Cover images: Coding M. tuberculosis infected by fluorescent reporter phage φ DRM9, courtesy of Paras Jain and Torin Weisbrod, Albert Einstein College of Medicine, Bronx, NY.
Contents

Contributors ix
Preface xiii

SECTION I
TOWARDS EDWARD JENNER’S REVENGE: DEVELOPING AN EFFECTIVE TUBERCULOSIS VACCINE / 1

A. BASIC IMMUNOLOGY

1 Innate Immune Responses to Tuberculosis / 3
Jeffrey S. Schorey and Larry S. Schlesinger

2 Cytokines and Chemokines in Mycobacterium tuberculosis Infection / 33
Racquel Domingo-Gonzalez, Oliver Prince, Andrea Cooper, and Shabaana Khader

3 Regulation of Immunity to Tuberculosis / 73
Susanna Brighenti and Diane J. Ordway

4 The Memory Immune Response to Tuberculosis / 95
Joanna R. Kirman, Marcela I. Henao-Tamayo, and Else Marie Agger

5 Pathology of Tuberculosis: How the Pathology of Human Tuberculosis Informs and Directs Animal Models / 117
Randall J. Basaraba and Robert L. Hunter

B. ANIMAL MODELS

6 Animal Models of Tuberculosis: An Overview / 131
Ann Williams and Ian M. Orme

7 Mouse and Guinea Pig Models of Tuberculosis / 143
Ian M. Orme and Diane J. Ordway

8 Non-Human Primate Models of Tuberculosis / 163
Juliet C. Peña and Wen-Zhe Ho

9 Experimental Infection Models of Tuberculosis in Domestic Livestock / 177
Bryce M. Buddle, H. Martin Vordermeier, and R. Glyn Hewinson

C. VACCINES

10 Clinical Testing of Tuberculosis Vaccine Candidates / 193
Mark Hatherill, Dereck Tait, and Helen McShane

D. HUMAN IMMUNOLOGY

11 Human Immunology of Tuberculosis / 213
Thomas J. Scriba, Anna K. Coussens, and Helen A. Fletcher
12 The Immune Interaction between HIV-1 Infection and Mycobacterium tuberculosis / 239
Elsa du Bruyn and Robert John Wilkinson

SECTION II

DRUG DISCOVERY AND DEVELOPMENT: STATE OF THE ART AND FUTURE DIRECTIONS / 269

13 Preclinical Efficacy Testing of New Drug Candidates / 271
Eric L. Nuermberger

14 Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions / 295
Gregory M. Cook, Kiel Hards, Elyse Dunn, Adam Heikal, Yoshio Nakatani, Chris Greening, Dean C. Crick, Fabio L. Fontes, Kevin Pethe, Erik Hasenoehrl, and Michael Berney

15 Targeting Phenotypically Tolerant Mycobacterium tuberculosis / 317
Ben Gold and Carl Nathan

SECTION III

BIOMARKERS AND DIAGNOSTICS / 361

16 Tuberculosis Diagnostics: State of the Art and Future Directions / 363
Madhukar Pai, Mark P. Nicol, and Catharina C. Boehme

17 Latent Mycobacterium tuberculosis Infection and Interferon-Gamma Release Assays / 379
Madhukar Pai and Marcel Behr

18 Impact of the GeneXpert MTB/RIF Technology on Tuberculosis Control / 389
Wendy Susan Stevens, Lesley Scott, Lara Noble, Natasha Gous, and Keertan Dheda

SECTION IV

HOST AND STRAIN DIVERSITY / 411

19 The Role of Host Genetics (and Genomics) in Tuberculosis / 413
Vivek Naranbhai

20 The Evolutionary History, Demography, and Spread of the Mycobacterium tuberculosis Complex / 453
Maxime Barbier and Thierry Wirth

21 Impact of Genetic Diversity on the Biology of Mycobacterium tuberculosis Complex Strains / 475
Stefan Niemann, Matthias Merker, Thomas Kohl, and Philip Supply

22 Evolution of Mycobacterium tuberculosis: New Insights into Pathogenicity and Drug Resistance / 495
Eva C. Boritsch and Roland Brosch

SECTION V

THE SIGNATURE PROBLEM OF TUBERCULOSIS PERSISTENCE / 517

23 Acid-Fast Positive and Acid-Fast Negative Mycobacterium tuberculosis: The Koch Paradox / 519
Catherine Vilchèze and Laurent Kremer

24 Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions / 533
Randall J. Basaraba and Anil K. Ojha

25 Killing Mycobacterium tuberculosis In Vitro: What Model Systems Can Teach Us / 541
Tracy L. Keiser and Georgiana E. Purdy

26 Epigenetic Phosphorylation Control of Mycobacterium tuberculosis Infection and Persistence / 557
Melissa Richard-Greenblatt and Yossef Av-Gay

27 DNA Replication in Mycobacterium tuberculosis / 581
Zanele Ditse, Meindert H. Lamers, and Digby F. Warner

28 The Sec Pathways and Exportomes of Mycobacterium tuberculosis / 607
Brittany K. Miller, Katelyn E. Zulauf, and Miriam Braunstein

29 The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis / 627
Ka-Wing Wong
30 The Minimal Unit of Infection: *Mycobacterium tuberculosis* in the Macrophage / 635
Brian C. Vander Ven, Lu Huang, Kyle H. Rohde, and David G. Russell

31 Metabolic Perspectives on Persistence / 653
Travis E. Hartman, Zhe Wang, Robert S. Jansen, Susana Gardete, and Kyu Y. Rhee

32 Phenotypic Heterogeneity in *Mycobacterium tuberculosis* / 671
Neeraj Dhar, John McKinney, and Giulia Manina

33 *Mycobacterium tuberculosis* in the Face of Host-Imposed Nutrient Limitation / 699
Michael Berney and Linda Berney-Meyer

Index / 717
Contributors

Else Marie Agger
Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark

Yossef Av-Gay
Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, Canada

Maxime Barbier
Laboratoire Biologie Intégrative des Populations, Evolution Moléculaire; Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d’Histoire Naturelle, Univ. Pierre et Marie Curie, EPHE, Sorbonne Universités, Paris, France

