ORAL MICROBIOLOGY AND IMMUNOLOGY
THIRD EDITION

Richard J. Lamont
Department of Oral Immunology and Infectious Diseases
School of Dentistry, University of Louisville
Louisville, Kentucky

George N. Hajishengallis
Department of Microbiology
School of Dental Medicine
University of Pennsylvania
Philadelphia, Pennsylvania

Hyun (Michel) Koo
Department of Orthodontics and
Divisions of Pediatric Dentistry and
Community Oral Health
School of Dental Medicine
University of Pennsylvania
Philadelphia, Pennsylvania

Howard F. Jenkinson
Bristol Dental School, University of Bristol
Bristol, United Kingdom
Contents

Contributors xxi
Preface xxv
About the Editors xxvii

SECTION I GENERAL PRINCIPLES OF ORAL MICROBIOLOGY AND IMMUNOLOGY 1

1 General Microbiology 3
 Howard F. Jenkinson

 Introduction 3
 Biological Classification Scheme 4
 Bacterial Classification 5
 Bacterial Architecture 6
 Membranes 7
 Cell Wall Peptidoglycan 9
 Lipopolysaccharides 10
 Lipoteichoic Acids 12
 Other Important Components Produced by Bacteria 13
 Capsule 13
 Fimbriae and Pili 14
 Fibrillar Layers 14
 Flagella 14
 Vesicles 15
 Surface Layers 15
 Endospores 16
GeNeTiC ORGANIZATION IN BACTERIA 16
The Bacterial Chromosome 16
Chromosome Replication in Bacteria 17
Gene Transfer in Bacteria 18

BACTERIAL GROWTH AND NUTRITION 18
Growth 18
Nutrient Acquisition 20
Environmental Sensing 21
Secretion 22

INTRODUCTION TO FUNDAMENTAL CONCEPTS IN ORAL MICROBIAL ECOLOGY 25
Microbial Biofilms 25
Microbial Cooperativity 26
Microbial Antagonism 26
Polymicrobial Communities 27
Ecology of the Oral Microbiota and Development of Oral Diseases 27

KEY POINTS 28

THE IMMUNE SYSTEM AND ITS FUNCTIONS 29
GEORGE HAJISHENGALLIS AND JONATHAN M. KOROSTOFF

INTRODUCTION—WHAT IS IMMUNITY? 29
INNATE AND ADAPTIVE IMMUNITY 30
BOX: CELLS OF THE IMMUNE SYSTEM 32
IMMUNE RECOGNITION MECHANISMS 38
Innate Immune Recognition: Pattern Recognition Receptors 38
Adaptive Immune Recognition: Antigen Receptors 41

INDUCTION AND STAGES OF THE IMMUNE RESPONSE 43
Tailored Immunity Requires Specialized Subsets of Immune Cells 46
Hallmark Properties of Immunity 48
Properties of Adaptive Immunity 48
Properties of Innate Immunity 49

KEY POINTS 50
FURTHER READING 51

THE ORAL ENVIRONMENT 53
FRANK A. SCANNAPIECO AND STEFAN RUHL

INTRODUCTION 53
ORAL DISEASES 53
General Features of the Oral Environment 54
Contents

Teeth 54
The Oral Soft Tissues (Periodontium, Oral Mucosa, and Tongue) 56

Physical and Host Parameters Affecting Oral Microbial Colonization 57
Temperature 57
pH 58
Oxygen 58
Mechanical Abrasive Forces 59
Fluid Flow 59
Host Age 59

The Oral Microbiota 60
Tooth (Dental) Plaque: Early Determinants of Plaque Formation 60
Calculus 68

The Mucosal Microbiota 68

Recent Concepts of Dental Biofilm Formation 70
Saliva and the Salivary Proteome 70
Saliva-Microbe Interactions 72
Clearance of Bacteria from the Oral Cavity: Agglutinins 74
Pellicle Adhesion Receptors 76
Antimicrobial Components in Saliva 77
Antiviral Components in Saliva 79
Saliva as a Source of Bacterial Nutrition 79
Gingival Crevicular Fluid 79

KEY POINTS 80
FURTHER READING 80

4 Isolation, Classification, and Identification of Oral Bacteria 81
Eugene J. Leys, Ann L. Griffen, and Clifford Beall

Introduction 81
Diversity of the Oral Microbiota 81
The Ribosomal 16S rRNA Gene and Bacterial Identification and Classification 82
16S rRNA Genes and Phylogeny 83

Sampling Oral Bacteria and Recovery of Bacterial DNA from Samples 84
Identifying Oral Bacteria Using Molecular Techniques 86
PCR Detection 86
Quantitative PCR 87
DNA Hybridization Assays 88
Ribosomal 16S rRNA Gene Cloning and Sequence Analysis 89
Next-Generation Sequencing of 16S rRNA Genes 90

Metagenomic Sequence Analysis 91
Species and Strains of Oral Bacteria 93
Naming of Bacteria and Molecular Analysis 93
Direct Observation of Oral Bacteria 94
Cultivation of Oral Bacteria 95
Oxygen Requirements 96
Culture Media 96
Innovations in Bacterial Cultivation 97

Single-Cell Genomics 97
Classification of Cultured Bacteria 98
Antibiotic Susceptibility 98
Other Oral Microorganisms 99

KEY POINTS 99
FURTHER READING 99

5 **Oral Microbial Ecology** 101

Howard F. Jenkinson and Richard J. Lamont

Introduction 101
Acquisition of Oral Bacteria 102
Colonization by Oral Bacteria 103
Surface Structures and Molecules Involved in Adhesion 104
Mechanisms of Adhesion 108
Host Surface-Specific Constraints on Bacterial Adhesion 109
Adhesion and Metabolism 110

Bacterial Communication 112
Quorum Sensing 112
Competence 113
Contact-Dependent Interactions 114
Antagonism 114
Multicomponent Interactions 115
Communication with Host Cells 116

Gene Regulation 119

KEY POINTS 121
FURTHER READING 122
6 Oral Microbial Physiology 123
Paul G. Egland and Robert E. Marquis

Introduction 123
Survey of Metabolic Activities Important to the Oral Bacterial Community 125
Carbohydrate Fermentation 125
Metabolism of Organic Acids 127
Energy Generation Using Lactate 127
Metabolism of Amino Acids 128
The Role of Proteases in Energy Generation 129
Amino Acid Metabolism by the Stickland Reaction 130
Amino Acid Fermentation by Fusobacterium nucleatum 130
Arginine Metabolism by the Arginine Deiminase System 131
Cross Feeding and Cross Respiration 131

Acid-Base Physiology of Oral Microorganisms 132
Acid-Base Cycling in the Mouth 132
The Range of Acid Tolerance among Oral Bacteria Related to Oral Ecology 132
Acid Tolerance Related to Specific Functions 133
Constitutive and Adaptive Acid Tolerance 134
Alkali Production and Tolerance 136
Acid-Base Physiology, Virulence, and Disease 137

Oxygen Metabolism, Oxidative Stress, and Adaptation 138
Sources of Oxygen for Oral Bacteria 138
Oxygen Levels and Oxidation-Reduction Potentials in Dental Plaque 138
Oxygen Metabolism in Oral Bacteria, Reactive Oxygen Species, and Oxidative Damage 140
Repair Systems 143

Physiology of Oral Biofilms 143
Physicochemical Gradients in Oral Biofilms and Concentrative Capacities of Biofilms for Fluoride and Other Antimicrobials 144
Plaque Nutrition Related to Biofilm Physiology 146

KEY POINTS 147

FURTHER READING 147

7 Genetics and Molecular Biology of Oral Microorganisms 149
Angela H. Nobbs, Bing-Yan Wang, and Gena D. Tribble

Introduction 149
Fundamental Terms in Bacterial Genetics 149
Bacterial DNA Inheritance 149
Vertical Gene Transfer 149
Horizontal Gene Transfer 153
Defense from Foreign DNA 165

Genetic Manipulation and Analysis 168
Cloning and Vectors 171
Mutagenesis 178
Complementation 183
Transposon Mutagenesis 184
Screening 186

Conclusions 186

KEY POINTS 187

FURTHER READING 188

8 Applied Molecular Biology and the Oral Microbes 189
Hansel M. Fletcher, Arunima Mishra, Sasanka Chukkapalli, Stuart Dashper, and Ann Progulske-Fox

Introduction 189
Genomics 190
Gene Organization and Regulation 191
Transcriptional Initiation 195
Measurement of Gene Expression 197

Genomic Structure 198
Small Noncoding RNAs 199
CRISPR 201
Tn-Seq 204

Transcriptomics 205
Proteomics 206
Methods for Protein Identification 207
Posttranslational Modifications 207
Protein Expression Levels 208

Metabolomics and Metabonomics 208
Metabolic Fingerprint 208
Metabonomics 209

Multi-Omics 210

KEY POINTS 211

FURTHER READING 212
9 Population Genetics of Oral Bacteria 213
Mogens Kilian

Introduction 213
Bacterial Species Show Different Patterns of Evolution 213
Localized Sex in Bacteria 215
Differences in Pathogenicity of Strains 216
Specific Host Adaptation of Bacterial Clones 216
Population Sizes of Pathogenic and Commensal Bacteria 217
Oral Bacteria Show Varying Degrees of Genetic Diversity 218
The Oral Microbiome Is a Dynamic Population Undergoing
Constant Changes 219
Virulence Differences within Species of Oral Bacteria? 220
Methods of Strain Differentiation and Search for
Virulent Clones 220
Population Genetics Structure of Oral Bacteria 223

KEY POINTS 225

FURTHER READING 226

10 Immunology of the Oral Cavity 227
Evlambia Hajishengallis and
George Hajishengallis

Introduction 227
Oral Secretory Immunity 227
Overview of Innate Host Defense Factors in Saliva 228
Cationic Antimicrobial Peptides 229
Proteins with Bacterial Agglutination Properties 230
Metal Ion Chelators 231
Protease Inhibitors 232
Enzymes Acting against Bacterial Cell Walls 232
The Peroxidase System 233
Overview of Specific Host Defense Factors in Saliva 233
The Mucosal Immune System and Induction of S-IgA Antibodies
in Saliva 235
Biological Activities of S-IgA Antibodies 237

Subgingival Immunity 238
Innate and Adaptive Immune Players below the Gum Line 238
Features of the Subgingival Environment and Their Impact
on Host Response 239
Toll-Like Receptors and Coreceptors 240
Neutrophils 241
SECTION II INFECTION-DRIVEN ORAL DISEASES 249

