the
FUNGAL
KINGDOM
the
FUNGAL
 KINGDOM

Edited by

Joseph Heitman
Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina

Barbara J. Howlett
School of Biosciences, The University of Melbourne, Victoria, NSW, Australia

Pedro W. Crous
CBS-KNAW Fungal Diversity Centre, Royal Dutch Academy of Arts and Sciences, Utrecht, The Netherlands

Eva H. Stukenbrock
Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany, and Max Planck Institute for Evolutionary Biology, Plön, Germany

Timothy Y. James
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan

Neil A. R. Gow
School of Medical Sciences, University of Aberdeen, Fosterhill, Aberdeen, United Kingdom
Contents

SECTION I

Fungal Branches on the Eukaryotic Tree of Life / 1

1 The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies / 3
 Joseph W. Spatafora, M. Catherine Aime, Igor V. Grigoriev, Francis Martin,
 Jason E. Stajich, and Meredith Blackwell

2 Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases / 35
 László G. Nagy, Renáta Tóth, Enikő Kiss, Jason Slot, Attila Gácsér,
 and Gábor M. Kovács

3 What Defines the “Kingdom” Fungi? / 57
 Thomas A. Richards, Guy Leonard, and Jeremy G. Wideman

4 Fungal Diversity Revisited: 2.2 to 3.8 Million Species / 79
 David L. Hawksworth, and Robert Lücking

5 Microsporidia: Obligate Intracellular Pathogens within the Fungal Kingdom / 97
 Bing Han and Louis M. Weiss

SECTION II

Life of Fungi / 115

6 Fungal Sex: The Ascomycota / 117
 Richard J. Bennett and B. Gillian Turgeon

7 Fungal Sex: The Basidiomycota / 147
 Marco A. Coelho, Guus Bakkeren, Sheng Sun, Michael E. Hood,
 and Tatiana Giraud

8 Fungal Sex: The Mucoromycota / 177
 Soo Chan Lee and Alexander Idnurm

9 Sex and the Imperfect Fungi / 193
 Paul S. Dyer and Ulrich Kück

10 Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi / 215
 Asen Daskalov, Jens Heller, Stephanie Herzog, André Fleißner,
 and N. Louise Glass

11 Cell Biology of Hyphal Growth / 231
 Gero Steinberg, Miguel A. Peñalva, Meritxell Riquelme, Han A. Wösten,
 and Steven D. Harris
12 The Fungal Cell Wall: Structure, Biosynthesis, and Function / 267
Neil A. R. Gow, Jean-Paul Latge, and Carol A. Munro

13 Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi / 293
Lynne Boddy and Jennifer Hiscox

14 Long-Distance Dispersal of Fungi / 309
Jacob J. Golan and Anne Pringle

15 The Mycelium as a Network / 335
Mark D. Fricker, Luke L. M. Heaton, Nick S. Jones, and Lynne Boddy

SECTION III
FUNGAL ECOLOGY / 369

16 The Geomycology of Elemental Cycling and Transformations in the Environment / 371
Geoffrey Michael Gadd

17 Ecology of Fungal Plant Pathogens / 387
Aad J. Termorshuizen

18 Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats / 399
Frank H. Gleason, Bettina Scholz, Thomas G. Jephcott, Floris F. van Ogtrop, Linda Henderson, Osu Lilje, Sandra Kittelmann, and Deborah J. Macarthur

SECTION IV
HOW FUNGI SENSE THEIR ENVIRONMENT / 417

19 Nutrient Sensing at the Plasma Membrane of Fungal Cells / 419
Patrick van Dijck, Neil Andrew Brown, Gustavo H. Goldman, Julian Rutherford, Chaoyang Xue, and Griet van Zeebroeck

20 The Complexity of Fungal Vision / 441
Reinhard Fischer, Jesus Aguirre, Alfredo Herrera-Estrella, and Luis M. Corrochano

21 Stress Adaptation / 463
Alistair J. P. Brown, Leah E. Cowen, Antonio Di Pietro, and Janet Quinn

22 Thigmo Responses: The Fungal Sense of Touch / 487
Mariana Cruz Almeida and Alexandra C. Brand

23 Melanin, Radiation, and Energy Transduction in Fungi / 509
Arturo Casadevall, Radames J. B. Cordero, Ruth Bryan, Joshua Nosanchuk, and Ekaterina Dadachova

24 Making Time: Conservation of Biological Clocks from Fungi to Animals / 515
Jay C. Dunlap and Jennifer J. Loros

25 Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals / 535
Ronit Weisman

SECTION V
FUNGAL GENETICS AND GENOMICS AS MODELS FOR BIOLOGY / 549

26 Fungal Cell Cycle: A Unicellular versus Multicellular Comparison / 551
Ilkay Dörter and Michelle Momany

27 A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi / 571
Allyson A. Erlendson, Steven Friedman, and Michael Freitag

28 Ploidy Variation in Fungi: Polyploidy, Aneuploidy, and Genome Evolution / 599
Robert T. Todd, Anja Forche, and Anna Selmecki

29 Fungal Genomes and Insights into the Evolution of the Kingdom / 619
Jason E. Stajich

30 Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity / 635
John W. Taylor, Sara Branco, Cheng Gao, Chris Hann-Soden, Liliam Montoya, Iman Sylvain, and Pierre Gladieux

31 RNA Interference in Fungi: Retention and Loss / 657
Francisco E. Nicolás and Victoriano Garre
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Amyloid Prions in Fungi</td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>Sven J. Saupe, Daniel F. Jarosz, and Heather L. True</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi</td>
<td>687</td>
</tr>
<tr>
<td></td>
<td>Eugene Gladyshev</td>
<td></td>
</tr>
<tr>
<td>SECTION VI</td>
<td>FUNGAL INTERACTIONS WITH PLANTS: IMPACT ON AGRICULTURE AND THE BIOSPHERE</td>
<td>701</td>
</tr>
<tr>
<td>34</td>
<td>Plant Pathogenic Fungi</td>
<td>703</td>
</tr>
<tr>
<td></td>
<td>Gunther Doehlemann, Bilal Ökmen, Wenjun Zhu, and Amir Sharon</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi</td>
<td>727</td>
</tr>
<tr>
<td></td>
<td>Luisa Lanfranco, Paola Bonfante, and Andrea Genre</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Lichenized Fungi and the Evolution of Symbiotic Organization</td>
<td>749</td>
</tr>
<tr>
<td></td>
<td>Martin Grube and Mats Wedin</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Fungal Plant Pathogenesis Mediated by Effectors</td>
<td>767</td>
</tr>
<tr>
<td></td>
<td>Pierre J.G.M. de Wit, Alison C. Testa, and Richard P. Oliver</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience</td>
<td>787</td>
</tr>
<tr>
<td></td>
<td>Helen N. Fones, Matthew C. Fisher, and Sarah J. Gurrr</td>
<td></td>
</tr>
<tr>
<td>SECTION VII</td>
<td>FUNGUS AND THE HUMAN HOST / 811</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Fungi that Infect Humans</td>
<td>813</td>
</tr>
<tr>
<td></td>
<td>Julia R. Köhler, Bernhard Hube, Rosana Puccia, Arturo Casadevall, and John R. Perfect</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>The Mycobiome: Impact on Health and Disease States</td>
<td>845</td>
</tr>
<tr>
<td></td>
<td>Najla El-Jurdi and Mahmoud Ghannoum</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Skin Fungi from Colonization to Infection</td>
<td>855</td>
</tr>
<tr>
<td></td>
<td>Sybren de Hoog, Michel Monod, Tom Dawson, Teun Boekhout, Peter Mayser, and Yvonne Gräser</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Fungal Biofilms: Inside Out</td>
<td>873</td>
</tr>
<tr>
<td></td>
<td>Katherine Lagree and Aaron P. Mitchell</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Fungal Recognition and Host Defense Mechanisms</td>
<td>887</td>
</tr>
<tr>
<td></td>
<td>I. M. Dambuza, S. M. Levitz, M. G. Netea, and G. D. Brown</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Antifungal Drugs: The Current Armamentarium and Development of New Agents</td>
<td>903</td>
</tr>
<tr>
<td></td>
<td>Nicole Robbins, Gerard D. Wright, and Leah E. Cowen</td>
<td></td>
</tr>
<tr>
<td>SECTION VIII</td>
<td>FUNGAL INTERACTIONS WITH ANIMALS (FUNGI, INSECTS, AND NEMATODES) AND OTHER MICROBES</td>
<td>923</td>
</tr>
<tr>
<td>45</td>
<td>The Insect Pathogens</td>
<td>925</td>
</tr>
<tr>
<td></td>
<td>Brian Lovett and Raymond J. St. Leger</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Made for Each Other: Ascomycete Yeasts and Insects</td>
<td>945</td>
</tr>
<tr>
<td></td>
<td>Meredith Blackwell</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Nematode-Trapping Fungi</td>
<td>963</td>
</tr>
<tr>
<td></td>
<td>Xiangzhi Jiang, Meichun Xiang, and Xingzhong Liu</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Host-Microsporidia Interactions in Caenorhabditis elegans, a Model Nematode Host</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>Emily R. Troemel</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Bacterial Endosymbionts: Master Modulators of Fungal Phenotypes</td>
<td>981</td>
</tr>
<tr>
<td></td>
<td>Sarah J. Araldi-Bronodo, Joseph Spraker, Justin P. Shaffer, Emma H. Woytenko, David A. Baltrus, Rachel E. Gallery, and A. Elizabeth Arnold</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Necrotrophic Mycoparasites and Their Genomes</td>
<td>1005</td>
</tr>
<tr>
<td></td>
<td>Magnus Karlsson, Lea Atanasova, Dan Funck Jensen, and Susanne Zeilinger</td>
<td></td>
</tr>
</tbody>
</table>
SECTION IX

FUNGI: TECHNOLOGY AND NATURAL PRODUCTS / 1027

51 Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products / 1029
Lene Lange

52 Fungal Ligninolytic Enzymes and Their Applications / 1049

53 Fungi as a Source of Food / 1063
Joëlle Dupont, Sylvie Dequin, Tatiana Giraud, François Le Tacon, Souhir Marsit, Jeanne Ropars, Franck Richard, and Marc-André Selosse

54 Biologically Active Secondary Metabolites from the Fungi / 1087
Gerald F. Bills and James B. Gloer

Index / 1121
Contributors

Jesus Aguirre
Departamento de Biología Celular y del Desarrollo,
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, D.F., Mexico

M. Catherine Aime
Department of Botany and Plant Pathology,
Purdue University, West Lafayette, Indiana

Mariana Cruz Almeida
MRC Centre for Medical Mycology, University of Aberdeen,
School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, Aberdeenshire, United Kingdom

Sarah J. Araldi-Brondolo
School of Plant Sciences, University of Arizona,
Tucson, Arizona

A. Elizabeth Arnold
School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona,
Tucson, Arizona

Lea Atanasova
Institute of Microbiology, University of Innsbruck,
Innsbruck, Austria

Scott E. Baker
Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, and Joint BioEnergy Institute, Emeryville, California

Guus Bakkeren
Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada

David A. Baltrus
School of Plant Sciences, University of Arizona,
Tucson, Arizona