Randall J. Basaraba
Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado

Marcel Behr
McGill International TB Centre & Department of Epidemiology & Biostatistics, McGill University, Montreal, Canada

Michael Berney
Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, New York

Linda Berney-Meyer
Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, New York

Catharina C. Boehme
FIND, Geneva, Switzerland

Eva C. Boritsch
Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France

Miriam Braunstein
Department of Microbiology and Immunology, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina

Susanna Brighenti
Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden

Roland Brosch
Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France

Bryce M. Buddle
AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand

Gregory M. Cook
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand, and Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand

Andrea Cooper
University of Leicester, Infection Immunity and Inflammation, Leicester, Leicestershire, United Kingdom

Anna K. Coussens
Clinical Infectious Diseases Research Initiative, Division of Medical Microbiology, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa

Dean C. Crick
Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, Colorado

Neeraj Dhar
Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Keertan Dheda
Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
Contributors

Zanele Ditse
MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

Racquel Domingo-Gonzalez
Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri

Elsa du Bruyn
Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Republic of South Africa

Elyse Dunn
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand

Helen A. Fletcher
Immunology and Infection Department, London School of Hygiene & Tropical Medicine, London, United Kingdom

Fabio L. Fontes
Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, Colorado

Susana Gardete
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Ben Gold
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York

Natasha Gous
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service and National Priority Program of the National Health Laboratory Service, Johannesburg, South Africa

Chris Greening
The Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Acton, Australia, and Monash University, School of Biological Sciences, Clayton, Victoria, Australia

Kiel Hards
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand

Travis E. Hartman
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Erik Hasenohrle
Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York

Mark Hatherill
South African Tuberculosis Vaccine Initiative (SATVI) and Institute of Infectious Disease & Molecular Medicine (IDM), University of Cape Town, Wernher & Beit South Building, Anzio Road, Observatory, Cape Town, South Africa

Adam Heikal
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand, and Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand

Marcela I. Henao-Tamayo
Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratory, Colorado State University, Fort Collins, Colorado

R. Glyn Hewinson
Animal and Plant Health Agency – Weybridge, Addlestone, Surrey, United Kingdom

Wen-Zhe Ho
Animal Biosafety Level III Laboratory, Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan, China; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania

Lu Huang
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York

Robert L. Hunter
Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas

Robert S. Jansen
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Tracy L. Keiser
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York

Shabaana Khader
Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri

Joanna R. Kirman
Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand

Thomas Kohl
Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany

Laurent Kremer
IRIM (ex-CPBS) UMR 9004, Infectious Disease Research Institute of Montpellier (IDRIM), Université de Montpellier, CNRS, Montpellier, France

Giulia Manina
Microbial Individuality and Infection Group, Institut Pasteur, 25 rue du Docteur Roux, Paris, France
John McKinney
Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Helen McShane
The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom

Matthias Merker
Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany

Brittany K. Miller
Department of Microbiology and Immunology, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina

Yoshio Nakatani
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand, and Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand

Vivek Naranbhai
Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, and Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa

Carl Nathan
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York

Mark P. Nicol
University of Cape Town, Cape Town, South Africa

Stefan Niemann
Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, and German Center for Infection Research (DZIF), partner site Borstel, Borstel, Germany

Lara Noble
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa

Eric L. Nueremberger
Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, and Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Anil K. Ojha
Wadsworth Center, NY State Department of Health and University at Albany, Albany, New York

Diane J. Ordway
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado

Ian M. Orme
Colorado State University, Fort Collins, Colorado

Madhukar Pai
McGill International TB Centre & Department of Epidemiology & Biostatistics, McGill University, Montreal, Canada

Juliet C. Peña
Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N. Broad St., MERB 843, Philadelphia, Pennsylvania

Kevin Pethe
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

Oliver Prince
Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri

Georgiana E. Purdy
Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon

Kyu Y. Rhee
Department of Medicine and Department of Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Melissa Richard-Greenblatt
Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, Canada

Kyle H. Rohde
Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida

David G. Russell
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York

Larry S. Schlesinger
Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio

Jeffrey S. Schorey
Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana

Lesley Scott
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
Contributors

Thomas J. Scriba
South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa

Wendy Susan Stevens
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, and National Priority Program of the National Health Laboratory Service, Johannesburg, South Africa

Philip Supply
INSERM U1019; CNRS UMR 8204; Institut Pasteur de Lille, Center for Infection and Immunity of Lille; and Université Lille Nord de France, Lille, France

Dereck Tait
Aeras, Blackriver Park, First Floor, Observatory, Cape Town, South Africa

Brian C. VanderVen
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York

Catherine Vilchèze
Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York

H. Martin Vordermeier
Animal and Plant Health Agency – Weybridge, Addlestone, Surrey, United Kingdom

Zhe Wang
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Digby F. Warner
MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, South Africa

Robert John Wilkinson
Department of Medicine, Imperial College London, and The Francis Crick Institute Mill Hill Laboratory, London, United Kingdom

Ann Williams
Health UK, Porton Down, Salisbury, United Kingdom

Thierry Wirth
Laboratoire Biologie Intégrative des Populations, Evolution Moléculaire; Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d’Histoire Naturelle, Univ. Pierre et Marie Curie, EPHE, Sorbonne Universités, Paris, France

Ka-Wing Wong
Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China

Katelyn E. Zulauf
Department of Microbiology and Immunology, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina
It is the height of irony that the man who discovered the smallpox vaccine, Edward Jenner, lost both his wife and son to tuberculosis (TB). By the time smallpox was essentially eradicated, it is estimated that over 300 million people had died from this disease over the preceding century. Its eventual prevention—by a simple vaccine—clearly illustrates the power of scientific discovery and how its application can affect human health. Hundreds of millions of people have been spared death and suffering from infectious diseases because of the development of vaccines and chemotherapeutic agents in the last 100 years. Millions of lives have been saved with the use of the TB vaccine, BCG, and the development of chemotherapeutic regimens for TB. Depressingly, despite these effective interventions, TB remains one of the most challenging problems of global health, with over 9 million new cases and 1.6 million deaths each year. This crisis has been further compounded by the emergence of the HIV epidemic, as this explosive and deadly combination has dramatically increased the global spread of TB, including increasing numbers of cases of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB.

