molecular biotechnology
Principles and Applications of Recombinant DNA
molecular biotechnology
Principles and Applications of Recombinant DNA

Bernard R. Glick
Department of Biology, University of Waterloo
Waterloo, Ontario, Canada

Cheryl L. Patten
Biology Department, University of New Brunswick,
Fredericton, New Brunswick, Canada
The two of us thank our life partners, Marcia Glick and Patrick Patten, for the enormous support and encouragement that they have provided throughout this endeavor.

B. R. Glick
C. L. Patten
Contents

Preface to the Fifth Edition xvii

1 The Development of Molecular Biotechnology 1
 Emergence of Molecular Biotechnology 1
 Recombinant DNA Technology 3
 Commercialization of Molecular Biotechnology 4
 Concerns and Consequences 7
 SUMMARY 9
 REFERENCES 9
 REVIEW QUESTIONS 10

2 Fundamental Technologies 11
 Molecular Cloning 11
 Preparation of DNA for Cloning 11
 Insertion of Target DNA into a Plasmid Vector 16
 Transformation and Selection of Cloned DNA in a Bacterial Host 20
 Cloning Eukaryotic Genes 24
 Recombinational Cloning 28
 Genomic Libraries 30
 Genome Engineering using CRISPR Technology 32
 Polymerase Chain Reaction 35
 Amplification of DNA by PCR 36
 Cloning PCR Products 39
 Quantitative PCR 39
 Chemical Synthesis of DNA 42
 Synthesis of Oligonucleotides 42
 Assembling Oligonucleotides into Genes 48
 Gene Synthesis by PCR 50
 DNA Sequencing Technologies 50
 Dideoxynucleotide Procedure 53
 Pyrosequencing 55
 Sequencing using Reversible Chain Terminators 57
 Sequencing by Single Molecule Synthesis 57
Sequencing Whole Genomes 59
Preparation of Genomic DNA Sequencing Libraries 60
High-Throughput Next-Generation Sequencing Strategies 61
Genome Sequence Assembly 63
Sequencing Metagenomes 64

Genomics 64
 Transcriptomics 67
 Proteomics 72
 Metabolomics 85

SUMMARY 87
REFERENCES 89
REVIEW QUESTIONS 91

Production of Recombinant Proteins 93

Protein Production in Prokaryotic Hosts 93
 Regulation of Transcription 94
 Increasing Translation Efficiency 98
 Increasing Protein Stability 102
 Increasing Protein Secretion 106
 Facilitating Protein Purification 110
 DNA Integration into the Host Chromosome 115

Heterologous Protein Production in Eukaryotic Cells 120
 Posttranslational Modification of Eukaryotic Proteins 120
 General Features of Eukaryotic Expression Systems 122
 Yeast Expression Systems 124
 Baculovirus–Insect Cell Expression Systems 136
 Mammalian Cell Expression Systems 143

Protein Engineering 153
 Directed Mutagenesis 154
 Random Mutagenesis 158
 Examples of Protein Engineering 162

SUMMARY 171
REFERENCES 173
REVIEW QUESTIONS 175

Molecular Diagnostics 177

Immunological Approaches to Detect Protein Biomarkers 178
 Antibodies 178
 Agglutination 183
 Enzyme-Linked Immunosorbent Assays 183
 Protein Arrays to Detect Polygenic Diseases 189
 Immunoassays for Protein Conformation-Specific Disorders 191

DNA-Based Diagnostic Approaches 193
 Hybridization Probes 193
 PCR-Based Detection Methods 200
 DNA Microarrays 208
 Whole Genome Sequencing to Assess Genetic Disease Risk 214
Contents

Salmonella Species 375
Leishmania Species 378

Vector Vaccines 378
Vaccines Directed against Viruses 378
Vaccines Directed against Bacteria 388
Bacteria as Antigen Delivery Systems 392

Monoclonal Antibody Passive Immunity 396
Influenza Virus 396

SUMMARY 397
REFERENCES 398
REVIEW QUESTIONS 400

Industrial and Environmental Uses of Recombinant Microorganisms 403

Restriction Endonucleases 403

Small Biological Molecules 405
L-Ascorbic Acid 407
Indigo 410
Amino Acids 412
Lycopene 417
Antibiotics 418
Biopolymers 429

Microbial Degradation of Xenobiotics 434
Genetic Engineering of Biodegradative Pathways 436

Utilization of Starch and Sugars 445
Commercial Production of Fructose and Alcohol 446
Increasing Alcohol Production 448
Improving Fructose Production 453

Utilization of Cellulose and Hemicellulose 454
Lignocellulosics 455
Cellulase Genes 457
Direct Conversion of Biomass to Ethanol 462
Zymomonas mobilis 464

Lipids from Cyanobacteria 467

Hydrogen Production 468

SUMMARY 470
REFERENCES 471
REVIEW QUESTIONS 474

Large-Scale Production of Proteins from Recombinant Microorganisms 475

Principles of Microbial Growth 476
Batch Fermentation 477
Fed-Batch Fermentation 479
Continuous Fermentation 480
Maximizing The Efficiency of The Fermentation Process 481
High-Density Cell Cultures 483
Increasing Plasmid Stability 484
Quiescent E. Coli Cells 485
Protein Secretion 486
Reducing Acetate 489

Bioreactors 491

Typical Large-Scale Fermentation Systems 494
Two-Stage Fermentation in Tandem Airlift Reactors 495
Two-Stage Fermentation in a Single Stirred-Tank Reactor 496
Batch versus Fed-Batch Fermentation 498

Harvesting Microbial Cells 501
Disrupting Microbial Cells 502

Downstream Processing 504
Protein Solubilization 506
Utilizing an Immobilized Enzyme 507
Magnetic Separation of Proteins 507

Large-Scale Production of Plasmid DNA 508
SUMMARY 511
REFERENCES 512
REVIEW QUESTIONS 514

Genetic Engineering of Plants: Methodology 515

Plant Transformation with the Ti Plasmid of A. Tumefaciens 516

Ti Plasmid-Derived Vector Systems 522

Microprojectile Bombardment 526

Chloroplast Engineering 527
Very High Level Protein Expression 529

Use of Reporter Genes in Transformed Plant Cells 532

Manipulation of Gene Expression in Plants 533
Transient Gene Expression 533
Plant Promoters 536
Targeted Gene Editing 538
Facilitating Protein Purification 539
Protein Glycosylation 541

Production of Marker-Free Transgenic Plants 542
Removing Marker Genes from Nuclear DNA 543
Removing Marker Genes from Chloroplast DNA 545