Richard J. Bennett
Molecular Microbiology and Immunology, Brown University, 171 Meeting St., Providence, Rhode Island

Gerald F. Bills
Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, Texas

Meredith Blackwell
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, and Department of Biological Sciences, University of South Carolina, Columbia, South Carolina

Lynne Boddy
Cardiff School of Biosciences, Cardiff University,
Cardiff, United Kingdom

Teun Boekhout
Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands

Paola Bonfante
Department of Life Sciences and Systems Biology,
University of Torino, Torino, Italy

Sara Branco
Département Génétique et Ecologie Evolutives Laboratoire Ecologie, Systématique et Evolution, CNRS-UPS-AgroParisTech, Université de Paris-Sud, Orsay, France, and Dept. of Microbiology and Immunology, Montana State University, Bozeman, Montana

Alexandra C. Brand
MRC Centre for Medical Mycology, University of Aberdeen,
School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, Aberdeenshire, United Kingdom
Contributors

Erin L. Bredeweg
Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington

Alistair J. P. Brown
Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom

Gordon D. Brown
MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom

Neil Andrew Brown
Plant Biology and Crop Science, Rothamsted Research, Harpenden, United Kingdom

Ruth Bryan
Departments of Medicine and Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York

Arturo Casadevall
Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205

Marco A. Coelho
UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal

Radames J. B. Cordero
Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Luis M. Corrochano
Department of Genetics, University of Seville, Seville, Spain

Leah E. Cowen
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada

Ekaterina Dadachova
Fedoruk Center for Nuclear Innovation, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Ivy M. Dambuza
MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom

Asen Daskalov
Department of Plant and Microbial Biology, The University of California, Berkeley, California

Tom Dawson
Institute of Medical Biology, Agency for Science, Technology, and Research, Singapore

Sybren de Hoog
Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands

Ronald P. De Vries
Dept. of Food and Environmental Sciences, Univ. of Helsinki, Helsinki, Finland, and CBS-KNAW Fungal Biodiversity Center and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands

Pierre J. G. M. de Wit
Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands

Sylvie Dequin
SPO, INRA, SupAgro, Université Montpellier, Montpellier, France

Antonio di Pietro
Departamento de Genética, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, Córdoba, Spain

Gunter Doehlemann
Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Cologne, Germany

Ilkay Dörter
Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia

Jay C. Dunlap
Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire

Joëlle Dupont
Institut de Systématique, Evolution et Biodiversité, ISYE - UMR 7205 – CNRS, MNHN, UPMC, EPHE, Musée National d’Histoire Naturelle, Sorbonne Universités, CP39, Paris, France

Paul S. Dyer
School of Life Sciences, University Park, University of Nottingham, Nottingham, United Kingdom

Najla El-Jurdi
Department of Medicine, Division of Hematology-Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio

Allyson A. Erlendson
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon

Reinhard Fischer
Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Microbiology, Karlsruhe, Germany

Matthew C. Fisher
Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, St Mary’s Hospital, London, United Kingdom

André Fleißner
Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
Contributors

Helen N. Fones
Department of Biosciences, University of Exeter, Exeter, United Kingdom

Anja Forche
Bowdoin College, Brunswick, Maine

Michael Freitag
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon

Mark D. Fricker
Department of Plant Sciences, University of Oxford, Oxford, United Kingdom

Steven Friedman
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon

Attila Gácser
Department of Microbiology, University of Szeged, Szeged, Hungary

Geoffrey Michael Gadd
Geomicrobiology Group, School of Life Sciences, Univ. of Dundee, Dundee, Scotland; Lab. of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People’s Republic of China

Rachel E. Gallery
School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona

Cheng Gao
Department of Plant and Microbial Biology, University of California, Berkeley, California

Victoriano Garre
Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia, Spain

Andrea Gencre
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy

Mahmoud Ghannoum
Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, Ohio

Tatiana Giraud
Ecologie Systématicque Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France

Pierre Gladieux
INRA, UMR RGPI, Campus International de Baillarguet, Montpellier, France

Eugene Gladyshev
Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts

N. Louise Glass
Department of Plant and Microbial Biology, The University of California, Berkeley, California

Frank H. Gleason
School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW, Australia

James B. Gloer
Department of Chemistry, E331 Chemistry Building, University of Iowa, Iowa City, Iowa

Jacob J. Golan
Department of Botany, Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin

Gustavo H. Goldman
Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil

Neil A. R. Gow
Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom

Yvonne Gräser
Nationales Konsiliarlabor für Dermatophyten, Institut für Mikrobiologie und Hygiene, Berlin, Germany

Igor V. Gregoriev
U.S. Department of Energy Joint Genome Institute, Walnut Creek, California

Martin Grube
Institute of Plant Sciences, University of Graz, Graz, Austria

Sarah J. Gurr
Department of Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom; University of Utrecht, Utrecht, The Netherlands; Rothamsted Research, North Wyke, Okehampton, United Kingdom

Bing Han
Department of Pathology, Division of Tropical Medicine and Parasitology, Albert Einstein College of Medicine, Bronx, New York

Chris Hann-Soden
Department of Plant and Microbial Biology, University of California, Berkeley, California

Steven D. Harris
Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska

David L. Hawksworth
Department of Life Sciences, The Natural History Museum, London, United Kingdom, and Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom

Luke L. M. Heaton
Department of Plant Sciences, University of Oxford, Oxford, and Mathematics Department, Imperial College, Queen’s Gate, London, United Kingdom

Jens Heller
Department of Plant and Microbial Biology, The University of California, Berkeley, California
Linda Henderson
School of Life and Environmental Sciences, Faculty of Science,
University of Sydney, NSW, Australia

Alfredo Herrera-Estrella
Laboratorio Nacional de Genómica para la Biodiversidad,
CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico

Stephanie Herzog
Institut für Genetik, Technische Universität Braunschweig,
Braunschweig, Germany

Kristína Hildén
Division of Microbiology and Biotechnology, Department of
Food and Environmental Sciences, University of Helsinki,
Helsinki, Finland

Jennifer Hiscox
School of Biosciences, Cardiff University, Cardiff,
United Kingdom

Michael E. Hood
Department of Biology, Amherst College, Amherst,
Massachusetts

Bernhard Hube
Department of Microbial Pathogenicity Mechanisms,
Leibniz Institute for Natural Product Research and Infection
Biology, Hans Knöll Institute Jena (HKI), Jena, Germany

Alexander Idnurm
School of BioSciences, University of Melbourne, Parkville,
Victoria, Australia

Daniel F. Jarosz
Department of Chemical and Systems Biology and
Department of Developmental Biology, Stanford University
School of Medicine, Stanford, California

Dan Funck Jensen
Department of Forest Mycology and Plant Pathology,
Uppsala BioCenter, Swedish University of Agricultural
Sciences, Uppsala, Sweden

Thomas G. Jephcott
School of Life and Environmental Sciences, Faculty of
Science, University of Sydney, NSW, Australia

Xiangzhi Jiang
State Key Laboratory of Mycology, Institute of
Microbiology, Chinese Academy of Sciences,
Chaoyang District, Beijing, China

Nick S. Jones
Mathematics Department, Imperial College, Queen’s Gate,
London, United Kingdom

Magnus Karlsson
Department of Forest Mycology and Plant Pathology,
Uppsala BioCenter, Swedish University of Agricultural
Sciences, Uppsala, Sweden

Enikő Kiss
Synthetic and Systems Biology Unit, Institute of
Biochemistry, HAS, Szeged, Hungary

Sandra Kittelmann
AgResearch Ltd., Grasslands Research Centre,
Palmerston North, New Zealand

Julia R. Köhler
Division of Infectious Disease, Boston Children’s Hospital,
Boston, Massachusetts

Gábor M. Kovács
Department of Plant Anatomy, Institute of Biology,
Eötvös Loránd University, and Plant Protection Institute,
Center for Agricultural Research, Hungarian Academy of
Sciences, Budapest, Hungary

Ulrich Kück
Lehrstuhl für Allgemeine und Molekulare Botanik,
Ruhr-University Bochum, Bochum, Germany

Katherine Lagree
Department of Biological Sciences, Carnegie Mellon
University, Pittsburgh, Pennsylvania

Luisa Lanfranco
Department of Life Sciences and Systems Biology,
University of Torino, Torino, Italy

Lene Lange
Technical University of Denmark, Department of Chemical
and Biochemical Engineering, Center for Bioprocess
Engineering, Kgs. Lyngby, Denmark

Jean-Paul Latge
Unité des Aspergillus, Institut Pasteur, Paris, France

François Le Tacon
INRA, Université de Lorraine, UMR1136 Interactions
Arbres-Microorganismes, Laboratoire d’Excellence ARBRE,
Champenoux, France

Soo Chan Lee
South Texas Center for Emerging Infectious Diseases
(STCEID), Department of Biology, University of Texas at
San Antonio, San Antonio, Texas

Guy Leonard
Biosciences, College of Life and Environmental Sciences,
University of Exeter, Exeter, United Kingdom

Stuart M. Levitz
Department of Medicine, University of Massachusetts
Medical School, Worcester, Massachusetts

Osu Lilje
School of Life and Environmental Sciences, Faculty of
Science, University of Sydney, NSW, Australia

Xingzhong Liu
State Key Laboratory of Mycology, Institute of
Microbiology, Chinese Academy of Sciences,
Chaoyang District, Beijing, China

Jennifer J. Loros
Department of Molecular and Systems Biology and
Department of Biochemistry and Cell Biology, Geisel School
of Medicine at Dartmouth, Hanover, New Hampshire
Contribute

Brian Lovett
Department of Entomology, University of Maryland, College Park, Maryland

Robert Lücking
Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Berlin, Germany

Deborah J. Macarthur
School of Science, Faculty of Health Sciences, Australian Catholic University, NSW, Australia

Jon K. Magnuson
Joint BioEnergy Institute, Emeryville, California, and Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington

Miia R. Mäkelä
Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland

Souhir Marsit
SPO, INRA, SupAgro, Université Montpellier, Montpellier, France

Francis Martin
INRA, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d’Excellence Recherches Avancées sur la Biologie de l’Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, Champenoux, France

Peter Mayser
Universitätsklinikum Giessen Hautklinik, Giessen, Germany

Aaron P. Mitchell
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania

Michelle Momany
Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia

Michel Monod
Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland

Liliam Montoya
Department of Plant and Microbial Biology, University of California, Berkeley, California

Carol A. Munro
Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom

László G. Nagy
Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary

Mihai G. Netea
Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands

Francisco E. Nicolás
Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia, Spain

Joshua Nosanchuk
Departments of Medicine and Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York

Bilal Ökmen
Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Cologne, Germany

Richard P. Oliver
Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia

Miguel A. Peñalva
Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, 28040, Spain

John R. Perfect
Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina

Anne Pringle
Department of Botany, Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin

Rosana Puccia
Disciplina de Biología Celular, Departamento de Microbiología, Imunología e Parasitología, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil

Janet Quinn
Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom

Franck Richard
CEFE-CNRS, UMR 5175, Equipe Interactions Biotiques, Montpellier Cedex 5, France

