TUBERCULOSIS
AND THE
TUBERCLE BACILLUS
2ND EDITION
Contents

Contributors ix
Preface xiii

SECTION I

TOWARDS EDWARD JENNER’S REVENGE: DEVELOPING AN EFFECTIVE TUBERCULOSIS VACCINE / 1

A. BASIC IMMUNOLOGY

1 Innate Immune Responses to Tuberculosis / 3
 Jeffrey S. Schorey and Larry S. Schlesinger

2 Cytokines and Chemokines in Mycobacterium tuberculosis Infection / 33
 Racquel Domingo-Gonzalez, Oliver Prince, Andrea Cooper, and Shabaana Khader

3 Regulation of Immunity to Tuberculosis / 73
 Susanna Brighenti and Diane J. Ordway

4 The Memory Immune Response to Tuberculosis / 95
 Joanna R. Kirman, Marcela I. Henao-Tamayo, and Else Marie Agger

5 Pathology of Tuberculosis: How the Pathology of Human Tuberculosis Informs and Directs Animal Models / 117
 Randall J. Basaraba and Robert L. Hunter

B. ANIMAL MODELS

6 Animal Models of Tuberculosis: An Overview / 131
 Ann Williams and Ian M. Orme

7 Mouse and Guinea Pig Models of Tuberculosis / 143
 Ian M. Orme and Diane J. Ordway

8 Non-Human Primate Models of Tuberculosis / 163
 Juliet C. Peña and Wen-Zhe Ho

9 Experimental Infection Models of Tuberculosis in Domestic Livestock / 177
 Bryce M. Buddle, H. Martin Vordermeier, and R. Glyn Hewinson

C. VACCINES

10 Clinical Testing of Tuberculosis Vaccine Candidates / 193
 Mark Hatherill, Dereck Tait, and Helen McShane

11 Human Immunology of Tuberculosis / 213
 Thomas J. Scriba, Anna K. Coussens, and Helen A. Fletcher
12 The Immune Interaction between HIV-1 Infection and Mycobacterium tuberculosis / 239
Elsa du Bruyn and Robert John Wilkinson

SECTION II

DRUG DISCOVERY AND DEVELOPMENT: STATE OF THE ART AND FUTURE DIRECTIONS / 269

13 Preclinical Efficacy Testing of New Drug Candidates / 271
Eric L. Nuermberger

14 Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions / 295
Gregory M. Cook, Kiel Hards, Elyse Dunn, Adam Heikal, Yoshio Nakatani, Chris Greening, Dean C. Crick, Fabio L. Fontes, Kevin Pethe, Erik Hasenoehrl, and Michael Berney

15 Targeting Phenotypically Tolerant Mycobacterium tuberculosis / 317
Ben Gold and Carl Nathan

SECTION III

BIOMARKERS AND DIAGNOSTICS / 361

16 Tuberculosis Diagnostics: State of the Art and Future Directions / 363
Madhukar Pai, Mark P. Nicol, and Catharina C. Boehme

17 Latent Mycobacterium tuberculosis Infection and Interferon-Gamma Release Assays / 379
Madhukar Pai and Marcel Behr

18 Impact of the GeneXpert MTB/RIF Technology on Tuberculosis Control / 389
Wendy Susan Stevens, Lesley Scott, Lara Noble, Natasha Gous, and Keertan Dheda

SECTION IV

HOST AND STRAIN DIVERSITY / 411

19 The Role of Host Genetics (and Genomics) in Tuberculosis / 413
Vivek Naranbhai

20 The Evolutionary History, Demography, and Spread of the Mycobacterium tuberculosis Complex / 453
Maxime Barbier and Thierry Wirth

21 Impact of Genetic Diversity on the Biology of Mycobacterium tuberculosis Complex Strains / 475
Stefan Niemann, Matthias Merker, Thomas Kohl, and Philip Supply

22 Evolution of Mycobacterium tuberculosis: New Insights into Pathogenicity and Drug Resistance / 495
Eva C. Boritsch and Roland Brosch

SECTION V

THE SIGNATURE PROBLEM OF TUBERCULOSIS PERSISTENCE / 517

23 Acid-Fast Positive and Acid-Fast Negative Mycobacterium tuberculosis: The Koch Paradox / 519
Catherine Vilchêze and Laurent Kremer

24 Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions / 533
Randall J. Basaraba and Anil K. Ojha

25 Killing Mycobacterium tuberculosis In Vitro: What Model Systems Can Teach Us / 541
Tracy L. Keiser and Georgiana E. Purdy

26 Epigenetic Phosphorylation Control of Mycobacterium tuberculosis Infection and Persistence / 557
Melissa Richard-Greenblatt and Yossef Av-Gay

27 DNA Replication in Mycobacterium tuberculosis / 581
Zanele Ditse, Meindert H. Lamers, and Digby F. Warner

28 The Sec Pathways and Exportomes of Mycobacterium tuberculosis / 607
Brittany K. Miller, Katelyn E. Zulauf, and Miriam Braunstein

29 The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis / 627
Ka-Wing Wong
30 The Minimal Unit of Infection: *Mycobacterium tuberculosis* in the Macrophage / 635
Brian C. VanderVen, Lu Huang, Kyle H. Rohde, and David G. Russell

31 Metabolic Perspectives on Persistence / 653
Travis E. Hartman, Zhe Wang, Robert S. Jansen, Susana Gardete, and Kyu Y. Rhee

32 Phenotypic Heterogeneity in *Mycobacterium tuberculosis* / 671
Neeraj Dhar, John McKinney, and Giulia Manina

33 *Mycobacterium tuberculosis* in the Face of Host-Imposed Nutrient Limitation / 699
Michael Berney and Linda Berney-Meyer

Index / 717
Contributors

Else Marie Agger
Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark

Yossef Av-Gay
Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, Canada

Maxime Barbier
Laboratoire Biologie Intégrative des Populations, Evolution Moléculaire; Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Univ. Pierre et Marie Curie, EPHE, Sorbonne Universités, Paris, France

Randall J. Basaraba
Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado

Marcel Behr
McGill International TB Centre & Department of Epidemiology & Biostatistics, McGill University, Montreal, Canada

Michael Berney
Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, New York

Linda Berney-Meyer
Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, New York

