Paleomicrobiology of Humans
Paleomicrobiology of Humans

Editors:
Michel Drancourt
Didier Raoult
Contents

Contributors vii
Introduction xi
Acknowledgments xiii

1 Demographic Patterns Distinctive of Epidemic Cemeteries in Archaeological Samples 1
Dominique Castex and Sacha Kacki

2 Characterization of the Funeral Groups Associated with Plague Epidemics 13
Stéfan Tzortzis and Michel Signoli

3 Paleogenetics and Past Infections: the Two Faces of the Coin of Human Immune Evolution 21
Laurent Abi-Rached and Didier Raoult

4 A Personal View of How Paleomicrobiology Aids Our Understanding of the Role of Lice in Plague Pandemics 29
Didier Raoult

5 Sources of materials for Paleomicrobiology 39
Gérard Aboudharam

6 Paleomicrobiology Data: Authentification and Interpretation 51
Michel Drancourt

7 Human Coprolites as a Source for Paleomicrobiology 59
Sandra Appelt, Michel Drancourt, and Matthieu Le Bailly

8 Ancient Resistome 75
Abiola Olumuyiwa Olaitain and Jean-Marc Rolain

9 The History Of Epidemic Typhus 81
Emmanouil Angelakis, Yassina Bechah, and Didier Raoult

10 Paleopathology of Human Infections: Old Bones, Antique Books, Ancient and Modern Molecules 93
Olivier Dutour

11 Past Bartonelloses 107
Pierre-Edouard Fournier
12 Paleomicrobiology Of Human Tuberculosis 113
Helen Donoghue

13 Paleomicrobiology of Leprosy 131
Mark Spigelman and Mauro Rubini

14 Past Intestinal Parasites 143
Matthieu Le Bailly and Adauto Araújo

15 Paleopathology and Paleomicrobiology of Malaria 155
Andreas Nerlich

16 History of Smallpox and Its Spread in Human Populations 161
Catherine Thèves, Eric Crubézy, and Philippe Biagini

17 Cholera 173
Donatella Lippi, Eduardo Gotuzzo, and Saverio Caini

18 Human Lice in Paleoentomology and Paleomicrobiology 181
Rezak Drali, Kosta Y. Mumcuoglu, and Didier Raoult

Index 191
Contributors

Laurent Abi-Rached
Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France

Gérard Aboudharam
Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, Marseille, France

Emmanouil Angelakis
Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Aix-Marseille Université, UM63, CNRS 7278, IRD 198, INSERM U1095, Marseille, France

Sandra Appelt
Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France

Adauto Araujo
Escola Nacional de Saude Publica Sergio Arouca, Fundacao Oswaldo Cruz, Brazil

Yassina Bechah
Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Aix-Marseille Université, UM63, CNRS 7278, IRD 198, INSERM U1095, Marseille, France

Philippe Biagini
Viral Emergence and Co-Evolution Unit, UMR 7268 ADES, Aix-Marseille University / French Blood Agency / CNRS, Marseille, France

Saverio Caini
Institute for Cancer Research and Prevention, Unit of Molecular and Nutritional Epidemiology, Florence, Italy

Dominique Castex
UMR 5199 du CNRS, PACEA, Anthropologie des Populations Passées et Présentes, Pessac, France

Eric Crubézy
AMIS Laboratory, UMR 5288, CNRS / University of Toulouse / University of Strasbourg, Toulouse, France
Helen Donoghue
Centre for Clinical Microbiology, Division of Infection and Immunity,
University College London, United Kingdom

Rezak Drali
Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes:
URMITE, Aix Marseille Université, UMR CNRS 7278, IRD 198, INSERM 1095,
Faculté de Médecine, Marseille, France

Michel Drancourt
Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198,
Inserm 1095, Marseille, France

Olivier Dutour
Laboratoire d’Anthropologie biologique Paul Broca – École Pratique des
Hautes Etudes, PSL Research University Paris, Paris, France

Pierre-Edouard Fournier
Unité de Recherche sur les Maladies Infectieuses et Tropicales
Emergentes (URMITE), UM63, CNRS7278, IRD198, Inserm 1095,
Aix-Marseille Université, Marseille, France