11 Dental Caries: Etiology and Pathogenesis 251
 WILLIAM H. BOWEN, LIVIA M. A. TENUTA, HYUN KOO, AND JAIME A. CURY
 Introduction 251
 Tooth Structure and Development 252
 Sites of Carious Lesions 253
 Coronal Caries 253
 Root Surface Caries 254
 Diet and Dental Caries 254
 Cariogenic Effect of the Diet 254
 Anticariogenic Properties of Food 256
 Cariogenic Dental Biofilm Formation 257
 Biochemical Composition of the Cariogenic Biofilm 258
 Physicochemical Phenomena in Dental Biofilm 260
 Caries Prevention Using Fluoride 261
 Experimental Caries Models 262
 Laboratorial Methods 262
 Animal Models 263
 In Situ (Intraoral) Models 264
 KEY POINTS 265
 FURTHER READING 265

12 Pathogenic Mechanisms in Dental Caries 267
 JOSÉ A. LEMOS, HUI WU, ROBERT G. QUIVEY, JR., AND HYUN KOO
 Introduction 267
 The Cariogenic Biofilm: Mutans Group Streptococci and Dietary Sugars 271
 Exopolysaccharides and Biofilm Matrix 272
 Sugar Transport and Acid Production 274
Acid Stress Tolerance and Survival 275
Other Stress Resistance- and Virulence-Related Mechanisms 278

Polymicrobial Interactions and Cariogenicity 279
Commensal-Pathogen Interactions 280
Acidogenic Interactions 281
Alkalinothetic Interactions 282
Bacterial-Fungal interactions 282

Future Directions and Perspectives 283

KEY POINTS 284
FURTHER READING 285

13 **Periodontal Diseases: General Concepts** 287
Panos N. Papapanou

Introduction 287
Current Classification of Periodontal Diseases 287
Epidemiology of Periodontal Diseases 291
Microbial Etiology of Periodontal Diseases 297
Prevention and Control of Periodontal Diseases 303
Periodontal Diseases and General Health Outcomes 303

KEY POINTS 307
FURTHER READING 307

14 **Virulence Factors of Periodontal Bacteria** 309
Richard J. Lamont, Janina P. Lewis, and Jan Potempa

Introduction 309
Colonization 309
Localizitation in the Gingival Crevice 309
Attachment 310
Invasion 313
Community Development 313

Toxins 317
Leukotoxin 317
Cytolethal Distending Toxin 317

Proteolytic Enzymes 317

Acquisition of Iron 322

Surface-Associated Bioactive Components 324
Lipoplysaccharide 324
Capsule and Exopolysaccharide 325
15 Immunopathogenic Mechanisms in Periodontal Disease 333
George Hajishengallis

Introduction 333
Immune Players in Periodontal Disease 337
Complement: Microbial Manipulation and Destructive Inflammation 339
Neutrophils: More Than Just Acute Responders 342
Macrophages: Little Known, More To Unearth 344
Osteoimmunology: Linking Inflammation to Bone Loss 346
Adaptive Immunity: More Harm Than Good? 348

T Lymphocytes 349
B-Lineage Cells 352

Aging and the Host Response: Inflamm-Aging of the Periodontium 355

KEY POINTS 356
FURTHER READING 357

16 Oral Virology 359
Matti Sällberg

Introduction 359
What Is Oral Virology? 359
What Is a Virus? 359
How Is a Virus Transmitted? 360
The Virus 361
How Viruses Change: Viral Evolution 363

The Viral Life Cycle 363
Virus Taxonomy 369
Discovery of New Viruses 371

Oral Virology: The Viruses 371
Viruses That Can Cause Pathologies in the Oral Cavity 372

Picornaviridae 372
Contents

Human Herpesviruses 372
Herpes Simplex Viruses 1 and 2 373
Varicella-Zoster Virus 374
Cytomegalovirus and Epstein-Barr Virus 375
Human Herpesviruses 6, 7, and 8 376
Human Papillomaviruses 376

Viruses Present in the Oral Cavity 377
Hepatitis B Virus 377
Hepatitis C Virus 381
Human Immunodeficiency Virus 384

Viral Immune Responses 386
Viruses and the Innate Immune System 386
Viruses and the Adaptive Immune System 387
Viral Evasion Strategies 388

Antiviral Vaccines and Therapies 390
History of Viral Vaccines 390
Antiviral Immunoglobulin Preparations and Vaccines 391
Antiviral Compounds and Therapies 393

KEY POINTS 395

FURTHER READING 396

17. **Fungi and Fungal Infections of the Oral Cavity** 397

Richard D. Cannon, Ann R. Holmes, and Norman A. Firth

Introduction 397

Biology 397
Morphology 398
Fungal Interactions 399
Replication 400

Pathogenesis 400
Acquisition 400
Virulence 401

Host Defenses against Fungal Infection 402
Nonspecific Defense Mechanisms 403
Specific Defense Mechanisms 404

Antifungal Therapy 404
Growth and Identification of Fungi 404
Principles of Antifungal Chemotherapy 406

Clinical Conditions 407
Candidiasis 408
Aspergillosis 412
Cryptococcosis 413
Histoplasmosis 413
Blastomycosis 413
Paracoccidioidomycosis 413
Mucormycosis 414

KEY POINTS 414
FURTHER READING 415

18 Endodontic Infections and Therapeutic Approaches 417
Brenda P. F. A. Gomes, Isabela N. Rôças, and José F. Siqueira, Jr.

Introduction 417
Overall Definitions and Concepts 418
Pathways of Root Canal Infection 418
Microbial Agents of Endodontic Infections 419
Microbes Associated with Primary Apical Periodontitis 419
Microbes Associated with Posttreatment Apical Periodontitis 421
Extraradicular Infection 421
Biofilms and the Endodontic Microenvironment 422
Root Canal Treatment: Challenges and Current Therapeutic Approaches 424
Variations in Bacterial Susceptibility to Disinfection Procedures 425
Chemomechanical Preparation 425
Root Canal Irrigation 426
Intracanal Medication 428
Root Canal Obturation and Coronal Restoration 429
Concluding Remarks and Perspectives 430

KEY POINTS 431
FURTHER READING 432

19 Systemic Disease and the Oral Microbiota 433
Angela H. Nobbs and Mark C. Herzberg

Introduction 433
Routes from Oral to Systemic Compartments 434
Breaches in the Oral Mucosa 434
Transport and Translocation of Microbes 434
The Potential of Commensal Bacteria To Behave as Pathogens 434
Microbial Chameleons: Changing Gene Expression in Response to Environmental Signals 435

Host Defenses 437

Systemic Diseases Associated with Oral Microbes 439

Bacteremia 439

Infective Endocarditis 440

Disseminated Intravascular Coagulation 442

Atherosclerosis 443

Adverse Pregnancy Outcomes 444

Rheumatoid Arthritis 445

Diabetes 446

Obesity 446

Certain Cancers 447

Sequelae of Oral Viral Infections 447

Immunological Aspects of Oral Microbes and Systemic Disease 448

Heat Shock Proteins 448

Autorecognition Induced by Oral Microorganisms 449

Inflammation: A Link Between Local Dental Disease and Systemic Pathology? 450

Summary 453

KEY POINTS 454

FURTHER READING 454

SECTION III CONTROL OF ORAL DISEASES 455

20 Antibiotics: Mechanisms of Action, Resistance, and Clinical Use in Dentistry 457

Pin-Chuang Lai, Hyun Koo, Paul Stoodley, and John Walters

Introduction 457

Antibiotics: Types and Mechanisms of Action 458

Cell Wall-Active Agents 459

Antiribosomal Agents 464

Antifolate Agents 467

Topoisomerase Inhibitors 467

Miscellaneous Agents 468

Antibiotic Combinations 469

Antibiotic Adjuvants 470
Measuring the Effects of Antibiotics 470
Nonantibiotic Antimicrobial Agents and Disinfectants 471

Bacterial Resistance to Antibiotics 471
Resistance: Health Effects and Economic Costs 471
Overview of Resistance Mechanisms 472
Intrinsic and Acquired Resistance 473
Biofilm-Associated Drug Tolerance 477

Use of Antibiotics in Dentistry 482
Treatment of Endodontic (Periapical) Infections 483
Treatment of Odontogenic Infections 483
Systemic Antibiotics Commonly Used To Treat Odontogenic Infections 484
Empirical Antibiotics of Choice for Treating Odontogenic Infections 486
Use of Systemic Antibiotics in Periodontal Therapy 488
Use of Antibiotics To Prevent Infection 492

KEY POINTS 494

FURTHER READING 494

21 Therapeutic Approaches for Biofilm Control and Host Modulation in Oral Diseases 495

Yijin Ren, Henry C. van der Mei, George Hajishengallis, Hyun Koo, and Henk J. Busscher

Introduction 495

Bacterial Adhesion and Biofilm Formation 495

Antibiofilm Approaches To Control Oral Diseases 498
Oral Surface Modification 498
Control of Bacterial Force-Sensing 500
EPS Inhibition 501
Probiotic Strategies 502

Disruption of Biofilms 502
Antimicrobial Peptides 503
EPS Matrix Degradation 504
Metabolic Strategies 504
Atmospheric-Pressure Nonthermal Plasma (Cold Plasma) 505
Antimicrobial Nanoparticles 506
New Generation of Antibiofilm Nanostructures 508

Host Response Modulation in Oral Diseases 511
Immunization against Dental Caries 512
Rationale and Scope for Host Modulation Therapies in Periodontal Disease 514
Immunization against Periodontal Disease 516
Strategies for Inhibition and Resolution of Periodontal Inflammation 518
Approaches for Direct Inhibition of Periodontal Tissue Destruction 520
Potential Safety Issues 521

KEY POINTS 522
FURTHER READING 522

22 Infection Prevention and Control in Dentistry 525
J. Christopher Fenno, Stephen J. Stefanac, and Brandonn K. Perry

Introduction 525
Introduction to Risk Control 527
Quality Assurance Is the Promise of Performance 527
Cross-Infection Control Is Essentially a Set of Management Strategies for Risk Control 527
What Is Risk Management? 529

Cross-Infection Risks in Dentistry 530
Routes of Spread of Infection 530
Management of Recently Identified Infection Control Risks 533