Thomas A. Richards
Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom, and Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada

Meritxell Riquelme
Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, CICESE, Ensenada, Baja California C.P. 22860, Mexico

Nicole Robbins
Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada

Jeanne Ropars
Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
Contributors

Julian Rutherford
Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom

Sven J. Saupe
Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France

Bettina Scholz
Faculty of Natural Resource Sciences, University of Akureyri, Borgir v. Nordurslod, IS 600 Akureyri, and BioPol ehf., Skagaströnd, Iceland

Anna Selmecki
Creighton University, Department of Medical Microbiology and Immunology, Omaha, Nebraska

Marc-André Selosse
Dept. of Plant Taxonomy and Nature Conservation, University of Gdansk, 80-308 Gdansk, Poland, and Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205 – CNRS, MNHN, UPMC, EPHE, Paris, France

Justin Park Shaffer
School of Plant Sciences, University of Arizona, Tucson, Arizona

Amir Sharon
Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel

Jason Slot
Department of Plant Pathology, Ohio State University, Columbus, Ohio

Joseph W. Spatafora
Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon

Joseph Spraker
School of Plant Sciences, University of Arizona, Tucson, Arizona

Raymond J. St. Leger
Department of Entomology, University of Maryland, College Park, Maryland

Jason E. Stajich
Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California–Riverside, Riverside, California

Gero Steinberg
Department of Biosciences, College of Live and Environmental Sciences, University of Exeter, Exeter EX1 1TE, United Kingdom, and Department of Biology, University of Utrecht, Utrecht, The Netherlands

Sheng Sun
Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina

Iman Sylvain
Department of Plant and Microbial Biology, University of California, Berkeley, California

John W. Taylor
Department of Plant and Microbial Biology, University of California, Berkeley, California

Aad Termorshuizen
Soil Cares Research, Wageningen, The Netherlands

Alison C. Testa
Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia

Robert T. Todd
Creighton University, Department of Medical Microbiology and Immunology, Omaha, Nebraska

Renáta Tóth
Department of Microbiology, University of Szeged, Szeged, Hungary

Emily R. Troemel
Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California

Heather True
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri

B. Gillian Turgeon
Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York

Patrick van Dijck
VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, and Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium

Floris F. van Ogtrop
School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW, Australia

Griet van Zeebroeck
VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, and Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium

Mats Wedin
Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden

Ronit Weisman
Department of Natural and Life Sciences, The Open University of Israel, Raanana, Israel

Louis M. Weiss
Department of Pathology, Division of Tropical Medicine and Parasitology, and Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York

Jeremy Wideman
Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
Han A. Wösten
Department of Biology, University of Utrecht, Utrecht, The Netherlands

Emma H. Woytenko
School of Plant Sciences and Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona

Gerard D. Wright
Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada

Meichung Xiang
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China

Chaoyang Xue
Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey

Susanne Zeilinger
Institute of Microbiology, University of Innsbruck, Innsbruck, Austria

Wenjun Zhu
Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
Foreword

Studies attempting to estimate fungal biodiversity mainly serve to underscore the limitations of our current awareness of the likely total number of species—currently estimated to be around 5 million. As environmental organisms, fungi influence the global ecology and the recycling of nutrients in the biosphere and also, both positively and negatively, the viability of many plants and animals. As simple eukaryotes that can be facilely studied and experimentally manipulated, fungi serve as important models that have profoundly influenced our understanding of life by enabling the identification and analysis of conserved mechanisms underpinning the growth, cell division, and death of all eukaryotic cells.

Fungal research is a vibrant and exciting area, but it is often dispersed among distinct scientific communities with different cultures and traditions. The objective of bringing together this broad research portfolio into a book and collection of contemporary reviews is therefore a useful, important, but challenging objective. This ASM-sponsored volume is unusual in uniting a community of mycologists and cell biologists with the common objective of illustrating the state of our understanding of both model fungi and organisms with specific environmental, pathogenic, or biological relevance. The book includes chapters where the focus is at the molecular, cellular, or organismal levels of spatial organization and includes fungi from all the major phylogenetic groupings. The result is an anthology of articles that defines the current trajectory of current research and questions for the next generation of investigators. The authors are leaders in their respective fields, and the editorial style is such that the work has achieved an overview of the field as a whole in a form that is useful both for the specialist and for those seeking understanding in areas in which they may be unfamiliar.

Some of the most profoundly important questions in biology have been explored using fungi, yeasts, and molds—and it is likely that this paradigm will continue into the future. This book should serve to stimulate a new generation of mycologically inclined scientists to investigate the extraordinary diversity and experimental accessibility of members of the mycobiota.

Sir Paul Nurse
The Francis Crick Institute,
London, United Kingdom
Our fascination with the Fungal Kingdom is a natural and ancient one and based on (i) the roles of fungi in the production of a variety of foods and beverages, and even as a source of food themselves; (ii) their global ecological impact, especially as the cause of devastating infections of humans and other animals and of plants, including many crops grown around the world; and (iii) their roles as fundamental model systems in genetics and biological research.

The earliest fascination with fungi likely began with humans across the globe foraging for food sources, often in the context of forests, and the prominent role of mushroom fruiting bodies associated with trees, either as mycorrhizal species on roots of living trees or as wood-degrading fungi on dead plant materials. These mushroom species include popular and delicious edible ones such as porcini, chanterelles, and truffles as well as shiitake, oyster, portobello, and more. In aggregate, the global commercial mushroom market was ~$35 billion US in 2015 and is anticipated to grow to as much as ~$60 billion by 2021. The species named are representatives of just one phylum (the Basidiomycota) within the broader Fungal Kingdom, which is now estimated to include as many as 2.2 to 3.8 million or more distinct species and at least seven phyla (Ascomycota, Basidiomycota, Mucoromycota, Zoopagomycota, Blastocladiomycota, Chytridiomycota, and the Cryptomycota/Rozellomycota).

Interest in fungi also derives from their key roles in the production of other foods and beverages, including the prominent role of the yeast *Saccharomyces cerevisiae* (Ascomycota) in production of beer, wine, Champagne, and bread. Yet other fungi such as *Penicillium chrysogenum* produce natural products like the antibiotic penicillin, which revolutionized medicine and health care and contributed to dramatically prolong the human lifespan by enabling effective treatment of infectious diseases. Finally, pathogenic fungi cause (i) devastating, life-threatening systemic infections of humans and also other diseases including allergies, blindness, vaginitis, and common skin infections including dandruff and athlete’s foot; (ii) widespread infections of animals including the ones that are devastating bat populations in North America and causing extinctions in frog species around the world; and (iii) the majority of infections that occur in plants, including many crop species, which lead to famines and disruptions of food supply with billions of dollars lost in agriculture annually. Whatever your vantage point, the impact of fungi on the biology of our planet, the development of human civilization, and our daily lives and health is writ large.

A few decades ago the position of the Fungal Kingdom within the broader eukaryotic tree of life was unclear, and in many instances it was thought and even taught that the fungi were more closely related to plants than to animals. The overt morphological features of mushrooms likely contributed to this view, along with uncertainty about where to place unicellular microbes within the context of complex multicellular organisms such as animals. But with the advent of molecular phylogenetic studies, the placement of fungi within the eukaryotic tree of life came into sharper focus, and we now appreciate that fungi are much more closely related to animals than they are to plants. This evolutionary kinship is in fact so certain that the Animal Kingdom and the Fungal Kingdom are now appreciated to be sister groups within the broader Opisthokonta supergroup of eukaryotes. This revised phylogenetic placement reveals much about the con-
ervation of molecular mechanisms of life and contributes to making fungi exceptional models to understand the form and function of other eukaryotes, including the Animal Kingdom.

In concert with these advances in molecular phylogenetics and taxonomy, two other fields have revolutionized our understanding of the Fungal Kingdom. First, advances in genetics of fungi have contributed to illuminate their unique and conserved biological properties. Studies on fungi have contributed profound insights as models for all of biology, such as the discovery of RNA interference (RNAi) pathways and how they operate to silence transgenes and protect genome integrity; the detailed mechanisms and operation of a biological clock and the key concept that this involves a molecular oscillator; the first experimental demonstration of DNA sequences that can function as telomeres, centromeres, and eukaryotic origins of replication; the discovery of the first components of the nuclear pore; the description of the secretory pathway and discovery of autophagy; the elucidation of how the cell cycle is orchestrated; the understanding of the impact of both ploidy and aneuploidy on cell functions; insights into how species evolve and species boundaries operate; and the discovery that the mismatch repair system is required for the stability of DNA repeats, leading to insights into how similar mutations lead to colon cancer in humans. Taken together, genetic, genomic, and cell biological studies have brought representatives of the entire Fungal Kingdom of life into focus and thereby made an invaluable contribution to our understanding of how eukaryotic organisms evolved and function. Indeed, seven Nobel prizes have been awarded to scientists studying yeasts and molds as model organisms that explain fundamental aspects of cell biology. These were awarded to Alexander Fleming, Ernst Chain, and Howard Florey in 1945 for the discovery of penicillin by Penicillium notatum; to George Beadle and Edward Tatum in 1958 for their One Gene = One Enzyme hypothesis in Neurospora crassa; to Paul Nurse and Leland Hartwell in 2001 for cell division and cancer in Schizosaccharomyces pombe and Saccharomyces cerevisiae; to Roger Kornberg in 2006 for eukaryotic gene transcription in S. cerevisiae; to Jack W. Szostak (shared) in 2009 for chromosome telomeres in S. cerevisiae; to Randy Schekman in 2013 (shared) for machinery regulating vesicle traffic in S. cerevisiae; and to Yoshinori Ohsumi in 2016 for autophagy in S. cerevisiae.

In concert with advances in genetics, subsequent advances in genome sciences have provided the complete genome sequences for an increasing number of fungal species, now >1,000, and in some species a staggering number of individual representative genomes (500 or more). In fact, a fungal species was the first eukaryotic organism to have its genome completely sequenced (the model budding yeast S. cerevisiae). Second, advances in genetics and cell biology have contributed to provide a detailed view of how the genome contributes to the functions of the cell and of the organism. Together, these advances in genomics and genetics provide a “blueprint” for how these species operate and have evolved at a cellular level, and consequently they offer a wealth of knowledge about how representative species in the fungal kingdom function and the diversity that lies within. This diversity spans from the most basic way that a fungal cell is organized, either as a yeast or as a filamentous hypha, to the myriad ways these species interact with their environment, from the aquatic basal fungi (Chytridiomycota, Cryptomycota), to fungi that are associated with plants and were critical for their emergence from the oceans and colonization of the planet, to fungi that are pathogens of plants or animals. This diversity also extends to the biological behavior and cell biology of fungi, including for example fungi that can sense light and those that have evolved to be insensitive to light (blind), the modes of sexual reproduction including heterothallism and homothallism, the loss and retention of RNAi pathways, the replacement of regional centromeres by point centromeres, and the retention of flagella in basal fungi versus their loss in fungal branches that evolved the ability to be aerially dispersed.