Historically, mycobacterial disease has long been at the forefront of scientific discovery for infectious diseases. The leprosy bacillus, Mycobacterium leprae, the first bacterium to be associated with human disease, was initially visualized by Gerhard Armauer Hansen in 1873. Earlier, Jean Antoine Villemin was the first person to realize that lung tubercles were infectious and not cancerous. By the 1880s, Robert Koch, aware of both of these discoveries, not only observed the tubercle bacilli in tubercles, but developed a growth medium of heated serum to cultivate the tubercule bacillus outside of humans. He went on to repeat the transfer experiment of Villemin and transferred the disease of TB to numerous animal species, establishing the experimental paradigm (“the postulates”) of how to prove that an infectious agent is a cause of a disease. Koch’s findings led Albert Calmette and Camille Guérin to follow Jenner’s approach of developing an attenuated pathogen for use as a vaccine, using the bovine tubercle bacillus to develop the bacille Calmette-Guérin (BCG) vaccine that bears their names and is still used to this day.

It is noteworthy that Paul Ehrlich was sitting in the lecture hall when Robert Koch presented his work in 1882; he later went on to help Koch improve his staining techniques. By observing the selective staining of various cell types, including human cells and different bacteria, Ehrlich also developed the idea of chemotherapy—“magic bullets” that could kill microbial pathogens. He tried for years to develop a chemical that could kill the tubercule bacillus, with little success, though at the same time was far more successful in developing a treatment for syphilis. In the 1930s, his protégé Gerhard Domagk discovered the first sulfonamide to treat bacterial infections such as streptococcus, and as this fledging field expanded, para-aminosalicylic acid and isoniazid were discovered to be active against the TB bacillus. Parallel studies by Salaman Waksman and Albert Schatz in the 1950s led to the discovery of streptomycin, the first bactericidal drug for the tubercle bacilli.

Despite these many historical advances, the TB bacillus—Mycobacterium tuberculosis—has proven to be a formidable adversary against numerous interventions. Nevertheless, despite the arduous challenges of
working with this dangerous pathogen, the field continues to persevere, and our continued success in the pursuit of knowledge would, we suspect, be applauded by Koch, Ehrlich, Calmette, and many others, as we strive to find and apply more effective cures for this dreadful disease. In this spirit, this textbook is a collection of state-of-the-art research aimed at understanding the TB bacillus, the way it infects its host, the mechanisms by which it persists in the face of host immunity, and current intervention and therapeutic methods. The contributors of this book believe that such continued and dedicated research efforts will eventually lead to better vaccines, better chemotherapies, and ultimately the eradication of TB—Edward Jenner’s revenge.

William R. Jacobs, Jr.
Helen McShane
Valerie Mizrahi
Ian M. Orme
Index

A
Acid-fast (AF) mycobacteria, 519, 528–529
AF-negative M. tuberculosis and cell wall alterations, 527–528
brief history of AF staining, 520–522
chemical structures of mycolic acids, 520
clinical diagnosis of TB, 522–523
importance of mycolic acids, 523–524
Koch paradox, 523
lipid accumulation, 526–527
loss of AF property, 526–527, 528
mucosal cell envelope, 523–526
non-mycolic acid-containing components, 524–526
process for loss of acid-fastness, 525
Acquired immunity, 35, 43
CD4 T cells in HIV-TB coinfection, 248–251
HIV-TB coinfection, 248–252
TB-immune reconstitution inflammatory syndrome (TB-IRIS), 255–256
Adjunctive therapeutic vaccination, TB disease, 196–197
Alveolar epithelial cells (AECs), 3, 4
Alveolar macrophage (AM), 3, 4–5; see also Macrophages
M. tuberculosis infection, 215–216
Alzheimer's disease, 630
Amikacin, drug resistance, 503, 505
Amino acids, auxotrophs, 701–706
Amyloid diseases, 630
Anhui Zhifei Longcom Biologic Pharmacy Co. Ltd., 202
Animal models, 131, 139; see also
Experimental infection models;
Guinea pigs; Mouse models
assessment of new drugs, 136–137
assessment of vaccines, 135
cattle, 134
common experimental designs, 280
efficacy testing, 277–284
ethical and husbandry issues, 138–139
guinea pigs, 132
host response and pathogenesis, 134–135
limitations of, 137–139
mechanism of protection, 136
mice, 132, 279–280
mini pigs, 134
non-human primates (NHP), 132–133
primary host response to M. tuberculosis infection, 122–123
process and capacity, 135–136
rabbits, 133
rats, 133–134
Treg cell responses in experimental, 80–87
Treg cells in guinea pig model of TB, 85–86
Treg cells in mouse models of TB, 80–85
Treg cells in non-human primate models of TB, 86–87
tuberculosis disease progression in, 122
vaccine testing protocols, 136, 137
zebrafish, 133, 685, 686
Antonine, 17
Antibiotics, golden era of, 317
Antibiotics treatment, extracellular M. tuberculosis in, 535
Antibiotic tolerance, 596
Antibodies
BCG vaccination and, 220
M. tuberculosis infection, 219–220, 221
role in anti-M. tuberculosis infection, 219
M. tuberculosis, 225–226
Antigen-presenting cells (APCs)
development of memory T cells, 98
function of, 74, 75
Antiretroviral therapy (ART), 389
HIV, 239
HIV-TB coinfection, 250
HIV-TB immune constitution inflammatory syndrome (IRIS), 252–253, 255–256
influence on T cell responses in coinfection, 251
Apoptosis, 563
Archaeabacteria, 455
Archivel Farma SL, 202
Arginine auxotrophs, 702
Aristotle, 413
Asparagine auxotrophs, 702
Aspartate auxotrophs, 702
Association of Internal Medicine, 520
AstraZeneca, 282
ATP synthesis, 308–309
Auramine O, staining of M. tuberculosis, 522–523, 526–527
Austin, Robert, 597
Autophagy, 8, 10
Auxotrophies, 701; see also Nutrient use of pathogens
amino acid, 701–706
arginine, 702
asparagines, 702
aspartate, 702
biotin (vitamin B7), 707
cobalamin (vitamin B12), 707–708
cofactor, 706–708
cysteine, 702
folute (vitamin B9), 707
glutamate, 705–706
glutamine, 705
histidine, 703
isoleucine, 704
leucine, 704
lysine, 703–704
methionine, 702–703
nicotinamide, 706
pantothenate (vitamin B5), 706
purine, 708
pyridoxamine (vitamin B6), 706–707
threonine, 704
tryptophan, 704–705
valine, 704