Catharina C. Boehme
FIND, Geneva, Switzerland

Eva C. Boritsch
Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France

Miriam Braunstein
Department of Microbiology and Immunology, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina

Susanna Brighenti
Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden

Roland Brosch
Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France

Bryce M. Buddle
AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand

Gregory M. Cook
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand, and Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand

Andrea Cooper
University of Leicester, Infection Immunity and Inflammation, Leicester, Leicestershire, United Kingdom

Anna K. Coussens
Clinical Infectious Diseases Research Initiative, Division of Medical Microbiology, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa

Dean C. Crick
Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, Colorado

Neeraj Dhar
Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Keertan Dheda
Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
Zanele Ditse
MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

Racquel Domingo-Gonzalez
Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri

Elsa du Bruyn
Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Republic of South Africa

Elyse Dunn
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand

Helen A. Fletcher
Immunology and Infection Department, London School of Hygiene & Tropical Medicine, London, United Kingdom

Fabio L. Fontes
Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, Colorado

Susana Gardete
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Ben Gold
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York

Natasha Gous
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service and National Priority Program of the National Health Laboratory Service, Johannesburg, South Africa

Chris Greening
The Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Acton, Australia, and Monash University, School of Biological Sciences, Clayton, Victoria, Australia

Kiel Hards
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand

Travis E. Hartman
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Erik Hasenohrle
Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York

Mark Hatherill
South African Tuberculosis Vaccine Initiative (SATVI) and Institute of Infectious Disease & Molecular Medicine (IDM), University of Cape Town, Wernher & Beit South Building, Anzio Road, Observatory, Cape Town, South Africa

Adam Heikal
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand, and Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand

Marcela I. Henao-Tamayo
Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratory, Colorado State University, Fort Collins, Colorado

R. Glyn Hewinson
Animal and Plant Health Agency – Weybridge, Addlestone, Surrey, United Kingdom

Wen-Zhe Ho
Animal Biosafety Level III Laboratory, Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan, China; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania

Lu Huang
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York

Robert L. Hunter
Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas

Robert S. Jansen
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Tracy L. Keiser
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York

Shabaana Khader
Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri

Joanna R. Kirman
Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand

Thomas Kohl
Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany

Laurent Kremer
IRIM (ex-CPBS) UMR 9004, Infectious Disease Research Institute of Montpellier (IDRIM), Université de Montpellier, CNRS, Montpellier, France

Giulia Manina
Microbial Individuality and Infection Group, Institut Pasteur, 25 rue du Docteur Roux, Paris, France
Contributors

John McKinney
Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Helen McShane
The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom

Matthias Merker
Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany

Brittany K. Miller
Department of Microbiology and Immunology, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina

Yoshio Nakatani
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand, and Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand

Vivek Naranbhai
Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, and Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa

Carl Nathan
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York

Mark P. Nicol
University of Cape Town, Cape Town, South Africa

Stefan Niemann
Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, and German Center for Infection Research (DZIF), partner site Borstel, Borstel, Germany

Lara Noble
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa

Eric L. Nuermberger
Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, and Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Anil K. Ojha
Wadsworth Center, NY State Department of Health and University at Albany, Albany, New York

Diane J. Ordway
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado

Ian M. Orme
Colorado State University, Fort Collins, Colorado

Madhukar Pai
McGill International TB Centre & Department of Epidemiology & Biostatistics, McGill University, Montreal, Canada

Juliet C. Peña
Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N. Broad St., MERB 843, Philadelphia, Pennsylvania

Kevin Pethe
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

Oliver Prince
Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri

Georgiana E. Purdy
Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon

Kyu Y. Rhee
Department of Medicine and Department of Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Melissa Richard-Greenblatt
Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, Canada

Kyle H. Rohde
Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida

David G. Russell
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York

Larry S. Schlesinger
Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio

Jeffrey S. Schorey
Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana

Lesley Scott
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
Contributors

Thomas J. Scriba
South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa

Wendy Susan Stevens
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, and National Priority Program of the National Health Laboratory Service, Johannesburg, South Africa

Philip Supply
INSERM U1019; CNRS UMR 8204; Institut Pasteur de Lille, Center for Infection and Immunity of Lille; and Université Lille Nord de France, Lille, France

Derek Tait
Aeras, Blackriver Park, First Floor, Observatory, Cape Town, South Africa

Brian C. VanderVen
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York

Catherine Vilchèze
Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York

H. Martin Vordermeier
Animal and Plant Health Agency – Weybridge, Addlestone, Surrey, United Kingdom

Zhe Wang
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Digby F. Warner
MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, South Africa

Robert John Wilkinson
Department of Medicine, Imperial College London, and The Francis Crick Institute Mill Hill Laboratory, London, United Kingdom

Ann Williams
Health UK, Porton Down, Salisbury, United Kingdom

Thierry Wirth
Laboratoire Biologie Intégrative des Populations, Evolution Moléculaire; Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d’Histoire Naturelle, Univ. Pierre et Marie Curie, EPHE, Sorbonne Universités, Paris, France

Ka-Wing Wong
Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China

Katelyn E. Zulauf
Department of Microbiology and Immunology, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina
It is the height of irony that the man who discovered the smallpox vaccine, Edward Jenner, lost both his wife and son to tuberculosis (TB). By the time smallpox was essentially eradicated, it is estimated that over 300 million people had died from this disease over the preceding century. Its eventual prevention—by a simple vaccine—clearly illustrates the power of scientific discovery and how its application can affect human health. Hundreds of millions of people have been spared death and suffering from infectious diseases because of the development of vaccines and chemotherapeutic agents in the last 100 years. Millions of lives have been saved with the use of the TB vaccine, BCG, and the development of chemotherapeutic regimens for TB. Depressingly, despite these effective interventions, TB remains one of the most challenging problems of global health, with over 9 million new cases and 1.6 million deaths each year. This crisis has been further compounded by the emergence of the HIV epidemic, as this explosive and deadly combination has dramatically increased the global spread of TB, including increasing numbers of cases of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB.