Given the rapidly advancing fields of fungal genetics and genomics, and mycology more generally, we increasingly found ourselves in need of a compendium to organize this information and to serve as a reference to guide both our own efforts and those of others whose research focuses on or interfaces with fungi. We have assembled a team of six editors with complementary and diverse interests and enlisted a cadre of 170 experts in the field who as authors have contributed the 54 chapters that comprise The Fungal Kingdom. We have organized the book into nine different sections to present related material together and provide a framework for organization. Each chapter is designed to be self-contained, such that any reader may choose to read any given chapter in isolation or a series of related chapters from one section. At the same time, the book has a coherent theme of focusing on the diversity, importance, impact, dangers, and beauty of the fungi and could therefore be read as a continuous text. As modes of publication have advanced, this book is also an experiment in that it is available as a hard copy printed volume, as an electronic book, and as individual chapters available electronically or in their published form as part of the Microbiology Spectrum journal from ASM Press.
It is our hope, and our goal and intention, that this book both takes stock of the current state of knowledge in the field and also spurs further investigations into topics of interest that stem from the information contained herein. We invite you to peruse the current state of knowledge here and hope these musings spur you to join us in further advancing the field. We also invite you to communicate to us your experiences with the book. It is our fervent hope that advances over the next several decades will ultimately render this book out of date, and therefore in need of revision or replacement, as the field advances.

In closing, we would like to thank the numerous individuals who have contributed to advance our understanding of the Fungal Kingdom and, by extension, to the stimulation and realization of this text. We wish to dedicate this effort to the scientific mentors who trained and inspired us, and also to our significant others, children, and families, without whose forbearance and tolerance this effort would not have been possible. Finally, we thank our tireless ASM editors, Greg Payne, Lauren Luethy, and Ellie Tupper, who with administrative assistance from Melissa Palmer made this text possible through their indefatigable and enthusiastic efforts.

Joseph Heitman
Barbara J. Howlett
Pedro W. Crous
Eva H. Stukenbrock
Timothy Y. James
Neil A. R. Gow
Editors

Joseph Heitman, M.D., Ph.D., is James B. Duke Professor and Chair, Department of Molecular Genetics and Microbiology, Duke University. His research focuses on model and pathogenic fungi, including mating-type locus evolution, transitions in sexual reproduction modes, fungal virulence, and genome evolution. His work discovered FKBP12 and TOR as the targets of rapamycin and unisexual reproduction. He is fellow of the American Society for Clinical Investigation, American Academy of Microbiology, AAAS, and Association of American Physicians and received Burroughs Wellcome, AMGEN, Squibb, and NIH MERIT awards. He is an editor or board member for numerous journals and has edited seven textbooks.

Barbara Howlett, Ph.D., is an Honorary Professor in the School of Biosciences, the University of Melbourne. She studies blackleg, a fungal disease of canola. She has exploited a “genome to paddock” approach: identifying fungal genes and genetic mechanisms crucial for disease, and developing disease management strategies that are now implemented by Australian canola growers. She also has discovered biosynthetic pathways for fungal toxins involved in diseases of both plants and animals. Howlett is a Fellow of the American Academy of Microbiology, the Australian Academy of Science, and the Australasian Plant Pathology Society and an Honorary Member of the American Mycological Society.

Pedro W. Crous, Ph.D., D.Sc., is professor in evolutionary phytopathology at the Universities Wageningen and Utrecht, the Netherlands, where he is presently the Director of the Westerdijk Fungal Biodiversity Institute. His main research interests are fungal systematics and the characterization of fungal plant pathogens. To coordinate global research on fungal biodiversity, he launched MycoBank, is the author of several thousand fungal taxa, and is a key role player in DNA barcoding of fungi. He is an editor or board member for numerous journals and has authored or edited several textbooks.

Eva H. Stukenbrock, Ph.D., is a Max Planck professor at the Christian-Albrechts University of Kiel and the Max Planck Institute for Evolutionary Biology, Plön, Germany. Her research focuses on population biology and evolution of plant-associated fungi. Work in her group integrates evolutionary genomics with experimental and molecular approaches. She received her Ph.D. from the ETH Zurich, Switzerland, and established her independent line of research at Aarhus University, Denmark. Since 2010 she has been affiliated with the Max Planck Society in Germany, first as a research group leader and since 2014 as Max Planck fellow.

Timothy Yong James, Ph.D., is an Associate Professor in the Department of Ecology and Evolutionary Biology at the University of Michigan and the Lewis E. Wehmeyer and Elaine Prince Wehmeyer Chair in Fungal Taxonomy. His research interests include resolving the fungal tree of life and the structure of genetic variation within genomes, individuals, and populations. His research organisms span the fungal tree, with emphasis on the zoosporic fungi or chytrids. He is an Associate Editor of the journal Mycologia and recipient of the Alexopoulos Prize from the Mycological Society of America.

Professor Neil A. R. Gow, Ph.D., has research interests in medical mycology and in particular the structure and function of the fungal cell wall in relation to host-pathogen interactions. He is a founding member of the Aberdeen Fungal Group (AFG), which was established as the MRC Centre for Medical Mycology at the University of Aberdeen, United Kingdom. He has served as president of the British Mycological Society, the International Society for Human and Animal Mycology, and the Microbiology Society and has been elected as a FAAM, FRS, FRSE, and FMedSci.
Index

1000 Fungal Genomes Project, 166

A
Acanthamoeba, 58, 59
Accessory chromosomes, 787, 796
Acetyltransferases and deacetylases, new antifungal target, 912–913
Adaptive cell therapies, immune-based therapy, 896
Adaptive immunity, dermatophytes, 859–860
Adaptive potential, 787
Adhesins, 276
Agaricomycotina, 24–26, 147, 946
 genome size and gene count, 622
 genomic organization, 154
 phylogeny of, 150
Agriculture
 fungal model systems, 704–706
 impact of fungal pathogens on, 703–704
 threats from emerging fungi, 804
AGRITRUFFE society, 1076
Agrobacterium tumefaciens, 998
Amoebophelidium gibberosa, 350
Agro-ecosystem, 787
AIDS (acquired immunodeficiency syndrome), 97, 98, 819, 829, 1099
Aisworth & Bisby’s Dictionary of the Fungi, 81
Animal diseases, see also Fungal disease
 amphibian chytridiomycosis, 792–793
 Batrachochytrium dendrobatidis and B. salamandrivorans, 792–793
 Amphiphilic B, 906–907
 Anamorphic, 187
Anaploid
 changes during in vivo evolution, 610–611
 in context of experimental evolution, 608–611
 fungal genetic variation, 638–639
 impact of cancer biology, 612
 methods for detection of, 600
 molecular detection of, 601
Anastomosis
 azoles, 904, 905, 906, 907
 calcineurin, 911
 chemical-genetics approaches, 914–915
 classes of, in clinical use, 904–906
 combination therapy, 913–914
 compounds with antifungal activity, 908
 development of improved agents, 906–907, 908
 echinocandins, 905, 906, 907
 farnesyltransferase, 910–911
 fungal sphingolipids, 909–910
 GPI anchor biosynthesis, 910
 Hsp90, 911–912
 mechanisms of action, 905
 new targets in development, 909–913
 outlook for, 915
RNA interference (RNAi), 658
Batrachochytrium salamandrivorans, 792–793
Bat white nose syndrome (Pseudogymnoascus destructans), 793–794
Beauveria, 18, 925, 927
Beauveria bassiana, 926, 928
Beauveria, 18, 925, 927
Bat white nose syndrome
Malassezia
Berberis
Behavioral fever, 814
Biofilms
Bioethanol, fungal yeasts for, 1036
Biodiversity hot spots, 88–89
Biological clocks,
Biopolymer,
Biomineralization, 374
Biomass recycling
inclusion in continuum models, 354–355
mycelial network, 345–346
Biomineralization, 374
Biopolymer, see Lignin
Biorefinery
advanced biofuels, 1037
future perspectives, 1042–1043
lignocellulose processing, 1034
schematic overview of, 1030
Biotechnology
CDNA library screening, 1040–1041
enzymes by GMO production
strains, 1040
fungi as gene donors, 1038–1039
importance of fungi in, 1029
Biotrophs
effectors, 714–715, 770–771
plant pathogenic fungi, 708–709
Bioweathering, 373–374
Bipolar breeding systems
Basidiomyctca, 160–165
Cryptococcus spp. and Trichosporon, 161–162
homothallism in Basidiomycota, 163–165
Malassezia, 161
Microbotryum, 162–163
Bipolaris maydis, 19
Bipolarity, 167
Black, O. M., 1092
Black truffles
Blastomyces dermatitidis
Blastocladiomycota, 4, 5, 6, 8
Blastocladiella emersonii, 444
Blastocladiomycota, 4, 5, 6, 8
Blastomyces dermatitidis, 39, 40
cell walls, 269, 280
stress, 464
Blattabacterium, 955
Blumeria, 22
Biochemistry, Malassezia species, 864–865
Biodiversity hot spots, 88–89
Bioethanol, fungal yeasts for, 1036
Biofilms
adherence of, 874–877
agglutinin-like sequence (Als) structure, 875
cell walls, 270
confocal imaging of C. albicans
biofilms, 874
conserved features of, 882
dispersal of cells, 878
drug resistance and persistence, 878–879
extracellular matrix material, 873, 877–878
future research, 882–883
gene expression, 879–881
gene regulation, 881–882
infection and, 873
inside of, 873
Biological clocks, see Circadian rhythms
Biologically active metabolites, see Secondary metabolites
Biomass conversion
discovery and optimization of genes for, 1040–1041
discovery and production of fungal enzymes for, 1037–1042
enzyme discovery from nature, 1039
enzymes in Fungi kingdom, 1031–1032
fungal enzyme production by heterologous expression, 1037–1038
fungal enzymes for, 1029–1030
fungi as gene donors, 1038–1039
future perspectives for, 1042–1043
monocomponent enzymes by GMO production strains, 1040
mycological perspectives, 1043
next-generation sequencing revolutionized enzyme discovery, 1041–1042
protein engineering to improve enzymes for, 1041
role of fungi in, 1029–1032
schematic of biorefinery, 1030
Biomass recycling
inclusion in continuum models, 354–355
mycelial network, 345–346
Biomineralization, 374
Biopolymer, see Lignin
Biorefinery
advanced biofuels, 1037
future perspectives, 1042–1043
RNA interference (RNAi), 657, 662
ubiquitin-mediated response to N. parisi infection, 978
variation in host resistance to microsporidia, 978–979
CAFE error, 97–88
Cicckineuin, new antifungal target, 911
Cancer
impact of ploidy and aneuploidy on biology of, 612
role of mycobiome in, 849
Candida spp., 38, 40, 117
biofilms, 270
centrochromatin, 583–584
centromeres, 582–583
gastrointestinal mycobiome, 846
hepatitis B virus, 847–848
homothallic mating in, 124–126
human immunodeficiency virus, 847
inflammatory bowel disease, 848–849
opportunistic of humans, 816, 824–826
oral mycobiome, 846
parasexual reproduction in, 126
pheromone signaling, 125
sexual reproduction in, 124–126
Candida albicans, 17, 40, 120, 132, 193
amino acid sensing in, 423–424
aneuploidy, 638
antifungal drugs, 903, 905, 909–915
biofilms of, 873–883
carbon sensing, 420–421
cell wall proteins, 274–276
cell walls, 268, 269
chitin synthesis, 279
confocal imaging of C. albicans
biofilms, 874
contact-induced behavior, 487, 496–497, 499–502
experimental evolution studies, 609
extracellular mucin receptors in, 431
genome instability in polyploid cells, 605–606
GPCR-mediated amino acid sensing by, 428–429
GPCR-mediated carbon sensing, 427–428
hyphal growth, 234
immune response, 890–891, 892–893
infecting human, 814–816, 824–826
loss of heterozygosity, 640
mating in, 202–203
melanins, 509
nitrogen-sensing proteins, 422
organization of MAT locus, 130
pheromone signaling, 135
ploidy variation, 599, 601
polysaccharides, 272
replication, 572, 574
septation, 277, 278, 279
stress, 464–472, 474–477
target of rapamycin (TOR), 536–538, 541–542
transceptor-mediated amino acid sensing in, 425–426
transceptor-mediated carbon sensing in, 424
tyrosol by, 1097, 1099
Candida auris, 17
Candida dubliniensis, 40
Entomophthorales, lineage infecting humans, 814
Entomophthoromyces, 927–929, 933, 935
Entomophthoromycotina, 12
Environment, see also Geomycology
fungal biology, 981–982
Environmental sequencing techniques, 86–88
Enzyme production
biorefineries, 1037
discovery and optimization of genes for, 1040–1041
discovery from nature, 1039
fungal GMO production strains, 1040
fungi as gene donors, 1038–1039
heterologous expression in fungal production hosts, 1037–1038
next-generation sequencing in, 1041–1042
protein engineering improving, 1041
Exocytosis, 241
Exobasidium, 23
Exocytosis, 241; see also Hyphal growth
early endosomes, 231
molecular machinery for early endosome motility, 241–243
multiple functions for fungal EEs, 243–245
role of early endosomes in endocytic pathway, 243–244
Exophiala dermatitidis, 40, 510
Extinction/extirpation, 787
Extracellular matrix, in biofilms, 877–878, 879