Eduardo Gotuzzo
Institute of Tropical Medicine, Peruvian University Cayetano Heredia,
Lima, Peru

Sacha Kacki
UMR 5199 du CNRS, PACEA, Anthropologie des Populations Passées
et Présentes, Pessac, France

Matthieu Le Bailly
Franche-Comté University, CNRS UMR 6249 Chrono-Environment,
Besançon, France

Donatella Lippi
Department of Experimental and Clinical Medicine, University of Florence,
Florence, Italy

Kosta Mumcuoglu
Parasitology Unit, Department of Microbiology and Molecular Genetics,
The Kuvlin Center for the Study of Infectious and Tropical Diseases,
Hadassah Medical School, The Hebrew University, Jerusalem, Israel

Andreas Nerlich
Institute of Pathology, Academic Clinic Munich-Bogenhausen,
Munich, Germany

Abiola Olumuyiwa Olaitain
Aix Marseille Université, Unité de Recherche sur les Maladies
Infectieuses et Tropicales Emergentes (URMITE), UMR CNRS 7278,
IRD 198, INSERM 1095, Faculté de Médecine, Marseille, France
Didier Raoult
Aix Marseille Université, URMITE, UMR CNRS 7278,IRD 198, INSERM 1095, Faculté de Médecine, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France

Jean-Marc Rolain
Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UMR CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, Marseille, France

Mauro Rubini
Department of Archaeology Foggia University, Foggia, Italy

Michel Signoli
UMR 7268 ADES, Anthropologie bio-culturelle, Droit, Ethique, Santé - AMU/CNRS/EFS, Marseille, France

Mark Spigelman
Centre for Clinical Microbiology, Division of Infection & Immunity, University College London, London, United Kingdom

Catherine Thèves
AMIS Laboratory, UMR 5288, CNRS / University of Toulouse / University of Strasbourg, Toulouse, France

Stéfan Tzortzis
UMR 7268 ADES, Anthropologie bio-culturelle, Droit, Ethique, Santé - AMU/CNRS/EFS, Marseille, France
Paleomicrobiology is a new field that aims to identify past epidemics at the crossroads of different specialties such as anthropology, medicine, molecular biology and microbiology. Paleomicrobiology is facing several types of problems that are discussed in this book. On the one hand the recognition of human remains associated with epidemic outbreaks, the graves associated with disasters, demographic structures revealing the presence of epidemic moment (Chapters 1 and 2). On the other hand, paleomicrobiology, the history of epidemics, helps to understand the evolution of the history of human beings since now we can find the genetic markers associated with humans, like the gene HLA.LILR inherited from archaic hominids (Neanderthal or Denisovan man) in some populations that presumably have survived due to their resistance to some epidemic pathogens. Paleomicrobiology also helps to track the human migrations (3,4). The materials which can be used to make the diagnosis in paleomicrobiology include soft tissue when it comes to mummies, the arthropods, especially lice, bones and teeth. Use of the dental pulp as a source of genetic material was first used in paleomicrobiology before being used in human genetics (5). The utilization of the dental pulp as a source of DNA research by PCR molecular techniques was initially the subject of a controversy about the authenticity of the results. This controversy, which lasted more than 10 years, is resolved now. The polemics about the initial results concerning plague led to a general reflection on the plague pandemics, which in its turn led to a conclusion that the plague pandemics were probably provoked by the outbreaks of lice. Paleomicrobiology presents the evidence of common epidemics provoked by Bartonella quintana (which is known to be transmitted by lice) and Yersinia pestis which have perfectly demonstrated its role in epidemics and which was confirmed by contemporary plague cases (6). The dispute over the results of the paleomicrobiology led to outlining the identification and interpretation criteria (7). Then, paleomicrobiology developed in different research areas, particularly in the analysis of human coprolites (8), the identification of antibiotic resistance in ancient samples that preceded by several million years the use of antibiotic (9), the history of epidemic typhus (10), of Bartonelose (12) tuberculosis (13), leprosy (14), former intestinal parasites (15), malaria (16), smallpox (17), cholera (18) and finally the history of human lice (19). As a final point, the anatomical analysis of ancient samples also plays a role in the identification of past disease. Altogether, this is the first complete comprehensive book updating (reporting on) the approach of a new multidisciplinary scientific field.
Acknowledgments