Practical Application of Infection Control Measures in General Dentistry 538
Definition of Terms 538
Problems Posed for Prevention of Cross-Infection in General Dental Practice 538
Standard Precautions 540
Infection Control Checklist 543
Sterilization of Instruments 544

KEY POINTS 549
FURTHER READING 550

Index 551
Contributors

Clifford Beall
College of Dentistry, The Ohio State University, Columbus, Ohio

William H. Bowen
Center for Oral Biology, Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (Deceased)

Henk J. Busscher
Department of Biomedical Engineering, The W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Groningen, The Netherlands

Richard D. Cannon
Sir John Walsh Research Institute, University of Otago Faculty of Dentistry, Dunedin, New Zealand

Sasanka Chukkapalli
Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California

Jaime A. Cury
Piracicaba Dental School, University of Campinas, Piracicaba, Brazil

Stuart Dashper
Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia

Paul G. Egland
Department of Biology, Augustana University, Sioux Falls, South Dakota

J. Christopher Fenno
Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan

Norman A. Firth
School of Dentistry, University of Western Australia, Nedlands, Perth, Australia

Hansel M. Fletcher
Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California

Brenda P. F. A. Gomes
Department of Restorative Dentistry, Endodontics Division, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil

Ann L. Griffen
College of Dentistry, The Ohio State University, Columbus, Ohio

Evlambia Hajishengallis
Department of Preventive and Restorative Sciences, Division of Pediatric Dentistry, School of Dental Medicine, Philadelphia, Pennsylvania

George N. Hajishengallis
Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

Mark C. Herzberg
Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota
Ann R. Holmes
Sir John Walsh Research Institute, University of Otago Faculty of Dentistry, Dunedin, New Zealand

Howard F. Jenkinson
Bristol Dental School, University of Bristol, Bristol, United Kingdom

Mogens Kilian
Department of Biomedicine, Aarhus University, Aarhus, Denmark

Hyun Koo
Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

Jonathan M. Korostoff
Department of Periodontics, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania

Pin-Chuang Lai
Department of Oral Health and Rehabilitation, School of Dentistry, University of Louisville, Louisville, Kentucky

Richard J. Lamont
Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky

José A. Lemos
Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida

Janina P. Lewis
Philips Institute of Oral Health Research, Virginia Commonwealth University, Richmond, Virginia

Eugene J. Leys
College of Dentistry, The Ohio State University, Columbus, Ohio

Robert E. Marquis
Center for Oral Biology, Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York

Robert G. Quivey, Jr.
Center for Oral Biology, Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York

Arunima Mishra
Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California

Angela H. Nobbs
Bristol Dental School, University of Bristol, Bristol, United Kingdom

Panos N. Papapanou
Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York

Brandon K. Perry
Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan

Jan Potempa
Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky

Ann Progulske-Fox
Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida

Robert G. Quivey, Jr.
Center for Oral Biology, Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York

Yijin Ren
Department of Orthodontics, The W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Groningen, The Netherlands

Isabela N. Rôças
Department of Endodontics, Faculty of Dentistry, Estácio de Sá University, Rio de Janeiro, Brazil

Stefan Ruhl
Department of Oral Biology, University at Buffalo, Buffalo, New York

Matt Sällberg
Division of Clinical Virology, Karolinska Institutet, Huddinge University Hospital, Sweden

Frank A. Scannapieco
Department of Oral Biology, University at Buffalo, Buffalo, New York

José F. Siqueira, Jr.
Department of Endodontics, Faculty of Dentistry, Estácio de Sá University, Rio de Janeiro, Brazil

Stephen J. Stefanac
Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan

Paul Stoodley
Departments of Microbial Infection and Immunity and Orthopedics, College of Medicine, The Ohio State University, Columbus, Ohio
Livia M. A. Tenuta
Piracicaba Dental School, University of Campinas, Piracicaba, Brazil

Gena D. Tribble
Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas

Henny C. van der Mei
Department of Biomedical Engineering, The W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Groningen, The Netherlands

John Walters
Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio

Bing-Yan Wang
Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas

Hui Wu
Departments of Microbiology and Pediatric Dentistry, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
Preface

The past few years since the 2nd edition of *Oral Microbiology and Immunology* have witnessed fundamental changes to the conceptual bases of oral microbiology and immunology. Expanding from the traditional exclusive focus on individual species in isolation, researchers now recognize heterotypic plaque biofilm communities as the fundamental etiological unit in microbially driven diseases such as caries and periodontitis. In this regard, “nososymbiocity” is a newly coined term for a microbial community’s collective pathogenic potential that depends both on the outcome of interbacterial (and, remarkably, even bacterial-fungal) interactions and on host susceptibility. Advances in imaging technology have revealed that the microbial inhabitants of these communities are spatially constrained and that specific organisms tend to be associated with particular partner species. Moreover, the active role of extracellular polymeric matrices in establishing physical structure and creating chemical microenvironments is increasingly appreciated.

Study of oral microbial communities has been at the forefront in deciphering the functional specialization that has arisen within structured communities. We can now distinguish categories of pathogenic potential along the continuum that ranges from commensalism to virulence. Accessory pathogens aid and abet the activity of more overt pathogens. Keystone pathogens exert their influence at low abundance by modulating both the composition and levels of community participants and by manipulating host responses. Pathobionts exploit disrupted host homeostasis to flourish and promote disease. Perhaps surprisingly, at least for traditional oral microbiologists, increased understanding of pathogenic processes has revealed striking similarities between caries and periodontal diseases. Despite their different etiologies, periodontitis and caries are each driven by a feed-forward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that induces a pathogenic disruption of homeostasis and maintains the disease.

It is against this backdrop that the 3rd edition of *Oral Microbiology and Immunology* has been substantially expanded and rewritten. We also
hope that students’ comprehension will be enhanced by a more extensive use of illustrations. What has not changed, however, is the focus on integration of microbial and host components and their relationships to both health and disease. We have also maintained the format of previous editions, in which the chapters are self-contained so that individual topics can be examined separately or in conjunction with others. With succinct Key Points at the end of each chapter, the text is aimed primarily at dental students. However, graduate students, residents, researchers, and clinicians alike will find Oral Microbiology and Immunology, 3rd Edition, to be a complete resource.

We express our gratitude to ASM Press, in particular Greg Payne for his encouragement and support over a number of years, and Larry Klein and Ellie Tupper for their heroic efforts to assemble and bring coherence to the text.

Richard J. Lamont
George N. Hajishengallis
Hyun (Michel) Koo
Howard F. Jenkinson
About the Editors

Richard J. Lamont received a bachelor of science degree in bacteriology from the University of Edinburgh and a doctorate from the University of Aberdeen in 1985. After a postdoctoral fellowship at the University of Pennsylvania, focusing on streptococcal adherence mechanisms, he joined the faculty at the University of Washington in 1989 and progressed through the ranks to Professor of Oral Biology in 1998. He is currently the Delta Dental Endowed Professor and chair of the Department of Oral Immunology and Infectious Diseases at the University of Louisville. His research interests include the molecular mechanisms of polymicrobial synergy and the cellular interactions between oral bacteria and the host epithelium. He has taught microbiology and immunology to dental students and residents for over 30 years.

George N. Hajishengallis was originally trained as a dentist (DDS, 1989, University of Athens, Greece) before pursuing doctoral studies in cellular and molecular biology (PhD, 1994, University of Alabama at Birmingham). His postdoctoral training combined research in mucosal immunology (University of Alabama at Birmingham) and periodontal disease pathogenesis (State University of New York at Buffalo). He has held faculty appointments at the Louisiana State University and the University of Louisville. He is currently the Thomas W. Evans Centennial Professor at the University of Pennsylvania, School of Dental Medicine, Department of Microbiology. His field of interest lies at the host-microbe interface, focusing on mechanisms of periodontal immunopathogenesis and inflammation. He has taught microbiology and immunology to dental students and residents for over 20 years.
Hyun (Michel) Koo was trained as a dentist (State University of Sao Paulo, Brazil) before completing his PhD studies in oral biology and microbiology jointly at the State University of Campinas, Brazil, and the University of Rochester Medical Center, Rochester, NY. He pursued his postdoctoral training at the University of Rochester and later joined the faculty there. He is currently Professor and Director of Biofilm Research, Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, at the School of Dental Medicine, University of Pennsylvania, Philadelphia. His research interests are focused on the relationship between biofilms and oral diseases, bacterial-fungal interactions, and novel therapeutic strategies that effectively control biofilm-associated infections. He has taught oral microbiology, oral biology, and cariology for over 15 years.

Howard F. Jenkinson received his bachelor’s degree in microbiology and virology from the University of Warwick, England. He completed his PhD training in 1978 at the University of Nottingham. He worked at the University of Oxford for 5 years as a postdoctoral researcher on the biochemistry and genetics of sporulation in Bacillus subtilis. He was appointed Lecturer in Oral Biology at the University of Otago, New Zealand, in 1983 and rose to Professor of Molecular Oral Biology at Otago (1996). He was a visiting Commonwealth Medical Fellow at the Department of Biochemistry, University of Cambridge (1989–1990), and at the Institute of Molecular Medicine, University of Oxford (1995–1996). In 1997, he moved to the University of Bristol, England, as Professor and Chair of Oral Microbiology. At the end of 2016 he retired from full-time academics and was awarded the title of Professor Emeritus. His research interests have included the genetics and biochemistry of microbial cell surfaces, principally streptococci and Candida, intermicrobial interactions, polymicrobial communities, and infective cardiovascular disease. He taught molecular microbiology and biochemistry to dental, medical, and basic sciences students for over 30 years.
Index

16S rRNA gene. See Ribosomal 16S RNA (16S rRNA) gene

Absconditabacteria, 81
Acid-base physiology. See also Physiology of oral microorganisms
ammonia production, 136, 137
oral microorganisms, 132–136
Acid tolerance
constitutive and adaptive, 134–135
dental plaque, 133–134
range among oral bacteria, 132–133
term, 133
Acremonium, 462
Actinobacteria phylum, 419, 420
Actinomyces spp., 13, 64, 141, 149, 270
chromosome, 16
dental tubule invasion, 423
endodontic infections, 420, 422
sugar fermentation, 126
Actinomyces israelii, 54
Actinomyces naeslundii, 107, 505
acid tolerance, 132
bacteriophages of, 162
diversity, 218
Actinomyces odontolyticus, 97
Actinomyces oris
bacteriophages of, 162
coadhesion, 111
dental plaque, 104, 105, 107
gene regulators in, 196
Acyclovir, 393–394, 396
Adaptive immunity, 35–36, 38
biological functions of IL–17, 351
B-lineage cells, 352, 354–355
c-mediated, 47
functions of B-lineage cells in periodontium, 353
gingival sulcus and development of, 348–349
properties of, 48–49

