseases, 280
Sequence read data, 36
Sequencing, see also Next-generation sequencing; Pyrosequencing; Sanger sequencing
anomalies in, 769
applications of, 766–768
controls for, 747
deeper, see Deep sequencing
direct high-throughput, 83–84
errors in, 769
history of, 766
ongoing quality control in, 777–779
overview of, 766
principles of, 766–783
quality assurance for, 749
specimen handling in, 768
using inorganic phosphate, see Pyrosequencing
verification in, 771–777
work flow optimization in, 768–771
Sequencing-by-synthesis, 770–771
Serial dilution technique, 742–743
Serious threats, in antibiotic resistance, 292–295
Seron tests
for dengue virus, 592
for HCV, 435
for HIV, 419
for meningococcal and microorganisms, 292
for Mycoplasma pneumoniae, 310–312
for parvovirus, 481–483
for Trypanosoma cruzi, 501–502
for West Nile virus, 295
Serratia, WHONET data on, 693
Serratia marcescens, 251, 340
Severe acute respiratory syndrome (SARS) virus, 83, 258
Sewage virome, 164
Sexually transmitted infections, see also Genitourinary tract infections
male genital microbiome and, 146–152
Sexually transmitted microorganisms, see also specific microorganisms
Shell vial culture, for meningococcal infections, 292
Shiga toxin-producing organisms, 362–363, 664–666
Shigella, 363, 364–365
biomarkers of, 664, 666
in bloodstream, 343, 345
MALDI-TOF for, 93, 96
surveillance of, 247
as target for sequencing, 26
Shigella dysenteriae, 362, 664–666
Shigella sonnei, 36–38
Shingles, in transplant recipients, 482–483
Shotgun sequencing, 58, 75
for outbreak investigation, 238, 242–243
for skin microbiome samples, 118–119
SHV beta-lactamases, 199, 201
Sialidase, in vaginal microbiome, 142
SiemensVersant 440 analyzer, for hDNA, 3
Sigmoidoscopy, for Clostridium difficile infections, 191
Signal amplification techniques, 3–4
advantages of, 3
branched DNA assays, 3
cleave-inva
hybrid capture, 3–4
multipl
Signal dephasing, in next-generation sequencing, 35
“Signatures,” in 16S rDNA molecule, 19
Signed values, in sequencing, 769
Si6va database, 24, 81
Simpevrix, 433–434, 440–441
Simian immunodeficiency virus, 417
Simian virus 40 infections, 477–478, 482
Simple linearity experiments, 742–743
Simple method comparison approach, to experiment, 732
Simple precision test, 743
Simplex H-1/2 assay, 481
Simplexla B. pertussis/B. parapertussis assay, 314
Simplexa C. difficile Universal Direct, 187–188
Simplexla Flu A/B&RSV assay, 318
Simplexa HSV 1 & 2 Direct assay, for HSV, 294
Simplification, for medical device connectivity, 687
Simultaneous amplification and testing technology, for enterovirus 71, 260
Sin Nombre hantavirus, identification of, 82
Single base chain extension, in microarrays, 718
Single base chain extension, in microarrays, 110–112
Single cell analysis, for HIV, 658
Single hybridization probe, 12
Single molecule real-time sequencing, 37
Single nucleotide addition, 35
Single nucleotide analysis, 9
Single nucleotide polymorphism analysis digital PCR for, 53
for gastrointestinal parasites, 532, 534
in hepatitis C virus, 441
microarrays for, 111–112
for outbreak investigation, 239–240
Single nucleotide variants, 36, 44
Single-cell genomics, 44
Single-locus approach, Trypanosoma cruzi, 507
Single-molecule, long-read DNA sequencing technology (SMRT) cell, 63–65, 85
Single-molecule amplification, 33–34
Single-molecule real-time sequencing, 35
Single-strand restriction endonuclease, 13–15
Siphoviridae, in skin microbiome, 119
SJS/TEN (Stevens-Johnson syndrome/toxic epidermal necrolysis), 618–619, 622
Skeined distribution, 736
Skin microbiome, 117–112
diagnostic applications of, 122–123
disorders associated with, 120–122
habitat for, 117
overview of, 117–119
Skin virome, 163–164
Smart phones, in medical device systems, 690
