Regulating with RNA in Bacteria and Archaea
Regulating with RNA in Bacteria and Archaea

EDITED BY

Gisela Storz
Division of Molecular and Cellular Biology
Eunice Kennedy Shriver National Institute of Child Health
and Human Development
Bethesda, Maryland

Kai Papenfort
Faculty of Biology
Department of Microbiology
Ludwig-Maximilians-University of Munich
Martinsried, Germany
Contents

Contributors ix
Foreword xix
Preface xxii
Acknowledgments xxv
About the Editors xxvii

SECTION I: RNASES AND HELICASES

1. RNase E and the High-Fidelity Orchestration of RNA Metabolism 3
 Katarzyna J. Bandyra and Ben F. Luisi

2. Enzymes Involved in Posttranscriptional RNA Metabolism in Gram-Negative Bacteria 19
 Bijoy K. Mohanty and Sidney R. Kushner

3. RNases and Helicases in Gram-Positive Bacteria 37
 Sylvain Durand and Ciarán Condon

SECTION II: CIS-ACTING RNAS

4. RNA Thermometers in Bacterial Pathogens 57
 Edmund Loh, Francesco Righetti, Hannes Eichner, Christian Twittenhoff, and Franz Narberhaus
5. Small-Molecule-Binding Riboswitches 75
 THEA S. LOTZ AND BEATRIX SUESS

6. The T-Box Riboswitch: tRNA as an Effector to Modulate Gene Regulation 89
 KIEL D. KREUZER AND TINA M. HENKIN

7. rRNA Mimicry in RNA Regulation of Gene Expression 101
 MICHELLE M. MEYER

8. Processive Antitermination 117
 JONATHAN R. GOODSON AND WADE C. WINKLER

9. Genes within Genes in Bacterial Genomes 133
 SEZEN MEYDAN, NORA VÁZQUEZ-LASLOP, AND ALEXANDER S. MANKIN

10. Leaderless mRNAs in the Spotlight: Ancient but Not Outdated! 155
 HEATHER J. BECK AND ISABELLA MOLL

SECTION III: CIS-ENCODED BASE PAIRING RNAs

11. Type I Toxin-Antitoxin Systems: Regulating Toxin Expression via Shine-Dalgarno Sequence Sequestration and Small RNA Binding 173
 SARA MASACHIS AND FABIEN DARFEUILLE

12. Widespread Antisense Transcription in Prokaryotes 191
 JENS GEORG AND WOLFGANG R. HESS

SECTION IV: TRANS-ENCODED BASE PAIRING RNAs

13. Small Regulatory RNAs in the Enterobacterial Response to Envelope Damage and Oxidative Stress 213
 KATHRIN S. FRÖHLICH AND SUSAN GOTTESMAN

14. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs 229
 SVETLANA DURICA-MITIC, YVONNE GÖPEL, AND BORIS GÖRKE

15. Small RNAs Involved in Regulation of Nitrogen Metabolism 249
 DANIELA PRASSE AND RUTH A. SCHMITZ

16. Bacterial Iron Homeostasis Regulation by sRNAs 267
 SYLVIA CHAREYRE AND PIERRE MANDIN

17. Small RNA-Based Regulation of Bacterial Quorum Sensing and Biofilm Formation 283
 SINE LO SVENNINGSEN
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Regulatory RNAs in Virulence and Host-Microbe Interactions</td>
<td>Alexander J. Westermann</td>
</tr>
<tr>
<td></td>
<td>SECTION V: PROTEIN TITRATION AND SCAFFOLDING</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Global Regulation by CsrA and Its RNA Antagonists</td>
<td>Tony Romeo and Paul Babitzke</td>
</tr>
<tr>
<td>20</td>
<td>6S RNA, a Global Regulator of Transcription</td>
<td>Karen M. Wassarman</td>
</tr>
<tr>
<td>21</td>
<td>Bacterial Y RNAs: Gates, Tethers, and tRNA Mimics</td>
<td>Soyeong Sim and Sandra L. Wolin</td>
</tr>
<tr>
<td></td>
<td>SECTION VI: GENERAL CONSIDERATIONS</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Proteins That Chaperone RNA Regulation</td>
<td>Sarah A. Woodson, Subrata Panja, and Andrew Santiago-Frangos</td>
</tr>
<tr>
<td>23</td>
<td>Epitranscriptomics: RNA Modifications in Bacteria and Archaea</td>
<td>Katharina Höfer and Andres Jäschke</td>
</tr>
<tr>
<td>24</td>
<td>RNA Localization in Bacteria</td>
<td>Jingyi Fei and Cynthia M. Sharma</td>
</tr>
<tr>
<td>25</td>
<td>Sponges and Predators in the Small RNA World</td>
<td>Nara Figueroa-Bossi and Lionello Bossi</td>
</tr>
<tr>
<td>26</td>
<td>Bacterial Small RNAs in Mixed Regulatory Networks</td>
<td>Anaïs Brosse and Maude Guillier</td>
</tr>
<tr>
<td>27</td>
<td>Dual-Function RNAs</td>
<td>Medha Raina, Alisa King, Colleen Bianco, and Carin K. Vanderpool</td>
</tr>
<tr>
<td>28</td>
<td>Origin, Evolution, and Loss of Bacterial Small RNAs</td>
<td>H. Auguste Dutcher and Rahul Raghavan</td>
</tr>
<tr>
<td></td>
<td>SECTION VII: EMERGING TOPICS</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level</td>
<td>Shoshy Altuvia, Gisela Storz, and Kai Papenfort</td>
</tr>
<tr>
<td>30</td>
<td>Large Noncoding RNAs in Bacteria</td>
<td>Kimberly A. Harris and Ronald R. Breaker</td>
</tr>
</tbody>
</table>
31. Synthetic Biology of Small RNAs and Riboswitches 527
 JORDAN K. VILLA, YICHI SU, LYDIA M. CONTRERAS, and MING C. HAMMOND