T lymphocytes, 349–350, 352
viruses and, 387–388
Adhesion
bacterial, and biofilm formation, 495–497
bacterial attachment to saliva-coated tooth, 109
host surface-specific constraints on bacterial, 109–110
mechanisms of, 108–109
metabolism and, 110–112
streptococcal, 104, 105, 106, 107
surface structures and molecules involved in, 104, 106–107
Adjuvants, antibiotic, 470
Agglutinins, clearance of bacteria from oral cavity, 75–76
Aggregatibacter actinomycetemcomitans, 20, 24, 67, 69, 217
antibiotics in periodontal therapy, 488–489, 491
atherosclerosis and, 443
attachment of, 312
autoinducers, 315
bacteriocins, 146
bacteriophages of, 162, 163
carbon dioxide and, 96
cationic antimicrobial peptides, 230
communication, 112, 115
congenital DNA transfer, 155
cross feeding, 131
cytolethal distending toxin by, 317
diversity, 218–219
genetics, 149
gingival crevicular epithelium, 246
lactate metabolism, 128
lactoferrin, 231
leukotoxin by, 317
major adhesins of, 314
native plasmids, 173
natural transformation in, 157, 159
PCR assay, 87
periodontal bone loss, 354
periodontal pathogen, 289, 294–295
population genetic structure, 223–225
virulence, 220
Aging, inflam-aging of periodontium, 355–356
Agmatine deiminase system (AgDS), 278
AIDS. See HIV/AIDS patients
Alarmones, 160
Alloprevotella spp., 420
Alloscardovia omnicolens, 270
Alzheimer's disease, 39
American Academy of Periodontology, 291
American Dental Association, 493, 527, 528
American Heart Association, 442, 492
Amino acids
fermentation by Fusobacterium nucleatum, 130–131
metabolism by Stickland reaction, 130
metabolism of, 128–129
Aminoglycosides
antibacterial agents, 459, 465
resistance strategy, 478
Ammonia production, oral bacteria, 136, 137
Amoxicillin
characteristics of, 490
dental procedures, 493
periodontal therapy, 489–491
Amphotericin B, treatment for Candida infection, 411
Anaerobic bacteria, 141
Anaerobic chamber, 97
Animalcules, 3
Animal models
dental caries, 263–264
periodontitis, 519, 522
Antagonism, in bacterial communication, 114–115
Antibiofilm nanostructures
nanowires, 511
Bacterial resistance to antibiotics.
See also Antibiotics; Dentistry and antibiotics
biofilm-associated drug tolerance, 477, 479–482

Cellular targeting of antibiotic resistance strategies, 478
dentist actions for minimizing risks, 481–482
dormancy and persister cells, 480
extracellular polymeric substances and altered microenvironment, 477, 479

genetic changes, 479–480
health effects and economic costs, 471–472
intrinsic and acquired resistance, 473, 475–477

everse of mechanisms, 472–473
resistance mechanisms and acquisition, 474, 475

Bacteroides spp., 97, 185
Bacteroidetes phyllum, 419, 420

B cells, 33, 356
antigen recognition, 37
B-lineage cells, 352, 354–355, 356
B-lineage cells and inflammation, 520
differentiation, 44
properties of, 48–49
Behçet’s disease, 433, 449, 450, 454
Bertheim, Alfred, 457
Bifidobacteria, 270
Bifidobacterium spp., 255, 258
antagonism, 26
probiotic strains, 502
Bifidobacterium dentium, 269, 270
Biofilm(s). See also Antimicrobial nanostructures; Dental biofilm(s);

Dental plaque
antagonism, 26
antibiofilm approaches to control oral disease, 498–502
antimicrobial nanoparticles and, 506–508
antimicrobials, 144–146
associated drug tolerance, 477, 479–482
atmospheric-pressure nonthermal plasma (cold plasma), 505–506
bacterial adhesion and formation of, 495–497
bacterial composition of oral, 62
control of bacterial force-sensing, 500–501
cooperativity, 26
dental formation, 70, 71
in dental water lines, 536–538
disruption of, 502–511

dormancy and persister cells, 480
endodontic microenvironment and, 422–424, 431
extracellular polymeric surfaces
inhibition, 501–502
fluoride, 144–146
formation of, 25, 495
growth of oral, 147
metabolic strategies for disrupting, 504–505
microbial, 25
new generation of antibiofilm nanostructures, 508–511
physiology of oral, 143–147
plaque nutrition and, 146–147
probiotic strategies, 502
regimes of bacterial adhesion, 497
Biphosphonates, periodontal tissue destruction, 521
β-Lactam antibiotics
cell wall-active agents, 461–463
resistance strategy, 478
β-Lactamase(s), 461–463, 470, 471, 473, 475, 478, 485, 487
β-Lactamase inhibitors, 463, 485, 487
BLAST (Basic Local Alignment Search Tool), 83, 92, 198
Blastomyces dermatitidis, 398
Blastomycoses, 413, 415
β2-Microglobulin, bacterial agglutination properties, 230–231
Bone loss, osteoimmunology, 346–348
Bordetella pertussis, 217
Borrelia burgdorferi, 217
Brown, Timothy Ray, 386
Budding, viruses, 368

Calcium, dental, 68
Calgranulin A and B (calprotectin), metal ion chelators, 231
Campylobacter spp., 420, 422
Campylobacter rectus, 294
Campylobacter sputorum, 63
Cancers, oral microbes and, 447
Candida spp., 4. See also Candidiasis; Fungi
classification of infections, 408

Candida albicans, 54, 70, 78, 99, 102, 270, 284
acid tolerance, 132
bacterial-fungal interactions, 282
biofilm formation, 238
cationic antimicrobial peptides, 230
communication, 113
dental plaque, 105, 106
growth morphologies of, 398, 399
human oral cavity, 397
microbiome of caries, 284
in oral microbiota, 433
polymicrobial communities, 27
recognition and response of immune system, 403
stomatitis, 386
virulence factors, 402

Candidatus Saccharibacteria” (phyllum TM7), 97
Candidiasis, 408–412, 415
angular cheilitis, 409, 410
chronic erythematous, 409–410
erythematous, 409
dental action for minimizing risks, 481–482
dormancy and persister cells, 480
drug tolerance, 478
extracellular polymeric substances and altered microenvironment, 477, 479
extracellular polymeric surfaces
inhibition, 501–502
fluoride, 144–146
formation of, 25, 495
growth of oral, 147
metabolic strategies for disrupting, 504–505
microbial, 25
new generation of antibiofilm nanostructures, 508–511
physiology of oral, 143–147
plaque nutrition and, 146–147
probiotic strategies, 502
regimes of bacterial adhesion, 497
Biphosphonates, periodontal tissue destruction, 521
β-Lactam antibiotics
cell wall-active agents, 461–463
resistance strategy, 478
β-Lactamase(s), 461–463, 470, 471, 473, 475, 478, 485, 487
β-Lactamase inhibitors, 463, 485, 487
BLAST (Basic Local Alignment Search Tool), 83, 92, 198
Blastomyces dermatitidis, 398
Blastomycoses, 413, 415
β2-Microglobulin, bacterial agglutination properties, 230–231
Bone loss, osteoimmunology, 346–348
Bordetella pertussis, 217
Borrelia burgdorferi, 217
Brown, Timothy Ray, 386
Budding, viruses, 368

Cariogenicity
acidogenic interactions, 281–282
alkalinogenic interactions, 282
bacterial-fungal interactions, 282
cariogenic biofilm, 283
commensal-pathogen interactions, 280–281
microbial interactions and, 279–282
noncariogenic biofilm, 283
Castelman’s disease, 448
Cationic antimicrobial peptides, oral cavity, 229–230
Cell wall-active agents. See also Antibiotics
antibiotics, 459, 461–463
bacitracin, 459, 463
β-lactams, 459, 461–463
carbapenems, 459, 463
cephalosporins, 459, 461–463
glycopeptides, 459, 463
monobactams, 459, 463
targets and mechanism of action, 459
vancomycin, 463
Cell wall peptidoglycan, 8, 9–10
Cementum, teeth, 54, 56, 57
Centers for Disease Control and Prevention (CDC), 472, 527, 528
Cephalosporins
cell wall-active agents, 459, 461–463
resistance strategy, 478
Cetylpyridinium chloride (CPC), 471
Centers for Disease Control and Prevention (CDC), 472, 527, 528

Cheilek-Higashi syndrome, 343
Chemotherapy, principles of antifungal, 406–407

Chlamydia pneumoniae, atherosclerotic plaques, 452

Chloramphenicol, 197

antibosomal agents, 459, 466

resistance strategy, 478

Chlorhexidine (CHX), 498, 503, 504

Chlorhexidine gluconate, 471

Chromobacterium violaceum, 463

Chromosome

bacterial, 16–17

replication in bacteria, 17–18

Chronic wasting disease, 536

Classification

bacterial, 5–6

biological scheme, 4

Candida infections, 408

CRISPR, 168

cultured bacteria, 98

periodontal diseases, 287–291

Clindamycin

antibosomal agents, 466

odontogenic infections, 485

Clonal population structure, 214–216, 223, 225

Clostridium difficile, 16, 465

Clostridium, amino acid metabolism, 130

Clostridium perfringens, 199

Clostridium sporogenes, 16

Cold plasma, biofilm disruption, 505–506

Colonization of bacteria

adhesion and metabolism, 110–112

communities in dental plaque

biofilms, 105

host surface-specific constraints on

bacterial adhesion, 109–110

mechanisms of adhesion, 108–109

in oral cavity, 103–112

physiological and nutritional interactions among bacteria, 110

surface structures and molecules involved in adhesion, 104, 106–107

Commensal bacteria, interactions with pathogens, 280–281

Communication. See Bacterial communication

Community development

coadhesion and physiological compatibility, 315–316

periodontal diseases, 313–316

Competence

bacterial communication, 113–114

development of, 156–160, 187

Complement, microbial manipulation and destructive inflammation, 339–342

Compound 606, 457

Conjugation

horizontal gene transfer, 153–156

schematic illustration of, 154

CORE database, 90

Coronal caries, 253–254

Coronelbacterium, 64

Coxsackie A virus, 372

C-reactive protein (CRP)
diabetes and, 446

inflammation, 450–452

CRISPR (clustered regularly interspaced short palindromic repeat)-Cas systems, 166–168