SmartCycler B. pertussis/B. parapertussis assay, 314
SmartCycler II, for MDR, 203
SmartCycler instruments, 172, 323
SmartGene database, for DNA target sequencing, 23–25
SmartHBV assay, 456, 457
SmartNorovirus test, 370
SMART (single-molecule, long-read DNA sequencing technology) cell, 63–65, 85
SMS option, for cloud computing, 711–712
“Snapback primers,” 9, 12
Sneahia, in male urethra microbial communities, 150
in skin microbiome, 119
in vaginal microbiome, 141–142
soil genes, as targets for sequencing, 20, 23, 366
Sofosbuvir, for hepatitis C, 432–434
Software, see Computer software
Soil-transmitted helminths, 531, 533–534
SOLID system, 68–69
Solid-phase amplification, for next-generation sequencing, 71
Solid-phase hybridization, 102–103
Solution hybridization-antibody capture method, 3–4
Solution-based chemistries, for microarrays, 110–112
Solution-based RNA isolation, 642–643
Somatic hypermutation, of B cells, 658
Sorenson’s index of similarity, 150–151
South Africa, tuberculosis diagnosis in, 707–718
Southwest Pacific Clone, Staphylococcus aureus, 250
SP (sulfadimethoxine-pyrimethamine), resistance to, 524
Spacer oligonucleotide typing, for Mycobacterium tuberculosis, 257
Spanish Mycology Reference Laboratory, 490
spe genes, Streptococcus pyogenes, 308–309
Species, fungal, identification of, 493–496
Specificity, 742
in MALDI-TOF mass spectrometry, 789
in point-of-care testing, 547–548
testing of, 598, 728
in validation, 773–774
Specimens
collection of, for point-of-care testing, 552
DNA target sequencing from, 27
sampling of, for method verification, 732–733
for sequencing, 768–769
SpectraWave and SpectraNet, 604
Spectrophotometry, versus digital PCR, 54
Spectroscopy, for Plantidium, 604
Spectrum bias, 736
Spectrum biss, 738
Spiked specimens
for controls, 747
for proficiency testing, 763
Subject Index
Sporobacter genes, 363
Standard(s) for Quality Assurance, 751, 752
Statistic(s)
Standardization of Medical Device Connectivity, 736
Standard error of the mean, 736, 738
Standard deviation, 736
Split-sample testing, 751, 761, 767
Strain(s)
Staphylococcus aureus, 341
Staphylococcus, as contaminant, 22
DNA target sequencing for, 24–25
in gastrointestinal microbiome, 129
in male urethra microbial communities, 147–149
next-generation sequencing for, 74
in osteoarticular infections, 402–403, 404
in skin microbiome, 119
Staphylococcus aureus in bloodstream, 340, 343, 349
disorders caused by, 119–120, 403–403, 410
DNA target sequencing for, 25
genotyping of, 32–33
MALDI-TOF for, 94
methicillin-resistant, see MRSA (methicillin-resistant Staphylococcus aureus) multidrug-resistant, 698
NAATs for, 315–316
in osteoarticular infections, 402–403, 410
PNA-FISH for, 103
in skin microbiome, 118–119
surveillance of, 248
vancomycin-resistant, 213, 251
Staphylococcus aureus PNA FISH, 175
Staphylococcus epidermidis, 117, 119–120
Staphylococcus hominis, 117
Staphylococcus lugdunensis, 25
Staphylococcus QuickFISH BC, 172–173, 175
Staphylococcus warneri, 25
STAR (scalable transcriptional analysis routine), 106
Star software, 460
STAR (Standards for Reporting of Diagnostic Accuracy), 722, 738
STAT1 protein, in gastrointestinal infections, 670
Statistic(s)
bias in, 738
central tendency in, 736–738
comparative, 740–743
data collection for, 733, 736
descriptive, 732, 736–738
importance of, 731
inferential, 738–741
parametric, 739–740
personnel for, 733, 736
software for, 734, 736
tests for, selection of, 741
for verification, 732–738
“Statistical clusters,” 701
Statistical significance, 733
StaMate software, 736
Stavudine, pharmacogenetics of, 622
STCan software, 701, 704
Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN), 618–619, 622
STING protein, in HIV immunity, 659