SECTION VIII: RESOURCES

32. Functional Transcriptomics for Bacterial Gene Detectives 549
 BLANCA M. PEREZ-SEPULVEDA AND JAY C. D. HINTON

33. Structure and Interaction Prediction in Prokaryotic RNA Biology 563
 PATRICK R. WRIGHT, MARTIN MANN, AND ROLF BACKOFEN

Index 581
Contributors

SHOSHY ALTUVIA
Department of Microbiology and Molecular Genetics, IMRIC
The Hebrew University-Hadassah Medical School
Jerusalem, Israel

PAUL BABITZKE
Department of Biochemistry and Molecular Biology
Center for RNA Molecular Biology
The Pennsylvania State University
University Park, Pennsylvania

ROLF BACKOFEN
Bioinformatics Group
Center for Biological Signaling Studies (BIOSS)
University of Freiburg
Freiburg, Germany

KATARZYNA J. BANDYRA
Department of Biochemistry
University of Cambridge
Cambridge, United Kingdom

HEATHER J. BECK
Max F. Perutz Laboratories, Center for Molecular Biology
Department of Microbiology, Immunology and Genetics
University of Vienna
Vienna Biocenter
Vienna, Austria
Contributors

Colleen Bianco
Department of Microbiology
University of Illinois
Urbana, Illinois

Lionello Bossi
Institute for Integrative Biology of the Cell (I2BC)
CEA, CNRS, University of Paris-Sud
University of Paris-Saclay
Gif-sur-Yvette, France

Ronald R. Breaker
Howard Hughes Medical Institute
Department of Molecular, Cellular and Developmental Biology
Department of Molecular Biophysics and Biochemistry
Yale University
New Haven, Connecticut

Anaïs Brosse
CNRS UMR8261
Associated with University Paris Diderot, Sorbonne Paris Cité
Institut de Biologie Physico-Chimique
Paris, France

Sylvia Chareyre
Aix Marseille Université-CNRS
Institut de Microbiologie de la Méditerranée
Laboratoire de Chimie Bactérienne
Marseille, France

Ciarán Condon
UMR8261 CNRS
Université Paris Diderot (Sorbonne Paris Cité)
Institut de Biologie Physico-Chimique
Paris, France

Lydia M. Contreras
Institute of Cellular and Molecular Biology
Department of Chemical Engineering
The University of Texas at Austin
Austin, Texas

Fabien Darfeuille
ARN Laboratory
INSERM U1212, CNRS UMR 5320
University of Bordeaux
Bordeaux, France

Sylvain Durand
UMR8261 CNRS
Université Paris Diderot (Sorbonne Paris Cité)
Institut de Biologie Physico-Chimique
Paris, France
Contributors

Svetlana Durica-Mitic
Department of Microbiology, Immunobiology and Genetics
Max F. Perutz Laboratories
University of Vienna
Vienna, Austria

H. Auguste Dutcher
Department of Biology and Center for Life in Extreme Environments
Portland State University
Portland, Oregon

Hannes Eichner
Microbiology, Tumor and Cell Biology
Karolinska Institutet
Stockholm, Sweden