SUMMARY 546
REFERENCES 547
REVIEW QUESTIONS 549
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transgenic Mice: Applications</td>
<td>644</td>
</tr>
<tr>
<td>Transgenic Disease Models: Alzheimer Disease</td>
<td>644</td>
</tr>
<tr>
<td>Transgenic Mice as Test Systems</td>
<td>647</td>
</tr>
<tr>
<td>Control of Transgene Expression</td>
<td>651</td>
</tr>
<tr>
<td>Conditional Control of Cell Death</td>
<td>654</td>
</tr>
<tr>
<td>Transgenic Livestock</td>
<td>656</td>
</tr>
<tr>
<td>Cloning Livestock by Somatic Cell Nuclear Transfer</td>
<td>656</td>
</tr>
<tr>
<td>Production of Pharmaceuticals</td>
<td>658</td>
</tr>
<tr>
<td>Production of Donor Organs</td>
<td>660</td>
</tr>
<tr>
<td>Disease Resistant Livestock</td>
<td>661</td>
</tr>
<tr>
<td>Improving Milk Quality</td>
<td>664</td>
</tr>
<tr>
<td>Improving Animal Production Traits</td>
<td>665</td>
</tr>
<tr>
<td>Transgenic Poultry</td>
<td>669</td>
</tr>
<tr>
<td>Transgenic Fish</td>
<td>673</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>676</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>676</td>
</tr>
<tr>
<td>REVIEW QUESTIONS</td>
<td>678</td>
</tr>
<tr>
<td>Molecular Biotechnology and Society</td>
<td>679</td>
</tr>
<tr>
<td>Development of Guidelines for Recombinant DNA Research</td>
<td>680</td>
</tr>
<tr>
<td>Deliberate Release of Genetically Modified Microorganisms</td>
<td>682</td>
</tr>
<tr>
<td>Environmental Concerns</td>
<td>682</td>
</tr>
<tr>
<td>Regulations</td>
<td>683</td>
</tr>
<tr>
<td>Regulation of Genetically Modified Foods</td>
<td>684</td>
</tr>
<tr>
<td>Food Ingredients Produced by Genetically Engineered Microorganisms</td>
<td>684</td>
</tr>
<tr>
<td>Genetically Modified Crops</td>
<td>687</td>
</tr>
<tr>
<td>Genetically Engineered Livestock</td>
<td>691</td>
</tr>
<tr>
<td>Societal Concerns About Genetically Modified Foods</td>
<td>692</td>
</tr>
<tr>
<td>Alteration of Nutritional Content of Food</td>
<td>692</td>
</tr>
<tr>
<td>Potential for Introducing Toxins or Allergens into Food</td>
<td>696</td>
</tr>
<tr>
<td>Potential for Transferring Transgenes from Food to Humans or Intestinal Microorganisms</td>
<td>698</td>
</tr>
<tr>
<td>Controversy About the Labeling of Genetically Modified Foods</td>
<td>700</td>
</tr>
<tr>
<td>Impact of Genetically Engineered Crops on Biodiversity</td>
<td>700</td>
</tr>
<tr>
<td>Who Benefits from Production of Genetically Modified Foods?</td>
<td>703</td>
</tr>
<tr>
<td>Environmental Benefits of Genetically Modified Crops</td>
<td>704</td>
</tr>
<tr>
<td>How do Views about Genetically Engineered Organisms Impact Trade?</td>
<td>705</td>
</tr>
<tr>
<td>Regulation and Safety of Medical Products of Biotechnology</td>
<td>706</td>
</tr>
<tr>
<td>New Biological Drugs</td>
<td>706</td>
</tr>
<tr>
<td>Genetic and Genomic Testing</td>
<td>709</td>
</tr>
<tr>
<td>Economic Issues</td>
<td>711</td>
</tr>
</tbody>
</table>
Patenting Biotechnology 714
 Patenting 714
 Patenting in Different Countries 716
 Patenting Nucleic Acid Sequences 717
 Patenting Living Organisms 719
 Patenting and Fundamental Research 720
SUMMARY 721
REFERENCES 722
REVIEW QUESTIONS 724

Amino Acids of Proteins and Their Designations 725

Index 727
Preface to the Fifth Edition

Based on the development of recombinant DNA technology, molecular biotechnology emerged as a new research discipline in the late 1970's. Since those early days, there has been a veritable explosion of knowledge in the biological sciences. With the advent of PCR, chemical DNA synthesis, DNA sequencing, monoclonal antibodies, directed mutagenesis, genomics, proteomics, metabolomics, and more recently, specific genome modification techniques, our understanding of and ability to manipulate the biological world has grown exponentially. When the first edition of Molecular Biotechnology: Principles and Applications of Recombinant DNA was published in 1994, nearly all of the transgenic organisms that were produced included only a single introduced gene. Now, 23 years later it is common for researchers to engineer organisms by both modifying the activity and the regulation of existing genes and also by introducing entire new pathways. In 1994, only a handful of products produced by this new technology had been commercialized. Today, as a consequence of molecular biotechnology hundreds of new therapeutic agents are available in the marketplace with many more in the pipeline as well as dozens of transgenic plants. DNA technologies have become a cornerstone of modern forensics, paternity testing and ancestry determination. A number of new recombinant vaccines have been developed, with many more on the horizon. The list goes on and on. Molecular biotechnology has clearly lived up to its promise and all of the original hype that has existed since the late 1970s. Worldwide there are several thousand biotechnology companies, in virtually every corner of the globe, employing hundreds of thousands of scientists. When the exciting science being done at universities, government labs and research institutes around the world is factored in, the rate of change and of discovery in the biological sciences is absolutely astounding. This fifth edition of Molecular Biotechnology, building upon the fundamentals that were established in the previous four editions, endeavors to provide readers with a window on some of the major developments in this growing field. Given the enormity of the field of molecular biotechnology, we have had to be highly selective in the material we included in this edition. Moreover, the window that we are looking through is moving. This notwithstanding, we both expect and look forward to the commercialization of many of the discoveries that are discussed here, and in the future to the development of many new approaches, insights, and discoveries.
We have throughout endeavored to make the text reader friendly by minimizing the use of technical jargon and unnecessary abbreviations. Moreover, when an important term appears for the first time in the text, it is followed in parentheses with a synonym or brief explanation. The overall size of this edition has been pared down significantly compared to the fourth edition, done, in large measure, by removing some older material that has come to be common knowledge within the past 10–20 years. In addition, to facilitate the book’s flow and ease of understanding, in a number of instances, two or more figures have been combined into a single figure. Endeavoring to be as up-to-date as possible, this edition expands the discussion of interfering RNA and explains CRISPR technology in detail, providing examples of their use in both gene therapy and transgenic plants.

Each chapter opens with an outline of topics and concludes with a summary and list of review questions to sharpen students’ critical thinking skills. All of the key ideas in the book are illustrated by the more than 500 full-color figures and elaborated in more than 80 tables. After introducing molecular biotechnology as a scientific and economic venture in Chapter 1, the next two chapters explain the detailed methodologies of molecular biotechnology. These chapters provide a solid scientific base for the remainder of the book. Chapters 4 to 8 present examples of microbial molecular biotechnology covering such topics as the production of metabolites, new vaccines, both protein and nucleic acid therapeutic agents, diagnostics, bioremediation, and biomass utilization. Chapter 9 describes some of the key components of large-scale fermentation processes using recombinant microorganisms. Chapters 10 to 12 describe the molecular biotechnology of plants and animals. The book concludes in Chapter 13 with a discussion of the interaction of molecular biotechnology with society including controversies that have occurred as a consequence of this technology, coverage of the regulation of molecular biotechnology and patents.

Throughout the text we have relied extensively upon the recent published work of many researchers. In all cases, although not cited directly in the body of a chapter, the original published articles are cited in the references section of the appropriate chapter. In some cases, we have taken “pedagogic license” and either extracted or reformulated data from the original publications. Clearly, we are responsible for any distortions or misrepresentations from these simplifications, although we hope that none has occurred. The references sections also contain other sources that we used in a general way, which might, if consulted, bring the readers closer to a particular subject.