The Editors acknowledge their assistant Olga Cusack, IHU Meditarranée Infection, for the expert technical assistance in preparing this edition.
Index

a3B (ancient ones, ancient books, and ancient biomolecules), 96
Aboudharam, Gérard, 30–31
Alphaproteobacteria phylum, 107
Anaplasmataceae, 81
Ancient burial grounds, evidence of mortality crisis, 1–2
Ancient DNA (aDNA), 51–52
anti-biotic resistance, 75–76
characterization of, 117
coprolites, 62
malaria analysis in, 158
Mycobacterium tuberculosis in, 116, 117–118, 120, 122
parasite biomolecules, 145–146
Ancient medical literature, skeletal changes, 100–101
Ancient specimens
- antibiotic resistance in human samples, 78–79
- handling and preserving for paleomicrobiology, 45–47
- preventing contamination of, 53
- sources, 53
- taphonomical contamination of, 52
Animals
- human tuberculosis predating domestication of, 98–100
- paleomicrobiology, 41, 42
Anopheles fly, 156
Anthropological contamination, old specimens, 52
Antibiotic resistance
- ancient DNA (aDNA), 75–76
- ancient environmental samples, 76–78
- ancient human samples, 78–79
Antonine Plague, 162
Archaeology, intestinal parasite studies, 148–149, 150
Ascaris spp., 63, 64, 67, 149
Ascomycetes, 42
Asiatic cholera, 174
Athens, plague of, 97
Avian influenza, 94
Bacille Calmette-Guérin (BCG) vaccine, 137
Bacillus anthracis, 178
Bacteria coprolites, 65
Baker, Brenda, 100
Barton, Alberto, 107
Bartonellaceae, 81
Bartonella spp., 107
- B. bacilliformis, 109
- B. henselae, 109
- B. quintana, 41, 42, 184
 - co-infection with, 33–34, 89
 - identification in ancient specimens, 108–109, 187
- B. tribocorum, 109–110
 - identification in ancient specimens, 108–110
 - paleomicrobiological evidence of infections, 107, 108
Basidiomycetes, 42
Biomarkers, Mycobacterium tuberculosis, 120–125
Black Death, 2, 30
- adult sex distribution, 8
- historical description, 29–30
- medieval plague, 24–25
- mortality by age groups, 6
- paleomicrobiology, 75
- plague mortality, 8–9
- Y. pestis strain, 97–98
Black lung disease, 165
Black Plague, 30
Bonaparte, Napoleon, 89
Bone tissues, paleomicrobiology, 41, 43–44
Borrelia burgdorferi, 107
Borrelia recurrentis, 33, 83, 184
Brachybacterium paraconglomeratum, 78
Brill, Nathan, 85
Brill-Zinsser disease, 82–84
Brucella spp., detection in bones, 41, 43
Budd, William, 175
Buddhism, 162
Burial sites
- age estimation, 3, 3–4
- demographics by site, 4
- demographics of plague, 4–8
- European names and locations, 2
- examples with simultaneous deposits, 3
- sex determination, 3
Capucins de Ferrières burial site, 14–15
Carrión’s disease, 109
Cell wall lipid biomarkers, *Mycobacterium tuberculosis*, 118–120, 123
Cemeteries. See Epidemic cemeteries
Centers for Disease Control and Prevention, 168
Chagas disease, *Trypanosoma cruzi*, 40, 67, 124
Cholera
birth of modern epidemiology, 174–175
discovery of *Vibrio cholerae*, 175–178
ever-present threat of, 178–180
first discovery by Pacini, 177
history of, 173–174
London 1854 epidemics, 174–175, 176
second discovery by Koch, 178
Chryseobacterium sp., 79
Clonorchisis spp., 62
Cockburn, Aidan, 95
Colon, paleomicrobiology, 41
Contamination detection, ancient specimens, 53–55
coprolites, 95
aDNA (ancient DNA) extraction, 62
bibliometry, 60
dating of, 60
description of first, 59, 61
intestinal and systemic pathogens in human, 68
methodology for finding, 61–63
microscopic analysis, 61–62, 68
molecular microbiology, 62
next-generation sequencing, 63
non-nucleotidic biomolecule detection, 62
outputs, 63, 67–68
paleomicrobiology, 41, 43
pathogens, 63, 67–68
PCR amplification and sequencing, 62–63
PCR amplifying microbial aDNA out of, 64–65
repartition of, 60
resident gut microbiota, 63
scientific studies of, 66–67
Coxiella burnetii, 31
Craven, Thomas, 47
Cryptosporidium spp., 62
Cyclospora spp., 67
Da Rocha Lima, Henrique, 85
Dasypus novemcinctus, 131
Délos burial site, 14–15
Demodex brevis, 184
Demodex folliculorum, 184
Dendermonde, plague site, 2–3, 7
Denisovans, paleogenetics of, 21–23
dental calculus. See also Teeth
antibiotic resistance in, 76
paleomicrobiology, 41, 45
dental pulp, 40. See also Teeth
paleomicrobiology, 41, 44–45
recovery from ancient jaw, 31
skeletons in mass graves, 97
Dicrocelium dendriticum, 67
Dicrocelium lanceolatum, 150
Diphyllobothrium spp., 67
douai, France, epidemic typhus, 88–89
Drancourt, Michel, 31, 33
dreu plague site, 2–3, 4, 5, 7, 8
Duncan, C. J., 31