Stool and stool specimens
Clostridium difficile toxins in, 185–193
for coccidial detection, 373–374
for gastrointestinal microbiome characterization, 126
for microsporidia detection, 374
for norovirus detection in, 269–272
parasites in, 530–535
Stool cytotoxicity assay, Clostridium difficile, 186
Strain typing, see also Genotyping
MALDI-TOF for, 94
for surveillance, 250
Strains, collections of, for point-of-care testing, 552
Strains of, for surveillance, 250
Streptomyces coelicolor
decontamination of, 572
microscopy of, 558–560
Streptococcus
Streptococcus agalactiae, 315–316
for astrovirus, 371
for caliciviruses, 369
for influenza, 370
for norovirus, 371
in gastrointestinal microbiome, 127, 131
in gastrointestinal infections, 670
in meningoencephalitis, 292
MALDI-TOF for, 93
in bloodstream, 336, 340, 350
helicase-dependent amplification for, 16
LAMP for, 16
MALDI-TOF for, 93
in male urethra microbial communities, 147–149
in osteoarticular infections, 402, 403, 408
viridans, in osteoarticular infections, 403
Streptococcus agalactiae NAATs for, 315–316
in osteoarticular infections, 403
surveillance of, 251
Streptococcus anginosus, 25
Streptococcus cristatus, 25
Streptococcus dysgalactiae, 39
Streptococcus equi, 92
Streptococcus equi subspp. equi, 309
Streptococcus equisimilis, 25
Streptococcus pneumoniae, 505–506
in bloodstream, 336, 340, 350
MALDI-TOF for, 93
in meningitis, 288
in meningococcal meningitis, 292
microscopy for, 292
NAATs for, 307, 309–310, 315–324
in osteoarticular infections, 402, 403
surveillance of, 248
Streptococcus pyogenes genotyping of, 32, 34
NAATs for, 306–309, 315–316
in osteoarticular infections, 403
surveillance of, 251
Streptococcus suis, 257, 315–316
Streptomyces, 27
Streptomyces coelicolor, 213
Strongyloides stercoralis, 534
Strout test, for Trypanosoma cruzi, 502
Student t test, 739
stx genes, 363
Stry toxins, 665–666
Subculture, for bloodstream organisms, 344
Subdoligranum, 131
Subject matter, in patent, 803, 805–808
Subscriber identity modules, 689
Subset, of samples, 732
Subtype-specific PCR, HCV, 441
Subtyping, in WHONET, 702–704
Sulfadoxine-pyrimethamine, resistance to, 524
SuperBugs, 202
SUPERCARBA, 201
Support oligonucleotide ligation, 35
Surface plasmon resonance imaging, 638
SURFI software, 771, 777
Surveillance in China, 256–265
information technology for, 686, 692–706
of noroviruses, 266–272
in South Africa, 707–718
tuberculosis, 707–718
Susceptibility, antimicrobial enterococci, 221–223
HCV, 440–442
MALDI-TOF for, 93–94
Mycobacterium tuberculosis, 570
whole-genome sequencing for, 32
WHONET reports of, 699–702
Suspension beads, in microarray analysis, 109–112
Sustainability, in medical device connectivity, 687
Sustained virologic response, in hepatitis C treatment, 436
Sweat glands, 117
Swiftest Genorovirus Gl/GII test, 370
SWAB analysis, for business case, 799–800
SYBR Green dyes for astrovirus, 371
for caliciviruses, 369
for gastrointestinal parasites, 533
for microRNAs, 644–645
for multiplex PCR, 104
for parasites, 373
for Trypanosoma cruzi, 505–506
Syndemic NAATs, 375
Syndromic surveillance, 235–236
Syntactical interoperability, 687
Syphilis, 393
Systematic error, 738, 743
SystemOne, 690–691
T cells
CD4+, in HIV infection, 580–581
in gastrointestinal infections, 670
microRNA interaction with, 636
NAATs for, 739–740
Taenia saginata, 531
“Tagmentation,” for library preparation, 60–61
Talin, in gastrointestinal infections, 667
Tannarella, 26
Tapeworms, 531, 535
TagMan techniques for HBV, 260
Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Thu, 11 Jul 2019 00:45:15
Urethritis, 146–152, 394
Urgent threats, in antibiotic resistance, 251–252
Urinary antigen test
for Legionella, 313–314
for Mycobacterium tuberculosis, 567