Jingyi Fei
Department of Biochemistry and Molecular Biology
Institute for Biophysical Dynamics
The University of Chicago
Chicago, Illinois

Nara Figueroa-Bossi
Institute for Integrative Biology of the Cell (I2BC)
CEA, CNRS, University of Paris-Sud
University of Paris-Saclay
Gif-sur-Yvette, France

Kathrin S. Fröhlich
Department of Biology I, Microbiology
LMU Munich
Martinsried, Germany

Jens Georg
University of Freiburg, Faculty of Biology
Institute of Biology III
Genetics and Experimental Bioinformatics
Freiburg, Germany

Jonathan R. Goodson
The University of Maryland
Department of Cell Biology and Molecular Genetics
College Park, Maryland

Yvonne Göpel
Department of Microbiology, Immunobiology and Genetics
Max F. Perutz Laboratories
University of Vienna
Vienna Biocenter
Vienna, Austria
BORIS GÖRKE
Department of Microbiology, Immunobiology and Genetics
Max F. Perutz Laboratories
University of Vienna
Vienna Biocenter
Vienna, Austria

SUSAN GOTTESMAN
Laboratory of Molecular Biology
Center for Cancer Research
National Cancer Institute
Bethesda, Maryland

MAUDE GUILLIER
CNRS UMR8261
Associated with University Paris Diderot, Sorbonne Paris Cité
Institut de Biologie Physico-Chimique
Paris, France

MING C. HAMMOND
Department of Chemistry
Department of Molecular & Cell Biology
University of California, Berkeley
Berkeley, California

KIMBERLY A. HARRIS
Howard Hughes Medical Institute
Department of Molecular, Cellular and Developmental Biology
Yale University
New Haven, Connecticut

TINA M. HENKIN
Department of Microbiology and Center for RNA Biology
The Ohio State University
Columbus, Ohio

WOLFGANG R. HESS
University of Freiburg, Faculty of Biology
Institute of Biology III
Genetics and Experimental Bioinformatics
Freiburg, Germany

JAY C.D. HINTON
Institute of Integrative Biology
University of Liverpool
Liverpool, United Kingdom

KATHARINA HÖFER
Institute of Pharmacy and Molecular Biotechnology
Im Neuenheimer Feld 364
Heidelberg University
Heidelberg, Germany
Contributors

ANDRES JÄSCHKE
Institute of Pharmacy and Molecular Biotechnology
Im Neuenheimer Feld 364
Heidelberg University
Heidelberg, Germany

ALISA KING
Department of Microbiology
University of Illinois
Urbana, Illinois

KIËL D. KREUZER
Department of Microbiology and Center for RNA Biology
Molecular, Cellular and Developmental Biology Graduate Program
The Ohio State University
Columbus, Ohio

SIDNEY R. KUSHNER
Department of Genetics
Department of Microbiology
University of Georgia
Athens, Georgia

EDMUND LOH
Microbiology, Tumor and Cell Biology
Karolinska Institutet
Stockholm, Sweden
SCELSE
Nanyang Technological University
Singapore

THEA S. LOTZ
Synthetic Genetic Circuits
Department of Biology
TU Darmstadt
Darmstadt, Germany

BEN F. LUISI
Department of Biochemistry
University of Cambridge
Cambridge, United Kingdom

PIERRE MANDIN
Aix Marseille Université-CNRS
Institut de Microbiologie de la Méditerranée
Laboratoire de Chimie Bactérienne
Marseille, France

ALEXANDER S. MANKIN
Center for Biomolecular Sciences
University of Illinois at Chicago
Chicago, Illinois
Contributors

MARTIN MANN
Bioinformatics Group
University of Freiburg
Freiburg, Germany

SARA MASACHIS
ARNA Laboratory
INSERM U1212, CNRS UMR 5320
University of Bordeaux
Bordeaux, France

SEZEN MEYDAN
Center for Biomolecular Sciences
University of Illinois at Chicago
Chicago, Illinois

MICHELE M. MEYER
Department of Biology
Boston College
Chestnut Hill, Massachusetts

BIJOY K. MOHANTY
Department of Genetics
University of Georgia
Athens, Georgia

ISABELLA MOLL
Max F. Perutz Laboratories, Center for Molecular Biology
Department of Microbiology, Immunology and Genetics
University of Vienna
Vienna Biocenter
Vienna, Austria

FRANZ NARBERHAUS
Microbial Biology
Ruhr University
Bochum, Germany

SUBRATA PANJA
T.C. Jenkins Department of Biophysics
Johns Hopkins University
Baltimore, Maryland