adaptive immune system, 201

applications of CRISPR-Cas9, 202

associated genes and function, 168

classification, 168

inactivated Cas9-based transcriptional control, 203–204

native Cas9-mediated genome editing, 203

structure, 166, 167

Cross feeding, 131

Cross-infection, 525. See also Infection control

airborne routes of, 530–531

biofilms in dental water lines, 536–538

direct contact routes of, 531

emerging infectious diseases, 534–536

person-to-person transmission, 531, 533

problems posed for prevention of, 538–540

routes of spread, 530–531, 533

single-use supplies and instruments, 532

vaccination of health care workers, 533–534

Cross respiration, 131

Cryptococcosis, 413, 415

Cryptococcus neoformans, 398, 400, 402

Cultivation, oral bacteria, 95–97, 99

Cultured bacteria, classification of, 98

Cystatins, protease inhibitors, 232

Cytokelic distending toxin, A. *actinomyctetemcomitans*, 317

Cytomegalovirus

immune escape, 389

virology, epidemiology, and clinical features, 375–376

cariogenic and noncariogenic biofilm, 283

development of cariogenic, 268, 269

exopolysaccharides and biofilm matrix, 272–274

physicochemical phenomena in, 259, 260–261

Dental caries, 251–252, 265, 267–271

animal models, 263–264

biochemical composition of cariogenic biofilm, 258–260

cariogenic dental biofilm formation, 257–258

diet and, 254–257

exopolysaccharides and biofilm matrix, 272–274

experimental caries models, 262–265

future perspectives on, 283–284

immunization against, 512–514

in situ (intraoral) models, 264–265

laboratory methods, 262–263

pathological process of, 267–268, 283–284

prevention using fluoride, 261–262, 265

sites of carious lesions, 253–254

Streptococcus mutans and dietary sugars, 271–279

sucrose and, 257–258, 265

tooth structure and development, 252–253

DentalCheck, 527

Dental plaque

acidogenic interactions, 281–282

acquisition of oral bacteria, 102–103

biofilm formation, 70, 71, 251

calculus, 68

cariogenic, formation, 257–258

development of multispecies communities in biofilms, 105

eyear determinants of formation, 60–67

functions of salivary molecules, 72

gene transfer, 163

oxygen levels and oxidation-reduction potentials, 138–139

recovery of bacterial DNA from, 85

scanning electron micrograph of corncob bacterial aggregates, 106

Dentin, teeth, 54, 55, 252, 253

Dentistry, infection control in. See also Infection control

cross-infection risks, 530–538

infection control in, 525–527, 549

Dentistry, use of antibiotics in. See also
Antibiotics

azithromycin, 486

clindamycin, 485

empirical antibiotics for odontogenic infections, 486–488

metronidazole, 485

minimizing risks of antibiotic resistance, 481–482

moxifloxacin, 486
penicillins, 484–485
preventing infection, 492–493
prophylactic regimens, 492, 493
stages of odontogenic infection, 484
systemic antibiotics for odontogenic infections, 484–486
systemic antibiotics in periodontal therapy, 488–491
treatment of endodontic (periapical) infections, 483
treatment of odontogenic infections, 483, 484
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, energetic interactions, 108
Desulfovulb us sp., fluorescence in situ hybridization (FISH), 94
Developmental endodental locus-1 (Del-1)
inflammation, 519
periodontium, 242, 243, 244
Diabetes mellitus, 295–296, 306–307, 446
Diastase spp., 419, 420
Diet
anti-cariogenic properties of food, 256–257
cariogenic effect of, 254–256
dental caries and, 254–257
Diseases. See Periodontal diseases;
Systemic diseases
Disinfection, definition, 538, 550
Disk diffusion test, 98–99
Disseminated intravascular coagulation (DIC), oral microbes and, 442–443
DNA (deoxyribonucleic acid). See also Bacterial DNA inheritance
basic plasmid features, 171–175
checkboard analysis, 88
chromosomal DNA replication, 152
CRISPR-Cas systems, 166–168
defense from foreign DNA, 166–168
DNA hybridization assays, 88–89
DNA viruses, 370
metagenomic sequence analysis, 91–93
microarray hybridization, 88
PCR detection, 86–87
plasmid replication, 172–174
recovery from oral bacteria samples, 84–85
restriction and modification systems, 165
Doherty, Peter, 43
Domagk, Gerhard, 458
Drosophila, transposon mutants, 186
Dysbiosis, 333, 334, 335–337, 356

E
Ebola virus, 535
Ecology, oral microbiota and diseases, 27–28
eHOMD database, 90
Ehrlich, Paul, 457

Eikenella corrodens, 144
antibiotics for, 487–488
diversity, 218
endodontic infections, 420
native plasmids, 173
Enamel, teeth, 54, 55, 252, 253
Endodontics, 417. See also Root canal bacterial species commonly in infections, 420
biofilms and endodontic microenvironment, 422–424, 431
definitions and concepts, 418
extraradicular infection, 421–422
goals and perspectives of antimicrobial treatment, 431
microbes associated with primary apical periodontitis, 419–421
microbial agents of infections, 419–422
molecular identification techniques, 430
pathways to root canal infection, 418–419
Endospores, 16
Energy generation
amino acid fermentation by E. nucleatum, 130–131
amino acid metabolism, 128–129, 130
arginine metabolism, 131
carbohydrate fermentation, 125–126
cross feeding and cross respiration, 131
lactate metabolism, 127–128
organic acid metabolism, 127
role of proteases in, 129
Enterococcus spp., 526
complementation, 184
dentulous infections, 420
gene transfer, 18
markerless mutagenesis, 181
Enterococcus faecalis
catabolism of, 162
conjugal DNA transfer, 154, 155, 156
dental tubule invasion, 423
electron micrograph of bacterio-pa-thway, 163
endodontic infections, 420
infective endocarditis (IE), 440
metal nanoparticles disrupting, 506
native plasmids, 173
Enterovirus 71 (EV71), 372
Environmental sensing, bacteria, 21–22
Enzymes
acting against bacterial cell walls, 232–233
agmatine deiminase system (AgDS), 278
arginine deiminase system (ADS), 277–278
lysozyme, 232–233
matrix metalloproteinase enzymes (MMPs), 313, 319–321
peptidoglycan recognition proteins 3 and 4, 233
peroxidase system, 233
proteolytic, by periodontal bacteria, 317–322
Epidemic population structure, 214, 215
Epidemiology
cytomegalovirus, 375–376
Epstein-Barr virus, 375–376
hepatitis B virus, 379–380
hepatitis C virus, 382–383
herpes simplex viruses, 373–374
HIV, 384–386
human papillomavirus, 377
of periodontal diseases, 291–297
varicella-zoster virus, 374–375
Epstein-Barr virus, 54
oral infections, 448
virology, epidemiology, and clinical features, 375–376
Escherichia coli, 78, 467
chromosome, 16
cloning and sequencing 16S rRNA, 89
genetic manipulation, 169
lac operon in, 192, 194
membrane vesicle-mediated gene transfer, 164
metal nanoparticles disrupting, 506
population structure, 214
specialized plasmid vectors, 175–178
trp operon, 193, 194
Escherichia coli-Streptococcus shuttle vector, 180
Escherichia coli-Treponema denticola shuttle vector, 176
Eukarya, domain, 4, 5
European Federation of Periodontology, 291
Evolution. See also Population genetics
pathogenicity differences, 216
patterns for bacterial species, 213–215
specific host adaptation of bacterial clones, 216–217
viruses, 363
Exometabolomics, 209
Extracellular matrix, bacterial gene expression, 436–437
Extracellular polymeric substances
biofilm(s), 477
biofilm disruption by matrix degradation, 504
biofilm matrix and, 269, 272–274
EPS inhibition on biofilms, 501–502
EPS matrix and altered microenvironment, 477, 479

F
Fibrillar layers, 14
Fibrinectin, bacterial agglutination properties, 231
Filifactor alocis, 93, 419, 420
Fimbriae, 14
Firmicutes phylum, 419, 420
Flagella, 14–15
Flaviviridae, 365, 381
Fluconazole, treatment for Candida infection, 411–412
Fluorescent in situ hybridization (FISH), analysis technique, 94
Fluoride
caries prevention using, 261–262, 265, 471
oral biofilms, 144–146
Fluoroquinolones
resistance strategy, 478
topoisomerase inhibitors, 459, 467–468
Focal epithelial hyperplasia (FEH), 377
Food, anticariogenic properties of, 256–257
Food and Agriculture Organization, 502
Food and Drug Administration, 528
Foot and mouth disease virus, 372
Forsyth Institute, 299
Fretibacterium fastidiosum
Gammaproteobacteria, 411
Gene(s), activity of, 211
Gene(s), expression by sRNAs, 200
GenBank, 83, 92, 198
Genetics. See also Bacterial DNA inheritance
bacteria, 18
chromosomal DNA replication, 152
control of transcription, 193, 195
diagram of P. gingivalis W83 genome, 191
Gene(s), expression by sRNAs, 200
Genome
16S rRNA sequences, 190
control of transcription, 193, 195
diagram of P. gingivalis W83 genome, 191
gene organization and regulation, 191–193, 195
gene regulators in oral bacteria, 196
mechanisms of transcriptional control, 194, 195
single-cell, 97–98
transcriptional initiation, 195–197
Genomic structure, 198–205
CriSRP, 201, 202
CRISPR, 201, 202
inactivated Cas9-based transcriptional control, 203–204
native Cas9-mediated genome editing, 203
posttranscriptional regulation gene expression by sRNAs, 200
sRNAs (small noncoding RNAs), 199–201
Tn-Seq (transposon sequencing), 204–205
Gingipains, 319–321
functions and outcomes of protease action, 321
P. gingivalis, 320, 323
virulence function of, 319–321
pathogenesis of, 400–402
recombinant DNA technology, 149, 169, 177
schematic of mutagenesis strategies, 179
schematic of plasmid replication mechanisms, 174
screening, 186
selected native plasmids, 173
site-directed mutagenesis, 182, 183
specialized plasmid vectors, 175–178
stitch PCR, 179, 181–182
transposon mutagenesis, 184–186
transposons, 184–186
Gene transfer. See also Bacterial DNA inheritance
bacteria, 18
chromosomal DNA replication, 152
conjugation, 153–156
horizontal, 151, 153–163
membrane vesicle-mediated, 164–165
transduction, 160–163
transformation, 156–160
use of native plasmids for, 177
vertical, 149–152
Genome, viral, 361–363
Genome sequences
oral bacteria, 189
viruses, 369
Genome sequencing, single-cell genomics, 97–98
Genome-wide association studies (GWAS), 171
Gingipains, 319–321
functions and outcomes of protease action, 321
P. gingivalis, 320, 323
virulence function of, 319–321
recurrent DNA technology, 149, 169, 177
schematic of mutagenesis strategies, 179
schematic of plasmid replication mechanisms, 174
screening, 186
selected native plasmids, 173
site-directed mutagenesis, 182, 183
specialized plasmid vectors, 175–178
stitch PCR, 179, 181–182
transposon mutagenesis, 184–186
transposons, 184–186
Gingipains, 319–321
functions and outcomes of protease action, 321
P. gingivalis, 320, 323
virulence function of, 319–321
recurrent DNA technology, 149, 169, 177
schematic of mutagenesis strategies, 179
schematic of plasmid replication mechanisms, 174
screening, 186
selected native plasmids, 173
site-directed mutagenesis, 182, 183
specialized plasmid vectors, 175–178
stitch PCR, 179, 181–182
transposon mutagenesis, 184–186
transposons, 184–186