Historically, mycobacterial disease has long been at the forefront of scientific discovery for infectious diseases. The leprosy bacillus, *Mycobacterium leprae*, the first bacterium to be associated with human disease, was initially visualized by Gerhard Armauer Hansen in 1873. Earlier, Jean Antoine Villemin was the first person to realize that lung tubercles were infectious and not cancerous. By the 1880s, Robert Koch, aware of both of these discoveries, not only observed the tubercle bacilli in tubercles, but developed a growth medium of heated serum to cultivate the tubercle bacillus outside of humans. He went on to repeat the transfer experiment of Villemin and transferred the disease of TB to numerous animal species, establishing the experimental paradigm (“the postulates”) of how to prove that an infectious agent is a cause of a disease. Koch’s findings led Albert Calmette and Camille Guérin to follow Jenner’s approach of developing an attenuated pathogen for use as a vaccine, using the bovine tubercle bacillus to develop the bacille Calmette-Guérin (BCG) vaccine that bears their names and is still used to this day.

It is noteworthy that Paul Ehrlich was sitting in the lecture hall when Robert Koch presented his work in 1882; he later went on to help Koch improve his staining techniques. By observing the selective staining of various cell types, including human cells and different bacteria, Ehrlich also developed the idea of chemotherapy—“magic bullets” that could kill microbial pathogens. He tried for years to develop a chemical that could kill the tubercle bacillus, with little success, though at the same time was far more successful in developing a treatment for syphilis. In the 1930s, his protégé Gerhard Domagk discovered the first sulfonamide to treat bacterial infections such as streptococcus, and as this fledging field expanded, para-aminosalicylic acid and isoniazid were discovered to be active against the TB bacillus. Parallel studies by Salaman Waksman and Albert Schatz in the 1950s led to the discovery of streptomycin, the first bactericidal drug for the tubercle bacilli.

Despite these many historical advances, the TB bacillus—*Mycobacterium tuberculosis*—has proven to be a formidable adversary against numerous interventions. Nevertheless, despite the arduous challenges of
working with this dangerous pathogen, the field continues to persevere, and our continued success in the pursuit of knowledge would, we suspect, be applauded by Koch, Ehrlich, Calmette, and many others, as we strive to find and apply more effective cures for this dreadful disease. In this spirit, this textbook is a collection of state-of-the-art research aimed at understanding the TB bacillus, the way it infects its host, the mechanisms by which it persists in the face of host immunity, and current intervention and therapeutic methods. The contributors of this book believe that such continued and dedicated research efforts will eventually lead to better vaccines, better chemotherapies, and ultimately the eradication of TB—Edward Jenner’s revenge.

William R. Jacobs, Jr.
Helen McShane
Valerie Mizrahi
Ian M. Orme
Index

A
Acid-fast (AF) mycobacteria, 519, 528–529
AF-negative M. tuberculosis and cell wall alterations, 527–528
brief history of AF staining, 520–522
chemical structures of mycolic acids, 520
clinical diagnosis of TB, 522–523
importance of mycolic acids, 523–524
Koch paradox, 523
lipid accumulation, 526–527
loss of AF property, 526–527, 528
mycobacterial cell envelope, 523–526
non-mycolic acid-containing components, 524–526
process for loss of acid-fastness, 525
Acquired immunity, 35, 43
CD4 T cells in HIV-TB coinfection, 248–251
HIV-TB coinfection, 248–252
TB-immune reconstitution inflammatory syndrome (TB-IRIS), 255–256
Adjunctive therapeutic vaccination, TB disease, 196–197
Animal models, 131, 139; see also
Experimental infection models;
Guinea pigs; Mouse models
assessment of new drugs, 136–137
assessment of vaccines, 135
cattle, 134
common experimental designs, 280
efficacy testing, 277–284
ethical and husbandry issues, 138–139
guinea pigs, 132
host response and pathogenesis, 134–135
limitations of, 137–139
mechanism of protection, 136
mice, 132, 278–280
mini pigs, 134
non-human primates (NHP), 132–133
primary host response to M. tuberculosis infection, 122–123
process and capacity, 135–136
rabbits, 133
rats, 133–134
Treg cell responses in experimental, 80–87
Treg cells in guinea pig model of TB, 85–86
Treg cells in mouse models of TB, 80–85
Treg cells in non-human primate models of TB, 86–87
tuberculosis disease progression in, 122
vaccine testing protocols, 136, 137
zebrafish, 133, 685, 686
Antibodies, 220
BCG vaccination and, 220
M. tuberculosis infection, 219–220, 221
role in anti-M. tuberculosis infection, 219
tuberculosis, 225–226
Antigen-presenting cells (APCs)
development of memory T cells, 98
function of, 74, 75
Antiretroviral therapy (ART), 389
HIV, 239
HIV-TB coinfection, 250
HIV-TB immune constitution inflammatory syndrome (IRIS), 252–253, 255–256
influence on T cell responses in coinfection, 251
Apoptosis, 563
Archaebacteria, 455
Archivel Farma SL, 202
Arginine auxotrophs, 702
Aristotle, 413
Asparagine auxotrophs, 702
Aspartate auxotrophs, 702
Association of Internal Medicine, 520
AstraZeneca, 282
ATP synthesis, 308–309
Auramine O, staining of M. tuberculosis, 522–523, 526–527
Austin, Robert, 597
Autophagy, 8, 10

Animal models, 131, 139; see also
Experimental infection models;
Guinea pigs; Mouse models
assessment of new drugs, 136–137
assessment of vaccines, 135
cattle, 134
common experimental designs, 280
efficacy testing, 277–284
ethical and husbandry issues, 138–139
guinea pigs, 132
host response and pathogenesis, 134–135
limitations of, 137–139
mechanism of protection, 136
mice, 132, 278–280
mini pigs, 134
non-human primates (NHP), 132–133
primary host response to M. tuberculosis infection, 122–123
process and capacity, 135–136
rabbits, 133
rats, 133–134
Treg cell responses in experimental, 80–87
Treg cells in guinea pig model of TB, 85–86
Treg cells in mouse models of TB, 80–85
Treg cells in non-human primate models of TB, 86–87
tuberculosis disease progression in, 122
vaccine testing protocols, 136, 137
zebrafish, 133, 685, 686
Antibiotics, golden era of, 317
Auxotrophies, 701; see also Nutrient use of pathogens
amino acid, 701–706
arginine, 702
asparagine, 702
aspartate, 702
biotin (vitamin B7), 707
cobalamin (vitamin B12), 707–708
cofactor, 706–708
cysteine, 702
folate (vitamin B9), 707
glutamate, 703–706
glutamine, 705
histidine, 703
isoleucine, 704
leucine, 704
lysine, 703–704
methionine, 702–703
nicotinamide, 706
pantetheine (vitamin B5), 706
proline, 703
purine, 708
pyridoxamine (vitamin B6), 706–707
threonine, 704
tryptophan, 704–705
valine, 704