Urinary
MALDI-TOF analysis of, 93
microbial communities in, 148
Usefulness, of patent, 803–804
User experience integration, of medical device systems, 687
User-friendly criteria, 548, 598
Using Proficiency Testing to Improve the Clinical Laboratory, 756
Utility patents, 803

Vaccination, varicella-zoster virus, 483
Vaccinia virus, 291
Vaginal microbiome, 138–145
in bacterial vaginosis, 140–143
healthy, 138–139
male urethra comparison with, 146–152
normal, 139–140
Vaginitis, 386
Vaginosis, bacterial, 139
Variation, descriptive measures, 736
Variant-specific surface proteins, 670
Variant(s), digital PCR for, 53
Variables, for method verification, 732
Variable number of tandem repeat (VNTR)
Variability, interassay, 725

Vendor neutrality, in medical device connectivity, 687
Venerean equine encephalitis virus, 291
Verification, definition of, 745, 784
Verification/validation, 721–744
acceptable errors in, 733–734
of analytical sensitivity, 724–725, 742
of analytical specificity, 742
of assay efficiency, 726
of assays, 531
of bias, 738
biostatistics for, 732–738
central tendency, 736–738
classification test performance, 725
classification, 740–743
controls for, 726–729; see also Controls of data, 736
data collection for, 733, 736
data types in, 733
definition of, 721, 743
definition of measures of variation, 736–738
document for, 723–724
experimental design for, 732–738
hypothesis for, 731
of inferential statistics, 738–741
of interassay variability, 726
of MALDI-TOF mass spectrometry, 784–796
of next-generation sequencing, 76, 771–777
path to, 722–724
planning for, 731
qualitative, 724, 742
in quality assurance, 748–753
quantitative, 725–728, 742–743
reference method comparison, 742
regulations for, 721–722
from research laboratory to clinical laboratory, 721–722
of Sanger sequencing, 771–777
software for, 736
of specimen-sampling strategy, 732–733
strategy for, 723
Verigene BC-Gp, 176
Verigene CDF test, 187
Verigene BC-Gp, 176
Versant HBV DNA test, 456
Versant HCV RNA test, 437
Versant kPCR molecular system, 583
Versed
Veterinary academia, cooperation with, 280

Varicella-zoster virus (VZV)
Varicella, 260
Variola virus, 259
Vasculopathy, verrucella-zoster virus, 294–295
Velanne, 26
in gastrointestinal microbiome, 131
in male urethra microbial communities, 147–149, 151
Velvet software, 771
Viperin, in gastrointestinal infections, 670
VIRA3021 study, of HIV therapy, 420
Viral load assays and tests
adenoviruses, 476–477
cytomegalovirus, 479–480
Epstein-Barr virus, 479–480
HAV, 453, 453–459
HBV, 418–419, 421, 424–425, 580–588
PCR for, 11
in proficiency testing, 760
Virochips, 420
Virochips DNA microarray analysis, 83
ViroSeq HIV-1 genotyping system, 423
Virtual specificity, 725
Virtualization, in cloud computing, 707
Virulence factors, whole-genome sequencing for, 32–33
VirulenceFinder, 240
Virus(es), see also Human virome; subjects starting with Viral; specific viruses
central nervous system, 288–290, 292–296
culture of, 80
discovery of, 81–82
enrichment of, 157
gastrointestinal, 326–372
human, 83
genotyping of, 44
identification of, 82
MALDI-TOF for, 96
microarrays for, 112–113
resistance in, 44
respiratory, see Respiratory viruses; specific viruses
signal amplification for, 103
skin disorders caused by, 122
in skin microbiome, 118–119
in transplant recipients, 476–483
whole-genome sequencing for, 33, 39, 42
Virus discovery based on cDNA-amplified fragment length polymorphism (VIDISCA), 83
Vitek MS system, 493, 785
VITEK systems, 175
for Enterococcus, 221, 223
for MALDI-TOF, 96, 221
VivoDX, 179
VNTR (variable number of tandem repeat) analysis, 238
Volatile organic chemicals, in Mycobacterium tuberculosis, 573
Volunteer samples, 733
Voriconazole, pharmacogenetics of, 617–618