Early human populations, tuberculosis and, 115–116
Ebola fever, 94
Ebola virus, 31
ectoparasite samples, paleomicrobiology, 41, 42
Elizabeth I (Queen of England), 163
Entamoeba histolytica, 145, 149
Entamoeba spp., 67
Enterobacter, 41, 42
Enterobacteriaceae, 107
Environmental samples, antibiotic resistance in ancient, 76, 78
Enzyme-linked immunosorbent assay (ELISA), 62, 87, 145
Epidemic cemeteries
demographics of plague burial sites, 4–8
mass graves, 1–2
materials and methods, 2–4
Epidemic typhus, 81–82
actual foci, 84
classic abdominal skin rash, 84
clinical manifestations, 83–84
description of *Rickettsia prowazekii*, 84–86
Douai, France, 88–89
emergence and re-emergence, 89–90
epidemiology, 82–83
evidence of past outbreaks, 88–89
history of, 84–86
Napoleon Bonaparte’s Russian campaign, 89
order *Rickettsiales*, 81, 82
paleomicrobiology, 86–89
R. prowazekii co-infection with bacterial agents, 89
Epidemiology, birth of modern, 174–175
Epstein-Barr virus, 24
Ethics, paleomicrobiology, 47
Eukaryotes, coprolites, 64
European burial sites, 2, 3
Evolution, smallpox virus, 168–170
Exanthematic typhus, 85
Excavations, precautions during, 45–46
Extinct populations
paleogenetics of, 21–23
paleoimmunology of, 23–24
Fertile Crescent, 98–99
Fischer, Bernhard, 178
Fluorescence in situ hybridization (FISH), 56
Food and Agriculture Organization of the United Nations (FAO), 94
Frozen environmental samples, paleomicrobiology, 41–42
Frozen human tissues, paleomicrobiology, 41, 42–43
Funeral management, mortality during plague, 13–16
Gaffky, Georg, 178
Genetics, smallpox virus, 168–170
Gerhard, William, 85
Giardia spp., 62, 67
Gilbert, T., 32, 33
Grand Army, Napoleon, 89, 109
Great Frost of 1709–1710, 18–19
Haemophilus parainfluenzae, 43
Hansen’s disease, 131. See also Leprosy
Helicobacter pylori, 41, 43
Helminths, dissemination forms of, 144–145
Hereford plague site, 2–3, 4, 5, 7, 8
High performance liquid chromatography (HPLC), 119
Hippocrates, 156
Histopathology, smallpox, 164
HIV/AIDS, 155
HIV infection, 24, 25
Host-pathogen interactions, One Health Concept, 93–94
Human coprolites. See Coprolites
Human endogenous retrovirus (HERV), 21–22
Human immune evolution
Archaic-genomes in modern populations, 22
paleogenetics of extinct populations, 21–23
paleoimmunology of past populations, 23–24
pressure of past epidemics, 24–25
Human infections