Hand, foot, and mouth disease, 372
Hand hygiene, 540–541
Hata, Sahachiro, 457
Health care workers
gloves, 541–542
gowns, 543
hand hygiene, 540–541
masks and glasses, 542–543
protective barriers, 541–543
vaccination of, 533–534
Heat shock proteins (HSPs)
atherosclerosis and, 444
cross-reactivity of antibodies, 444, 454
systemic diseases and, 448–449
Helicobacter pylori, 24, 214, 217, 449, 465
Hematopoiesis, 31, 36
Hepadnaviridae, 367, 371, 378
Hepatitis A virus, 372
Hepatitis B virus, 367, 370, 395, 529
epidemiology and clinical features, 379–380
HBV vaccine, 392
immune escape, 389–390
postexposure management, 548
serological markers of infection, 381
therapy and prevention, 381
virology, 377–379
epidemiology and clinical features, 382–383
immune escape, 389, 390
new therapies for chronic, 383
virology, 381–382
Herpes simplex virus, 54, 395
antiviral compounds and therapies, 393–394
epidemiology and clinical features of
HSV-1 and HSV-2, 373–374
oral infections, 447–448
virology of HSV-1 and HSV-2, 373
Herpesviridae, 372–373, 389, 395
Hippocrates, 407
Histatins, 78
Histoplasma capsulatum, 398
Histoplasmosis, 413, 415
HIV. See HIV/AIDS patients; Human immunodeficiency virus (HIV)
HIV/AIDS patients
anginal chelitis, 410
antifungal chemotherapy, 406
candidiasis, 408, 412
histoplasmosis, 413
mucormycosis, 414
pandemic, 534–535
Horizontal gene transfer, 153–156.
See also Gene transfer
conjugation, 153–156
membrane vesicle-mediated gene
transfer, 164–165
transduction, 160–163
transformation, 156–160
Host defenses, 437–439
Host modulation, 511–522
immunization against dental caries,
512–514
immunization against periodontal
disease, 516–517
inhibition of periodontal tissue
destruction, 520–521
periodontal disease therapies,
514–516
periodontal inflammation inhibition
and resolution, 518–520
potential safety issues, 521–522
Human herpesviruses, 372–373
HHV-6, HHV-7, and HHV-8, 376
HHV-8 in oral microbiota, 433
oral infections, 447–448
Human immunodeficiency virus (HIV),
361, 396, 527
antiviral components in saliva, 79
antiviral compounds and therapies, 394
Berlin patient and cure of, 386
epidemiology and clinical features,
384–386
in oral microbiota, 433
Public Health Service recommendations,
549
risk management, 529
virology, 384
Human Microbiome Project, 89
Human papillomavirus, 54, 395
epidemiology and clinical features,
377
oral infections, 448
in oral microbiota, 433
virology, 376
Hydroxyapatite, nanowires, 511
Hypothetical genes, 198–199
Illumina HiSeq sequencing, 92
Illumina MiSeq sequencing technology, 90
Imidazoles, treatment for Candida
infection, 411–412
Immediate-type (type I) hypersensitivity,
542
Immune cells, tailored immunity
requiring specialized, 46–48
Immune recognition mechanisms
adaptive, 41–43
innate, 38–41
Immune response(s)
induction and stages of, 43–46
viral evasion strategies, 388–390
viral infections, 396
viruses and adaptive immune system,
387–388
viruses and innate immune system,
386–387
Immune system
adaptive immune recognition, 41–43
Immune system (continued)
 antigen receptors, 41–43
cells of, 32–33
complement and its functions, 40
immune recognition, 38–41
pattern recognition receptors, 38–41
recognition mechanisms, 38–43
self/nonself paradigm, 29–30

Immunity, 29–30
 adaptive, 35–36, 38
 hallmark properties of, 48–50
 innate, 30–35
 mucosal immune system, 234
 oral secretory, 227–238
 subgingival, 238–247
tailored, 46–48

Immunization. See also Viral Vaccines
against dental caries, 512–514
against periodontal disease, 516–517
vaccination of health care workers, 533–534

Immunology. See Oral secretory immunity; Subgingival immunity

Incubator, anaerobic chamber as, 97

Infection control
 biofilms in dental water lines, 536–538
 checklist, 543–544
cross-infection risks in dentistry, 530–538
definition of terms, 538
dentistry, 525–527
 electronic resources for, 528
 emerging infectious diseases, 534–536
gloves, 541–542
hand hygiene, 540–541
management of recently identified infection control risks, 533–538
 masks and gloves, 542–543
 parenteral spread of, 533
problems for cross-infection prevention in general dental practice, 538–540
protective barriers, 541–543
routes of spread of infection, 530–531, 533
single-use supplies and instruments, 532
 standard precautions, 540–544
 sterilization of instruments, 544–547
 use and disposal of needles and sharp instruments, 543
vaccination of health care workers, 533–534

Infectious diseases, emerging, 534–536
Infective endocarditis, 433
dental patients at risk for, 492, 493
oral microbes and, 440–442
promotion of, 451

Inflammation
dental disease and systemic pathology, 450, 452–453
inhibition and resolution of periodontal, 518–520
local intravascular, 454
Influenza A virus, 363

Innate immunity
 viruses and, 386–387

Innate immunity cell-mediated, 47
 key components of, 31, 33–34
 properties of, 49–50

Innate lymphoid cells (ILCs), 33–34, 46–48

International Journal of Systematic and Evolutionary Microbiology (journal), 93

In vivo expression technology (IVET), 198

In vivo-induced antigen technology (IVIAT), 198

Irritant contact dermatitis, 542

Jacob, François, 192
Jenner, Edward, 390, 396

Kaposi’s sarcoma, 376, 448
Ketoconazole, treatment for Candida infection, 411, 412
Keystone pathogens, 64, 315, 316
periodontal bacteria, 333, 334, 335–336
Klarer, Josef, 458
Klebsiella pneumoniae, 467
Kornman, Kenneth, 301

Lactic acid bacteria, acid tolerance to, 132
Lactobacillus spp., 103, 269, 270
 acid tolerance, 132
 acidogenic interactions, 281
 probiotic strains, 502
Lactobacillus brevis, 520
Lactobacillus fermentum, 520
Lactobacillus ruminis, 78
 antimicrobial protein, 503
Lactobacillus reuteri, 520
Lactoferrin, 229
Lactose, 67
Legionella spp., dental water lines, 536–537
Leniviruses, 384
Leptotrichia, 66
Leukocyte adhesion deficiency (LAD), 343–344, 345
Leukotoxin, A. actinomycetemcomitans, 317
Leukotixin, A. actinomycetemcomitans, 317
Life cycle, viral, 363–369
Lincosamides
 antiribosomal agents, 459, 466
 resistance strategy, 478
Lindhe, Jan, 298
Linnaeus, Carl, 4
Lipopolysaccharide (LPS)
 biological activities of, 12
 cell wall peptidoglycan, 8, 10, 11, 12
 structure of, 11, 438
Lipoteichoic acid (LTA)
 cell wall peptidoglycan, 8, 11, 12–13
 structure of, 11
Loe, Harald, 297
Lyme disease, 463
Lysozyme, 77, 232–233