F
Faculative heterochromatin, 578–579, 580, 581
Farnesol, 1097, 1099–1100
Farnesyltransferase
manumycin A, 908, 910
new antifungal target, 910–911
Fassi, Bruno, 1076
Faulconer, Anna, 1076
Fonsecaea monophora, 298, 299, 300
Fonsecaea monophora, 892
Fontana, Anna, 1076
Fornicula, 63–64
Food source, fungi as, 1063, 1077
baker’s yeast, 1069–1070
black truffles, 1074–1077
brewing yeasts, 1070–1074
cheese, 1064–1065
wine fermentation, 1067–1069
yeasts, 1065–1074
Frank, A. B., 1075
Fred Hutchinson Cancer Research Center, 850
Freshwater phytoplankton, parasites of, 406–408
Fries, Elias Magnus, 25, 79
Fruiting bodies, 41–43
development of fungal, 42–43
diversity of, 41–42
evolution of, 41–42
generic bases of development, 43
Fumagillin, 1091
Fungal biofilms, see Biofilms
Fungal biology, 981–982
Fungal cell walls, 58–59, 267; see also
Cell walls
biofilms, 270
biosynthesis of mannan and decorating polysaccharides, 272–274
biosynthesis of polysaccharides, 270
cell wall proteins, 274–276
cell wall salvage response, 277, 278
core polysaccharides, 270, 272
gene families functioning in, 59
melanins, 274
regulation of polarized growth, 279–280
regulation of septation, 277, 279
structural organization of, 268, 269, 270
synthesis and remodeling of β-(1,3) glucan, 270, 271
as target, 280–284
Fungal dimorphism
plant pathogenic, 40–41
switching between yeast and hyphal stages, 39–40
Fungal disease, see also Animal diseases;
Crop plant diseases
anthropogenic factors promoting emergence of new invasive, 800–802
chestnut blight and Dutch elm disease, 789–790
diseases of animals, 792–795
diseases of crop plants, 790–792
ergotism and witchcraft, 788–789
diseases of crops, 790–792
event examples of emerging infectious, 790–795
factors promoting emergence of new invasive, 796, 797, 799–800
historical importance of, 788–790
Panama disease, 799, 802
terms, 787–788
threats to agriculture from emerging, 804
threats to natural ecosystems from emerging, 802–804
Fungal diversity, 68–71
biodiversity hot spots, 88–89
cryptic species, 89
environmental sequencing techniques, 86–88
existing reference collections, 89–90
extrapolations based on plant-fungus ratios, 83, 86
little-explored habitats, 89
locations of undescribed fungi, 89–90
patterns in taxon discovery, 82
publication rates of new taxa, 79–82

Index
species recognition studies, 82–83, 84–85 toward a working number of global species, 90–91
Fungal ecology, 27 colonization, 293–299
community development, 296–299 competition, 299–304
Fungal enzymes, see also Cellulolytic enzymes; Cell wall-degrading enzymes (CWDEs); Ligninolytic enzymes for biomass conversion, 1029–1030
Fungal genetic variation, 635–642; see also Pheno...genetic variation for, 778 plant cell death in fungal interactions, 712 plant defense, 769 proteinaceous effectors by nectrotrophic, 777 virulence tools of plant pathogenic fungi, 712–717
Fungal physiology, impact of ploidy on, 606–608
Fungal secretome, 1043
Fungal sex (Basidiomycota), see also Basidiomycota Agaricomycotina, 154, 158 breeding systems of, 147–151, 152–166 cell type identity, 147, 149, 151 diversity and phylogenetic relationships, 147, 150 genomic changes in bipolar breeding, 160–165 genomic structure and diversity of lineages, 154, 156 lifestyles of, 147–151 molecular determinants of mating type, 151–152 new genome sequencing projects, 166 Pucciniomycotina, 156, 158 tetrapolar systems, 152–153 tetrapolar systems with alleles in Agaricomycetes, 155, 157, 159–160 Ustilaginomycotina, 156, 158
Fungal sex (Mucoromycota), see also Mucoromycota gene arrangements, 179, 180 mating pheromones, 182–185 pheromone processing steps, 183 roles of SexM and SexP proteins in mating, 181–182 sexual reproduction by mating type or sex locus, 177, 179
Fungal symbioses, geomycology, 377–378
Fusarium graminearum, 18, 82, 129, 132, 248, 313, 314, 321, 468, 543
Fusarium moniliforme, 46
Fusarium oxysporum, 234, 388, 390, 391
chromosomes, 640
effectors of vascular wilt pathogen, 775–776
fungal pathogen effectors, 771–772
Panama disease, 799
ploidy variation and aneuploidy, 602
stress, 471
Fusarium venenatum, 1037
Fusic acid, 1089, 1104, 1106

G
Gametogenesis, 187
Gametogony, 187
Gamsylella, 963, 966
Gamsylella cionopaga, 965
Ganoderma lucidum, 157
Gastrointestinal mycobiome, 846
GenBank, 87, 89, 90, 102, 954
Generalist pathogen, 787
Genetics
chromatin, 571–572
genetic linkage, 187
Mucoromycota, 185
mutation and recombination, 641
Genome, 3–5, 26–27; see also Evolution
defending against mobile DNA, 687
evolution of, size, 621–625
fungal, evolution, 620–621
fungal phenotypes, 981, 982
lichenized fungal species, 756
microsporidia, 185–186, 975–977
Nematocida and microsporidia species, 975–977
pan-genome, 626
rearrangement, 640–641
stability, 625–626
Genome defense mechanisms, 687–690; see also Repeat-induced point (RIP) mutation
cosuppression, 688
cotranscriptional RNA surveillance, 687–688
meiotic silencing, 688–689
methylidation induced premeiotically (MIP), 690
repeat-induced point (RIP) mutation, 689–690
sex-induced silencing (SIS), 689
somatic quelling, 688
Genomes OnLine Database (GOLD), 929
Genome-wide association studies, 643
Genomic
chemical-genetic approach to infection, 914–915
comparative, for entomopathogenic fungi, 925
comparative, of Malassezia, 865–866
nematode-trapping fungi, 970–971
studying endophyhal bacteria, 995–996
understanding lichen symbioses, 755–757
Geoglomus, 18
Geomycolgy, 371–380
biogeochemical cycling of elements, 372–373
biomineralization, 374
H
Hadacitin, 1097
Halide transformations, 377
Hansenula polymorpha, 124, 125
Haplodeficiency, 167
Harposchytrium, 9
Hebeloma cylindrosporum, 493
Heed, William, 949
Heitman, Joseph, 689
Helyella, 18
Hematopoietic cell transplantation, role of mycobiome in, 849–851
Hemibiotrophs
effectors, 715–716, 771
plant pathogenic fungi, 710–712
Hemicellulose
degradation model, 1033
and hemicellulases, 1034
Hemleia vastatrix, 311, 313, 321, 323
Henikoff, Steven, 693
Hepatitis B virus, role of mycobiome in, 847–848
Heterochromatin
formation, 662–663
nucleation hypothesis, 696
Heterokaryon, 187, 215; see also Filamentous fungi
Heterokonta, 79
Heterothallic, 787
Heterothallism, 167, 187
HeterotrimERIC G-protein signaling, 1009–1010
Heterozigosity, 187
Hueva brasiliensis, 389
High-mobility group (HMG), 181–182, 187
Hill-Robertson interference, 167
Histoplasma capsulatum, 39, 40
AIDS, 819
cell walls, 268, 269
human infection, 819–820
immune response against, 892, 894–896
stress, 464
Homeomain, 187
Homeodomain protein, 167
Homeostasis, 124, 125
Homozygous, 164
Homothallism, 167, 187
Basidiomycota, 163–165
Cryptococcus neoformans, 164–165
evolutionary costs of, 165
evolution from heterothallic ancestors, 182
Pezizomycotina, 128–129, 131
Phaffia rhodophylla, 164
Horizontal gene transfer, 878, 981
among fungi, 638
fungi and cheese, 1065
interkingdom, 636–637
secondary metabolites, 1095–1096
Hormocoros resinae, 511
Hortaea werneckii, 855
Host defense mechanisms
effectot mechanisms driving, 892–896
future perspectives, 896–897
immune-based therapies against fungal infections, 896
Malassezia species, 866
pattern recognition receptors (PRRs), 888–892, 894
Host/prey recognition, contact sensing and, 489–491
Host protection from fungi
cytokines as reinforcing effectors, 893–896
effectot mechanisms driving, 892–896
epithelium, 892–893
phagocytes, 893
Hsp90
17-AAG (Hsp90 inhibitor), 908, 912
Hsp90
Human cryptococcosis (Cryptococcus neoformans and C. gattii), 794–795, 822–824
Human immunodeficiency virus
prevalence of infection, 903
role of mycobiome in, 847