B
Bacillus Calmette-Guérin (BCG), original vaccine, 95, 117
Bacillus subtilis, 582, 673
Bacterial cell biology, tuberculosis research, 185
Bacterial clearance, 16–17
Bacterial replisome, components of, 584–586
B cells
M. tuberculosis infection, 217, 219–220
tuberculosis (TB), 225–226
Bedaquiline
animal model, 278
drug candidate, 271, 273
mice, 279
proof-of-concept molecule, 333
Biofilms, see Mycobacterial biofilms
Biology
animal- and human-associated MTBC
lineages, 481–482
gene diversity of TB bacilli, 477–484
M. canetti and MTBC, 482
M. tuberculosis strains, 482–484
variations from genomics, 480–481
Biomarkers
classes of TB, 371
human tuberculosis (TB), 226–227
transcriptomic profiling, 226–227
treatment response, 227
Biomedical Primate Research Center (Netherlands), 165, 167
Biosynthesis, menaquinone, 302–303, 304
Biotin (vitamin B7), 707
British Medical Research Council, 654
Bronchoalveolar lavage (BAL), 215, 242

C
Callithrix jacchus (common marmoset), 172, 284
Canadian Tuberculosis Standards, 379
Candida albicans, 321
Canetti, Georges, 496
Capreomycin, drug resistance, 503, 505
Carbon starvation, screening, 341, 342
Carbonyl cyanide m-chlorophenyl hydrazine (CCCP), 298
Cattle
animal model, 134
experimental infection of, 177–178
as model of TB in humans, 178
new TB vaccines tested in, 181
potential correlates of protection, 183
Caulobacter crescentus, 594
Cavity formation, pathology of tuberculosis, 119, 120
CD4 T and T helper 1 (Th1) cells, memory immunity, 95–96, 102–104
CD4 T and T helper 17 (Th17) cells, memory immunity, 104–105
CD8 memory T cells, 105–106
Cellular immunity, 143
Centers for Disease Control and Prevention (CDC), 379
Chagas' disease, 454
Chemokines
CCR (CC receptors) and ligands, 49–52
CCR1, 49–50
CCR2, 50
CCR5, 50–51
CCR6, 51
CCR7, 51–52
CXCR1, 52
CXCR2, 52
CXCR3, 52–53
CXCR5, 53
CXCR receptors and ligands, 52–53
HIV-TB coinfection, 241
M. tuberculosis infection, 49–53
positive and negative roles in TB, 36
role in adaptive response to M. tuberculosis infection, 38
role in innate response to M. tuberculosis infection, 37
Chemotherapy
latent TB infection (LTBI), 284–286
M. tuberculosis persistence, 653–658, 662
Chicago Center for Biomedical Research, 171
Chlamydia trachomatis, 609
Chlorpromazine, 299
Cholesterol, M. tuberculosis in macrophages, 645, 646
Ciprofloxacin, drug resistance, 505
Clinical testing, see Vaccine candidates
Clofazimine
animal models, 278–279
drug candidate, 272, 300
mice, 281
Clostridium difficile, 611
Cobalamin (vitamin B12), 707–708
Cofactors, auxotrophies, 706–708
Collaborative Drug Discovery, 329
Commercial liquid culture, 364
Comparative genomic analysis, 185
Comparative transcriptome analysis, 185
Computed tomography (CT), 171
Congenital mice, 145
Consumption, 453
Cox models, cumulative risk curves, 405
Crohn's disease, 428
Cyclophosphamide, 97
n-Cycloserine, drug resistance, 505
Cynomolgus macaques
comparing TB in humans to, 164
Golden Age of research, 163, 166
Macaca fascicularis, 163, 172
TB studies, 166–167, 168
21st century TB research, 166
Cysteine auxotrophs, 702
Cytokines
enhancing HIV-1 replication, 246, 247
HIV-1 replication, 246, 247
IL-6 (interleukin-6), 40–41
IL-10, 48–49
IL-12 family, 42–45
IL-18, 42
IL-1β/IL18R/MyD88, 41
IL-22, 46
IL-23, 44
IL-23-dependent, 45–46
IL-27, 44–45
IL-35, 45
interferons, 37–40
M. tuberculosis infection, 34–49
positive and negative roles in TB, 35
proinflammatory IL-1, 41–42
regulatory, 47–49
role in adaptive response to M. tuberculosis infection, 38
role in innate response to M. tuberculosis infection, 37
transforming growth factor β (TGFβ), 48
tumor necrosis factor alpha (TNFα), 34–37
type II interferon (IFNγ), 38–39
Cytomegalovirus (CMV) infection, 249, 251, 255

D
Damage-associated molecular pattern molecules (DAMPs), 11
Dannenberg, Arthur, 680
Dartmouth University, 202
Deer, experimental infection of, 177, 179
Deer, experimental infection of, 177, 179
Dehydrogenases
NADH:menaquinone oxidoreductases, 299–300
oxidative phosphorylation, 301–302
sucinate:quinone oxidoreductase, 300–301
Delamanid, drug candidate, 271, 273
Dendritic cells (DCs)
development of memory T cells, 98
HIV-TB coinfection, 241, 244
lung, 5
M. tuberculosis infection, 11–12
Diabetes mellitus, 222–223, 630
Diagnostics for TB
acid-fast (AF) staining in clinical diagnosis, 522–523
classes of TB biomarkers, 371
commercial liquid culture, 364
current, for active TB, 363–366
current, for drug-resistant TB, 366–369
line probe assays for detecting resistance, 367–368
loop-mediated amplification test, 365–366
maximizing impact of new diagnostics, 361, 373–374
pipeline of future, 369–371
rapid speculation strip tests, 364
smear microscopy, 363–364
tests impacting patient outcomes, 373
translational challenges, 371, 372
unmet needs and gaps, 369
urine lipoarabinomannan rapid test, 366
Xpert MTB/RIF, 365, 368