B
Bacillus Calmette-Guérin (BCG), original vaccine, 95, 117
Bacillus subtilis, 582, 673
Bacterial cell biology, tuberculosis research, 185
Bacterial clearance, 16–17
Bacterial replisome, components of, 584–586
B cells
M. tuberculosis infection, 217, 219–220
tuberculosis (TB), 225–226
Bedaquiline
animal model, 278
drug candidate, 271, 273
mice, 279
proof-of-concept molecule, 333
Biofilms, see Mycobacterial biofilms
Biology
animal- and human-associated MTBC lineages, 481–482
genetic diversity of TB bacilli, 477–484
M. canettii and MTBC, 482
M. tuberculosis strains, 482–484
variations from genomics, 480–481
Biomarkers
classes of TB, 371
human tuberculosis (TB), 226–227
transcriptomic profiling, 226–227
treatment response, 227
Biomedical Primate Research Center (Netherlands), 165, 167
Biosynthesis, menaquinone, 302–303, 304
Biotin (vitamin B7), 707
British Medical Research Council, 654
Bronchoalveolar lavage (BAL), 215, 242

C
Callithrix jacchus (common marmoset), 172, 284
Canadian Tuberculosis Standards, 379
Candida albicans, 321
Canetti, Georges, 496
Capreomycin, drug resistance, 503, 505
Carbon starvation, screening, 341, 342
Carbonyl cyanide m-chlorophenylhydrazone (CCCP), 298
Cattle
animal model, 134
experimental infection of, 177–178
as model of TB in humans, 178
new TB vaccines tested in, 181
potential correlates of protection, 183
Caulobacter crescentus, 594
Cavity formation, pathology of tuberculosis, 119, 120
CD4 T and T helper 1 (Th1) cells, memory immunity, 95–96, 102–104
CD4 T and T helper 17 (Th17) cells, memory immunity, 104–105
CD8 memory T cells, 105–106
Cellular immunity, 143
Centers for Disease Control and Prevention (CDC), 379
Chagas’ disease, 454
Chemokines
CCR (CC receptors) and ligands, 49–52
CCR1, 49–50
CCR2, 50
CCR4, 50–51
CCR6, 51
CCR7, 51–52
CXCR1, 52
CXCR2, 52
CXCR3, 52–53
CXCR5, 53
CXCR receptors and ligands, 52–53
HIV-TB coinfection, 241
M. tuberculosis infection, 49–53
positive and negative roles in TB, 36
role in adaptive response to M. tuberculosis infection, 38
role in innate response to M. tuberculosis infection, 37
Chemotherapy
latent TB infection (LTBI), 284–286
M. tuberculosis persistence, 653–658, 662
Chicago Center for Biomedical Research, 171
Chlamydia trachomatis, 609
Chlorpromazine, 299
Cholesterol, M. tuberculosis in macrophages, 645, 646
Ciprofloxacin, drug resistance, 505
Clinical testing, see Vaccine candidates
Clofazimine
animal models, 278–279
drug candidate, 272, 300
mice, 281
Clostridium difficile, 611
Cobalamin (vitamin B12), 707–708
Cofactors, auxotrophies, 706–708
Collaborative Drug Discovery, 329
Commercial liquid culture, 364
Comparative genomic analysis, 480–481
Comparative transcriptome analysis, 185
Computed tomography (CT), 171
Congenic mice, 145
Consumption, 453
Cox models, cumulative risk curves, 405
Crohn’s disease, 428
Cyclophosphamide, 97
C-coloridors, drug resistance, 505
Cynomolgus macaques
comparing TB in humans to, 164
Golden Age of research, 163, 166
Macaca fascicularis, 163, 172
TB studies, 166–167, 168
21st century TB research, 166
Cysteine auxotrophs, 702
Cytokines
enhancing HIV-1 replication, 246, 247
HIV-1 replication, 246, 247
IL-6 (interleukin-6), 40–41
IL-10, 48–49
IL-12 family, 42–45
IL-18, 42
IL-1R/IL18R/MyD88, 41
IL-22, 46
IL-23, 44
IL-23-dependent, 45–46
IL-27, 44–45
IL-35, 45
interferons, 37–40
M. tuberculosis infection, 34–49
positive and negative roles in TB, 35
proinflammatory IL-1, 41–42
regulatory, 47–49
role in adaptive response to M. tuberculosis infection, 38
role in innate response to M. tuberculosis infection, 37
transforming growth factor β (TGFβ), 48
tumor necrosis factor alpha (TNFα), 34–37
type II interferon (INFγ), 38–40
Cytomegalovirus (CMV) infection, 249, 251, 255