M
Macrolides
 antiribosomal agents, 459, 465–466
 resistance strategy, 478
Macrophages, periodontitis recruitment of, 344–346
Mad cow disease, 535–536
Magic bullet, concept of, 457
Major histocompatibility complex, 36
Malolactic fermentation, acid tolerance, 278
Mast cells, 32–33
Medicine, infection control in, 526
Membrane vesicle-mediated gene transfer, horizontal, 164–165
Metabolic fingerprinting, 208–210
Metabolism
 of amino acids, 128–129
 arginine, by arginine deiminase system, 131
cross feeding and cross respiration, 131
 lactate, 127
 of organic acids, 127
 oxygen, in oral bacteria, 140–142
Metabolomics, 208–209
Metabonomics, 209–210
Metagenome, sequence analysis, 91–93
Metal ion chelators
 antimicrobial factor in oral cavity, 229
calgranulin A and B, 229, 231
 lactoferrin, 229, 231–232
Metal nanoparticles, disrupting biofilms, 506–508
Metal nanostructures, plasmonic photothermal therapy by, 510–511
Metabolribivirus ordo, 131
Methicillin-resistant S. aureus (MRSA), prevalence of, 526
Methicillin-resistant S. aureus (MRSA), prevalence of, 526
Metronidazole
 antibiotics, 459, 468
 characteristics of, 490
 odontogenic infections, 485
 periodontal therapy, 469–471
Miconazole, treatment for Candida infection, 411–412
Microarray hybridization, DNA assay, 88
Microbe-associated molecular patterns (MAMPs), 39–40, 43
Microbial antagonism, 26
Microbial biofilms, 25
Microbial cooperativity, 26
Microbial dark matter, 81
Microbial growth curve, 19
Microbial interactions, cariogenicity and, 279–282
Microbiome, 213. See also Population genetics
biodiversity of, 218–219, 225
cariogenic organisms, 267–268
commensal, 217, 225
complexity of, 222
high-throughput DNA sequencing of caries process, 270
population changes in dynamic oral, 219
Microbiota. See also Oral microbiota mucosal, 68–70
oral, 60–70
Microorganisms, host defenses against, 437–439
Microsporum canis, 400
Mietzsch, Fritz, 458
Molecular biology. See also Gene regulation
genomics, 190–198
genomic structure, 198–203
metabolic fingerprint, 208–209
metabolomics, 208–209
metabonomics, 209–210
multi-omics, 210–211
proteomics, 206–208
transcriptomics, 205–206
Molecular mimicry, 304
Monobactam, cell wall-active agents, 459, 463
Monobactams
cell wall-active agents, 459, 463
resistance strategy, 478
Monocytes/macrophages, 32
Monod, Jacques, 192
Moxifloxacin, odontogenic infections, 486
Mucins, 73–74
mucin–7, 230
salivary, 74–75
Mucormycosis, 414, 415
Mucosal immune system, 234
biological activities of S-IgA antibodies, 237–238
functions of secretory IgA (S-IgA) antibodies, 235
induction of S-IgA antibodies in saliva, 235–237
S-IgM secretory immunoglobulin, 233–235
specific host defense factors in saliva, 233–235
transport of polymeric IgA across mucosal epithelium, 236
Mucosal microbiota, 68–70
Multilocus sequence typing (MLST), 221–223, 406
Multi-omics, 210–211
Mutagenesis, 179–182, 187. See also Genetics
directed, 178, 180–181
insertion-duplication, 178, 179
marked allelic replacement, 178, 179, 181
markerless allelic replacement, 179, 180–181
site-directed, 182, 183
stitch PCR, 179, 181–182
transposons, 184–186
Mycobacterium, heat shock proteins, 449
Mycobacterium tuberculosis, 5
Mycoplasma, 437–439
Mycoplasma genitalium, 5
Mycoplasma genitalium, 5
Mycoplasma pneumoniae, 16
N
Nanoparticles, antimicrobial, disrupting biofilms, 506–508
National Institutes of Health (NIH), 89, 161
Natural killer cells, 33
Neisseria, 24, 103, 111
Neisseriaceae, 64
Neisseria gonorrhoeae, 214, 463
Neisseria meningitidis, 214, 215
Neosalvarsan, 457
Neutrophils
periodontal bacteria’s resistance to killing, 330, 331
periodontal disease, 342–344, 356
regulation of, to periodontium, 243
releasing cytokines (APRIL and BlyS), 343, 354
subgingival environment, 241–242, 244
Next-generation sequencing (NGS), 371
ribosomal 16S rRNA genes, 90–91
Nonantibiotic antimicrobial agents and disinfectants, 471
Nonsteroidal anti-inflammatory drugs (NSAIDs), periodontal inflammation, 518
Nutrition
bacteria, 20–21
plaque, 146–147
saliva as source of bacterial, 79
Nystatin, candidiasis, 411
Obesity, oral microbes and, 446
Odontogenic infections, antibiotics of choice for, 487, 494
azithromycin, 486
cinolamycin, 485
table for, 486–488
metronidazole, 485
moxifloxacin, 486
pencillins, 484–485
systemic antibiotics treating, 484–486
Olsenella spp., 419, 420
Opreon(s), 190, 192, 211
lac, 192–193, 194
sloABC, 194, 197
trp, 193, 194, 195
Oral bacteria
acid-base physiology of, 132
acquisition of, 102–103
checkerboard analysis, 88
classification of cultured, 98
cultivation of, 94–97, 99
culture media, 96–97
direct observation of, 94
dNA hybridization assays, 88
innovations in bacterial cultivation, 97
microarray hybridization, 88
molecular techniques for identifying, 86–90
naming of, 93
next-generation sequencing of 16S rRNA gene, 89–90
in oral microbiota, 433
oxygen metabolism in, 140–142
oxygen requirements, 96
pathogenicity differences in strains, 216
PCR (polymerase chain reaction) assay, 87
PCR detection, 86–87
physiological and nutritional interactions, 110
population genetics structure of, 223–225
primer design, 86
quantitative PCR, 87–88
ribosomal 16S rRNA gene cloning and sequence analysis, 89–90
sampling, 84–85
scheme for cultivation of, 95
sources of oxygen, 138
species and strains of, 93
virulence differences within species, 220
Oral biofilms. See Biofilm(s)
Oral care, surface modification, 498–500
Oral cavity
bacteria, 75–76
common fungal colonizers of, 401, 407
defense mechanisms of, 228
diversity of microorganisms in, 101–102
innate antimicrobial factors in, 229

Downloaded from www.asmscience.org by
IP: 54.70.40.11
560-73808_index_6P.indd 559
02/23/19 12:15 pm
Oral cavity (continued)
infect host defense factors in saliva,
228–229
metal ion chelators, 231–232
peroxidase system, 233
protease inhibitors, 232
proteins with bacterial agglutination
properties, 230–231
specific host defense factors in saliva,
233–235
oral viral infections, oral microbes and,
447–448
oral virology, 359, 371
organic acids, metabolism of, 127
Osteoelasticity, 233
linking inflammation to bone loss,
346–348
proteins of TNF family, 347
T lymphocytes, 349–350, 352
osteoclasts, regulation by RANKL and
OPG, 347
osteogenesis, 233
inflammation and
bone loss, 346–348
Osteoprotegerin, regulation of osteo-
clasts by, 347–348
Outer membrane vesicles, 314, 326–328
Osazolidinones
antibacterial agents, 459, 466
resistance strategy, 478
Oxford Nanopore, 90, 92
Oxy Pens, Samuel, 407
Periodontal bacteria
accessory pathogens, 315
acquisition of iron, 322–324
attachment, 310–313
autoinducers, 315
capsule and exopolysaccharide,
325–326
colonization, 309–316, 330–331
colony development, 313–316
invasion, 313
keystone pathogens, 315, 333, 334,
335–336
lipopolysaccharide, 324–325
localization in gingival crevice,
309–310
major adhesins of, 314
matrix metalloproteinase enzymes,
313, 319–321
outer membrane vesicles, 314,
326–328
polymicrobial synergy and dysbiosis,
315
proteolytic enzymes by, 317–322
resistance to neutrophil killing, 330, 331
secretion of virulence factors,
328–330
surface-associated bioactive compo-
nents, 324–328
toxic bacterial components and
enzymes, 326
toxins by, 317, 331
Periodontal diseases, 287, 307, 309
community development, 313–316
complement, 339–342
current classification of, 287–291
diabetes and, 446
dysbiosis mechanism, 333, 334,
335–337, 336
epidemiology of, 291–297
general health outcomes and, 303–307
gingivitis, 333, 334
host modulation therapies in, 514–516, 522
immune players in, 337–339
immunization against, 516–517
inflamm-aging, 355–356
inflammation, 339–342, 450, 452–453
interplay of stromal, innate, and adaptive immune cells, 338
keystone pathogens and, 333, 334, 335–336
macrophages, 344–346
microbial etiology of, 297–302
microbial manipulation, 339–342
neutrophils in, 342–344, 345
Page and Schroeder model, 338–339
periodontitis, 333, 334
prevention and control of, 303, 307
strategies for inhibiting and resolving inflammation, 518–520
Periodontal pocket, 287, 333
antibiotics and, 303
depth, 288, 291
diagram, 353
Periodontal therapy, systemic antibiotics in, 488–491
Periodontitis, 64, 65, 288, 331
adaptive immune response, 348–349
aggressive, 289, 290, 296, 489, 491
animal models of, 519
apical, 418, 422–424, 431
association of complement in, 341–342
B-lineage cells and, 352, 354–355
chronic, 289, 519
definition, 289
determinants of susceptibility, 307
developmental or acquired, 291
diabetes mellitus and, 295–296, 306–307
disrupted host-microbe homeostasis, 336
genera with abundance in health and, 299, 300
histopathology of, 338, 346–348, 356
human, 519
inflammation, 451
leukocyte adhesion deficiency and, 343–344
as manifestation of systemic disease, 290
microbes associated with posttreatment apical, 421
microbes associated with primary apical, 419–421
neutrophils in, 342–344, 345
pathogenesis of human, 302
prevalence in population, 291–293
protective and destructive functions of B-lineage cells in, 353
risk factors, 294–297
schematic, 334
Periodontium, 56–57. See also Subgingival immunity
adaptive immunity in, 246–247
developmental endothelial locus-1 (Del-1) and, 242, 243, 244, 356
gingival crevicular epithelium, 245–246
inflamm-aging of, 336
regulating neutrophil recruitment to, 243
Periplasmic flagella, electron micrograph of, 15
Peroxidases, 233
Peyer's patches, 234, 235, 434
Phagocytic leukocytes, 33
Phylogenetic tree, bacterial phyla, 84
Phyre2, 199
Pilus, 14
Plaque formation, early determinants of tooth, 60–67
Plasmids, 187. See also Genetics
basic features of, 171–173
replication, 172–174
selected native, 173
specialized vectors, 176–178
Plasmonic photothermal therapy, 510–511
P. gingivalis, 141
Pneumocystis carinii, 386
Polymeric nanocarriers, stealth and pH-activated, 508–510
Polymyxins
antibiotics, 459, 469
resistance strategy, 478
Population genetics, 213
differences in pathogenicity of strains, 216
genetic diversity in oral bacteria, 218–219
genetic structures of bacterial populations, 214
localized sex in bacteria, 215–216
multilocus sequence typing (MLST), 221–223
oral microbiome undergoing constant changes, 219
pathogenicity islands, 215, 220, 223, 225
patterns of evolution, 213–215
search for virulent clones, 220, 223
sizes of pathogenic and commensal bacteria, 217–218
specific host adaptation of bacterial clones, 216–217
strain differentiation methods, 220–223
structure of oral bacteria, 223–225
virulence differences within species, 220
Porphyromonas spp., 64, 141, 420, 422
Porphyromonas gingivalis, 25, 78
acquisition of iron, 322–324
adverse pregnancy outcomes, 444
antagonism, 115
antibiotics in periodontal therapy, 488–489, 491
associations, 111–112
atherosclerosis and, 443–444
atherosclerotic plaques, 452
attachment of, 310–312
autoinducers, 315
bacteremia and, 439
bone loss and, 348
cancers and, 447
cationic antimicrobial peptides, 229
chromosome, 16
communication, 112, 117, 118
complement in, 339–340
contact-dependent interactions, 114
cooperativity, 26
dental plaque, 105, 106
dentinal tubule invasion, 423
diagram of W83 genome, 190, 191
distribution of divergent genes in genome of two strains, 221
diversity, 218–219
dysbiotic inflammation, 341
energy generation, 129
fibronectin, 231
gene regulators in, 196
genetics, 149
gingipains by, 320, 323
gingival crevicular epithelium, 246
growth, 20
hemin and iron acquisition in, 323
hypothesetical model of structure and function of, 329
interactions with oral bacteria, 110
distribution of oral bacteria, 428–429
keystone pathogen, 315, 316
macrophages and periodontitis, 344–346
major adhesins of, 314
metal ion chelators, 231
neutrophils in, 342–343
outer membrane vesicles, 326–328
PCR assay, 87
periodontal pathogens, 294
periodontitis, 64, 67, 69
population genetic structure, 223–224
protease inhibitors, 232
proteolytic enzymes of, 319
rheumatoid arthritis, 445–446
strain-dependent differences in, 220
Downloaded from www.asmscience.org by
IP: 54.70.40.11