Bernard R. Glick
Cheryl L. Patten
Index

A
Acetoacterium woodii, formate synthesis, 469–470
Acetobacter, 407
Acremonium chrysogenum, 484
Actinorhodin, 424, 428
Acute myeloid leukemia, nucleic acid-based test, 710
Acyclovir, 286
Adalimumab (Humira), 229, economics of, 711
Adeno-associated viruses (SSV), promoterless gene, 337
life cycle of, 322
viiral delivery, 320–321, 323
Adenoviruses, viral delivery, 320, 323–324
Adotrastuzumab emtansine (Kadcyla), 707
Aequorea victoria, 219, 540
Agaricus bisporus, 604–605
Agglutination, 183, 184
Agrobacterium radiobacter, 684
Agrobacterium tumefaciens
biosynthesis of auxin and cytokinin, 521
crown gall formation, 518, 520
gene expression, 534–535
geenic engineering, 516, 518–522, 546–547
infection of plant, 558, 560
plant transformation with Ti plasmid of, 516, 518–522
Agropine, chemical structure of, 522
AIDS (acquired immuno deficiency syndrome), 297
antivirals for treatment of, 712
phosphorothioate antisense oligonucleotide for, 301
see also Human immunodeficiency (HIV)/AIDS
Airlift reactors, 491, 493–494
configuration, 492
two-stage, 497
two-stage fermentation in, 495–496
see also Bioreactors
Alcaligenes eutrophus, 431, 610, 611
Alcohol
increasing production, 448–453
production of fructose and, 446–448
see also Starch and sugars
Alginate, 242
Alginate lyase, 242–245
DNA construct encoding, 244
killing bacteria, 243
pegylation of, 245
Allergens, potential for introducing into food, 696–698
Allergies, protein microarrays, 190
Alzheimer disease, 79, 177
Conformation-specific antibodies, 192, 193
gene sequencing, 214
immunological methods, 191–192
protein microarrays, 190
transgenic disease models, 644–647
American Cancer Society, 265
American Health Foundation, 596
Ampen, 7
Amino acids
L-citrulline, 415–416
commercial applications of, 412
L-cysteine, 413–414
geenic code in E. coli and humans, 101
modified Corynebacterium, 416–417
mutant proteins with unusual, 156–158
PEST sequences, 106
Plant nutritional content, 594–595, 596
proteins and designations, 725
small biological molecules, 412–417
L-valine, 414–415
Amoxicillin, 394
Ampicillin, 21, 23, 142
resistance to, 117
vector coding resistance, 100
Ampicillin resistance gene, 18
AmpliChip CYP450 microarray, 208–209, 213, 225
α-Amylase inhibitor, protecting plants against insects, 559
Amyloid plaques, 192, 645
Amylopectin
enzymatic hydrolysis of, 446
portion of chain showing linkages, 605
Amylose, 445–446
enzymatic hydrolysis of, 446
portion of chain showing linkages, 605
Amyotrophic lateral sclerosis, 297
Ancestry determination, 212–213
Animal and Plant Health Inspection Service, 605
Animals
gene tic improvement, 625–626
microarrays for determination, 214
see also Transgenic livestock; Transgenic mice
Anthonomus grandis grandis, 560
Anthrax
antibodies against, 286–287
flowchart of monoclonal antibody against, 288
Antibiotics
actinorhodin, 427–429
altered erythromycin derivatives, 422, 424
assembly line biosynthesis of erythromycin A, 422, 423
biosynthesis genes, 420–421
clinical and agricultural use of, 252–253
cystic fibrosis, 240, 251–252
engineering polyketide, 421–423
gene clusters for biosynthesis of aromatic polyketide, 422, 424
Helicobacter pylori resistance, 394
overproducing, 427–429
penicillin, 418
recombinant DNA technology, 418–420
ribocil, 426–427
small molecules, 418–429
staphyloxanthin, 424, 425–426
Streptomycetes strains, 419
undecylprodigiosin, 420, 421
unique, 424–427
Biosensors
medaka fish for environmental pollutants, 674–675
microbial, 222–224
Biotechnology
companies, 7, 703
industry, 7
nature of, 4
term, 1
see also Patenting biotechnology
Biotechnology and Bioengineering (journal), 2, 5
Biphenyls, enzymes degrading, 443–445
Blastoderm cells, transgenic chickens, 670, 671
Blood groups, compatible and incompati-
ble, 249
Blood type, agglutination, 183, 184
Bohlen, Larry, 697
Bovine somatotropin, 685–686
Bovine spongiform encephalopathy (BSE),
disease resistant livestock, 661–662
Boy er, Herbert, 2–3, 7, 9, 720–721
Bradyrhizobium japonicum, 683
Brain tissue, disease resistant livestock,
661–663
Brain tumor, insulin-like growth factor 1
mRNA, 299, 301
Brassica napus, 702
Brassica rapa, 702
Breast cancer
economics of drugs for, 712
genome sequencing, 214–215
nucleic acid-based test for, 710, 711
patenting nucleic acid sequences, 717–718
protein microarrays, 190
trastuzumab for, 264, 707
Brevibacterium, 407, 413
Bromoxynil, 582–590
Bubdle columns
bioreactors, 491, 493–494
configuration, 492
Burkholderia sp., 442–443, 444
Burkitt lymphoma, 273
By-product plasmid, 30
C
Caldicellulosiruptor bescii, 463, 464
Calf alkaline phosphatase, 15, 16
Calosobruchis chinensis, 559
Calosobruchis maculatus, 559
Canada, diseases before and after vaccines,
344
Cancers, 297
DNA vaccines, 370, 371
microRNA signatures of, 217–219
nucleic acid-based test for, 710
risk for insulin-like growth factor I in
milk, 686
Canola oil, 596–598
Cardiovascular disease, protein microar-
rays, 190
Carica papaya industry, 575
Cartagena Protocol on Biosafety, 688
Catharanthus roseus, 561
Celiac disease, 603
Cell biology, 6
Cell death, conditional control of, 654–656
Cellobiase, 457
Cellobiohydrolyase, 457
Cellobiose, 461
Cellulase genes, 457–462
Cellulomonas fimi, 461
Cellulose, 455–457
cellulase genes degrading, 457–462
enzymatic biodegradation of, 457, 458
metabolic control of hydrolysis of, 461
schematic representation, 456
Cellulose and hemicellulose
cellulase genes, 457–462
direct conversion of biomass to ethanol,
462–464
dNA hybridization screening, 459–461
genomic DNA libraries, 459–461
lignocelluloses, 455–457
renewable biofuels, 616–617
utilization of, 454–467
Zymomonas mobilis, 464–467
Center for Biologies Evaluation and
Research, FDA’s, 707, 708
Center for Drug Evaluation and Research,
FDA’s, 706
Center for Veterinary Medicine, FDA, 690,
693
Cerezyme (imiglucerase), 711
Cervarix, subunit vaccine for HPV, 354
Cervical cancer, subunit vaccine for HPV,
353–354
Chain-terminating inhibitors, DNA
sequencing, 53
Chakrabarty, A., 719
Chang, A. C. Y., 3
Chemical engineering, 6
Chemotherapeutic agents, nanoparticles
delivering, 319
Chesnut blight, 586–587
Chlamydia trachomatis, 710
Chloroplast engineering, 527–530
Chloropyrifos (Dursban), 442
Cholera
antigen delivery system, 392–394
attenuated vaccines, 374–375, 376
edible vaccines, 611–613
subunit vaccine for, 350
Cholesterol oxidase, protecting plants
against insects, 559–560
Chromatin, 151
Chromosome, DNA integration into host,
115–120
Chymosin, enzyme for cheese, 684–685
L-Citrulline, biosynthesis of, 415–416
Clarithromycin, 394
Clinical trials
biological drugs, 709
pharmaceuticals, 234
RNA-based drugs, 315
Clostridium difficile infection, 710
Cloning. See Molecular cloning
Clostridium thermocellum, 463
rhizosecretion, 540, 541
Codex Alimentarius Commission of the
Food and Agriculture Organization, 691
Cohen, Stanley, 2, 3, 9, 720–721
Colin La, 273–274
Combinatorial libraries
antibody fragments, 274–277
construction of library of single-chain
antibodies, 278, 279
full-length antibodies, 277, 278
immunological screening of bacterio-
phage, 277
L- and H-chain fragments, 274–275, 276
Combined DNA Index System (CODIS), 206
Commercialization, molecular biotechnol-
ogy, 4–7
Commodity production, 2
Community, Health and Environment
Program, 697
Complementarity-determining regions
(CDRs)
mouse monoclonal antibodies, 265, 266,
267
shuffling CDR sequences, 278–280
Complementary DNA (cDNA), 26
synthesis of double-stranded, 26–27
Condition al gene inactivation, transgenic
mice, 637–641
Conjugation
biparental, 25
transmitting plasmids, 23–24, 25
triparental, 25
Continuous fermentation, 480–481
Corynebacterium, 407, 413
lysine content, 595, 596
modified, 416–417
Corynebacterium diphtheriae, 261, 396, 654
Corynebacterium glutamicum, 93, 416
Cotton, genetically modified crops, 518
Coumaphos, 442
Cre (loxP recombination system), 119–120
transgenic mice, 637–641
Creutzfeld-Jakob disease, disease resistant
livestock, 662
CRISPR (clustered regularly interspaced
short palindromic repeats) technology
Adeno-associated virus (AAV), 323
CRISPR-Cas9 gene targeting system, 538–539
CRISPR-Cas9 of mushroom’s genome,
605
dystrophic mice, 326
genome editing with CRISPR-Cas system,
641–643, 688
CRISPR (continued)
genome engineering using, 32–35, 88
testing of CRISPR-Cas system, 708
therapeutic agents, 299, 317–318, 338
Crohn disease, treatment for, 255–258, 711
crops, genetically modified, 687–690
Cryphonectria parasitica, 586
Cupriavidus metallidurans, 431–432, 434
Cucurbita pepo, 586
Cystic fibrosis, 177, 297, 712
L-Cysteine, biosynthesis of, 413–414
Cyanobacteria, lipids from, 467–468
Cyanophos, 442
Cytochrome P450 oxidases, detecting multimers, 710
Cystic fibrosis transmembrane conductance regulator (CFTR) gene, 195, 196
Cytocrome P450 oxidases, detecting multiple alleles, 208–209

D
DDT (dichlorodiphenyltrichloroethane), 551
Delivery systems. See Nonviral delivery systems; Viral delivery systems
Dementia, 415
Dendrimer nonviral delivery, 331, 332
Dementia, 415
Delivery systems.
Cystic fibrosis, 177, 297, 712
allele-specific hybridization, 195, 196
antibiotic treatment, 240, 251–252
genome sequencing, 215
nucleic acid-based test for, 710
Cystic fibrosis transmembrane conductance regulator (CFTR) gene, 195, 196
Cytochrome P450 oxidases, detecting multiple alleles, 208–209