D
Damage-associated molecular pattern molecules (DAMPs), 11
Dannenberg, Arthur, 680
Dartmouth University, 202
Deer, experimental infection of, 177, 179
Dehydrogenases
NADH:menaquinone oxidoreductases, 299–300
oxidative phosphorylation, 301–302
succinate:quinone oxidoreductase, 300–301
Delamanid, drug candidate, 271, 273
Dendritic cells (DCs)
development of memory T cells, 98
HIV-TB coinfection, 241, 244
lung, 5
M. tuberculosis infection, 11–12
Diabetes mellitus, 222–223, 630
Diagnostics for TB
acid-fast (AF) staining in clinical diagnosis, 522–523
classes of TB biomarkers, 371
commercial liquid culture, 364
current, for active TB, 363–366
current, for drug-resistant TB, 366–369
line probe assays for detecting resistance, 367–368
revisiting heritability in post-GWAS era, 416
TB susceptibility, 413, 418–419, 427
Genomics, see Genetics and genomics
Genotype, 671
GlaxoSmithKline, 199
Global TB epidemic, 389–390
Glutamate auxotrophy, 705–706
Glutamine synthetase (GS), 705
Goraita and colleagues, 177
Goats, experimental infection of, 177, 178–179
Gordonia otitidis, 498
Granulocyte-macrophage colony-stimulating factor (GM-CSF), 144
Granulocytes, M. tuberculosis infection, 14–16
Granulomas development, 680–681, 684, 687
guinea pig model, 152
in vitro models, 549–550
lungs of human with primary tuberculosis, 118, 120–121
morphological features of, 533
M. tuberculosis infection, 217, 636
progressive caviation, 126
restricting M. tuberculosis movement, 35–36
term, 16
Granulomatous inflammation, 123
Guinea pigs, 150–153; see also Animal models
animal model, 132
anti-TB treatment, 86
BCG vaccination, 86
deices for aerosol exposure, 147
gating host cells from lung, 153
granulomas in lungs, 118, 124, 126
human-to-guinea pig transmission, 153
immunopathology of, 152
magnetic resonance imaging of infected lungs, 155
preclinical efficacy models, 282
in vivo models, 549–550
response to infection, 123, 124, 154
TB disease progression, 122
Treg cells in, 80, 85–86
vaccines, 153–154
H37Rv strain of Mycobacterium tuberculosis, 166, 167, 168, 170, 172, 215
Harvard School of Public Health, 467
Helicobacter pylori, 462, 464, 594
Heritability, see Genetics and genomics
Heterogeneity, see Phenotypic heterogeneity
Histidine auxotrophy, 703
HIV-1 (human immunodeficiency virus type 1) functional impairment of CD4 T cells, 250–251
infection at site of M. tuberculosis disease, 247
immunity to TB, 50
infected people, 239
interferons and, 39
mediating immunosuppression, 239–241
M. tuberculosis infection risk, 172, 475
replication at site of M. tuberculosis disease, 245–247
tuberculosis epidemic and, 389
tuberculosis resurgence, 222
HIV-TB-associated immune reconstitution inflammatory syndrome (IRIS) acquired immunity and TB-IRIS, 255–256
hypercytokinemia in TB-IRIS, 233, 251
innate immunity and TB-IRIS, 252–253
model of innate receptor signaling in TB-IRIS, 254
HIV-TB coinfection acquired immunity, 248–252
CD4 T cells in, 248–251
cytotoxic lymphocytes in, 251–252
dendritic cells in, 244
dissemination and mycobacteremia in, 248
immune activation in, 247–248
immune reconstitution inflammatory syndrome (IRIS), 252–256
macrophages in, 241–243
natural killer (NK) cells in, 244–245
neutrophils in, 243–244
spectrum of disease in, 240
Hollow fiber systems, 276
tuberculosis (TB) model, 275–277
Homeostatic regulation, 73
Homo sapiens M. tuberculosis, 653
tuberculosis in, 453–454, 458, 460–462, 467
Host genetic studies, tuberculosis, 429
Host-mimicking platforms, 685–686
Host-pathogen coevolution, 428
Host response, application of animal models, 134–135
Human immunology of tuberculosis acquisition of M. tuberculosis infection, 213, 215–221
adaptive responses and spectrum of infection, 217–220
alveolar macrophages, 215–216
antibody responses, 219–220, 221
B cells, 217, 219–220
biomarkers in human TB, 226–227
granuloma, 2178
immunity to M. tuberculosis, 213
innate T cells, 216–217
neutrophils, 216
progression from infection to TB disease, 222–226
spectrum of pulmonary TB lesions, 218
stages of response to infection, 214
T cells, 217–218
Human models challenge models, 205
in vitro, 545–546
Human tuberculosis (TB) balance of Treg activity, 77
cavity formation in lungs, 119, 120
CD3+ Treg cell subsets in, 77–78
granuloma in lungs, 118, 120–121
in vitro expansion of mycobacteria-specific Treg cells, 76–77
novel TB vaccine candidate MVA85A, 77–78
post-primary lung reactivation, 124–125
TB disease progression, 122
Treg at site of infection, 79–80
Treg cell responses in, 74–80
Mycobacterium orygis, 460, 476, 479, 496, 498
Mycobacterium phlei, 6, 295
Mycobacterium pinnipedii, 460, 461, 476, 477, 479
Mycobacterium prototuberculosis, 458
Mycobacterium simiae, 10, 308–309, 535, 536, 609, 673, 675, 679, 703
replisome components, 584–586, 587
Mycobacterium surcattae, 496
Mycobacterium szulagyi, 382
Mycobacterium tuberculosis, 3; see also HIV-TB coinfection
ATP synthesis by F1F0 ATP synthase, 308–309
chemokines and cytokines in adaptive response to, 38
chemokines and cytokines in innate response to, 37
chemokines in, infection, 49–53
cytokines in, infection, 34–49
emerging strains inducing regulatory T cells in lungs, 150
Erdman strain, 166, 167, 168, 170, 171–172
fate upon macrophage infection, 9
H37Rv strain, 166, 167, 168, 170, 172
HIV-1 heterogeneity at site of disease, 247
HIV-1 replication at site of disease, 245–247
hypothesized states of response to infection, 214
immune system, 95
interactions with macrophages, 6–8, 10–11
interaction with granulocytes, 14–16
interaction with lung, 6–16
latent TB infection (LTBI), 217, 226, 227
macrophage receptors, 7
latent TB infection, 4
Nile red stain, 526–527
Nigericin, 297, 298
Nicotinamide, 706
Niclosamide, 343–344, 346
Nile red stain, 526–527
NOD2, 261, 262, 263
NOD3, 261
NLRP3, 261
NLRX1, 261
NLRX2, 261
NLRX3, 261
Nonreplicating but metabolically active (NGMA), 676
Nodding syndrome, 197
Nodulation and plasmid-membrane protein (Nmp), 146
Nontuberculous mycobacteria (NTM), 153
Nongrowing but metabolically active bacteria (NGMA), 676
Nonreplicating active, 343, 344
nonreplicating, 334–335
Nonreplicating M. tuberculosis in, 534–535
Nonreplicating M. tuberculosis in, 533–534
Neisseria meningitidis, 197
Neutrophils
HIV-TB coinfection, 243–244
lung, 5
M. tuberculosis infection, 12, 39, 216, 548
response to M. tuberculosis, 125
Nicolosamide, 343–344, 346
Nicotinamide, 706
Nigericin, 297, 298
Nile red stain, 526–527
Nitro-containing compounds, 343, 344
3-Nitropropionate, 300, 301
Nocardia farcinica, 13
Nongrowing but metabolically active bacteria (NGMA), 676
identification of, 678, 681, 683
Non-human primate models, see also Animal models
animal model, 132–133
comparision of rhesus and cynomolgus macaque models, 165–167
cynomolgus macaques, 166–167, 169
future research strategies, 172
historical use of macaque models, 163–165
in vitro, 533–534
macaque models for study of TB pathogenesis, 171
macaque models for TB vaccine evaluation, 170, 171
macaque models for TB vaccine evaluation, 167, 170
M. tuberculosis/simian immunodeficiency virus coinfection, 171–172
Mycolic acids
chemical structures of, 520
importance of, 523–524
loss of acid-fastness, 519, 529
Myxococcus xanthus, 673
Myco-
Non-human primate models (Continued)
preclinical efficacy models, 283–284
rhesus macaques, 165, 166, 168
Treg cells in, 80, 86–87
validation of macaques in TB
research, 163
Nonreplicating (NR) models, selecting and
designing, 323, 324
Nonreplicating persistence (NRP)
M. tuberculosis physiology for, 567–571
sensing when to exit NRP, 571–572
Nonreplication, diversity in, 319–321
Nontuberculous mycobacteria (NTM), 495
Nucleic acid amplification testing (NAAT),
390, 391, 392; see also GeneXpert
MTB/RIF technology
Nutrient use of pathogens, see also
Auxotrophies
amino acid auxotrophies, 701–706
cofactor auxotrophies, 706–708
future perspectives, 708–710
lessons from auxotrophic strains, 701–708
lessons from metabolomics, 700–701
M. tuberculosis in host tissue, 701
M. tuberculosis in macrophages, 700–701