VPI gene, 259–260
VP4 gene and VP7 gene, 368
VYOO instrument, 175, 179
for bloodstream organisms, 340, 342
for fungi, 490
for MRSA/ MSSA, 173

Warts
cutaneous, 122
in HPV infections, 465–466
Wave80 test, 569
Waveguides, 70, 85
Web, for cloud computing, 707–718
West Nile virus
meningoencephalitis due to, 288, 289, 292, 295
surveillance of, 258–259
whole-genome sequencing for, 42
Western blot test
for herpes simplex virus, 394
for osteoarticular organisms, 405–406
Western equine encephalitis virus, 291
Westgard rules, for controls, 729
Westmead Millennium Institute, 496
Whatman FTA filter, 494
Whipple’s disease, 19–22, 81, 281, 297, 406
Whole-blood PCR, for tick-borne rickettsial disease, 297
Whole-genome multilocus sequence typing (wgMLST), 240
Whole-genome sequencing, 32–48, 768, 769
applications of, 36–44
challenges with, 44
current paradigm of, 32–36
facilities for, 44
for gastrointestinal parasites, 534
for HPV, 118
for male urethra microbial communities, 152
for MRSA, 171
for outbreak investigation, 237–243
pulsed-field gel electrophoresis with, 240
of skin microbiome, 119
technologies for, 33–36
for zoonotic diseases, 280
WHONET software, 248–249, 692–706
analytical features of, 697–702
antimicrobial susceptibility and, 698–699
cluster alerts in, 700–702
data management in, 692–693
development of, 693–695
future developments in, 702–705
global microbial sensor network in, 704–705
isolate information in, 698, 700
modules in, 696–697
multidrug resistance profiles in, 699
objectives of, 692
organisms involved in, 692
scatterplots in, 699
subtyping in, 702–704
use of, 695–696
Whooping cough, see Bordetella pertussis
Wildlife, pathogens in, 276–278
Windows, for microarrays, 109
Workflow, in next-generation sequencing, 86
World Economic Forum, 689
World Health Assembly of 2015, 696
World Health Organization
eHealth definition of, 686, 710
Foundation of Innovative New Diagnostics, 594
HIV viral load test guidelines of, 581
malaria test supervision by, 600
point-of-care testing guidelines of, 547, 550, 552
Prequalification Program of, 550
public health surveillance data definition of, 646
Regional Office for Africa, 696
Regional Office for Eastern Mediterranean, 696
Regional Office for Europe, 696
Regional Office for South-East Asia, 696
Regional Office for the Western Pacific, 696
STOP-TB Partnership, 557
surveillance definition of, 245
test standards of HBV, 457–458
HCV, 442
HPV, 472
tuberculosis detection program of, 557
verification strategy, 723
WSX-1 protein, in gastrointestinal infections, 672
Xpert HIV test, 422
Xpert HPV test, 469, 471
Xpert MDRO, 202–203
Xpert MRSA assay, 173–174, 179, 198
Xpert MRSA/SA BC, 341
Xpert MRSA/SA SSTI test, 404
Xpert MTB/RIF test, 249–250, 257, 297, 557–569, 573, 690–691, 710–718
Xpert TV, 387
Xpert van A/B assay, 224–225
XpertSMS, 717–718
xTAG instrument, 112
xTAG RVP assays, 318–319, 323–324
xTAG test, for adenoviruses, 482
Yeast Traffic Light PNA FISH, 491
Yeasts, see individual yeasts
YeastStar genomic DNA kit, 494
Yersinia
biomarkers of, 664, 668
in gastrointestinal microbiome, 129
Yersinia enterocolitica, 129, 363–365
Yersinia pestis
in bloodstream infections, 343
DNA target sequencing for, 27
surveillance of, 258
zoonotic origin of, 279
Yersinia pseudotuberculosis, 27
Zalcitabine, pharmacogenetics of, 622
Zero-mode waveguides, 35, 70
Zidovudine, pharmacogenetics of, 622
ZipCode and cZipCode capture sequences, 112
Zoonotic diseases, detection of, 275–284
categories of, 275–280
cost/benefit of, 275–276
newly discovered, 275
regulation of, 280–281
reporting of, 281
with tests developed for humans, 280
veterinary academic cooperation with, 280
Zoster, in transplant recipients, 482–483
ZR/fungal/bacterial DNA kit, 494