KAI PAPENFORT
Faculty of Biology
Department of Microbiology
Ludwig-Maximilians-University of Munich
Martinsried, Germany

BLANCA M. PEREZ-SEPULVEDA
Institute of Integrative Biology
University of Liverpool
Liverpool, United Kingdom
CONTRIBUTORS

DANIELA PRASSE
Christian-Albrechts-University Kiel
Institute of General Microbiology
Kiel, Germany

RAHUL RAGHAVAN
Department of Biology and Center for Life in Extreme Environments
Portland State University
Portland, Oregon

MEDHA RAINA
Division of Molecular and Cellular Biology
Eunice Kennedy Shriver National Institutes of Child Health and Human Development
Bethesda, Maryland

FRANCESCO RIGHETTI
Microbiology, Tumor and Cell Biology
Karolinska Institutet
Stockholm, Sweden

TONY ROMEO
Department of Microbiology and Cell Science
Institute of Food and Agricultural Sciences
University of Florida
Gainesville, Florida

ANDREW SANTIAGO-FRANGOS
Program in Cell, Molecular and Developmental Biology and Biophysics
Johns Hopkins University
Baltimore, Maryland
Department of Microbiology and Immunology
Montana State University
Bozeman, Montana

RUTH A. SCHMITZ
Christian-Albrechts-University Kiel
Institute of General Microbiology
Kiel, Germany

CYNTHIA M. SHARMA
Chair of Molecular Infection Biology II
Institute of Molecular Infection Biology (IMIB)
University of Würzburg
Würzburg, Germany

SOYEONG SIM
RNA Biology Laboratory
Center for Cancer Research
National Cancer Institute
National Institutes of Health
Frederick, Maryland
GISELA STORZ
Division of Molecular and Cellular Biology
Eunice Kennedy Shriver National Institute of Child Health and Human
Development
Bethesda, Maryland

YICHI SU
Department of Chemistry
University of California, Berkeley
Berkeley, California

BEATRIX SUESS
Synthetic Genetic Circuits
Department of Biology
TU Darmstadt
Darmstadt, Germany

SINE LO SVENNINGSEN
Department of Biology
University of Copenhagen
Copenhagen, Denmark

CHRISTIAN TWITTEMANN
Microbial Biology
Ruhr University
Bochum, Germany

CARIN K. VANDERPOOL
Department of Microbiology
University of Illinois
Urbana, Illinois

NORA VÁZQUEZ-LASLOP
Center for Biomolecular Sciences
University of Illinois at Chicago
Chicago, Illinois

JORDAN K. VILLA
Institute of Cellular and Molecular Biology
The University of Texas at Austin
Austin, Texas

KAREN M. WASSARMAN
Department of Bacteriology
University of Wisconsin-Madison
Madison, Wisconsin

ALEXANDER J. WESTERMANN
Institute of Molecular Infection Biology
University of Würzburg
Helmholtz Institute for RNA-Based Infection Research
Würzburg, Germany
Wade C. Winkler
The University of Maryland
Department of Cell Biology and Molecular Genetics
College Park, Maryland

Sandra L. Wolin
RNA Biology Laboratory
Center for Cancer Research
National Cancer Institute
National Institutes of Health
Frederick, Maryland

Sarah A. Woodson
T.C. Jenkins Department of Biophysics
Johns Hopkins University
Baltimore, Maryland

Patrick R. Wright
Bioinformatics Group
University of Freiburg
Freiburg, Germany
It took time to realize, but now it’s clear: the field of prokaryotic RNA biology is here. The science of how RNA is made, processed, regulated, modified, translated, and turned over has established itself as a core discipline in molecular microbiology. A central aspect is the understanding that RNA molecules function as regulators and sensors across both the archaea and bacteria, often with striking similarity to the complex world of noncoding RNA of eukaryotes.

It has developed in waves, starting with the discoveries of basic mechanisms and factors of gene expression in the 1960s and 1970s, when bacteria were the workhorses of the emerging field of molecular biology. As molecular tools advanced, the 1980s and 1990s not only provided insights into the underlying molecular mechanisms but also saw bacteriologists stumble upon the first RNA molecules with regulatory functions, creating a sense that there might be more in the transcriptomes of these seemingly simple organisms than the established triumvirate of mRNA, tRNA, and rRNA.