Diagnostics of TB, see also GeneXpert
MTB/RIF technology
background, 390–391
GeneXpert technology, 391
impact of GeneXpert MTB/RIF, 399–401

Disease burden, impact of GeneXpert MTB/RIF, 400

DIVA (differentiating infected from vaccinated animals) tests, domestic livestock, 184–186

Diversity outbred mice, 146

DNA replication
bacterial, 582–583, 586
B-family DNA polymerase, 591
components of bacterial replisome, 584–586
components of mycobacterial replisome/repair, 587
coordinating, and cell division, 594–595
DnaE1 PHP domain proofreading activity coordinating, and cell division, 594–595
DnaE1 versus DnaE2, 590–591
DNA polymerases at replication fork, 591–592
mycobacterial C-family DNA polymerases, 586, 588–591
mycobacterial persistence and, 596–599
mycobacterial replication rate, 592–594
persistence and resistance, 597–599
PHP (polymerase and histidinol phosphatase) domain, 586, 588
replication rate, 592
structure of C-family polymerases, 589
subcomplex division of bacterial replisome, 588
targeting replisome for new TB drug development, 595–596

DNA synthesis, 334–335

Domestic livestock, 177, 186
antigen mining, 184–186
bacterial cell biology, 185
cattle, 177–178
comparative genomic analysis, 185
comparative transcriptome analysis, 185
deer, 177, 179
development and evaluation of TB vaccines, 179–182
DIVA (differentiating infected from vaccinated animals) tests, 184–186
DIVA skin test development, 185–186
experimental infection models, 177–179
goats, 178–179
immune correlates of protection and disease, 182–184
tuberculosis (TB) in, 177

Dormancy
definition, 654
secretion, 610, 611, 619

Drosophila melanogaster, 17

Drug development
clinical trials, 272–273
macaque models for evaluation, 170–171
targeting replisome for new, 595–596

Drug-resitant M. tuberculosis strains
evolution of, 502–508
resolution of MDR-TB, 503, 506
evolution of resistance to second-line drugs, 506–507
impact of GeneXpert MTB/RIF, 401, 402–404
microevolution during TB infection, 507–508
resistance to first-line drugs, 504
resistance to second-line drugs, 505
suggested model for genetic diversity of subpopulations, 507

Drug susceptibility testing (DST), 363
commercial liquid culture-based DST, 366–367
genotypic tests for, 367
line probe assays for resistance detection, 367–368
noncommercial methods, 367
phenotypic tests for, 366
pipeline of diagnostics, 370

Drug targets, menaquinone biosynthesis, 595–596

Drug resistance, 502, 503, 504
role in TB pathogenesis, 505

Drug-resistant M. tuberculosis

drug-resistant strains, 502–508
global spread of M. tuberculosis L2
Beijing and L4 strains, 499–500
L2 Beijing sublineage, 500–501
L4 sublineage, 501–502
lessons from M. canetti, 496–498
molecular key events in evolution, 497
neighbor-joining phylogeny scheme, 499
professional pathogenicity, 498–502
Expanded Program on Immunization (EPI), 496–498
World Health Organization, 193

Experimental infection models
cattle, 177–178
deer, 179
goats, 178–179

Experimental medicine
controlled human challenge models, 205
ear-boundaries of, 207
examples of, 205
potential outcomes in studies, 204–205
preclinical studies in, 205–206
product development and, 204
role in TB vaccine development, 203–206
scientific community, 206

Extensively drug-resistant (XDR) strains, 533

F

Fatty acids, M. tuberculosis in macrophages, 644–645

Fauci, Anthony, 117
Flow cytometry, 682–684, 685
Fluorescence-activated cell sorting (FACS), 683
Fluorescence recovery after photobleaching (FRAP), 678, 684
Foam cell formation, human post-primary TB, 125

Folate (vitamin B9), 707

Foxp3 (transcription factor forkhead box P3)
coexpression with CD25, 74, 75–76, 78–79
function of, 73
host defense against M. tuberculosis, 82

Francisella tularensis, 609, 699, 709

biogeographical structure of M. tuberculosis Beijing lineage, 463
correspondence table of strains by typing methods, 457
diagram of proposed evolutionary pathway, 456
fingerprints era, 454–455
genome-based phylogeny of MTBC, 459
global phylogeny of MTBC isolates, 465
global picture, 458–461
history and early (mis)conceptions, 453–454
limitations, 466–467
multicore era, 455–458
pattern for evolving populations, 466
pregenomic era, 454–458
relativity of clock, 464–467
spoligotyping, 453, 457, 461
substitution rate estimates, 464–466
taxonomic nomenclature, 464
whole-genome phylogeny of strains of MTBC, 460
zooming into lineages, 461–464

Evolution of Mycobacterium tuberculosis

drug-resistant strains, 502–508
global spread of M. tuberculosis L2
Beijing and L4 strains, 499–500
L2 Beijing sublineage, 500–501
L4 sublineage, 501–502
lessons from M. canetti, 496–498
molecular key events in evolution, 497
neighbor-joining phylogeny scheme, 499
professional pathogenicity, 498–502
Expanded Program on Immunization (EPI), 496–498
World Health Organization, 193

Experimental medicine
controlled human challenge models, 205
ear-boundaries of, 207
examples of, 205
potential outcomes in studies, 204–205
preclinical studies in, 205–206
product development and, 204
role in TB vaccine development, 203–206
scientific community, 206

Extensively drug-resistant (XDR) strains, 533

E

Ebola virus, 454
Efficacy, see Preclinical efficacy testing

Ehrlich, P., 520

Electron flow, 296

Enterococcus faecalis, 610

Erdman strain, M. tuberculosis, 166, 167, 168, 170, 171–172

Escherichia coli, 12, 309, 321, 464, 467, 535, 536, 557, 583, 590, 599, 610, 638, 662, 673, 676, 701

ESX-1 (ESAT-6 secretion system-1), 627, 631–632
damage of M. tuberculosis-containing phagosome, 628–630
innate immune mechanisms, 631
interventions by target, 631
phagosome disruption by, 628
regulations of, 630–631
role in TB pathogenesis, 630