Gamsylella cionopaga
Gamsylella
Gametogenesis
Genomics
Genome, 3–5, 26–27
Genome-wide association studies
Genomes OnLine Database (GOLD)
Glossaries of terms
Glycosylphosphatidyl-inositol (GPI) anchor
GPI proteins
G-protein-coupled receptors
Haploid selfing
Haplotopy
Haptotaxis
Homeodomain
Homeodomain protein
Homeostasis
Homeotic transformation
Hemibiotrophs
Hemicellulose
Hemleia vastatrix
Hepatitis B virus
Heterochromatin
Heterokaryon
Heterothallism
Heterothallic
HeterotrimERIC G-protein signaling
Histoplasma capsulatum
AIDS
Cell walls
Human infection
Immune response against
Stress
Homeomain
Homeodomain
Homeostasis
Homozygous
Homothallism
Basidiomycota
Cryptococcus neoformans
Horizontal gene transfer
Among fungi
Fungi and cheese
Interkingdom
Secondary metabolites
Hormocoros resinae
Hortaea werneckii
Host defense mechanisms
Effectot mechanisms driving
Future perspectives
Immune-based therapies against fungal infections
Malassezia species
Pattern recognition receptors (PRRs)
Host/prey recognition
Contact sensing and
Host protection from fungi
Cytokines as reinforcing effectors
Effectot mechanisms driving
Epithelium
Phagocytes
Hsp90
17-AAG (Hsp90 inhibitor)
Human cryptococcosis (Cryptococcus neoformans and C. gattii)
Human immunodeficiency virus
Prevalence of infection
Role of mycobiome in
INDEX

Human Microbiome Project, 845, 851
Humans, see also Fungi infecting humans as long-distance dispersal vector, 319–320
species of microsporidia infecting, 99
Human skin, see also Skin fungi
colonization of, 855
Hydrolachnum, 2
Hypholoma fasciculare
Hyphochytriomycota
Hypervirulence, 787, 800, 802–803
Hymenoscyphus fraxineus, 14
Hymenoscyphus
Hygrophorus
Hydrophobins, 276
Hydractinia symbiolongicarpus, 215
Hyaloraphidium, 9
see also
Immunity
Idiomorphic, 187
Human skin, 859
Human genetics with fungal
Laccaria bicolor, 3
Kwoniella heveanensis
Kurtzman, Clete, 951
Kojic acid, 1091, 1097, 1100
Kuwionella beevannensis
Kyoto Encyclopedia of Genes and Genomes, 757
L
Lactazia loboi, 40
Laccaria bicolor, 50, 154, 157, 996, 998
Lachance, Marc-André, 951
1-DOPA (1,3,4-diarylpropanol), 1097, 1098–1099, 1099
Leaf spot of barley (Ramularia
collo-cygni), 792
Lecanora confluenta, 298, 299
Lecanora collo-cygni, 792
Lecanora surculus
Lecanora xanthodermis, 200
Leptinula edodes, 43, 159
Leotia, 18
Leotiomycetes
Leptosphaeria maculans, 447, 778, 179
Leucoagaricus, 43
Leucosporidium scottii
Lichen fungi, 749
Arthoniomycetes, 753–754
bacterial participation in thalli, 760
Coniothyrium fulvum, 754
diverse shapes of, 750
Dothidomycetes
Eurotiomycetes
fungi-algal connections and interactions
in thalli, 757–759
genomics for understanding symbioses,
755–757
Lecanoromycetes, 754–755
Leotiomycetes, 755
lichen thallus, 749–752
phylogenetic relationships, 752–755
substantial biomass of, 751
symbiosis, 759–760
vegetative dispersal in, 752
Light, circadian clock, 523–525
Lignin, 1034–1035, 1049
applications of, 1055
biomass pretreatment and effect on, 1049
fungal oxidoreductases for modification
of, 1052
industrial applications of lignin-acting
enzymes, 1054–1055
lignin-modifying fungi, 1050–1051
pretreatment methods, 1050
structure and activity of lignin-acting
enzymes, 1051, 1053–1054
Ligninolytic enzymes, 1050–1051
aryl-alcohol oxidase (AAO), 1052, 1054
cellulose dehydrogenase (CDH),
1052, 1054
fungal oxidoreductases, 1052
glucose oxidase (GOX), 1052, 1054
industrial applications of, 1054–1055
laccases, 1052, 1053
manganese peroxidase (MnP), 1052, 1053
structure and activity of, 1051,
1053–1054
versatile peroxidase (VP), 1051,
1052, 1053
Lignocellulose
Lindenbergia philippensis
Lindenberga philippensis, 377
Long-distance dispersal of fungi, 788
animals as vectors, 317, 319
clumping of spores, 323
defining, 312, 314
dispersal vectors, 313–320
framework for understanding, 309, 310
future directions, 325–326
humans as vectors, 319–320
images of fungal spores, 318
images of spore dispersal structures, 324
measuring, 312–313, 314
modeling, 309
oceans, rivers and lakes as vectors, 317
phylogram of genetic distances for
Mycosphaerella graminicola, 316
physiological hardness of spores, 323
plants as vectors, 315–317
properties influencing, 320–325