As the old century gave way to the new, the next wave broke: systematic genome-wide searches unearthed small RNAs, riboswitches, and RNA thermometers in stunning numbers and diversity. Concomitantly, investigation of the mechanisms and cellular targets of these new cis- and trans-acting RNAs showed that they played by defined molecular rules and used protein cofactors such as the protein Hfq or, more recently, ProQ. It became increasingly obvious that there is a whole layer of gene expression control above that of transcriptional regulation. Again, bacteria were the trailblazers, but it soon emerged that their sister group in the noneukaryotic world, the archaea, were also full of interesting regulatory RNA molecules that share features with both bacterial and eukaryotic noncoding RNA. And of course, there was CRISPR (clustered regularly interspaced short palindromic repeat)-Cas, whose rise as a revolutionary genome-editing tool in
biomedicine and biotechnology originated in part in deciphering the function of particularly enigmatic noncoding RNAs in bacteria.

Many of these recent discoveries in prokaryotic RNA biology were made possible by new technology, be it genome sequencing, which fed global biocomputational searches, or technology for global transcript profiling—microarrays at first, now largely replaced by RNA deep sequencing. The latter now drives the next wave, in which RNA biology has gone global in new ways: through methodology that can track individual transcripts from birth to death, with high temporal resolution and in concert with the behavior of all other transcripts in the same cell; by drafting comprehensive RNA maps that can immediately highlight important RNA players under previously ignored physiological conditions or in an organism never looked at before; and global in the sense that we have so far investigated only a tiny sliver of the microbial world, and our attention is increasingly drawn to the astoundingly diverse bacteria of the human microbiota and environmental communities, promising new surprises for RNA biology.

Against the backdrop of this ongoing RNA revolution, the editors of Regulating with RNA in Bacteria and Archaea should be congratulated on having put together an excellent collection of chapters that in their sum easily convey the excitement of this field. Catering to principal investigators, postdocs, and advanced students alike, this book gives a comprehensive account of the state of the art of the prokaryotic RNA inventory and underlying molecular mechanisms. It also provides a sense of what the next decade may bring, with regard to global discovery on the genome scale, enhanced structural and molecular resolution, and a deeper mechanistic understanding of cellular RNA molecules; the reader will find all of these aspects covered. It is a pleasure to see that the author list is a healthy mix of established researchers known for their seminal contributions to prokaryotic RNA biology and young scientists who have only recently started independent work on regulatory RNA. On top of that, several chapters are focused on general aspects of bacterial gene expression that are crucially relevant to our understanding of the activities and consequences of RNA-based regulation. I hope the reader will find Regulating with RNA in Bacteria and Archaea as exciting as I, and the authors of the following chapters, do.

Jörg Vogel
Helmholtz Institute for RNA-based Infection Research (HIRI);
Institute for Molecular Infection Biology,
University of Würzburg,
Würzburg, Germany
In 1961, Jacob and Monod hypothesized that the regulator of the lac operon might be an RNA (1). When it was discovered that the Lac repressor was a protein, the possibility that an RNA could be a regulator was largely forgotten, with a few notable exceptions. The first “unusual” RNA regulators found included antisense RNAs that controlled plasmid replication as well as transposition (reviewed in references 2 and 3). Subsequently, a handful of chromosomally encoded small regulatory RNAs (sRNAs) that act by base-pairing with trans-encoded mRNAs were discovered in bacteria. Typically, identification was serendipitous, for example, due to overexpression phenotypes or the detection of bands by phosphate labeling or Northern blot analysis (reviewed in references 3 and 4). The realization that sRNAs are a large class of regulators came from bioinformatic searches for conserved intergenic regions as well as systematic sequencing of cDNAs corresponding to small transcripts (reviewed in references 5 and 6). Another major step in the appreciation that RNAs are widespread and important regulators was the discovery that the 5’ untranslated regions of mRNAs can function as sensory elements responding to the binding of tRNAs or small molecules with connections to the functions of the downstream genes (reviewed in references 7 and 8).

The initial characterization of individual RNAs on a “gene by gene” basis followed by the recent expansion to genome-wide analysis exploiting deep sequencing have made it clear that RNA regulators rival transcription factors with respect to their regulatory scope (reviewed in reference 9). These studies have been revealing that regulatory RNAs are part of an incredibly intricate regulatory network. For example, sRNAs frequently regulate multiple and sometimes dozens of transcripts. At the same time, sRNA concentrations can be affected by their binding to chaperone proteins as well as RNA “sponges,” which can be independent sRNAs, degradation products of mRNAs, or tRNA fragments. While many of the initial studies of regulatory RNAs were carried out in model bacterial organisms, the advances in
sequencing technologies have facilitated their discovery in a wide range of microbial species, indicating that regulatory RNAs are present in all organisms.