Ethambutol
drug resistance, 502, 503, 504
tolerance of infected cells, 640

Ethical issues, animal models, 138–139

Ethionamide, drug resistance, 505

Eubacteria, 455

Evolution of MTBC
animal-related M. tuberculosis complex (MTBC) strains, 461

Fatty acids, M. tuberculosis in macrophages, 644–645

Fauci, Anthony, 117
Flow cytometry, 682–684, 685

Fluorescence-activated cell sorting (FACS), 683

Fluorescence recovery after photobleaching (FRAP), 678, 684

Foam cell formation, human post-primary TB, 125

Folate (vitamin B9), 707

Foxp3 (transcription factor forkhead box P3)
coexpression with CD25, 74, 75–76, 78–79
function of, 73
host defense against M. tuberculosis, 82

Francisella tularensis, 609, 699, 709
Genetics and genomics

Genetic diversity
- biological impact of, 480
- intrapatient, 479–480
- Mycobacterium tuberculosis complex (MTBC), 477–484

Genetic deficiency, mycobacterial disease, 38

Genome-wide association studies (GWAS)
- future prospects, 427–430
- epigenetic variation, 414, 429
- epidemiology of TB, 429
- DNA sequence variation, 414, 418
- clinical translation of host genomic insights, 416–427
- host-genetic evidence, 417

Genomic diversity
- clinical translation of host genomic insights, 429–430
- epidemiology of TB, 429
- future prospects, 427–430
- genome-wide association studies (GWAS), 418–419, 427
- host “omics” in TB, 414
- host-pathogen coevolution, 429
- identification of genetic variants with TB, 416–419
- in intrapatient, 479–480
- biological impact of, 480
- infection in macrophages, Mycobacterium tuberculosis, 425
- Mendelian susceptibility to mycobacterial disease (MSMD), 413, 415, 416
- M. tuberculosis infection in macrophages, 416–427
- phenotype definitions, 429
- population-specific associations, 428
- predictive tools, 429–430
- role of Mendelian randomization studies, 430
- sequence-based approaches to identifying loci, 428
- therapeutic tools, 430
- transcriptomic assays, 430
- transcriptomic studies of TB, 414, 419, 427
- twin studies, 413, 415
- GeneXpert MTB/RIF technology
- background, 391
- challenges and opportunities during national implementation, 394–396
- cumulative risk curves, 405
- expansion in other countries, 399
- failures in, 399
- financial modeling, 398
- future for, 401, 405
- historical context of national implementation, 391–396
- impact on diagnostics, 399–401
- impact on national programs, 396–398
- innovations in South Africa, 397
- nucleic acid amplification testing (NAAT) strategies, 390, 391, 392
- procurement strategies, 398
- South African national implementation of, 416–427
- treatment outcomes, 401, 402–404
- Xpert Omni, 392, 401, 405
- Xpert ULTRA, 392, 395, 397, 401
- GeneXpert Omni, 365
- Genome-wide association studies (GWAS)
- host-genetic evidence, 417

revisiting heritability in post-GWAS era, 416
- TB susceptibility, 413, 418–419, 427
- Genomics, see Genetics and genomics
- Genotype, 671
- GLXoSmathkline, 199
- Global TB epidemic, 389–390
- Glutamate auxotroph, 705–706
- Glutamine synthetase, 705
- Goats, experimental infection of, 177, 178–179
- Gordonia atitidis, 498
- Granulocyte-macrophage colony-stimulating factor (GM-CSF), 144
- Granulocytes, M. tuberculosis infection, 14–16
- Granulomas
- development, 680–681, 684, 687
- guinea pig model, 152
- in vitro models, 549–550
- lung of human with primary tuberculosis, 118, 120–121
- morphological features of, 533
- M. tuberculosis infection, 217, 636
- progressive cavitating, 126
- restricting M. tuberculosis movement, 35–36
- term, 16
- Granulomatous inflammation, 123
- Guinea pigs, 150–153; see also Animal models
- animal model, 132
- anti-TB treatment, 86
- BCG vaccination, 86
- devices for aerosol exposure, 147
- gating host cells from lung, 153
- granulomas in lungs, 118, 124, 126
- human-to-guinea pig transmission, 153
- immunopathology of, 152
- magnetic resonance imaging of infected lungs, 155
- preclinical efficacy models, 282
- response to infection, 123, 124, 154
- TB disease progression, 122
- Treg cells in, 80, 85–86
- vaccines, 153–154

H
- H37Rv strain of Mycobacterium tuberculosis, 166, 167, 168, 170, 172, 215
- Helicobacter pylori, 178–179
- Heritability, see Genetics and genomics
- Heterogeneity, see Phenotypic heterogeneity
- Histidine auxotroph, 703
- HIV-1 (human immunodeficiency virus type 1)
- functional impairment of CD4 T cells, 250–251
- heterogeneity at site of M. tuberculosis disease, 247
- immunity to TB, 50
- infected people, 239
- interferons and, 39
- mediating immunosuppression, 239–241
- M. tuberculosis infection risk, 172, 475
- replication at site of M. tuberculosis disease, 245–247
- tuberculosis epidemic and, 389
- tuberculosis resurgence, 222
- HIV-TB-associated immune reconstitution inflammatory syndrome (IRIS)
- acquired immunity and TB-IRIS, 255–256
- hypercytokinemia in TB-IRIS, 233, 251
- innate immunity and TB-IRIS, 252–253
- model of innate receptor signaling in TB-IRIS, 254
- HIV-TB coinfection
- acquired immunity, 248–252
- CD4 T cells in, 248–251
- cytotoxic lymphocytes in, 251–252
- dendritic cells in, 244
- dissemination and mycobacteremia in, 248
- immune activation in, 247–248
- immune reconstitution inflammatory syndrome (IRIS), 252–256
- macrophages in, 241–243
- natural killer (NK) cells in, 244–245
- neutrophils in, 243–244
- spectrum of disease in, 240
- Hollow fiber systems diagram, 276
- tuberculosis (TB) model, 275–277
- Host genetic studies, tuberculosis, 429
- Host-mimicking platforms, 685–686
- Host-pathogen coevolution, 428
- Host response, application of animal models, 134–135
- Human immunology of tuberculosis acquisition of M. tuberculosis infection, 213, 215–221
- adaptive responses and spectrum of infection, 217–220
- alveolar macrophages, 215–216
- antibody responses, 219–220, 221
- B cells, 217, 219–220
- biomarkers in human TB, 226–227
- granuloma, 217–218
- immunity to M. tuberculosis, 213
- innate T cells, 216–217
- neutrophils, 216
- progression from infection to TB disease, 222–226
- spectrum of pulmonary TB lesions, 218
- stages of response to infection, 214
- T cells, 217–218
- Human models
- challenge models, 205
- in vitro, 345–346
- Human tuberculosis (TB)
- balance of Treg activity, 77
- cavity formation in lungs, 119, 120
- CD3+ Treg cell subsets in, 77–78
- granuloma in lungs, 118, 120–121
- in vitro expansion of mycobacteria-specific Treg cells, 77–78
- novel TB vaccine candidate MVA85A, 77–78
- post-primary lung reactivation, 124–125
- TB disease progression, 122
- Treg at site of infection, 79–80
- Treg cell responses in, 74–80
INTERLEUKIN-1 CYTOKINE FAMILY, 41–42