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Sun, 14 Oct 2018 09:01:03
Long-distance dispersal of fungi (Continued)
sizes of spores and airborne particles,
309, 311
spore parameters for putative, 321
spore’s external surface, 322–323
spore size and shape, 320, 322
sporocarp properties influencing, 323
unknown and confounding variables
for, 325
wind as vector, 313, 315
Loss of heterozygosity, 639, 640
Lovastatin, 1090, 1096, 1104–1105
Lumpers, 70
Luteobacter sp., 993–994
Lycoperdon, 21, 25
Luteibacter
Lumpers, 70
Loss of heterozygosity, 639, 640
Marine phytoplankton, parasites of, 400,
405–406
Manumycin A, farnesyltransferase, 908, 910
Mammals
Mating types (MAT), 167
Mating system, 167
Mating types (MAT), 167
comparing homo- and heterothallic
members of Eurotiales, 195
distribution of MAT genes, 196, 198
function and regulatory impact of,
196–198
sexual potential, 194–198
Mating-type switching, see also Fungal sex
evolution of, 123–124, 125
in yeasts, 122–123
MAT locus/sex locus, 187
Matrix-assisted laser desorption imaging-MS
(MALDI-MS), 997
Matzinger, Polly, 887
Mechanosensing systems
ion channels, 498–500
potential in fungi, 498, 499
Medawar, Peter, 887
Medicago truncatula, 493
colonization, 731–732
nutrient transfer, 735–736
Megaglyciphila platypHylla, mycelial network,
347, 349
Meiosis, see Fungal sex
Melampsora lini, 166, 770, 774
Melanins, 274
biology and exobiology implications, 512
energy transduction, 509–510, 511–512
interactions with high-energy
electromagnetic radiation, 511
production in fungi, 509
radiation-extreme environments, 510
resisting immunity, 282
responses to radiation, 510–511
Mendelian genetics, Mucoromycota, 185
Meselson effect, 207
Metabolomics, studying endohyphal
bacteria, 996–997
Metal immobilization, 374, 378
Metal mobilization, 374, 378
Metarhizium spp., 18
microbial pathogen effectors, 771
fungal pathogens, 768
stress, 468, 471
telomeres, 577
Malassezia spp., 23–24
biochemistry of, 864–865
biodiversity of, 860
comparative genomics, 865–866
genome statistics, 865
host defense mechanisms, 866
occurrence on healthy human skin,
860–862
occurrence on human skin disorders,
862–863
occurrence outside human, 863–864
occurrence outside human skin, 863
skin fungi, 855
skin mycobiome, 846–847
species tree, 861
Malassezia globosa, 24
Mammals
cell wall as immune system target,
280–282
chromosome landmarks, 576
Manumycin A, farnesyltransferase, 908, 910
MAP kinase (MAPK) cascades, 1010–1011
Marine phytoplankton, parasites of, 400,
405–406
Mating system, 167
Mating types (MAT), 167
comparing homo- and heterothallic
members of Eurotiales, 195
distribution of MAT genes, 196, 198
function and regulatory impact of,
196–198
sexual potential, 194–198
Mating-type switching, see also Fungal sex
evolution of, 123–124, 125
in yeasts, 122–123
MAT locus/sex locus, 187
Matrix-assisted laser desorption imaging-MS
(MALDI-MS), 997
Matzinger, Polly, 887
Mechanosensing systems
ion channels, 498–500
potential in fungi, 498, 499
Medawar, Peter, 887
Medicago truncatula, 493
colonization, 731–732
nutrient transfer, 735–736
Megaglyciphila platypHylla, mycelial network,
347, 349
Meiosis, see Fungal sex
Melampsora lini, 166, 770, 774
Melanins, 274
biology and exobiology implications, 512
energy transduction, 509–510, 511–512
interactions with high-energy
electromagnetic radiation, 511
production in fungi, 509
radiation-extreme environments, 510
resisting immunity, 282
responses to radiation, 510–511
Mendelian genetics, Mucoromycota, 185
Meselson effect, 207
Metabolomics, studying endohyphal
bacteria, 996–997
Metal immobilization, 374, 378
Metal mobilization, 374, 378
Metarhizium spp., 18
efficacy of, 926–927
evolutionary relationships, 927–930
infection cycle, 930–935
model for ecology and evolution, 925
Metarhizium robertsi
evolution of sex, 937
in phylgenetic tree, 928
scanning electron micrograph of, 926
variation, 929
Methchnikoff, Elie, 926
Methyltylation induced premeiotically (MIP)
cytosine methyltransferase and RLD (RIP)
defective) as mediators of, 690–692
genome defense mechanism, 690
6-Methyl salicylic acid, 1095, 1103, 1104
Metzenberg, Robert, 688
Microbiota, see Mycobionome
Microbotryum, 162–163
Microbotryum hydnellus-dioicae, life cycle
of, 148–149
Microbotryum violaceum, 22, 82
Microsporidia, 97–98
diagram of spore, 101
genome size and gene count, 622
genomes of, 185–186, 975–977
life cycles, 98, 100, 101
morphology of, 98, 100, 101
natural variation in host resistance to,
978–979
phylogenetic analysis of, 101–103
scanning electron micrograph of, 102
species infecting humans, 99
structure and composition of polar tube,
104–106
structure and composition of spore,
103–104
understanding fungal tree of life, 65–66
Microsporidium, 97
Microsporum canis, 495
Minimum Information about a Biosynthetic
Gene (MIBiG), 1109
Motosporidium daphnia, 67
Mycia osmundae, 23
Mizoribine, 1091
MK-3118 (glucan synthase inhibitor),
493
Mizoribine, 1091
MK-3118 (glucan synthase inhibitor),
493
Mizoribine, 1091
Monascusporum haptotylum, 970–971
Moniliella odeocephalis, 24
Moniliophthora roreri, 159
Monoblepharella spp., 9, 37
Monoblepharoidomyces, 9
Monoblepharis, 9
Monoblepharis polymorpha, 7, 9
Morchella esculenta, 249
Morphogenesis, 815
Mortierella, 13
Mucor, 13
Mucor amphiliorum, 181
Mucor circinelloides, 178, 179, 181, 442,
444, 447
RNA interference (RNAi), 657–661,
663–667
Mucor indicus, 239
Mucor mucido, 13
Mucorales, opportunistic of humans,
828–829
Mucoromycota, 10, 12–13, 177
alignments of genes in, 180
areas for future research, 186–187
fungal tree, 178
Mendelian and classic genetics, 185
phylogenetic relationships, 620
population genetics, 185
roles of SexM and SexP HMG domain
proteins in mating, 181–182
sexual zygosporres, 178
similarities/differences with other basal
fungi, 185–186
structure and gene content, 177, 179
trisporic acid mating pheromones,
182–185
Mucoromycotina, 13
Muller’s ratchet, 167
Multicellular life
cellular components of, 36, 38
de-evolution of, 38–39
evolution of, 35–36
polarized growth of, 36, 38
Mycelial network, 333
bidirectional movement and
oscillations, 346
biomass recycling, 345–346
building blocks for construction of,
337–346
colony dynamics and behavior, 346–
347, 348
formation of, 336, 337, 340, 341
growth at hyphal tip, 336, 337
hydrophobins and control of water loss,
339, 341
hyphal differentiation, 344–345
impact of branching on transport, 344
impact of hyphal fusion on transport, 344
impact of septation on transport, 336, 341–343
linking growth and branching to nutrient status, 343–344
modeling tip growth and branching, 340, 343
multityphal aggregate formation, 340, 344–345
pressure-driven mass flow, 345
transport at tip, 337–338
water permeability and uptake, 338–339
Mycelial network architecture
biomass recycling in continuum models, 354–355
constraining to 2-D, 347–349
continuum models at colony level, 353–354
control of systemic infection, 358
conversion to graph representation, 352–353
experiments in soil microcosms, 357–358
tension to 3-D analysis, 358
fractal measures and hyphal coverage, 349–352
future prospects for, 358–359
graph-theoretic network representation, 352
integrating structure and flows using modeling, 353
network robustness and resilience, 356–357
network taxonomy, 354
quantitative analysis of, 347–358
spatially explicit network models, 353–356
species variation in fractal dimensions, 350
transportation network comparisons, 356
Mycelophilobora thermophilae
biorefinery processing, 1034
production strains, 1038
Mycoctena, human infection, 818–819
Mycocystus cysteinexignes, 992
Mycoctena
characterization of human, 845–847
Crohn's disease, 848–849, 850
future directions, 851
gastrointestinal, 846, 848
hepatitis B virus, 847–848
human immunodeficiency virus, 847
inflammatory bowel disease, 848–849
maintaining a symbiosis, 845–846
oral, 846
role in cancer, 849
role in hematopoietic cell transplantation, 849–851
skin, 846–847
state of dysbiosis, 847–849
term, 845
Mycoloop, 407
Mycoparasites
cAMP pathway, 1010
global regulators Lc1 and Vell, 1011
heterotrimeric G-protein signaling, 1009–1010
Hypocreaean necrotrophic, 1006–1009
MAPK cascades, 1010–1011
tolerance toward toxins, hydrolytic enzymes and ROS, 1016–1018
Mycoparasisitism, 300–301, 1005–1006, 1018–1019
nonribosomal peptides and, 1014–1015
polyketides and terpenoids, 1015
role of oxidative stress in interaction, 1017–1018
role of secondary metabolites, 1014–1016
volatile organic compounds, 1015–1016
Mycoctena
plant pathogenic fungi, 709–710
effectors secreted by, 776–777
effectors, 716–717, 772–773
impact of growth conditions on stress resistance, 746–747
Nature, enzyme discovery from, 1039
Necrotrophs
effectors, 716–717, 772–773
effectors secreted by, 776
secondary metabolite host-selective toxins as effectors, 776–777
Necrotrophy, 709
Nectria haematococca, 242
Nematocida parisi
analysis of genome, 975–977
C. elegans exhibiting ubiquitin-mediated response to, 978
microsporidia infecting C. elegans, 976
restructuring intestinal cells of C. elegans, 977–978
Nematode-trapping fungi, 963–964
application of, 969–970
ecology and evolution, 966–968
genera of, 963, 964
genomics and proteomics of, 970–971
mechanisms of, 968–969
phylogeny of carnivorous Orbiliomycetes, 968
structures of traps in, 965
taxonomy and diversity, 964–966
Neocallimastigomyzocetes, 9–10
Neocallimastigomycota, 409–410, 1031
Neocallimastix sp., 7
Neocallimastix paterarum, 409
Neoeolota, 14, 16, 17, 41
Neoeolota selentina, 36
Neotyphodium coenophialum, 14, 16, 17, 41
Neotyphodium, 12
Neozymites, 12
Network, see Mycelial network; Mycelial network architecture
Neurospora
circadian oscillator, 517–523, 530
circadian output, 516
facultative heterochromatin, 578, 579
mycelial network, 341–342, 344
repeat-induced point (RIP) mutation, 692, 695–696
temperature and metabolic compensation, 522–523
temporal outline of circadian clock, 519
Neurospora crassa, 36, 38, 42, 43, 132
carbonates, 373, 378
carbon sensing, 421
chromosome landmarks, 574
chromosomes, 587
conidial anastomosis tubes from, 494, 495
divergence between populations, 647
exocytosis, 240–241
genetics, 571, 642
germing and hyphal fusion in, 216
heterokaryon incompatibility, 221–222
hyphal growth, 234, 249–251
meiotic silencing, 688–689
model for white-collar light signaling, 448, 449
photoreceptor proteins, 441, 443, 444
population structure, 644
RNA interference (RNAi), 657, 658–660, 664
somatic quelling, 688
visualization of programmed cell death, 220
Neurospora tetrasperma, 131, 206
Next-generation sequencing
enzyme discovery, 1041–1042
TAST and PPR types, 1042
Nidulatrix, 25
Nilaparvata lugens, 955
Nitazoxinide therapy, 98
3-Nitropropanoic acid, 1097, 1099
Nivara ceranae, 97
Nosema bombycis, 97
Nosema apis, 97
Nosema bombycis, 97
Nosema ceranae, 97
Nostoc punctiforme, 983
Nowakowskiella, 9
NRPs (nonribosomal peptides), secondary metabolites, 1104, 1105–1106
Nucleolaria, 63–64
Nucleophaga, 68
Nucleophaga amoebae, 67
Nutrient sensing at plasma membrane, 419
carbon sensing, 420–422
extracellular mucin receptors in fungi, 430–432
glucose sensing, 419–420
G-protein-coupled receptors, 427–430
membrane-localized transceptors, 433
nitrogen sensing, 422–424
sugar-sensing proteins, 420
transceptors sensing carbon sources, 424–425
transceptors sensing nitrogen sources, 425–427
Nutrient transfer, arbuscular mycorrhizal fungi, 734–736
Nitazoxinide therapy, 98
3-Nitropropanoic acid, 1097, 1099
Nivara ceranae, 97
Nosema bombycis, 97
Nosema apis, 97
Nosema bombycis, 97
Nosema ceranae, 97
Nostoc punctiforme, 983
Nowakowskiella, 9
NRPs (nonribosomal peptides), secondary metabolites, 1104, 1105–1106
Nucleolaria, 63–64
Nucleophaga, 68
Nucleophaga amoebae, 67
Nutrient sensing at plasma membrane, 419
carbon sensing, 420–422
extracellular mucin receptors in fungi, 430–432
glucose sensing, 419–420
G-protein-coupled receptors, 427–430
membrane-localized transceptors, 433
nitrogen sensing, 422–424
sugar-sensing proteins, 420
transceptors sensing carbon sources, 424–425
transceptors sensing nitrogen sources, 425–427
Nutrient transfer, arbuscular mycorrhizal fungi, 734–736
Obligate pathogen, 788
Oceans, rivers and lakes, as long-distance dispersal vector, 317
Odontotaenius disjunctus, 948, 953
Oxidoreductases, fungal, for lignin oxidation, 565–566
Oxides, transformations by fungi, 375–376
Osmotrophy, 60–61
Osmotic stress, 9
Ormosia glaberrima, 391
Organic matter decomposition, 372–373
Orchid mycorrhiza, 48–49
Oral mycobiome, 846
Opsins, 447–448
Oceans, rivers and lakes, as long-distance dispersal vectors, 1401–1402
Obligate pathogens, 788
Pathogen pollution, 801
Pathogenesis, 767
Pathogenicity, 584, 788
Pathogen pollution, 801
Pattern recognition receptor (PRR)

contribution of NLRs and RLRs, 889–891
C-type lectin receptors (CLRs), 889, 891–892
recognizable fungal components, 891 schematic of inflammatory immune reaction, 894
in sensing fungi, 888–892
term, 887
Toll-like receptors (TLRs) and fungal sensing, 889

Panellina, 57
Paxillus, network analysis of, 359
Penicillium, 1089, 1105
Penicillium spp., 18, 23
fungi and cheese, 1064–1065
mating-type loci, 196, 197
sex in, 204–205
Penicillium brevicompactum, 1092
Penicillium chrysogenum, 193–194
MAT loci, 195
occurrence of MAT idiomorphs, 196, 198
regulatory functions of MAT locus, 200
target genes for MAT1-1-1 locus, 199
Penicillium expansum, 471
Penicillium marneffei, 39
Penicillium verrucosum, 454
Pestalotia sp., 984, 985, 986
Peziza, 18
Pezizomyces, 17–20, 622, 945, 946, 955
Pezzizomyces, 117, 118, 778
bidirectional mating-type switching, 129
heterothallic mating-type loci in, 128, 130
homothallic mating in, 128–129, 131
life cycle of filamentous, 127
primary homothallism, 128–129
pseudohomothallism, 129, 131
sexual developments in filamentous, 127–133
unidirectional mating-type switching, 129

Phaffia, 38
Phaffia rhodozyma, 164
Phagocytes, host immunity, 893
Phagotrophy, 70
Phakopsora pachyrhizi (soybean rust), 790
Phallodin, 1101, 1102
Phallotoxins, 1101–1102

Phallus impudicus, 298, 301
fractal dimensions, 350
growth of, 298
macroscopic network analysis, 351
network taxonomy, 354
Phanerochaete chrysosporium, 45, 154, 157, 373
Phanerochaete velutina, 298, 301
foraging strategies, 295
fractal dimensions, 350
mycelial cord systems of, 348
mycelial network, 338, 347
network taxonomy, 354
nutrient movement in, 342
soil microcosm experiments, 357–358
Phenotype and gene associations, see also Fungal genetic variation

gene associations, 642–649
gene flow between populations, 644–645
genome-wide association studies, 643
hybridization, 644, 649
population structure, 644
quantitative trait loci, 642–643

recognizing populations of fungi, 643, 644
reverse ecology, 646–649
standard laboratory strain, 642
yeast population genomics, 645–646
Pheromones, see also Fungal sex