Given the amazing progress that has occurred in the study of regulatory RNAs in bacteria and archaea in the past 20 years, we thought a summary of current knowledge would be a useful resource. Thus, the chapters in this book cover well-characterized cis-encoded RNA thermometers, T-box regulators, riboswitches, and regulatory RNA elements within mRNA transcripts, antisense RNAs, as well as trans-encoded base-pairing and protein-binding sRNAs. These chapters illustrate how regulatory RNAs are an integral part of most microbial responses, including adaptation to stressful environments and changes in nutrient availability, and contribute to pathogenesis.

We hope the book also will focus attention on open questions in the field and stimulate further research in these areas. Despite the significant progress, there are aspects of regulatory RNAs in bacteria and archaea that are still poorly studied. The improved sequencing technology has revealed that much of bacterial and archaeal genomes is transcribed and that there are regulatory RNAs in “blind spots” that were previously ignored. For example, it is becoming increasing clear that 3′ untranslated region-derived transcripts are a major class of base-pairing sRNAs. There additionally are many RNA regulators about which less is known in general, including protein-binding RNAs, RNAs with dual functions, and larger RNAs whose structural complexity rivals that of ribosomes. Future studies should illuminate the molecular underpinnings of what distinguishes different classes of regulatory RNAs and whether clear distinctions are appropriate. New areas of research necessarily will involve not only the RNA components themselves and their modifications but also their associated protein partners and the spatiotemporal parameters underlying their interactions in the cell.

As for many fields of research, our understanding of microbial RNA-based gene regulation comes largely from a few model bacterial organisms such as *Escherichia coli* and *Bacillus subtilis*. Although it is tempting to apply lessons learned from these organisms to other species, it is likely that there are important differences. The availability of an exponentially increasing number of data sets for total RNA or RNAs that coimmunoprecipitate with particular proteins or associate with other RNAs in a wide range of organisms undoubtedly will uncover unique features as well as further common principles of RNA-mediated gene control in bacteria and archaea. Understanding and generalizing these principles will be key for the design of synthetic RNA regulators for applications in biotechnology and medicine. Cross-species comparisons also should facilitate the development of hypotheses about the evolution of regulatory RNA elements and whether the evolution differs from that of protein counterparts.

The final chapters of the book discuss how the remarkable expansion of data necessitates new ways of analyzing and visualizing the information. This includes new strategies to extract and present relevant information from genome-wide gene expression analysis, which should help to uncover common principles of RNA-mediated gene control in bacteria and archaea. Given that standard bacterial genome annotations typically fail to include regulatory RNAs, annotation is still incomplete and the number of microbial regulatory RNAs is unknown.

In summary, these are exciting times for microbiologists, particularly for those studying the regulatory RNA complement encoded by microbes. We think this book summarizes the most significant information gained from studies on RNA-based gene regulation in prokaryotes over the past few decades and will serve as a useful resource for researchers new to the field. Furthermore, the book summarizes open questions that hopefully will inspire new research directions and
approaches. We would like to conclude by thanking our many colleagues who so willingly contributed chapters and provided comments that significantly improved the content of this book.

Gisela Storz
Kai Papenfort

References

We thank all of the authors for their contributions as well as Shoshy Altuvia, Katarzyna Bandyra, Chase Beisel, Sabine Brantl, Ron Breaker, Allen Buskirk, Claude Chiaruttini, Nicholas De Lay, Sylvain Durand, Sven Findeiß, Konrad Förstner, Elizabeth Fozo, Boris Görke, Susan Gottesman, Ming Hammond, Roland Hartmann, Andres Jäschke, Christine Jacobs-Wagner, Eugene Koonin, Iñigo Lasa, Stephen Lory, Pierre Mandin, Hanah Margalit, Eric Massé, Bryce Nickels, Wai-Leung Ng, Evgeny Nudler, Mikołaj Olejniczak, Rahul Raghavan, Lennart Randau, Marina Rodnina, Tony Romeo, Cynthia Sharma, Alejandro Toledo-Arana, Jai Tree, Julia van Kessel, Joseph Wade, Gerhart Wagner, Karen Wassarman, Wade Winkler, and Jinwei Zhang for their comments which improved all of the chapters. We also thank Sandy Pernitzsch for the lovely cover design and are extremely grateful for all of the help from Megan Angelini of ASM Press.
About the Editors

Gisela Storz is an NIH Distinguished Investigator in the Eunice Kennedy Shriver National Institute of Child Health and Human Development in Bethesda, Maryland. She carried out graduate work with Dr. Bruce Ames at the University of California, Berkeley and postdoctoral work with Dr. Sankar Adhya at the National Cancer Institute and Dr. Fred Ausubel at Harvard Medical School. As a result of the serendipitous discovery of the peroxide-induced OxyS RNA in *E. coli*, one of the first small, regulatory RNAs to be found, much of the work in her lab has focused on the genome-wide identification of small RNAs and their characterization.