D
DDT (dichlorodiphenyltrichloroethane), 551
Delivery systems. See Nonviral delivery systems; Viral delivery systems
Dementia, 415
Dendrimers, nonviral delivery, 331, 332
Dengue virus, vector vaccines, 386, 387
De novo genome sequencing, 60
dental caries, DNA vaccines, 370–372
Deoxyribonucleic acid (DNA) activation and coupling, 46
ancestry determination, 212–213
assembling oligonucleotides into genes, 48–49
capping, 47
chemical synthesis of, 42–50
detritylation, 46
digestion by DNase I, 240, 241
DNA microarrays, 67–70, 208–214
flowchart for chemical synthesis of, 44
genome synthesis by PCR, 50
hypermethylation of, 210
integration into host chromosome, 115–120
methylation, 209
oxidation, 47
preparation for cloning, 11–16, 88
removing marker genes from chloroplast DNA, 545–546
removing marker genes from nuclear DNA, 543–545
shuffling, 160–162
structure of phosphoramidite, 45
synthesis of oligonucleotides, 42–48
Deoxyribonucleic acid (DNA) sequencing technologies, 50, 52–59
with chain-terminating inhibitors, 53
dideoxynucleotide procedure, 53–55
pyrosequencing, 55–57
with reversible chain terminators, 57, 58
by single molecular synthesis, 57–59
Deoxyribonucleic acid (DNA), 53–55
with single molecular synthesis, 57–59
Deoxyribozymes, 298
Dependoviruses, 321
Destination vector, 30
Desulfovibrio desulfuricans DNA genomic library of, 405
scheme for restriction enzyme Ddel, 405, 406
Diabetes, 254, 415. See also Type 1 diabetes
Diagnoses
Saccharomyces cerevisiae expression systems, 125
see also DNA-based diagnostics;
Immunological approaches for diagnostics; Molecular diagnostics
Diazinon, 442
Dicamba, 580–582
Dicer enzyme, 218, 311, 312, 564, 565, 643, 644, 645
Dideoxynucleotide procedure, DNA sequencing, 53–55
Diphtheria, vaccine for, 346
Directed mutagenesis methodology of mutations, insertions or deletions, 156–158
mutant proteins with unusual amino acids, 156–158
receptor associated protein (RAP), 164–165
site-by-site PCR, 154–156
site-by overlap extension PCR, 154, 155
see also Protein engineering
Discoloration, prevention in fruits and vegetables, 603–605
Discosoma coral, 220
Disease resistant livestock, transgenic animals, 661–664
Disulfide bond formation, protein folding, 103–105
DNA-based diagnostics, 192–215
DNA microarrays, 208–214
hybridization probes, 193–200
PCR-based detection methods, 200–207
single nucleotide polymorphism (SNP), 192
whole genome sequencing, 214–215
see also Molecular diagnostics
DNA Data Bank of Japan, 64
DNA fingerprint, forensic analysis of, 206, 207
DNase I enzyme, 240, 241
DNA vaccines, 363–372
binding plasmid DNA to polymeric microparticles, 365–366
cancer, 370, 371
clinical trials of cancer, 371
construction of plasmids for delivery, 366
delivery of, 364–370
dental caries, 370–372
methods for introducing, 367
minimalistic immunogenically defined gene expression (MIDGE) vectors, 369–370
DNAzymes, 309–310
Donor organs, production in transgenic livestock, 660–661
Downstream processing
magnetic separation of proteins, 507–508
magnetic separation of proteins, 507–508
protein solubilization, 506
ultrafiltration, 505, 506
using immobilized enzyme, 507
Drought stress, transgenic plants, 588–592
Drugs
clinical trials, 234
illegal, 713–714
monoclonal antibodies for monitoring, 183
orphan, 712, 713
RNA-based, in clinical trials, 315
dual-variable-domain antibodies, 280
Duchenne muscular dystrophy, 712
direct injection for, 326
genome sequencing, 215
transgenic mouse model, 648, 650
Dukoral vaccine, cholera, 350
Du Pont, 7, 703
Dursban (chlorpyrifos), 442
E
Ebola virus
flow chart of disease, 388
outbreak of, 348, 386
vector vaccines, 386–388
Economics, biologic drugs, 711–714
Edible crops, 611–615
Edison, Thomas, 716
electroporation, mechanism of DNA uptake, 20, 21
Elizabethkingia meningoseptica, 248
Elotuzumab, 712
Embryonic stem cell method, transgenic mice, 631, 634–636
Endolysin, 457, 459
Endoplasmic reticulum, protein folding into
Endoplasmic reticulum, protein folding into, 130
Engineered embryonic stem cell method, transgenic mice, 631, 634–636
Engineering. See Protein engineering
Entry clone, 28
Environmental benefits, genetically modified crops, 704–705
Environmental concern, genetically modified microorganisms, 682
Environmental pollutants, medaka as biosensors, 674–675
Environmental Protection Agency (EPA), 683
Enzyme-linked immunosorbent assays (ELISAs), 183–189
diagnosing autoimmune diseases by indirect ELISA, 188–189
Index

731

indirect ELISA, 184–185
measuring disease–associated proteins by sandwch, 186–188
pregnancy test, 186, 187
sandwich ELISAs, 184–186, 187
Enzymes, 240–255
alginat lyas, 242–245
α-antitrypsin, 247–248
DNase I, 240, 241
eengineering bacteriophages, 250–253
glycosidases, 248–249
masking nonhuman epitopes, 249–250
phenylalanine ammonia lyase, 245–247
preparing DNA for cloning, 15–16
replacement therapy, 254
targeting mitochondria, 253–255
zinc finger nucleases, 298–299, 315–317
Epigenetic biomarkers, detection of, 209–211
Epsps gene, 699
Epigenetic biomarkers, detection of, 209–211
Fumble (Vitravene), for patient with AIDS, 301
Food and Agriculture Organization of United Nations, 518
Food plant genetically modified crops, 518, 687–690
preventing discoloration, 603–605
starch, 605–608
taste and appearance, 603–608
Foor- and mouth disease virus (FMDV), vaccine for, 354–356
Frenolicin, 424
Friends of the Earth, 697
Fructose conversion of glucose to, 453–454
production of alcohol and, 446–448
Fruit ripening, 592–594
Fungal expression systems, recombinant proteins, 136
Fungus and bacterium resistance
cauliflower mosaic virus 35S promoter, 585
chestnut blight, 586–587
fungal rice blast, 583

Fusarium, 585–586
Pierce disease, 587
salicylic acid, 583–585
transgenic plants, 583–588
Fusarium, pathogenic fungi, 585–586

Fusion proteins
construction of, 104–105
immunoaffinity chromatography, 110, 111, 113