In vitro models
granuloma models, 549–550
human, 545–546
investigating MTB infection, 548–550
mouse, 542–544
non-human primate (NHP), 544–545
zebrafish, 550
IPEX syndrome (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome), 73, 74
Isocitrate lyase (Icl), M. tuberculosis infection, 641–647
Isoleucine auxotroph, 704
Isoniazid, 86
animal models for testing, 278–280
drug candidate, 272, 274
drug resistance, 503, 504, 505, 506
guinea pigs, 282
latent TB infection, 285–286
line probe assays for detecting resistance, 367–368
non-human primates, 283–284
phenotypic heterogeneity of M. tuberculosis with, 674, 677
staining of M. tuberculosis, 519, 523
tolerance of infected cells, 639–641
Isoniazid preventive therapy (IPT), HIV, 239

J
Jeffreys, Sir Alec, 455
Johannsen, Wilhelm, 671

K
Kanamycin, drug resistance, 503, 505
Kaplan-Meier analysis, vaccine, 138
Kinyoun, J., 521–522
Koch, Robert, 224, 390, 520
Koch paradox, 519, 523
Koch phenomena, 126

L
Laennec, Rene, 121
Lammers, Meindert H., 581–599
Lansoprazole, TB drug, 300, 305
Latency, definition, 654
Latent TB infection (LTBI), 217, 226, 227, 239, 379, 385–386
human model, 593–594
IGRAs, 381–385
immunological principles underlying IGRA, 382
modeling chemotherapy of, 284–286
mouse model and clinical guidelines, 285
new skin tests, 385
purified protein derivative (PPD)-based TST, 381
testing methods for, 380
Legionella pneumophila, 699, 709
Leishmania, 146
Lentivirus genus, 239
Leucine auxotroph, 704
Levocaboxacin, drug candidate, 272–273

Line probe assays (LPAs)
detecting resistance to anti-TB drugs, 367–368
detecting resistance to second-line anti-TB drugs, 368–369

Linezolid drug candidate, 272
mice, 279
non-human primates, 283
Lipidomics, 683–684
Lipid synthesis, 332–334
Lipid utilization, M. tuberculosis in macrophages, 644, 647
Lipoarabinomannan (LAM)
 improving detection, 369
rapid urine test, 366
Lipid liquid culture, TB diagnostics, 364
Listeria monocytogenes, 102, 203, 609, 611, 699, 709
Little, Clarence, 143
Loop-mediated amplification test, 365–366
Low oxygen recovery assay (LORA), 323
Lung, 3–6
cellular components, 4–5
M. tuberculosis interaction with, 6–16
mucus and surfactant, 5
pathology of C3HeB/Fej mice, 281
post-primary reinfection, 124–125
post-primary TB in human, 125–127
schematic of, 4
soluble components in surfactant
hypophase, 5–6
spectrum of human pulmonary TB lesions, 218
Lung macrophages, 4–5
cell death, 11
release of exosomes, 10–11
Lymphotactin (XCL1), 144
Lysine auxotroph, 703–704