cholera, 178–180
colloidal infections with tuberculosis, 124, 125
evolution of infectious diseases, 96–102
Fertile Crescent as model area, 98–99
leprosy case, 101–102
Mycobacterium tuberculosis complex (MTBC), 122–123
paleopathology, 93, 94–96
past plague remains, 96–98
past tense, 94–96
present tense, 93–94
skeletal changes, 100–101
leprosy predating animal domestication, 98–100
Human T-lymphotropic virus 1 (HTLV-1), 95
Human tuberculosis. See Tuberculosis
ICEPID (International Congresses on Evolution and Paleoepidemiology of Infectious Diseases), 96
Immunofluorescence assay (IFA), 62
Infections. See Human infections
Intensified Smallpox Eradication Programme, 163
Intestinal parasites
ancient evidence, 144–146
applications in archaeology, 148–149
applications in parasitology, 149–150
biomolecules, 145–146
dissemination forms of helminths and protozoa, 144–145
extraction methods, 146–148
macroremains, 144
paleoparasitology, 143–144
parasite history, 149–150
past studies, 148–150
sampling strategy and diversity, 146
Jenner, Edward, 94, 163
Justinian’s plague, 2, 30, 32, 33
adult sex distribution, 8
mortality by age groups, 6, 7
paleomicrobiology, 75
plague mortality, 8–9
proportion of non-adults, 5
Klebsiella, 41, 42
Knapp, Michael, 96
Koch, Robert, 178
Lagier, René, 100
Langerhans cell histiocytosis, 125
Lazaretto Vecchio, plague epidemic burial, 15–16
Lederberg, Joshua, 31, 32
Legal framework, paleomicrobiology, 47
Leishmaniasis, 124
Leprosy, 95
biological history of, 133
body response to, 132–133
collaboration with tuberculosis, 137–138
diagnosis in paleopathology, 133–135
facial appearance of victim, 134
multidrug therapy (MDT), 132
nasal changes, 135
paleomicrobiology, 131–132, 135–138
rhinomaxillary syndrome, 135
skeletal paleopathology, 101–102
skeleton, 132, 134, 136
stages of bone infiltration, 134
Les Fédons, plague site, 2–3, 4, 7
Lice
ancient lice associated with bacteria, 186–187
ancient recovery worldwide, 185
archaeological excavations and human body remains, 184–185
clades, 182, 183
experimental model of infection, 33
Lice (continued)
families of, 181–182
modern human, 182–184
molecular analysis of ancient lice, 185–187
Pediculus species, 181–182
phylogram of cytochrome b mitochondrial gene, 183, 186
Yersinia pestis, 34, 184, 187
London, cholera epidemics of 1854, 174–175, 176
Louis XIV (King), 88