G
Galanthus nivalis, 561
Gammaroviruses, viral delivery, 320–321
Ganciclovir, 336–337
Gardasil, subunit vaccine for HPV, 353–354
Gateway cloning technology, 28
Gaucher disease
genome sequencing, 215
imiglucerase (Cerezyme) for, 711
storage disease, 254
GenBank, 64
Gene cloning, 4
Gene expression
detecting disease-associated changes, 215–216
translation efficiency, 98–100, 102
Gene expression in plants
facilitating protein purification, 539–541
manipulation of, 533–542
plant promoters, 536–538
second generation transient–expression vector system, 534–536
therapeutic gene editing, 538–539
transient gene expression, 533–536
Gene expression profiling
cirrhotic liver tissue, 69, 70
DNA microarrays, 67–70
RNA sequencing, 70–72
transcriptomics, 67–72
Genetech, 7, 268, 716–717
General Electric Corporation, 719
Generally recognized as safe (GRAS), 124
General secretory pathway (Gsp), 108, 109
Gene silencing, 297–298
Genetically engineered microorganisms
food ingredients produced by, 684–687
patenting, 719
Genetically modified crops, 518
environmental benefits of, 704–705
regulation of, 687–690
Genetically modified foods
alteration of nutritional content, 692–695
animal feeding studies, 696
benefits from production of, 703–704
controversy about labeling of, 700
environmental benefits of crops, 704–705
genetically engineered livestock, 690–692
genetically modified crops, 687–690
impact of views about, on trade, 705–706
impact on biodiversity, 700–703
ingredients by genetically engineered microorganisms, 684–687
potential for introducing toxins or allergens into, 696–698
potential for transferring transgenes to humans or intestinal microorganisms, 698–699
regulation of, 684–692
societal concerns about, 692–706
Genetically modified microorganisms
deliberate release of, 682–684
environmental concerns, 682
regulations, 683–684
Genetic bioengineering, biphenyl dioxygenase degrading biphenyl, 443–445
Genetic disease, whole genome sequencing assessing risk, 214–215
Genetic engineering
biodegradative pathways, 436–445
detoxification of organophosphate pesticides, 442–443
manipulation by gene alteration, 438–445
manipulation by transfer of plasmids, 437–438
protocol for creating XylS protein, 439, 440
toluene- and xylene-degrading plasmid (pWWO), 438, 439
Genetic engineering of plants
Agrobacterium tumefaciens, 516, 518–522, 546–547
chloroplast engineering, 527–530
facilitating protein purification, 539–541
manipulation of gene expression, 533–542
microprojectile bombardment, 526–527
pharmaceutical proteins in transgenic plants, 516
plant promoters, 536–538
plant transformation with Ti plasmid of A. tumefaciens, 516, 518–522
production of marker-free transgenic plants, 542–546
protein glycosylation, 541–542
reporter genes in transformed plant cells, 532–533
strategy for overproduction of lysin protein, 530, 531
targeted gene editing, 538–539
Ti plasmid-derived vector systems, 522–526
transgenic tobacco plants, 530, 531
transient gene expression, 533–536
very high level protein expression, 529–530
Genetic immunization
advantages of, 364
delivery of, 364–370
DNA vaccines, 363–372
survival of DNA-immunized mice, 365
Geneticin (G-418), 146, 148
Genetic immunity
Genes
Genetic immunization
advantages of, 364
delivery of, 364–370
DNA vaccines, 363–372
survival of DNA-immunized mice, 365
Geneticin (G-418), 146, 148
Genetics
Genetic testing, 709–711
Genome engineering
bacterial CRISPR-Cas system, 33–34
CRISPR-Cas system, 34–35
using CRISPR technology, 32–35
Genomes
Genetic disease risk, 214–215
Genome 10K project, 67
sequencing whole, 59–64, 214–215
synthetic, 43
Genomic DNA libraries, 30–32
cellulase genes, 457
construction of, 31
construction of metagenomic libraries, 65
DNA hybridization screening of, 459–461
generation of clusters of sequencing templates, 62
metagenomes, 64, 65
preparation of, sequencing libraries, 60–61
prey library, 83
screening of, 32, 33
Genomics
Genomes
Genetic disease risk, 214–215
Genome 10K project, 67
sequencing whole, 59–64, 214–215
synthetic, 43
Genomic DNA libraries, 30–32
cellulase genes, 457
construction of, 31
construction of metagenomic libraries, 65
DNA hybridization screening of, 459–461
generation of clusters of sequencing templates, 62
metagenomes, 64, 65
preparation of, sequencing libraries, 60–61
prey library, 83
screening of, 32, 33
Genomics
64–87
DNA microarrays, 67–70
genome annotation, 66
metabolomics, 85–87
proteomics, 72–85
RNA sequencing, 70–72
testing, 709–711
transcriptomics, 67–72
see also Proteomics
Genetacin, 142
German measles, vaccine for, 346
Ghrelin, antiobesity antibody, 289–290
Gilbert, W., 53
Gilead Sciences, 7
GlaxoSmithKline, 7
Glioma cells, insulin-like growth factor 1 mRNA, 299, 301
Global Alliance for Vaccines and Immunization, 345
Glomus mosseae, 585
Glucobacter, 407
Glucose
conversion to fructose, 453–454
pathways for metabolism in E. coli strain, 490
β-Glucosidase, 457, 459
Gluten, plant nutritional content, 602–603
GlycoDelete, 542
Glycosidases, 248–249
Glyphosate (Roundup), 579, 580, 705
Golden Rice, vitamin A, 599–600, 695
Gonsalves, Dennis, 575
Green fluorescent protein (GFP), 151–153
Greenpeace, 600
Griseofulvin, 424
Group B Streptococcus, subunit vaccine for, 356–357
Guillain-Barré syndrome, 707

H
Haemophilus influenzae, 5, 59
Hansenula polymorpha, 134, 135
Haplotypes, 212, 213
Hawaiian papaya industry, 575, 705
Heart disease, protein microarray, 190–191
Hedén, Carl Göran, 2
Helicobacter pylori, antigen delivery system, 394–395
Heliotris virescens, 558
Heliotis zea, 556
Helling, R. B., 3
Hemagglutinin, 219, 220
Hemagglutinin, 396, 397
Hemicellulose. See Cellulose and hemicellulose
Hemicelluloses, 455, 456
Hemophilia, 297
Hepatic cancer, interfering RNAs, 314
Hepatitis B virus, interfering RNAs, 314
Hepatitis C virus, interfering RNAs, 314
Hedgehog resistance examples of gene-based, 579
transgenic plants, 578–583
Hereceptin (trastuzumab), 229, 264
Herpes simplex virus, 24
Herpes simplex virus 1 (HSV–1) antibodies against, 284
attenuated vaccines for, 372–373
nucleic acid-based test for, 710
organization and structure of, 324
ribozyme inhibiting expression of, 309
subunit vaccine for, 348–349
viral delivery, 320, 324–325
Herpes simplex virus 2 (HSV–2) antibodies against, 284
attenuated vaccines for, 372–373
Index

Leader peptide, 107
Legionella pneumophila, 194
Leishmania species, attenuated vaccines, 378, 379
Lema minor, 541, 542
Lentiviruses, viral delivery, 320, 321
Leptin, 258
Lignin, 455, 456
biosynthesis of, 615–616
content in plant yield, 615–617
Lignocellulose, 471
Lignocellulosics, 455–457
Livestock
- genetically modified, 690–692
see also Transgenic livestock
Living organisms, patenting, 719
Longfellow, Henry Wadsworth, 586
Lovastatin, 422
Luciferase enzyme, 221
Lupine, amino acid content, 594–595
bio synthesis of, 594–595
chemical structure of, 596

M

Macaca fascicularis, growth hormone, 236
Magnetic resonance imaging (MRI), 87
Major histocompatibility complex (MHC–II), 250
Major League Baseball, 237
Malaria
- lacking effective vaccine for, 344, 345
peptide vaccines for, 359–362
P. vivax circumsporozoite antigen
- VMP001, 362, 363
- schematic of RTS,S/AS01 vaccine, 361, 362
Mammalian cell expression systems, 143–153
- chromosomal integration and environment, 151–153
- engineering hosts for productivity, 148–151
- expression vectors, 146–147
- selectable markers for vectors, 146, 148
- strategies increasing expression, 151–153
- strategy increasing yields of recombinant cells, 149
- strategy increasing yields of recombinant proteins from, 150
- vector design, 144–146
- MammaPrint diagnostic array, 215–216
- Manduca sexta, 556