M
Macaca fascicularis (cynomolgus macaque), 163, 172
Macaca mulatta (rhesus macaque), 163, 173
Macaque models
Golden Age of TB research, 163, 165
historical use of, 163–165
M. tuberculosis/simian immunodeficiency virus coinfection, 171–172
TB drug evaluation, 170–171
TB pathogenesis study, 171
TB vaccine evaluation, 167, 170
Treg cells in macaques, 86–87
validation of, 163
Macrophages, see also Mycobacterium tuberculosis in macrophage
Mycobacterium tuberculosis–macrophage biology
basic principles of macrophage biology, 546–548
cell death, 11
exosome release from, 10–11
HIV-TB coinfection, 241–243
human in vitro models, 545–546
lung, 4–5
mouse in vitro models, 542–544
M. tuberculosis and, 541–542
M. tuberculosis growth in, 700–701
Non-human primate models (Continued) preclinical efficacy models, 283–284 rhesus macaques, 165, 166, 168 Treg cells in, 80, 86–87 validation of macaques in TB research, 163 Nonreplicating (NR) models, selecting and designing, 323, 324 Nonreplicating persistence (NRP) M. tuberculosis physiology for, 567–571 sensing when to exit NRP, 571–572 Nonreplication, diversity in, 319–321 Nontuberculous mycobacteria (NTM), 495 Nuclease (NAAT), 495 Nucleic acid amplification testing (NAAT), 495 OXO
Offoxacin, drug resistance, 505 Oxford University, 200 Oxidative phosphorylation 506
Ofloxacin, drug resistance, 505 Oxford University, 200 Oxidative phosphorylation growth reactivation, 301–302 M. tuberculosis, 295 P
Thioridazine, 297, 299
Threonine auxotroph, 704
Time-lapse microscopy, 684–685
Tissue remodeling, tuberculosis (TB), 225
Toll-like receptor 9 (TLR9), 4
Toll-like receptors (TLRs), 7–8, 39, 145
Trained immunity, 13, 17, 107
Transcriptional profiling, M. tuberculosis in macrophages, 636–638
Transcriptome studies, 674, 683–684
Transcriptomic profiling, biomarkers, 226–227
Transforming growth factor β (TGFβ), 48
Transgenic mice, 145
TrzSH screening method, 704
Treatment outcomes, impact of GeneXpert
MTB/RIF, 401, 402–404
Trifluoperazine, 299, 300
Trudeau, E. L., 131
Tryptophan auxotroph, 704–705
Tuberculosis (TB), 6, 27, 28, 350, 361, 389–390
Tuberculin skin testing (TST), 213, 214, 215, 220, 221, 225
administering and reading TST, 381
latent TB infection, 380
purified protein derivative (PPD)-based
latent TB infection, 380
administering and reading TST, 381
Vitamin B5 (pantothenate), 706
Vitamin B6 (pyridoxamine), 706–707
Vitamin B7 (biotin), 707
Vitamin B9 (folate), 707
Vitamin B12 (cobalamin), 707–708
Vitamin D deficiency, 223
Vaccines, vaccine candidates, 197, 198, 202
Vaccination
adjunctive therapeutic vaccination, 196–197
anti-TB vaccine design, 39
biomarkers in human, 226–227
diabetes mellitus, 222–223
diversity, 680
global epidemic, 389–390
HIV-1 heterogeneity at site of disease, 247
HIV-1 replication at site of disease, 245–247
HIV and, 172, 222
lung, 3–6
malnutrition, 223–224
necrotizing lesions in active pulmonary,
196–197
positive and negative roles of chemokines
in, 36
positive and negative roles of cytokines
in, 35
post-primary, 119–121, 123–127
preventing recurrent TB, 196–197
prevention of disease, 195–196
progression from infection to disease, 222–226
proposed framework for spectrum of
infection, 380
protective memory against, 96–97
risk factors for, 222
systems biology of, 429
targeting replisome for new drug
development, 595–596
Treg cell responses in human, 74–80
vaccine, 40, 43, 45, 46, 49
vaccine development strategies, 197–198
vitamin D deficiency, 223
Tuberculosis (TB) vaccination
animal models, 80
guinea pig model, 86
mouse models, 83–84
Tumor necrosis factor alpha (TNFα), 34–37
roles in TB, 35
Type I interferons (IFN-γ), tuberculosis, 224
University of Pittsburgh, 166–167, 171
University of Zaragoza and Biofabri, 202
Urine lipoarabinomannan rapid test, 366
U.S. Department of Agriculture, 139
U.S. Food and Drug Administration
(FDA), 382
Vaccines, vaccine candidates, 197, 198, 202
Vaccination
adjunctive therapeutic vaccination, 196–197
BCG and disease protection, 194
clinical trials of TB candidates, 197–203
M. tuberculosis, 95–96
prevention of M. tuberculosis infection,
193–195
prevention of recurrent TB disease,
196–197
prevention of TB disease, 195–196
Vaccine candidates, 198
Ad5Ag85A, 201
Crucell Ad35, 201
DAR-901, 202
development strategies, 197–198
experimental medicine role in
development, 203–206
global clinical pipeline of, 198
H1:IC31 and H1:CAF01, 198
H4:IC31, 199
H56:IC31, 198–199
ID93+GLA-SE, 199
inactivated whole-cell and fragmented TB
vaccines, 202
M72/AS01E, 199–200
MTBVAC, 202–203
MVA85A, 200–201
Protein-adjuvant TB vaccines, 198–200
recombinant mycobacterial vaccines,
202–203
RUTI, 202
secA2 mutant as, 619–620
TB/Flu-04L, 202
Vaccace, 202
VAP 1002, 203
VPM 1002, 203
Vaccines, vaccine candidates
Ad85A (human adenovirus 5 expressing
Ag85A), 181–182
animal models and testing protocols,
136, 137
animal models for assessment of, 135
antibody-inducing, 220
BCG protection, 40, 43, 45, 46, 49, 220
BCG vaccination in animals, 100
BCG vaccination in guinea pigs, 86
BCG vaccination in humans, 76, 100
BCG vaccination in mice, 83–84
biomarkers correlating disease
severity, 184
biomarkers predicting efficacy, 182
guinea pig model, 153–154
macaque models of evaluating TB vaccine,
167, 170
mechanism of protection, 136
memory immunity by novel TB, 107–108
Mycobacterium bovis bacillus Calmette-
Guérin (BCG), 95, 117, 179–180
new-generation TB, 180–182
novel TB candidate MVA85A, 77–78, 96,
104, 108, 200–201
predictivity of animal models, 137–138
proof of concept for, 194, 196, 203–206
role of experimental medicine in vaccine
development, 203–206
schedules of BCG and virally vectored,
183–184
types of new, tested in cattle, 181
Vakzine Projekt Management GmbH, 203
Valine auxotroph, 704
Valinomycin, 297, 298
Vertex Pharmaceuticals, 643
Vibrio cholerae, 465
Viral-vectored vaccines, 200–202
Vitamin B5 (pantothenate), 706
Vitamin B6 (pyridoxamine), 706–707
Vitamin B7 (biotin), 707
Vitamin B12 (folate), 707
Vitamin B12 (cobalamin), 707–708
Vitamin D deficiency, 223
Wallgren, Arvid, 215
Wayne model, hypoxia, 318, 323, 325
Whole-genome sequencing (WGS)
emergence of, 495
M. tuberculosis L2 Beijing sublineage,
500
resistant strains, 502, 506–507
World Health Organization (WHO), 193,
226, 239
global TB epidemic, 389–390
line probe assay recommendations,
368–369
TB disease control, 379, 533
TB screening, 363, 364
X
XLAAD (X-linked autoimmunity allergic
disregulation syndrome), 73
Xpert MTB/RIF, see also GeneXpert
MTB/RIF technology
background of, 391
diagnostics for TB, 365, 368
maximizing impact of new diagnostics,
371, 373–374
timeline of availability, 374
Y
Yersinia pseudotuberculosis, 674
Z
Zebrafish
animal models, 133, 685, 686
granuloma formation, 135
in vitro model, 530
M. marinum, 36, 133, 699
Ziehl, F., 520
ZN (Zielh-Neelsen) stain, 519; see also AF
(acid-fast) mycobacteria
clinical diagnosis of TB, 522–523
history of acid-fast (AF) staining, 520–522
M. tuberculosis, 521, 528