Mucor (Ascomycota), 182–185
Phlebia radiata, 293
Phomopsins, 1101, 1102
Phoresy, 956–957
Phosphates, transformations by fungi, 376
Photolyases, 446–447
Photomorphogenesis, 443
Photosensory proteins, 445–446
tetrapyrrole-containing histidine kinase, 445–446
Phycomyces blakesleeanus, 13, 177–179, 181–182, 184–185
gene family, 625
photoreceptors, 441, 442, 444, 445, 447
Physoderma, 8
Phytochrome, tetrapyrrole-containing histidine kinase, 445–446
Phytophthora, 183–184, 404
Pichia, 38
Pichia pastoris, 124, 125
Pinus sylvestris, 391
Piptoporus quercinus, 37
Piromyces, 9
Planktothrix, 407–408
Plant, as long-distance dispersal vector, 315–317
Plant cell death, fungal interactions, 712
Plant cell wall, decomposition by fungi, 43–45
Plant defense, fungal pathogens, 769
Plant disease environment, 389–390
host, 389
plant pathogens, 388–389
Plant immune system, cell wall as target, 282, 283
Plant pathogenesis, contact sensing and, 491–492
Plant pathogens
bionivagions of fungal, 392–393
characteristics of fungal, 390
coevolution during domestication, 392
effects of fungal, 390–392
heterogeneity of, 387–388
horizontal gene transfer, 393
host jump, 393
host shift, 393
latent infections and endophytes, 390
pathogen hybridization, 392–393
plant disease, 388–390
seed-borne, 393
Plasmoparia, 187
Plasmodiophora, 58
Plasmogamy, 187
Pleurotus ostreatus, 1089, 1104, 1106
Pliny the Elder, on truffles, 1075
Ploidia, 599, 612
beneficial effects of changes, 611–612

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Sun, 14 Oct 2018 09:01:03
changes during in vivo evolution, 610–611
changes in context of experimental evolution, 608–611
changes in context of laboratory mutants, 602–604
fungi with altered levels of, 602
genome instability in polyploid cells, 605–606
impact of cancer biology, 612
impact of level on DNA damage repair, 604–605
impact on fungal physiology, 606–608
methods for detection of, 600
molecular detection of, 601
mutations underlying amplification, 603–604
mutations underlying reduction, 604
variation in natural isolates, 601–602
Pneumocandins, 1089, 1104, 1106
Pneumocystis, 16, 58, 827–828
Pneumocystis carinii, 575, 893
Pneumocystis sp., 104–106
methods for detection of, 600
molecular detection of, 601
mutations underlying amplification, 603–604
mutations underlying reduction, 604
variation in natural isolates, 601–602
polysaccharides, 239
polysaccharide synthases, 239
Polyporus biennis, 251
Poly saccharides, 251

Podospora anserina, 132
heterokaryon incompatibility, 221, 222–223
prions, 673–674, 677, 679
visualization of vegetative incompatibility, 220
Polarized cell wall growth, 279–280
Polarized growth, fungi, 36, 38
Polarized tubes, structure and composition, 104–106
Polyenes
antifungal drug class, 904, 906–907
mechanism of action, 905
structure of, 905
Polyketides
role in mycoparasitic interaction, 1015
secondary metabolites, 1103–1105
Polyporus biennis, 251
Polysaccharides
biosynthesis of, 270
biosynthesis of mannan and, 272–274
chitin and β-[1,3] glucan, 270–272
Polystictus versicolor, 239
Population genetics
Mucoromycota, 185
sexual potential, 194
Priors, 673–674
amyloid/prion toxicity in yeast, 679–680
biology of, 673, 682
in biotic interactions, 678–679
chaperones modulating formation and propagation, 675–676
domains in signal transduction, 679
functional versus pathogenic, 677–678
functions and toxicity of, 676–680
fungus prion structures, 675
most studied [PSI+], 675
physiology of formation and propagation in fungi, 674–676
prion-forming domains, 675
variants, 675
yeast, in (epi)genetic diversity, 678–679
Proteases
role in mycoparasitism, 1013–1014
zoosporic true fungi, 402–403
Protein engineering, 1041
Proteins, cell wall, 274–276
Protein secretion systems, studying endophyal bacteria, 998–999
Proteomics, nematode-trapping fungi, 970–971
Proteus mirabilis, 215
Protist-fungal transition, 69
Proto-heterothallic, 14
Protomyces, 14
Psycholepidotus, 82
Protozoa, 79
Psathyrella spadicicorporea, 37
Pselaphus nigropunctatus, 949
Pseudogymnoascus destructans, 317, 319, 793–794
Pseudomonas fluorescens, 998
Pseudopodia, formation, 68
Pseudotolostoma, 18
Psorospermium haeckii, 64
Puccinia spp., 83, 166
Puccinia coronata, 166
Puccinia graminis, 22, 239, 491, 791
Puccinia bordei, contact sensing, 488, 491
Puccinia melanocephala, long-distance dispersal, 311, 313, 315, 321
Puccinia triticina, 391
Puccinia psidii, 22–23, 147, 946
genomic organization, 156
phylogeny of, 150
Pycnoporus coccineus, 303, 304
Pyratomyces, 14
Pyrenophora triciti-repentis, 952
Pyrenophora semeniperda, 772
Pyrenophora tritici-repentis, 957
Pylymides
antifungal drug class, 904
mechanism of action, 905
structure of, 905
Pyxidiophora spp., 956, 957
Q
Quorum sensing, 1099–1100
R
Radiation, see also Melanins
melanotic fungi responses to, 510–511
Radiotropism, 510
Raffaelea lauricola, 952
Raltotia solanacearum, 997
Ramara, 25
Ramularia colly-cyni (leaf spot of barley), 792
Rapamycin, 913; see also Target of rapamycin (TOR) pathway in pathogenic fungi, 542–543
target of (TOR) pathway, 535–536
Raper, John, 157, 160
Recognition, see Host defense mechanisms;
Pattern recognition receptor (PRR)
Red Queen Hypothesis, 408
Reference collections, 89–90
Repeat-induced point (RIP) mutation, see also Genome defense mechanisms
cytosine methyltransferases and RIP (RIP defective) as mediators of, 690–692
genome defense mechanism, 689–690
heterochromatin silencing of repetitive DNA, 693, 695
heterochromatin-related pathway of, 693, 695–696
homology requirements for, 692–693
Neurospora, 695
quantifying resistance, 692
quantitative measure of, 692
recognition of weak-interspersed homologies by, 693, 694
two-step mechanism of, 695–696
Resinicium bicolor, 298, 357
foraging strategies, 295
mycelial network, 350
network taxonomy, 354
Reversal ecology
Ascomycota populations, 646–647
Ascomycota species, 647–648
Basidiomycota populations, 647
Basidiomycota species, 648
uncultivatable fungi, 648–649
Rhizosporidium seeberi, 64
Rhizoctonia solani, 251
Rhizoids, zoosporic true fungi, 402
Rhizopagus irregularis, 49, 133, 732
genome of, 729–731
nutrient transfer, 734–735
Rhizopogon rosea, 403
Rhizopogon, 25
Rhizopus, 13, 829
Rhizopus microsporus, 641, 983
Rhizopus stolonifer, 36
Rhodopsins, 447–448
Rhodotorula, 22, 23
Rhodotorula toruloides, 151
Rhopalomyces, 11
Rhynchosporium species, 196, 197, 207
Rhynchosporium Genome Project, 200
Rhynchosporium secalis, fungal pathogen effectors, 771, 777
RiPPs (ribosomally synthesized and posttranslationally modified peptides), 1101–1103
RNA interference (RNAi), 657
Argonauta (AGO) protein, 658, 659–660
components of RNAi machinery, 658–660
defense during vegetative growth, 660–661
Dicer-dependent pathways, 665
Dicer enzyme, 658, 659
Dicer-independent pathways, 665–666
esRNAs of M. circinelloides, 664–665
functional diversity of, 660–666
heterochromatin formation, 662–663
hypothesis on origin of, 667
loss of, 666–667
maintenance of genome integrity, 660–663
meiotic silencing by unpaired DNA, 661–662
miRNAs, 663–664
nat-siRNAs and disiRNAs, 664
pathways in Mucor circinelloides, 658
phenotypic plasticity, 666
regulatory functions of, 663
RNA-dependent RNA polymerase (RdRP), 658–659
sex-induced silencing, 661
Romano, Nicoletta, 688
Rossignol, Jean-Luc, 690
Virulence tools
- cell wall-degrading enzymes, 714
- effectors, 714–717
- mycotoxins, 713–714
- of plant pathogenic fungi, 712–717
- Volatile organic compounds, role in mycoparasitic interaction, 1015–1016

W
- Wangiella dermatitidis
 - cell wall, 280
 - polysaccharides, 272, 274
- Wheat stem rust (Puccinia graminis), 791
- White collar (WC) system
 - blue-light sensing, 448–449
 - flavin-based photoperception, 444–448
- Wind, as long-distance dispersal vector, 313, 315
- Wine fermentation, yeasts in, 1067–1069
- Witchcraft, and fungal disease, 788–789

Wood decay
- cellular and genetic bases of, 44–45
- diversity of types, 43–44
- evolution of enzyme families for, 44
- Woronin, Mikhail Strepanovich, 252
- Woronin bodies, 219, 252–253

X
- Xanthophyllomyces, 38
- Xylosandrus amputatus, 948

Y
- Yapsins, 276
- Yarrowia, 38
- Yeasts, see also Ascomycete yeasts and insects
 - Aspergillus oryzae in Japanese fermentations, 1073–1074
 - baker’s yeasts, 1069–1070
 - brewing, 1070–1074
 - fermentation, 1036–1037
 - improvement of wine yeast, 1069
 - novel lager brewing, 1073
 - population genomics, 645–646
 - Saccharomyces, 1065–1067
 - transceptor-mediated ammonium sensing in, 426
 - wine fermentation, 1067–1069
 - wine hybrids, 1069

Z
- α-Zearalanol, 1091
- Zoonoses, 788
- Zoopagomycota
 - 10, 11–12
 - phylogenetic relationships, 620
- Zoopagomycorina, 11
- Zoospores, 402
- Zoosporic fungi
 - 4, 6–10
 - Blastocladiomycota, 8
 - Chytridiomycota, 8–10
 - Cryptomycota/Microsporidia, 6–8
 - diversity of, 7
- Zoosporic true fungi
 - cellulases, 403
 - destructive mechanisms in life cycle of, 402–403
 - extracellular enzymes, 402–403
 - global distribution of freshwater and marine, 403–404
- parasites of freshwater phytoplankton, 406–408
- parasites of marine phytoplankton, 405–406
- phylogeny of, 399–401
- proteases, 402–403
- rhizoids, 402
- saprotrophs, 404–405
- schematic life cycle of parasites, 400
- supergroup Opisthokonta, 401–402
- symbiotes, 408–410
- zoospores, 402
- Zygomycetes, 10–13, 130
 - diversity of, 10
 - Mucoromycota, 10, 12–13
 - Zoopagomycota, 10, 11–12
- Zygomycota, 177, 178
 - lignocellulose degraders, 1031
 - lineage infecting humans, 814
- Zygomycotina, 118, 128
- Zygophore, 187
- Zygorhizidium planktonicum, 408
- Zygorrhynchus moelleri, 512
- Zygosaccharomyces bailii, 472, 1069
- Zygosporae, 187
- Zymoseptoria
 - chromosomes, 585–586
 - pseudotrictici, hybridization, 644
 - pseudotrictici, 19, 241, 246, 254, 580, 581
- fungal model system, 706
- fungal pathogens, 768
- gene family, 624
- wheat pathogen, 796, 798