Manufacturers, vaccines, 347
Marker gene, removal of, 119–120
Marker gene systems, mammalian cells, 146, 148
Mass spectrometry (MS), matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), 74, 75, 76
Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, proteins, 74, 75, 76
Maxam, A. M., 53
MDM2 (mouse double mutant 2 protein), engineering productivity, 148, 149
Medaka, transgenic, 674–675
Medical biotechnology products
- economic issues, 711–714
- genetic and genomic testing, 709–711
- new biological drugs, 706–709
- regulation and safety of, 706–714
Melanoma, 214
BRAF gene, 203, 204
MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke), 254
Merck, 7
Messenger ribonucleic acid (mRNA), 11
secondary structure of, 99
Metabolomics, 85–87, 89
Metagenomes, sequencing, 64, 65
Metastatic Ewing sarcoma, interfering RNAs, 314
Methanococcus jannaschii, mutant proteins of, 156–157
Methicillin-resistant Staphylococcus aureus (MRSA), 204–205
nucleic acid-based test for, 710
vaccine for, 351
Methylase, protecting DNA, 404
Methotrexate, 301
Metronidazole, 394
Microarrays, 224
ancestry determination, 212–213
animal species determination, 214
deoxyribonucleic acid (DNA), 67–70, 208–214, 224–225
detecting disease–associated gene expression changes, 215–216
detection of epigenetic markers, 209–211
detection of multiple alleles, 208–209
Microbial degradation
detoxification of organophosphate pesticides, 442–443
genetic engineering of biodegradative pathways, 436–445
manipulation by gene alteration, 438–445
manipulation by transfer of plasmids, 437–438
mitochondria, 254–255
Molecular biology, 6
Molecular biotechnology
- bio reactors, 475–476
- commercialization, 4–7
- concerns and consequences, 7–9
- emergence of, 1–3
- history of, 5
- scientific disciplines of, 6
- Molecular cloning, 11–32
- eukaryotic genes, 24, 26–28
- insertion of target DNA into plasmid vector, 16–20
- preparation of DNA for, 11–16
- recombinational cloning, 28–30
- transformation and selection of cloned DNA in bacterial host, 20–24
- Molecular diagnostics, 177
- biofluorescent and bioluminescent systems, 219–224
- detecting RNA signatures of disease, 215–219
- DNA-based approaches, 192–215
- immunological approaches for protein biomarkers, 178–192
see also Immunological approaches for diagnostics
- Monoclonal antibodies, 180–183
- antibody fragments, 270–274
- anticancer, 281–284
- Microbial growth
- disrupting microbial cells, 502–504
downstream processing, 504–508
- harvesting cells, 501–502
- pattern of, in batch fermenter, 478
- principles of, 476–481, 511
- see also Fermentation
- Microbiology, 6
- Microinjection of DNA, transgenic mice, 627–629
- Microprojectile bombardment, 526–527
- MicroRNAs
- detection of miRNA signatures of cancers, 217–219
- production and activity of, 218
- virus resistance, 576, 577
- Microsatellite DNA pattern, forensic analysis of, 206, 207
- Milk
- production in transgenic livestock, 658–660
- protein composition of, 626
- quality improvement, 664–665
- Minimalist immunogenically defined gene expression (MIDGE) vectors, 369–370
- Mipomersen, cholesterol-reducing drug, 301
- Mitochondria, targeting proteins to, 253–255
- Modified vaccinia Ankara virus (MVA), 385–386
- Molecular beacons, 198–200, 201
- Molecular biology, 6
- Molecular biotechnology
- bio reactors, 475–476
- commercialization, 4–7
- concerns and consequences, 7–9
- emergence of, 1–3
- history of, 5
- scientific disciplines of, 6
- Molecular cloning, 11–32
- eukaryotic genes, 24, 26–28
- insertion of target DNA into plasmid vector, 16–20
- preparation of DNA for, 11–16
- recombinational cloning, 28–30
- transformation and selection of cloned DNA in bacterial host, 20–24
- Molecular diagnostics, 177
- biofluorescent and bioluminescent systems, 219–224
- detecting RNA signatures of disease, 215–219
- DNA-based approaches, 192–215
- immunological approaches for protein biomarkers, 178–192
see also Immunological approaches for diagnostics
- Monoclonal antibodies, 180–183
- antibody fragments, 270–274
- anticancer, 281–284
Index

Phenylalanine, fate of dietary, 246
Phenylalanine ammonia lyase, 245–247
Phenylketonuria, 215, 245–247
Phipps, James, 343
Phosphoramidites, structure of, 4545
Photobacterium luminescens, 562
Phred quality score (Q), 62
Pichia pastoris, 131–135, 172
Pierce disease, 587
Pisum sativum, 559
Plants. See Genetic engineering of plants;
Transgenic plants
Plasmids, 3
copies of, 16–18
large-scale production of plasmid DNA, 508–511
pUC19 cloning vector, 18–20
site-directed mutagenesis, 154–156
stability in bacterial cultures, 484–485
Plasmid transfer, conjugation, 23–24, 25
Plasmid vector, insertion of target DNA, 16–20
Plasmid, cleaving peptide bond, 170, 171
Plasmidium
life cycle of, 359–360
low dose antibiotics, 713
species infecting humans, 359
Plasmidium cynomolgi, 194
Plasmidium falciparum
infection of individual, 360
malaria, 194
schematic of *P. falciparum* merozoite surface protein 3, 361
Plasmidium knowlesi, 359
Plasmidium malariae, 359
Plasmidium ovale, 359
Plasmidium vivax, 194, 359
Poda, Jean-Noel, 518
Polyomaviruses, vaccine for, 346
Poly(3-hydroxybutyric acid), production in
Prokaryotic hosts.
high-throughput next-generation sequencing, 61–62
invention of, 36
PCR-based detection methods, 200–207
phases of, 42
quantitative PCR, 39, 41–42
real-time PCR for detecting infectious disease, 204–206
site-directed mutagenesis by inverse, 154–156
site-directed mutagenesis by overlap extension, 154, 155
specific enzymatic amplification of DNA in vitro, 36
TaqMan assay, 202, 203, 204
TaqMan PCR for SNP genotyping, 202–204
Polypeptide hormones, monoclonal antibodies, 183
Pompe disease, 254
Populus tremuloides, 615
Postharvest discoloration, fruits and vegetables, 603–605
Posttranslational modification, eukaryotic proteins, 120–122
Pregnancy test, sandwich ELISA, 186, 187
Preproinsulin, production of, 120–121
Prion diseases, 191
Proceedings of the National Academy of Sciences USA (journal), 680
Prodrug activation therapy, 335–337
Prokaryotes, protein coding sequences, 66
Prokaryotic hosts. See Protein production in
prokaryotic hosts
Promoters
gene expression system, 94–98
Saccharomyces cerevisiae expression vectors, 125–126
tac promoter from *try* and *lac*, 100
Prostate cancer, 214, 307
Protease inhibitors, protecting plants against insects, 558–559
Protein arrays, detecting polygenic diseases, 189–191
Protein biomarkers. See Immunological approaches for diagnostics
Protein degradation, 105–106
Protein engineering, 153–171
decreasing protease sensitivity, 170–171
directed mutagenesis, 154–158
examples of, 162–171
increasing protein stability, 162–165
introducing mutations, 166, 167
modifying cofactor requirements, 167–169
modifying protein specificity, 165–166
random mutagenesis, 158–162
Protein folding, 103–105, 130
Protein fusion systems, facilitating purification, 110, 112
Protein glycosylation, transgenic plants, 541–542
Protein production in prokaryotic hosts, 93–120
DNA integration into host chromosome, 115–120
facilitating protein purification, 110–115
increasing protein secretion, 106–110
increasing protein stability, 102–106
increasing translation efficiency, 98–100, 102
regulation of transcription, 94–98
Protein purification
facilitating, 110–115
transgenic plants facilitating, 539–541
Proteins
amino acids of, 725
comprehensive study of, 72–73
detection of post-translational modifications, 78
expression profiling, 76–79
expression profiling with antibody microarray, 77
identification of, 73–74, 76
identification of disease biomarkers, 79
increasing stability, 162–165
magnetic separation of, 507–508
matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, 74, 75, 76
modifying cofactor requirements, 167–169
modifying specificity, 165–166
prey library, 83
protein-drug interactions, 80
protein-protein interactions, 80–85
purification using an immobilized enzyme, 507
screens for proteins interactions, 82–83
solubilization, 506
tandem affinity purification tag procedures, 83–85
two-dimensional polyacrylamide gel electrophoresis (2D PAGE), 73, 74
two-hybrid assay for detecting interactions, 80–81
Protein secretion, 106–110
in bacteria, 108
engineering, of interleukin–2, 110
into medium, 109–110
into periplasm, 107, 109
yields of, 107
Protein synthesis, oxygen-limited
Escherichia coli, 476
Protein therapeutics
clinical trials, 234
enzymes, 240–255
extending half-life of, 238–240
lactic acid bacteria, 255–261
pharmaceuticals, 230–240
recombinant antibodies, 261, 263–287
see also Recombinant antibodies
Proteomics, 72–85, 89
comprehensive study of proteins, 72–73
Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Fri, 26 Apr 2019 21:12:08
identification of proteins, 73–74, 76
peptide mass fingerprinting, 74, 75
protein expression profiling, 76–79
protein-protein interactions, 80–85
two-dimensional polyacrylamide gel
electrophoresis (2D PAGE), 73, 74
Protoscaler adjacent motif (PAM), 34
Protosplacers, 33
Pseudomonas, 410
Pseudomonas aeruginosa
alginate excretion, 242–243, 245
cystic fibrosis, 251–252
Pseudomonas alcaligenes, 15
Pseudomonas diminuta MG, 442
Pseudomonas exotoxin A, 272
Pseudomonas fluorescens
bio luminescence, 222
Pseudomonas oleovorans, 433
Pseudomonas plasmids, degradation and
sizes, 435
Pseudomonas pseudalcaligenes, 444–445
Pseudomonas putida, 416
PSMA (prostate specific membrane anti-
gens), prostate cancer, 307
Public Health Service Act, 707, 709
pUC19 cloning vector
E. coli host cells, 21, 22–23
plasmid, 18–20
Purification tags, recombinant proteins,
110–115
Pyrosequencing, deoxyribonucleic acid
(DNA), 55–57