O
Offoxacin, drug resistance, 505
Oxford University, 200
Oxidative phosphorylation
physiology for, 567–571
M. tuberculosis
lessons from metabolomics, 700–701
lessons from auxotrophic strains, 701–708
cofactor auxotrophies, 706–708
amino acid auxotrophies, 701–706
M. tuberculosis in macrophages, 700–701

P
Paibö, Svante, 467
Palomicrobiology, 467
PAMP (pathogen-associated molecular
pattern), 467
Pantheotide (vitamin B5), 706
Paradigm, 121
Parkinson diseases, 630
Pathogenesis
application of animal models, 134–135
macaque models for studying TB, 171
persisting, 672;
Pathogens, see Nutrient use of pathogens
Pathology of tuberculosis, 117–121,
125–127
alveolar pneumonia, 126
cavity formation, 119, 120
disease progression in animal models, 122
granuloma within the lung, 118
hypersensitivity of pathogenesis of post-
primary TB, 123–125
intrapulmonary spread of mixed
inflammatory cells, 121
lipid pneumonia, 121, 125
obstructive lobular pneumonia, 121, 123
post-primary lung reinfection, 124–125
primary host response to M. tuberculosis
infection, 122–123
Pattern recognition, 145
Penicillin, 317–318
Peripheral blood mononuclear cells
(PBMCs), 4
Peroxisome proliferator-associated receptor
gamma (PPARγ), 4, 10
Persistence
definition, 654
drug-induced, 662
gene deletion studies, 659–661
host-induced, 657–662
measurements, 656–662
messages, 662–663
methods, 656
models, 654–656
pathogenicity of M. tuberculosis, 653, 672
physiology of M. tuberculosis, 653
predicted genes for in vivo survival of
M. tuberculosis, 661
terms, 653–654
Persisters, 317
class I, 321–322
class II, 322–325, 329–346
diversity in nonreplicating cells, 319–321
killing class II persisters, 329, 331–341
Phagocytosis, 636
Phagosome maturation, 8, 9
Phenotype definitions, 429
Phenotypically tolerant M. tuberculosis, 317–319
class I persists, 321–322
class II persists, 322–325, 329–346
compound transformation during
screening and secondary assays,
325, 329
conditions for replication rates of, 326
designing high-throughput screens to
target, 322–325
diversity in nonreplication, 319–321
evaluating bactericidal action against
nonreplicating mycobacteria, 329
fluoroquinolones, 339
future studies, 347–348
high-throughput screening (HTS),
341–343
key observations, 319
key recommendations, 348
killing class II persisters, 329, 331–341
membrane depolarizers, 343–346
modelling hypoxia and metronidazole
activity relationship, 318
molecules persisting nonreplicating
mycobacteria, 346, 347
nitro-containing compounds, 343
postscreening assays, 327, 328
proof-of-concept molecules, 331–332
proteolysis/proestosis pathway,
339–341
quinolines and derivatives, 338–339
screening assays, 325, 329, 330
selecting and designing nonreplicating
models, 324
strategies for evaluating viability of
nonreplicating, 323
Phenotypic drug resistance, 317
Phenotypic heterogeneity, 671–672
asymmetric cell division and cell aging,
676–679
causes and consequences of, 673
flow cytometry and omics, 682–684
fluorescence recovery after photobleaching
(FRAP), 678, 684
growth phase, 674–675
growth rate, 675–676
host microenvironment, 679–682
host-mimicking platforms, 683–686
in vivo investigation, 685–686
stochastic processes, 672–674
stress conditions enhancing, 677
time-lapse microscopy and microfluidics,
684–685
tools and methodology, 682–686
Phenotypic tolerance, 317
Phosphorylation, see Protein
phosphorylation
Pneumonia, tuberculosis as obstructive
lobular, 121, 123
Positron emission tomography/computed
tomography (PET/CT), 171, 213,
283, 680–681, 686
Post-primary tuberculosis, 124–125
Preclinical efficacy testing, 271, 274
animal infection models of active TB,
277–284
drug candidates, 272–273
dynamic drug concentration models,
275–277
goals of, 274–275
guinea pigs, 282
hollow fiber system model of TB, 275–277
in vitro models, 275–277
mice, 278–281
modeling chemotherapy of latent TB
infection (LTBI), 284–286
non-human primates, 283–284
rabbits, 283
rats, 281–282
static drug concentration models, 275
Preclinical studies, role in experimental
medicine studies, 205–206
Pretomanid
drug candidate, 273
guinea pigs, 282
mice, 279
Prime, vaccine development, 197
Prime-boost, vaccine development, 197
Programmed cell death protein-1 (PD-1),
101–102
Proline auxotroph, 703
Proof-of-concept molecules
dual actives with in vivo efficacy, 331–332
nonreplicating actives with in vivo
efficacy, 332
nonreplicating activity, 333
selective nonreplicating activity, 331
Protein-adjuvant TB vaccines, 198–200
Protein kinase activity, 557
Protein phosphorylation, see also
Mycobacterium tuberculosis infection
apoptosis, 563
biochemically verified substrates of
M. tuberculosis serine/threonine
protein kinases (STPKs), 538–539
effect on M. tuberculosis STPKs, 566
growth and persistence phenotypes of
M. tuberculosis STPKs, 562
hierarchy of M. tuberculosis STPK
activation, 561
inhibition of phagosome-lysosome fusion,
561, 563
M. tuberculosis, 557, 559–560
STPKs coordinating M. tuberculosis
physiology, 567–571
STPKs regulating M. tuberculosis
morphology, 564–565, 567
Proteomics, 679, 683–684