Kai Papenfort is a Professor of Microbiology at the Ludwig Maximilians University of Munich, Germany. He received a diploma in biology from the University of Marburg and carried out graduate work with Dr. Jörg Vogel at the Max Planck Institute for Infection Biology and the Humboldt University of Berlin. In his postdoctoral work at the University of Würzburg and Princeton University, Dr. Papenfort studied the regulatory functions of small RNA in bacterial pathogens and their involvement in bacterial communication processes such as quorum sensing. His laboratory focuses on the molecular mechanisms underlying the regulation by small RNAs in the major human pathogen, *Vibrio cholerae.*
Index

6S RNA
6S RNA-RNAP complex, 359–361
accumulation profiles, 356, 358
biological role for 6S RNA function, 362
defining divergent candidates, 358–359
future questions, 364
identification and candidate, 355–356
occurrence in bacterial kingdom, 355–356, 358–359
product RNA (pRNA), 355, 362–364
regulation of transcription, 361–362
regulation of transcription in diverse bacteria, 362
regulation of transcription in E. coli, 361–362
species with multiple, 356
template for pRNA synthesis, 362–364
16S rRNA, 403, 516, 518
CopraRNA using, 575
phylogenetic trees of species, 375
23S rRNA, 159, 163, 406, 516
maturation, 41, 44
spacer sequences, 25, 26
structure, 95, 96
Y RNA, 376, 378

A
Acinetobacter, online platform, 549
Acryloylaminophenyl boronic acid (APB) gel electrophoresis, 412, 413, 414
Actinobacteria, 90, 92, 106, 107
HEARO RNA, 520
large noncoding RNAs (ncRNAs), 522
phylogenetic overview, 126, 127
polyketide biosynthesis pathways, 125
published transcriptome analyses of leaderless mRNAs, 157
raiA motif RNA, 521
RNase E/G in, 44
T-box system, 92
Actinomycetales
GOLLD RNA, 518
large noncoding RNAs (ncRNAs), 522
N-Acylhomoserine lactones (AHLs), autoinducers (AIs), 284
Aerobic respiration, RyhB target, 270
Agrobacterium tumefaciens, naturally occurring riboswitches, 77
Alteribrio salmonicida, 236
Alphaproteobacteria
CcmM for organizing β-carboxysomes, 141
involving response regulators (CheAL and CheA) in chemotaxis, 142
isoforms involvement in hemolytic enzymes, 145–146
synthesis of antibiotic gaudimycin C, 143
translation products, 145–146
tuning activity of restriction enzyme, 140–141
Alteromonas macleodii, antisense RNA (%), 195
Anabaena sp.
antisense transcription, 205
Fe-sparing response by sRNA, 252
methylation of N6 of adenosine in, 406
sRNAs involved in nitrogen metabolism, 252, 253
Anabaena (Nostoc) sp., antisense RNA (%), 195
Anaerobic respiration, RyhB target, 270
Antisense RNAs (asRNAs)
binding and repressing activated mRNAs, 183–184
categories of bacterial asRNAs, 192
characteristics of bacterial, 191–194
cis-encoded, 191
function of, 135–139, 144–145
handling misfolded and aggregated proteins, 139
IncC variant facilitating plasmid partitioning, 143–144
internal initiation product of CcmM for organizing β-carboxysomes, 141