R
Rattus norvegicus, 586
Raulastea cain copra, 587
Rathmanus sativus, 586
Reactors. See Bioreactors
Recombinant antibodies
antibodies against diseases, 264–287
antibody fragments, 270–274
anticancer antibodies, 281–284
chimeric antibody, 265, 266
combinatorial libraries of antibody frag-
ments, 274–277
combinatorial library of full-length anti-
bodies, 277, 278
complementarity-determining regions
(CDRs) of mouse, 265, 266, 267
dual-variable-domain antibodies, 280
genetically engineered antibodies, 266
humanized antibody, 265, 266, 267,
267–268
human monoclonal antibodies, 268–269
hybrid human-mouse monoclonal anti-
bodies, 264–268
shuffling CDR sequences, 278–280
therapeutic monoclonal antibodies, 263
therapy, 261, 263–264
Recombinant DNA Molecule Program
Advisory Committee (RAC), 681
Recombinant DNA molecules, potential
biohazards of, 680
Recombinant DNA research, development
of guidelines for, 680–681
Recombinant DNA technology, 2, 3–4, 9
cellulose and hemicellulose, 454–467
hydrogen production, 468–470
lignocelluloses, 455–457
lipids from cyanobacteria, 467–468
microbial degradation of xenobiotics,
434–445
new generation of vaccines, 346–347, 397
restriction endonucleases for, 403–405
small biological molecules, 405–434
starch and sugars, 445–454
see also Small biological molecules
Recombinant human proteins, production,
94
Recombinant mammalian cells, strategy for
increasing yields, 148, 149
Recombinant proteins
examples for human use, 230
fungal expression systems, 136
Saccharomyces cerevisiae expression sys-
tems, 125
Recombinational cloning, 28–30
Red fluorescent protein (RFP), 220–221
Regulations
genetically modified microorganisms,
683–684
medical biotechnology products, 706–714
Reporter genes, in transformed plant cells,
532–533
Respiratory syncytial virus, interfering
RNAs, 314
Restriction endonuclease 11–13, 87–88
DNA cleavage by, 12
ligation of DNA fragments, 17
name of, 13
recognition sequences of, 12
recombinant DNA technology, 403–405
strategy for isolating genes for, 404–405
Retroviral RNA, reverse transcription of,
301–302
Retroviral vector method, transgenic mice,
629–631, 632
Retromyoidae, 320
Retroviruses, antisense RNA, 301–302
Reversible chain terminators, DNA
sequencing with, 57, 58
Rheumatoid arthritis
adalimumab (Humira), 229
antibodies against, 285–286
indirect ELISA, 189
Rhizobium eti, 489, 490
Rhizopus, 136
Rhirosecretion, transgenic plants, 540–541
Rhodospirillum toruloides, 247
Riboflavin (vitamin B2), 426–427
Ribonucleic acid (RNA)
antibiotic resistance in bacteria, 216–217
antisense, 299–302
detecting RNA signatures of disease,
215–219
detection of miRNA signatures of can-
cers, 217–219
gene knockdown by RNA interference,
643, 644
insect resistance, 562–564
interfering, 311–315
sequencing, 70–72
short hairpin (shRNAs), 312, 314
small interfering (siRNAs), 311–315,
327–328
see also MicroRNAs; Transfer RNAs
(RtRNAs)
Ribosomal RNA (rRNA), 24
Ribozymes, 298, 307–309
Rice
genetically modified crops, 518
vitamin A, 599–600
Rickettsia rickettsii, 389
Rituximab (Rituxan), 229
anticancer antibody, 281
non-Hodgkin lymphoma treatment, 265,
268
RNA interference (RNAi), 311–315
Roundup (glyfosate), 579, 580
Saccharomyces cerevisiae, 43, 223, 417
alcohol production, 449, 452, 465
dexpression of cloned eukaryotic genes,
124
dexpression vectors, 125–126
integration of DNA in, 127
secrection of heterologous proteins by,
126–131
yeast expression, 124
yeast strains for HPV vaccine, 353
Saccharomyces diastaticus, 450
Saccharomyces fibuliger, 461
Saccharopolyglacturonan erythraea, 422, 484
Safety, medical biotechnology products,
706–714
Salmon
nutritional content comparison, 694
transgenic fish, 625, 675–677
Salmonella, 329, 330
antigen delivery system, 392–394
attenuated vaccines, 375–378
deleted genes and functions in attenuated
strains, 377
Salmonella enterica, 41

Index 737
Salmonella enterica serovar Typhi, 194, 367
Salmonella typhimurium, 392
Salt and drought stress, transgenic plants, 588–592
Sanger, Frederick, 50, 53
Science (journal), 680
Scrapie, disease resistant livestock, 662
SELEX (systematic evolution of ligands by exponential enrichment), selecting aptamers, 303–304
Self-cleaving protein, purification tags, 113–114
Sequencing whole genomes, 59–64
Severe acute respiratory syndrome (SARS), 15
Severe acute respiratory syndrome coronavirus (SARS-CoV), 142
Severe acute respiratory syndrome (SARS), subunit vaccine for, 350–351
Shiga toxin, 613–614
Shigella flexneri
delivery of foreign DNA, 368
Short hairpin RNAs (shRNAs), 312, 314
Sickle cell β-globin allele, detection, 195
Signal peptide, 107
Signal recognition particle (SRP), 108, 109, 129
Signal sequence, 107
Single molecular synthesis, DNA sequencing by, 57–59
Single nucleotide polymorphism (SNP), 192, 198
allele-specific PCR detecting, 201–202
competitive oligopriming for, 202
TaqMan PCR for genotyping, 202–204
Sinorhizobium meliloti, 683
Sleeping Beauty delivery vector, 335
Small biological molecules
amino acids, 412–417
antibiotics, 418–429
L-ascorbic acid, 407–410
biopolymers, 429–434
L-citrulline, 415–416
commercial applications of amino acids, 412
compounds engineered in microbes, 407
L-cysteine, 413–414
indigo, 410–412
lycopene, 417–418
modified Corynebacterium, 416–417
polyhydroxyalkanoates, 431–434
recombinant DNA technology, 405–406
L-valine, 414–415
xanthan gum, 429–431
see also Antibiotics
Small interfering RNAs (siRNAs), 311–315, 327–328
Smallpox vaccine, 346
Sodium bisulfite, cytosine to uracil, 210
Somatic cell gene therapy, 297–298
Somatic cell nuclear transfer, cloning livestock, 656–658
Spacers, 33
Spleen-myeloma fusion cells, 181
Spondopera frugiperda, 137, 142
Stabilizing and antirepressor (STAR) elements, insertion, 152–153
Staphylococcus aureus, 318, 323, 330
development of vaccine against, 352
disease resistant livestock, 663
methicillin-resistant (MRSA), 204–205, 351
protein A, 277, 278
subunit vaccine for, 351–353
Staphylococcus carnosus, protein secretion yields, 107
Staphyloxanthin, 424–426
Starch
crop plants, 605–608
reactions in biosynthesis of, 606
Starch and sugars
alcohol tolerance, 451–453
amylose, 445–446
commercial production of fructose and alcohol, 446–448
improving fructose production, 453–454
increasing alcohol production, 448–453
utilization of, 445–454
StarLink corn, 697–698
Stirred tank reactors (STRs), 491–493
configuration, 492
two-stage fermentation in, 496–498
see also Bioreactors
Straw, designer cellulose for degrading, 462, 463
Streptococcus, 330
subunit vaccine for Group B, 356–357
Streptococcus agalactiae, 356–357, 530
Streptococcus mutans, cause of dental caries, 370–372
Streptococcus pneumoniae, 34, 317, 323
Streptococcus sobrinus, cause of dental caries, 370–372
Streptokinase, protease sensitivity, 170–171
Streptomyces, antibiotics, 419–421, 427–429
Streptomyces lividans, protein secretion yields, 107
Streptomyacin, 23
discovery of, 250–251
Subtilisins, modifying, 167–169
Subunit vaccines, 347–359
cholera, 350
delivery of, 357–359
foot-and-mouth disease, 354–356
herpes simplex virus (HSV), 348–349
human papillomavirus (HPV), 353–354
injection techniques, 358
Nanopatch for delivery, 357–359
severe acute respiratory syndrome (SARS), 350–351
Staphylococcus aureus, 351–353
Streptococcus, 356–357
see also Vaccines
Sugars. See Starch and sugars
Suicide gene therapy, 335–337
Swanson, Robert, 4
Synechocystis sp., production of free fatty acids from, 468
Synthetic genomes, 43
Systemic acquired resistance, 583
T
T4 DNA polymerase, 159
T4 polynucleotide kinase, 15, 16
Tandem affinity purification tag procedure, protein interactions, 83–85
T-DNA (transferred DNA)
crown gall formation, 518–522
expression of B. thuringiensis protoxin, 555–556
Tetanus, vaccine for, 346
Tetracycline, 424
Tetracycline, 23, 142
Tetrahydrofolate, 407–410
Thermus aquaticus, 37
Thermus thermophilus, 454, 607
Thymidine kinase gene, 626
Trade, impact of genetically modified organisms, 705–706
Transcription, regulation of, 94–98
Transcription activator-like effector nucleases (TALEN), 668, 669, 688
Transcriptional activator of transcription (TAT) peptide, 253, 254
Transcriptomics, 67–72, 89
DNA microarrays, 67–70
RNA sequencing, 70–72
Transfer RNAs (tRNAs), 24
mutant proteins, 156–157
production of, 99–100, 102
Transgenes, potential for transferring from food to humans, 698–699
Transgenesis, 626
animals, 625, 676
engineering, chickens, 670–672
Transgenic crops, 687–690
impact on biodiversity, 700–703
nutritional content, 692–695
Transgenic fish, 673–675
Transgenic livestock, 656, 676