Index
INDEX

Proton motive force (PMF), 297
mechanisms, 297
targeting, in M. tuberculosis, 295–299
traditional inhibitors of PMF
generation, 298
Pseudomonas, 673
Pseudomonas aeruginosa, 13, 321, 467, 536, 591, 594
Pseudomonas putida, 591
Pseudomocarida dioxidinorans, 498
PubChem, 329
Purine auxotroph, 708
Pyrizinamide, 86

Regulation of TB immunity,
Recombinant mycobacterial vaccines,
Rats
Rapid speciation strip tests, 364

Rabbits
Pyrazinamide, 528, 681
drug resistance, 502, 504
proof-of-concept molecule, 333
tolerance of infected cells, 640
Pyridoxamine (vitamin B₆), 706–707
Pyrimidine, 86

Quantiferon-TB (QFT) Gold In-Tube
assay, 382, 384, 385
Quantiferon-TB Gold-Plus (QFT-Plus), 383
QuantIFERON technology, 382–384, 385
Quinolinyl pyrimidines (QPs), TB drug, 300, 305

Rats
animal model, 133
granulomas in lungs, 126
preclinical efficacy models, 283
response to infection, 123, 124
TB disease progression, 122

Rapid speciation strip tests, 364
Rats
animal model, 133–134
preclinical efficacy models, 281–282
Recombinant mycobacterial vaccines, 202–203
Regulation of TB immunity, see also Animal models; Human tuberculosis (TB) antigen-presenting cells (APCs), 74, 75
human regulatory T (Treg) cells and anti-TB treatment, 78–79
human Treg cells and clinical M. tuberculosis strains, 78
in vitro expansion of mycobacteria-specific Treg cells, 76–77
mechanisms of Treg suppression, 74
naturally occurring and induced Treg cells, 73–74
Treg activity balance, 77
Treg cell, 73–74

Treg cell responses in experimental animal models of TB, 80–87
Treg cell responses in human TB, 74–80
Treg-mediated manipulation of immune cell activation, 75–79
Treg responses at M. tuberculosis infection site, 79–80
Treg suppression of APCs, 75
Regulatory cytokines
IL-4, IL-5, and IL-13, 47–48
interleukin IL-10, 48–49
transforming growth factor β (TGFβ), 48
Replication rate, 592; see also DNA replication
mycobacterial, 592–594
Research Institute of Influenza
(St. Petersburg, Russia), 202
Respiration, M. tuberculosis, 295
Restriction fragment length polymorphism (RFLP) method, 454–455, 583

Rheus macaques, 163; see also Macaque models
comparing TB in humans to, 164
“Golden Age” of TB research using, 163, 166
Macaque mulatta, 163, 173
TB studies, 166, 167, 168
21st century TB research, 166
Rhizobium leguminosarum, 613
Rifampin, 86, 527–528
animal models, 279–280
drug candidate, 272, 274, 278, 331
drug resistance, 503, 504, 674
guinea pigs, 282
latent TB infection, 285–286
line probe assays for detecting resistance, 367–368

non-human primates, 283
proof-of-concept molecule, 333
tolerance of infected cells, 639–641
Xpert MTB/RIF for resistance to, 368
Rifapentine
drug candidate, 272
guinea pigs, 282
latent TB infection (LTBI), 285–286

Salmonella, 146, 321, 674, 676
Salmonella enterica serovar Typhi, 462
Salmonella typhimurium, 537
Sanofi Pasteur, 199
Scavenger receptors (SRs), 8
SciFinder, 329
Screening
acidic pH, 341, 342
biofilms, 341, 343
hypoxia, 341, 342
multiple physiological stresses, 341, 342
Screening assays
compound transformation during, 330
designing high-throughput screens for
phenotypically tolerant mycobacteria,
322–323, 325
post-, 327, 328
potential compound transformation
during, 325, 329

Secretion (SecA1) pathway
cell wall synthesis and remodeling
factors, 609
conserved, 607–608
conserved SecA1 exportome, 608–611
entering dormancy, 610
exported virulence factors, 610
lipoproteins, 609–610
models of SecA1 export, 608
reactivation/resuscitation from
dormancy, 611

Secretion (SecA2) pathway
dormancy, 619
features of SecA2-dependent
substrates, 613
identification, 611–612
immunomodulation and, 618–619
inhibition of apoptosis, 618
KatB (catalase-peroxidase), 616
Mce transporters, 614–615
mechanism, 612–613
models of SecA2 export, 608
multiple components of Mce transporters, 615
phagosome maturation arrest, 617
PknG (eukaryotic-like serine-threonine
kinase), 616
protein export pathway, 611–613
reactive radicals and, 619
SBPs (solute binding proteins), 613–614
secA2 mutant as vaccine candidate,
619–620

SecA2 and DosR regulon, 616–617
SecA2 exportome, 613–616
SodA (Fe-superoxide dismutase), 615–616
virulence and, 617–619