Louse. See Lice

Luis I (King of Spain), 163

Malaria
ancient DNA analysis of, 158
chronic anemia by, 157
detection limitations, 158–159
identification in paleopathology, 156–159
immunological identification of, 157
infection, 155–156
Marburg virus, 31
Marseille, France
burial sites, 14
Great Plague (18th century), 96–97
Martigues, France, burial sites, 14, 16–19
Mary II (Queen of England), 163
Mass graves, ancient mortality crisis, 1–2
Matrix-assisted laser desorption/ionization tandem
time-of-flight mass spectrometry (MALDI-TOF MS), 88

Ménard, Victor, 100, 101
Metagonimus spp., 62
Methanobrevibacter massiliense, 56
Methanobrevibacter smithii, 63
Methanobrevibacter spp., 56, 63
Methanosphaera spp., 63
Microbes, criteria for authentication of, 56
Microbiology
coprolite, 68
prevention of contamination in laboratory, 52–53
Microorganisms, methodology for coprolite, 61–63
Mitochondrial genes, analysis of, 182, 183, 184, 186
Molecular analysis, ancient lice, 185–187
Molecular microbiology, coprolites, 62
Mummies, 95, 165

Mycobacterium leprae, 107, 131. See also Leprosy
detection in bones, 41, 43
leprosy and skeletal paleopathology, 101–102
types and subtypes, 131

Mycobacterium tuberculosis, 41, 107, 113
biomarkers, 123–124
choice of teeth, 46
co-infections, 124, 125
detection in bones, 41, 43
epidemiology, 123
Koch, 178
leprosy co-infection with, 137–138
paleomicrobiology, 86
structures of lipid biomarkers, 121
Mycobacterium tuberculosis complex (MTBC), 113.
See also Tuberculosis
evolutionary relationship, 119
genotypes, strains, and lineages, 118
human infections with, 122–123
human tuberculosis predating animal
domestication, 98–100
methods for analysis in ancient DNA (aDNA), 117
overview of aDNA research, 120, 122
timeline of evolutionary events, 120
verification of aDNA findings, 117–118

Napoleon, Vilnius, Lithuania, 89, 109, 187
Neanderthals
leprosy, 133
paenogenetics of, 21–24
Next-generation sequencing, coprolites, 63
Nicolle, Charles, 82, 85
Nothotheriops shastensis, 43

Ockham’s razor principle, 23
One Health Concept, 93–94
Orova fever, 109
Orthopoxvirus, 164, 167–169
Osteomyelitis variolosa, 168
Osteoporosis, leprosy and, 132
Oxyuris equi, 150

Pacini, Filippo, 177
Paenibacillus lautus, 78
Paleoentomology, human lice, 181, 184–187
Paleoepidemiology, infectious diseases, 96–102
Paleogenetics
extinct populations, 21–23
studies, 163–168
Paleoimmunology, past populations, 23–24
Paleomicrobiology, 57, 59
assays in, 87–88
birth of, 30–31
confirmation of dental pulp, 32–33
controversy in, 31–32
description, 51–52
discipline, 95
environmental samples, 40–42
epidemic typhus, 86–89
epidemiological explanation, 33–34
ethics, 47
handling and preserving ancient specimens for, 45–47
historical cases, 164–165, 167–168
historical description, 29–30
human lice, 181–182, 184–185
human samples, 42–45
legal framework, 47
leprosy, 131–132, 135–138
INDEX
195

objective of, 39–40

paleogenetic studies, 163–168
plague due to Y. pestis, 34–35
size of ancient DNA, 33
smallpox, 163–168
tissue sources, 40
tuberculosis, 125

Paleomicrobiology data, 51–52
anthropological contamination, 52
contamination detection, 53–55
contamination prevention in microbiology laboratory, 52–53
interpretation, 55–56
preventing contamination, 56–57
taphonomical contamination of ancient specimens, 52

Paleoparasitology, 143–144, 150
biomolecules, 145–146
extraction methods, 146–148
helminths and protozoa, 144–145
macromerains, 144
past studies, 148–150
sample diversity, 146
sampling strategy, 146

Paleopathology, 93
human infections in past tense, 94–96
leprosy, 101–102, 133–135
malaria infection, 156–159
tuberculosis, 114–116, 125

Pandemics. See also Plague pandemics
history of, 173–174

Parasites. See Intestinal parasites; Lice Pasteurella pestis, 30
Pathogens, coprolites, 63, 67–68
PCR (polymerase chain reaction)
amplification for coprolites, 62–63
molecular biology, 51
suicide, 31, 32, 53, 56, 95, 88–89, 108

Pediculosis, 182
Pediculus humanus corporis, 82
Pediculus humanus humanus, 108, 181–182

Poitiers plague site, 2–3, 4, 7
Plague burial sites
demographic characteristics of, 4–8
demographic specificities of plague, 8–9
Lazzaretto Vecchio, 15–16
mortality quotients by age groups, 7–8
proportion of immature individuals, 5, 7
Provence, 14

Ramses V (Egyptian Pharaoh), 162, 164
Rattus norvegicus, 30
Rattus rattus, 30
Red louse disease, 83
Red Queen theory, 95
Resident gut microbiota, coprolites, 63
Resurgences (2nd pandemic), 2
adult sex distribution, 8
mortality by age groups, 6
plague mortality, 8–9