see also Antibiotics
animal production traits, 663–669
cloning by somatic cell nuclear transfer, 656–658
cloning sheep by nuclear transfer, 656, 657
disease resistant livestock, 661–664
donor organ production, 660–661
milk quality, 664–665
MSTN gene of sheep, 668–669
pharmaceutical production, 658–660
Transgenic plants
mortality of nontransgenic and transgenic, 672, 673
transfection of isolated blastoderm cells, 670, 671
Translation
increasing efficiency of, 98–100, 102
mammalian expression vector, 144–145
Transposons, nonviral delivery, 334–335
Trastuzumab (Herceptin), 229
breast cancer treatment, 264, 707
cancer treatment, 281
economics of, 711
Trehalose, 588–589
Tricarboxylic acid (TCA) cycle, 148, 149, 489, 490
Trichoderma, 136
Trichoderma reesei, 131, 136
Triparental conjugation, 25
Tuberculosis
bacillus Calmette-Guérin (BCG) for, 389–392
lacking effective vaccine for, 344, 345
Tumor-inducing (Ti) plasmid
Agrobacterium tumefaciens, 516, 518–522
schematic of, 520
vector systems, 522–526
Tumor markers, monoclonal antibodies, 183
Tumor necrosis factor alpha, 237–238
interfering RNAs, 314
Two-dimensional differential in-gel electrophoresis, proteins, 76
Two-dimensional polyacrylamide gel electrophoresis (2D PAGE), proteins, 73, 74, 76
Two gene expression vector, mammalian cells, 146–147
Type 1 diabetes
insulin, 260–261
protein microarrays, 190
Type II restriction endonucleases, 11, 13–14
U
Ulcerative colitis, treatment for, 255–258
Urocanylprostaglandin biosynthesis of, 420
structure of, 421
United Nations Food and Agriculture Program, 600
U.S. Centers for Disease Control and Prevention, 344, 355, 707
U.S. Department of Agriculture (USDA), 688
U.S. Food and Drug Administration, 9, 105, 124, 188, 225
generically engineered food, 625
generically engineered livestock, 690–692
generically modified foods, 684–692
human growth hormone, 235
new biological drugs, 706–708
nucleic acid-based genetic tests, 710
orphan drugs, 713
transgenic plants, 592
vaccines against HPV, 353–354
U.S. National Institutes of Health (NIH), 680–681
U.S. Office of Technology Assessment, 8
U.S. Orphan Drug Act in 1983, 712
U.S. Patent and Trademark Office (PTO), 715, 717–718
V
Vaccination, 343–345
Vaccines
antigens in plants, 517
attenuated, 372–378
cholera, 350
current and future, 345–347
delivery of DNA vaccines, 364–370
delivery of subunit, 357–359
diseases in Canada before and after, 343, 344
edible, 611–615
foot-and-mouth disease, 354–356
genetic immunization with DNA vaccines, 363–372
herpes simplex virus (HSV-1 and HSV-2), 348–349
inactivated and attenuated forms of, 345
infections without, 344
influenza virus, 396–397
malaria, 359–362
manufacturers, 347
monoclonal antibody passive immunity, 396–397
peptide, 359–362
Saccharomyces cerevisiae expression systems, 125
severe acute respiratory syndrome (SARS), 350–351
Staphylococcus aureus, 351–353
Streptococcus, 356–357
subunit, 347–359
see also Attenuated vaccines; Subunit vaccines; Vector vaccines
Vaccinia virus
advantages of live over killed virus, 382–383
caracterization of, 378–379
genome integration of, 379–380
mass vaccination campaigns, 384–385
modified vaccinia Ankara virus (MVA), 385–386
resistance of, 383
thyminde kinase–negative mutants of, 381
vector vaccine against, 378–386
vector vaccines constructed from, 381–382
veterinary vaccines, 383–384
L-Valine, biosynthesis of, 414–415
Vascular endothelial growth factor (VEGF), pegaptanib targeting, 305
Vector design, mammalian cells, 144–146
Index

Vector vaccines
bacteria as antigen delivery system, 392–395
cholera, 392–394
dengue virus, 386, 387
directed virus, 388–392
directed against bacteria, 388–392
directed against viruses, 378–388
Ebola virus, 386–388
Helicobacter pylori, 394–395
live vaccinia virus vaccine, 378–386
tuberculosis, 389–392
see also Vaccines
Vegetative insecticidal toxins, 560–561
Vemurafenib, 203
Vibrio cholerae
cholera causative agent, 350
cholera vaccine, 374–375, 376
use in humans, 367
Vibrio fischeri, 222
Viral coat protein-mediated protection, 570–574
Viral delivery systems, 319–325
adenovirus virus (AAV), 320, 321–323
adenoviruses, 320, 323–324
gammaretroviruses, 320–321
herpes simplex virus 1 (HSV-1), 320, 324–325
human immunodeficiency virus type 1 (HIV-1), 321
lentiviruses, 320, 321
mouse RNA virus, 320
Virions, 136–137
Viruses, vector vaccines against, 378–388
Virus resistance
CRISPR-Cas system, 577, 578
micro-RNAs, 576, 577
protection by gene expression, 574–577
single-chain antibodies, 574–576	ransgenic plants, 570–577
viral coat protein-mediated protection, 570–574
Vitamin A, plant nutritional content, 599–600
Vitravene (fomivirsen), for patient with AIDS, 301
Vitreoscilla, 429, 476, 484, 618–619
V Xenobiotics, microbial degradation of,
434–445
X Xanthan gum, 429–431
Xanthomonas campestris, production of xanthan gum, 429–431
Xenobiotics, microbial degradation of,
434–445
XenoMouse, generation of, 268–269
X-ray crystallography, DNase I, 240
XTEN unstructured protein, 239, 290
Xylella fastidiosa, 587, 588
Xylose, schematic of engineered assimilation of, 467
D-Xylose, chemical structure of, 465
Xylose/glucose isomerasers, glucose to fructose, 453–454
Y Yarrowia lipolytica, 134, 135, 418
Yeast artificial chromosome (YAC), 122, 125
cloning system, 126, 128
human genes cloned onto, 268
selectable markers, 527
Yeast expression systems, 124–126
Arxula adeninivorans, 134–135
Hansenula polymorpha, 134–135
Pichia pastoris, 131–135, 172
Saccharomyces cerevisiae expression vectors, 125–126
secretion of heterologous proteins by S. cerevisiae, 126–131
Yarrowia lipolytica, 134–135
Z Zeocin, 151
Zinc finger nucleases, 298–299, 315–317
Zucchin yellow mosaic virus, 573, 574
Zymomonas-E. coli shuttle vector, 465–466
Zymomonas mobilis, 464–467