560-73808_index_6P.indd 561
02/23/19 12:15 pm
Signal recognition particle, 23
Single-cell genomics, 97–98
Single-nucleotide polymorphisms, 93
Skin-derived antileukoproteinase/elfin, 232
Smallpox, 390, 391
Small RNAs (sRNAs), 121, 199–201
Smith, Maynard, 214
Socransky, Sigmund, 299
Solid tumors, oral microbes and, 447
Sporothrix schenckii, 398
Spirochetes, 14–15
Staphylococcus spp., 111
Streptococcus agalactiae, 14, 173
Streptococcus cristatus, 106, 115, 157
Streptococcus gordonii, 19, 76
Streptococcus mutans, 13, 103
Streptococcus oralis, 104, 105, 106
Streptococcus pneumoniae, 13, 157
Streptococcus pyogenes, 200
Streptococcus rattus, 264
Sterilization, 506–507
ad vantages and dis ad vantages of, 545–547
defi ni tion, 538, 550
disposal of in fected waste, 548
in stru ments, 544–547
in stru ments, 544–547
in stru ments, 544–547
metal nanoparticles disrupting, 506–507
quality assurance, 545
surface disinfectants, 547
Stickland reaction, amino acid metabo-
listism, 130
Streptococcal interactions, infective
endocarditis, 441
Streptococcal shock syndrome, dissemi-
nated intravascular coagulation,
442–443
Streptococcus spp. 64, 66, 67, 83, 103
alkali production, 136, 137
antagonism, 26
coaggregation of Veillonella spp. and,
144
compe tence-stimulating peptide of,
156–157
compe tence, 184
cross feeding and cross respi ra tion, 131
E. coli–Streptococcus shuttle vector,
176
endodontic infections, 420, 422
genomic evolution, 171
markerless mutagenesis, 181
oral, as en dog e nous path o gens, 435
oral bacteria, 435
pathways in compe tence development in,
158
penicillin-binding proteins in, 160, 161
plaque, 63
transformation in, 156
Streptococcus agalactiae, 14, 173
Streptococcus cristatus, 106, 115, 157
Streptococcus gordonii, 19, 76
Streptococcus mutans, 13, 103
Streptococcus oralis, 103
Streptococcus parasanguinis, 104, 105, 106, 277
Streptococcus pneumoniae, 13, 157
Streptomyces, 6
Sulfonamides
antifolate agents, 459, 466–467
Sugarcane, 272
Sucrose
complexity of metabolism, 276, 277
dental caries and, 257–258, 265
development of cariogenic biofilm, 269, 275
Streptococcus mutans metabolizing, 272
Sugar fermentation, energy generation by oral bacteria, 125–126
Sugar phosphotransferase system (PTS),
20–21, 274–275

Surface layers, 15
Surfactant protein A, bacterial agglutination properties, 230
Susceptibility, tests for antibiotic, 98–99
Synergistes phylum, 419, 420
Systemic diseases
 adverse pregnancy outcomes, 444–445
 atherosclerosis, 443–444
 bacteria, 439–440
 cancers, 447
 diabetes, 446
 disseminated intravascular coagulation, 442–443
 heat shock proteins and, 448–449
 infective endocarditis, 440–442
 inflammation and, 450, 452–453
 obesity, 446
 relationship between oral bacteria, oral tissue damage, and, 451
 rheumatoid arthritis, 445–446
 sequelae of oral viral infections, 447–448

TNF superfamily
cytokines APRIL and BLyS, 343, 354, 520
inflammation, 520
osteoclastogenesis by proteins, 347
Tolerance, term, 477
Toll-like receptors (TLRs)
inflammation, 340–342, 519
neutrophils and, 340, 341
pattern recognition receptors, 240–241, 439
Tongue, 56–57
Tooth. See Dental plaque; Teeth
Topoisomerase inhibitors
fluoroquinolones, 467–468
targets and mechanism of action, 459
Toxins, periodontal pathogens producing, 317
Transcriptomics, 205–206
Transduction
horizontal gene transfer, 160–163
schematic illustration of, 163
Transformation, horizontal gene transfer, 156–160
Transmissible spongiform encephalopaties, 534–536
Transposons
mutagenesis, 184–186, 187
sequencing Tn-Seq, 204–205
T regulatory cells, inflammation, 520
Treponema spp., 14, 463
Treponema denticola, 14, 108, 141
acid tolerance, 132
attachment of, 312, 313
bacteriophages of, 162
communication, 117, 118
complement in, 340
cooerativity, 26
dental plaque, 105
dependence on host, 124
E. coli-T. denticola shuttle vector, 177
electron micrograph of, 311
energy generation, 129
gene regulation, 120
gene regulators in, 196
gingival crevicular epithelium, 246
interactions with oral bacteria, 110
localization in ginvial crevice, 309–310
major adhesins of, 314
native plasmids, 173
proteolytic enzymes of, 318
surface layer, 15
TaqMan system, PCR, 87–88
Taxonomy, virus, 369–371
T-cell antigen receptors, 34, 41–42
T cells, 356
 antigen recognition, 37
 developmental pathways of CD4+, 45
differentiation, 44–45
properties of, 48–49
Teeth, 54–56. See also Dental plaque
anatomical and structural features, 253
early determinants of plaque formation, 60–67
structure and development, 252–253
Teicoplanin, cell wall-active agents, 463
Tetracyclines
antibacterial agents, 459, 464–465
peridontal therapy, 491
peridontal tissue destruction, 521
resistance strategy, 478
Thiobacillus, acid tolerance, 133
Tick-borne encephalitis virus, 361, 365
T lymphocytes, 33
TM7 phylum, 97, 98
Tumor-infiltrating lymphoid cells, 447
Tumors, oral microbes and, 447
Twin-arginine translocation system, 22–24

U
Uncoating, viral, 365
Universal precautions, 525, 527, 535, 540–543
gloves, 541–542
gowns, 543
hand hygiene, 540–541
masks and glasses, 542–543
protective barriers, 541–543
use and disposal of needles and sharp instruments, 543
Urease, 136, 137

V
Vaccines. See Viral vaccines
Vaccinia virus, 391
Vancomycin, cell wall-active agents, 463
van Leeuwenhoek, Antonie, 3
Varicella-zoster virus
epidemiology and clinical features, 374–375
virology, 374
Variola, 390
Veillonella spp., 66, 67, 93, 111
acidogenic interactions, 281–282
coadhesion, 111
coggregation of Streptococcus spp. and, 144
dental plaque, 105
interactions with oral bacteria, 110
lactate for energy generation, 127–128
Veillonella atypica, 111
Veillonella parvula, 126
coadhesion, 26
endodontic infections, 420
lactate metabolism, 127–128
Vertical gene transfer, 149–152. See also Gene transfer
Vesicles, 15
Viral genomes, 361–363
classes of, 362, 395
Viral life cycle, 363–369, 395
assembly of viral particles, 368–369
infection of a cell, 364
mechanisms of viral entry, 364
replication of genome, 365–366
synthesis of viral proteins, 368
uncoating and release of viral genome, 365
Viral vaccines
antiviral compounds and therapies, 393–395
antiviral immunoglobulin preparations and, 391–393
history of, 390–391
types of, 393
Index

Virology
cytomegalovirus, 375–376
Epstein-Barr virus, 375–376
hepatitis B virus, 377–379
hepatitis C virus, 381–382
herpes simplex viruses, 373
HIV, 384
human papillomaviruses, 376
oral, 359, 371
varicella-zoster virus, 374

Virulence
differences within bacterial species, 220
factors of Streptococcus mutans, 271
of fungi, 401–402
methods of strain differentiation, 220–223
pathogenicity differences of strains, 216
searching for virulent clones, 220, 223, 225

Virus(es), 359–360
adaptive immune system, 387–388
budding, 368
causing pathologies in oral cavity, 372–377
cytomegalovirus, 375–376
discovery of new, 371
DNA viruses, 365, 370
Epstein-Barr virus, 375–376
evasion strategies, 388–390
evolution of, 363
foot and mouth disease virus, 372
hepatitis A virus, 372
hepatitis B virus, 367, 370, 377–381
hepatitis C virus, 365–366, 370, 381–383
herpes simplex viruses 1 and 2, 373–374
HIV, 384–386
human herpesviruses, 372–373
human herpesvirus 6, 376
human herpesvirus 7, 376
human herpesvirus 8, 376
human papillomaviruses, 376–377
influenza A virus, 363
innate immune system, 386–387, 396
oral virology, 371
present in oral cavity, 377–386
RNA viruses, 365, 370
schematic of enveloped and nonenveloped, 362
taxonomy, 369–371
tick-borne encephalitis virus, 361, 365
transmission of, 360–361
varicella-zoster virus, 374–375
Zika virus, 365, 535

Virus families
Flaviviridae, 67, 381
Hepadnaviridae, 367, 371, 378
Herpesviridae, 367, 373, 389, 395
Picornaviridae, 372
Retroviridae, 384

W
Waldeyer’s pharyngeal ring, 234, 235
Wall teichoic acids
cell wall peptidoglycan, 8, 11, 12–13
structure of, 11
Warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome, 343
World Health Organization, 391, 502

Y
Yeasts, 270

Z
Zika virus, 365, 535
Zinkernagel, Rolf, 43