Rhodococcus erythropolis, 78
Rickettsia, Howard, 85
Rickettsia spp., 81
R. prowazekii, 33, 34, 41, 42, 81, 107, 184
coinfection with bacterial agents, 89
description of, 84–86
epidemiological features, 82, 83
genotyping, 87
R. quintana, 108
R. rickettsia, 87
R. typhi, 81, 82
Rochalimaea henselae, 109
Ruffer, Sir Marc A., 143, 164

Salmonella enterica, 97
Sarcoidosis, 134
Scanning electronic microscopy (SEM), 144
Schistosoma spp., 67, 144
Selected ion monitoring (SIM) negative ion-chemical ionization gas chromatography mass-spectrometry (NICI-GCMS), 119
Sens plague site, 2–3, 4, 7
Serratia, 41, 42
Severe acute respiratory distress syndrome (SARS), 94
Signoli, Michel, 33
Skeletal paleopathology leprosy, 101–102
tuberculosis, 114, 115
Skin, paleomicrobiology, 41
Smallpox, 161–162, 178
epidemic of 1705, 19
genetics and evolution, 168–170
historical cases, 164–165, 167–168
history of, 162–163
phylogenetic analysis of virus, 166
variola virus (VARV), 161, 168–170
Snow, John, 174–175, 176
Streptomyces spp., 78
Subclinical leprosy, 133
Suicide PCR, 31, 32, 53, 56, 95
Bartonella quintana, 108
epidemic typhus, 88–89
Sulfolobus spp., 63
Superficial vertebral lesions, 100, 101
Superficial vertebral tuberculous osteoperiostitis, 100
Sutama, 84
Syphilis, 24, 87, 178
Taenia spp., 67
Teeth. See also Dental calculus; Dental pulp choice of, 46
cross-section of tooth, 44
paleomicrobiology, 41, 44–45
Tetracycline resistance-encoding genes, 76
Tissue sources, paleomicrobiology, 40
Treponema pallidum, 24, 87, 107
Trichuris spp., 61–63, 148, 149
T. suis, 62
T. triichiura, 61–62
Trypanosoma cruzi, Chagas disease, 40, 41, 67, 124
Tuberculosis, 95
ancient DNA analysis for Mycobacterium tuberculosis complex (MTBC), 117, 125
archaeological reports around the world, 114
biomarkers, 123–124
cell wall lipid biomarkers, 118–120, 121, 123
co-infections, 124, 125, 137–138
cosmorbidities, 124–125
detection and molecular diagnosis of, 116–120
ever human populations, 115–116
host susceptibility and ancient, 124–125
human, predating animal domestication, 98–100
human infections with members of MTBC, 122–123
modern disease, 113–114
MTBC genotypes, strains and lineages, 118
paleopathology of, 114–116, 125
skeletal changes indicative of, 114
verification of MTBC in ancient DNA (aDNA), 117–118
Tutankhamun, mummy of, 158
Typhus. See Epidemic typhus
U.S. Food and Drug Administration (FDA), 78
Vancomycin resistance operon (vanHAX), 76
Variola virus (VARS), smallpox, 161, 162, 168–170
Verruga peruana, 109
Vibrio cholerae, 173, 175–178
Vilnius, Lithuania, Napoleon, 89, 109, 187
von Pettenkoffer, Max, 177
von Prowazek, Stanislaus, 85
Weigl, Rudolph, 86
Whole-genome shotgun (WGS) sequencing, coprolites, 63
World Health Organization (WHO), 34, 94, 116, 163, 179
World Organisation for Animal Health (OIE), 94
Yakutia, Arctic, permafrost, 165, 167
Yersinia, 41, 42
Yersinia pestis, 15, 25, 32
ancient specimens, 107
Black Death, 97–98
co-infection with Bartonella quintana, 108
data interpretation, 55–56
detection in bones, 41, 43
disease cycle, 30
genotyping, 87
Great Plague of Marseilles, 96, 96–97
louse infection with, 34
paleomicrobiological study of plague by, 34–35
plague epidemics, 98
Zinsser, Hans, 85
Zygomycetes, 42