Secretion system, see also ESX-1 (ESAT-6
secretion system–1)
ESAT-6 (ESX-1), 627, 631–632
Shuman, Stewart, 591
Simian immunodeficiency virus (SIV), M. tuberculosis and, coinfection

macaque models, 171–172
Smear microscopy, diagnostics for active TB, 363–364
Solute carrier, 146
South Africa
challenges and opportunities of
implementation, 394, 396
GeneXpert implementation, 397
GeneXpert placement, 394
national implementation of Xpert NTB/RIF assay, 393–394
tuberculosis in, 391, 393

South African Tuberculosis Vaccine Initiative (SATVI), 104, 105
Spectroscopy, 683–684, 701
Spoligotyping, 455, 457, 461
Staphylococcus aureus, 609, 611
Streptococcus pneumoniae, 197, 536
Streptomyces coelicolor, 591
Streptomyces coelicolor, 591
Streptomyces parasanguinis, 611
Streptomyces pneumoniae, 197, 536
Swedish Institute of Infectious Disease
Control, 167
Systems biology, tuberculosis, 429

T
TB-associated immune reconstitution
inflammatory syndrome (TB-IRIS), 76
T cells, see also Memory T cells
cytotoxic, in TB-immune reconstitution
inflammatory syndrome (TB-IRIS), 255–256
M. tuberculosis infection, 217–219,
548–549
responses to tuberculosis (TB), 225

Technical Expert Group, 365
Thioalkalivibrio, 458
Thorobodobivibrio, 458

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Tue, 18 Dec 2018 21:08:05
Thioridazine, 297, 299
Threonine auxotroph, 704
Time-lapse microscopy, 684–685
Tissue remodeling, tuberculosis (TB), 225
Toll-like receptor 9 (TLR9), 4
Toll-like receptors (TLRs), 7–8, 39, 145
Trained immunity, 13, 17, 107
Transcriptional profiling, M. tuberculosis in macrophages, 636–638
Transcriptome studies, 674, 683–684
Transcriptomic profiling, biomarkers, 226–227
Transforming growth factor β (TGFβ), 48
Transgenic mice, 145
TrA SH screening method, 704
Treatment outcomes, impact of GeneXpert
MTB/RIF, 401, 402–404
Triluoperazine, 299, 300
Trudeau, E. L., 131
Trypomastigote auxotroph, 704–705
Tuberculosis (TB), see also Animal models; HIV-TB coinfection; Human tuberculosis (TB); Vaccine candidates
Vaccines, 200–206
Vaccination
adjunctive therapeutic vaccination, 196–197
BCG and disease protection, 194
clinical trials of TB candidates, 197–203
M. tuberculosis, 95–96
prevention of M. tuberculosis infection, 193–195
prevention of recurrent TB disease, 196–197
prevention of TB disease, 195–196
Vaccine candidates, 198
Ad5Ag85A, 201
Crucell Ad35, 201
DAR-901, 202
development strategies, 197–198
experimental medicine role in development, 203–206
global clinical pipeline of, 198
H1:IC31 and H1:CAF01, 198
H4:IC31, 199
H56:IC31, 198–199
ID93+GLA-SE, 199
inactivated whole-cell and fragmented TB vaccines, 202
M72/AS01E, 199–200
MTBVAC, 202–203
MVA85A, 200–201
Protein-adjuvant TB vaccines, 198–200
recombinant mycobacterial vaccines, 202–203
RUTI, 202
secA2 mutant as, 619–620
TB/Flu-O4L, 202
Vaccae, 202
VAP 1002, 203
viral-vectored vaccines, 200–202
VPM 1002, 203
Vaccines, see also Vaccine candidates
Ad85A (human adenovirus 5 expressing Ag85A), 181–182
animal models and testing protocols, 136, 137
animal models for assessment of, 135
antibody-inducing, 220
BCG protection, 40, 43, 45, 46, 49, 220
BCG vaccination in animals, 100
BCG vaccination in guinea pigs, 86
BCG vaccination in humans, 76, 100
BCG vaccination in mice, 83–84
biomarkers correlating disease severity, 184
biomarkers predicting efficacy, 182
guinea pig model, 153–154
macaque models of evaluating TB vaccine, 167, 170
mechanism of protection, 136
memory immunity by novel TB, 107–108
Mycobacterium bovis bacillus Calmette-Guérin (BCG), 95, 117, 179–180
new-generation TB, 180–182
predictivity of animal models, 137–138
proof of concept for, 194, 196, 203–206
role of experimental medicine in vaccine development, 203–206
schedules of BCG and virally vectored, 183–184
types of new, tested in cattle, 181
Vakzine Projekt Management GmbH, 203
Valine auxotroph, 704
Valinomycin, 297, 298
Vertex Pharmaceuticals, 643
Vibrio cholerae, 465
Viral-vectored vaccines, 200–202
Vitamin B5 (pantothenate), 706
Vitamin B6 (pyridoxamine), 706–707
Vitamin B7 (biotin), 707
Vitamin B12 (cobalamin), 707–708
Vitamin D deficiency, 223
Wayne model, hypoxia, 318, 323, 325
Whole-genome sequencing (WGS) emergence of, 495
M. tuberculosis L2 Beijing sublineage, 500
resistant strains, 502, 506–507
World Health Organization (WHO), 193, 226, 239
global TB epidemic, 389–390
line probe assay recommendations, 368–369
TB disease control, 379, 533
TB screening, 363, 364
X
XLAAD (X-linked autoimmunity allergic dysregulation syndrome), 73
Xpert MTB/RIF, see also GeneXpert
MTB/RIF technology background of, 391
diagnostics for TB, 365, 368
maximizing impact of new diagnostics, 371, 373–374
timeline of availability, 374
Y
Yersinia pseudotuberculosis, 674
Z
Zebrafish
animal models, 133, 685, 686
granuloma formation, 135
in vitro model, 530
M. marinum, 36, 133, 699
Ziehl, F., 520
ZN (Ziehl-Neelsen) stain, 519; see also AF (acid-fast) mycobacteria
clinical diagnosis of TB, 522–523
history of acid-fast (AF) staining, 520–522
M. tuberculosis, 521, 528