581
Antisense RNAs (asRNAs) (Continued) direct influence on transcription of target genes, 199
ecludons, 193
expression of sense RNA and, 194–196 functions of, 191
global functions of asRNA transcription in bacteria, 199–206
head-to-head (5´ overlapping), 192
Hfq-associated and trans-acting, cis-encoded, 196
influence on evolution and genome flexibility, 205–206
internal asRNAs, 192
intra-operon asRNAs, 192
long asRNAs, 192
mapping extent of asRNA transcription in bacteria, 194
mechanisms of action, 192, 196–199
mechanisms requiring RNA-RNA interaction, 196–199
modulation of translation, 198–199
names and characteristics of asRNAs in text, 197
outlook and directions for, 206
overlapping transcripts with RNase III for RNA maturation, 203
phenotypic variation, 203
repression of gene expression, 203
successful operons in bacteria, 196, 198
transcription and DNA-repair processes, 203, 205
transcription-associated mechanism, 200–201
transcriptome analyses of bacteria and phages
transcriptome reshaping, 201–203
Antitermination. See Processive antitermination (PA)
Aplysia californica, terminal RNA modification, 408, 409
Aquifex aeolicus
6S RNA, 357
6S RNA-RNA complex, 360–361
Arabidopsis thaliana, 44, 77
Archaean
leaderless mRNAs (lmRNAs), 155–156
model for lmRNA translation in, 160–161
nitrogen metabolism, 249
phylogenetic tree, 127
published transcriptome analyses of leaderless mRNAs, 157
RNA modifications, 399
visualization of microorganisms in nitrogen metabolism, 253
ARROF (area required for replication in bacteria), 229–230
Autoinducers (AIs)
N-acylhomoserine lactones (AHLs), 284
regulating gene expression, 283
sRNA-based control of AI synthases, 291–293
Azotobacter vinelandii
ArR regulating gene coding, 276
Fe-sparing response by sRNA, 275
localization of mRNAs, 426
RK2 replication, 139
sRNAs involved in nitrogen metabolism, 252, 253, 254–256, 261
Bacillus sp.
mapping transcript of, 320
transcriptomic data, 552
Bacillus anthracis, T-box regulation, 97
Bacillus brevis
genes promoting translation initiation, 136
translation start sites, 145
Bacillus cereus, helicases in, 48
Bacillus clausii
network regulation, 533
riboswitches, 81
Bacillus halodurans, OLE RNA, 517–518
Bacillus licheniformis, 536
Bacillus megaterium, Y RNA, 375
Bacillus steaothermophilus, S15-interacting regulatory structure, 109
Bacillus subtilis, 5, 37
6S RNA, 356, 357, 361
6S RNA in pRNA synthesis, 363–364
asRNAs under stress, 201–203
auto-regulation, 90
competence protein ComS encoded within srfA gene, 146
CsRA of, 345
degradosome-like network, 49
diagrams of t-protein operons from, 103
Escherichia coli and, 50
Fe-sparing response by sRNA, 275
gene regulation, 90
genes promoting translation initiation, 136
helicases in, 48
imperfect base-pairing of sRNAs and TRs in, 456–457
incomplete transcription of eps operon, 122
L10(L12) mRNA binding site, 106
localization of mRNAs, 425, 428
localized mRNA translation and degradation, 428–429
metabolic engineering, 536
metabolic enzymes, 9
methylation of cytosine (m5C) in, 406
methylation of N6 of adenosine in, 406
naturally occurring riboswitches, 77–79
network regulation, 533
phosphosugars, 231
PNPase in, 46–48
regulatory mechanism unknown, 142
RNA modifications, 415
RNase III in, 41–42, 44
RNase J in, 45, 46
RNases and their functions, 39
RNase Y in, 40
RNA-RNA complex, 97
SafA protein isoforms in, 145
Specifier Sequence-antidonor interaction, 93
SR1 as first dual-function sRNA in, 472, 477–478
T-box regulatory system, 89
type I toxin-antitoxin (TA) system, 174
tyrS leader RNA and tRNA secondary structure, 91
UpxY proteins, 124
versatility of riboswitches, 81
Bacillus thuringiensis, network regulation, 533
Bacillus velezensis, LooP protein, 124, 125
Bacteria. See also Cross-regulation between bacteria and phages
functional transcriptomics in, 550–551
global functions of asRNA transcription, 199–206
initiation of translation in, 133–135
leaderless mRNAs (lmRNAs), 135–156
mapping extent of antisense transcription in, 194
nitrogen metabolism, 249
published transcriptome analyses of leaderless mRNAs, 157
RNA modifications, 399
RNase-dependent processes in, 4
oles of sRNAs regulating carbohydrate metabolism in, 229, 230
target mimics and sponge-like inhibitors of sRNAs in, 442–447
transcription and translation, 176
translation initiation sites, 136
type I toxin-antitoxin (TA) systems, 174
visualization of microorganisms in nitrogen metabolism, 253
Bacterial genetics, large noncoding RNAs (ncRNAs), 522–523
Bacteriocins functioning as RNases, 28
transport proteins facilitating secretion of, 139–140
Bacteroidales, large noncoding RNAs (ncRNAs), 522
Bacteroides phylogenetic overview, 126–127
regulation of polysaccharide utilization genes by cis-encoded sRNAs, 232
Bacteroides fragilis polysaccharide gene cluster, 124, 125
transcriptome sequencing analysis of, 232
Bacteroides thetaiotaomicron, dietary polysaccharides, 232
Bacteroidetes phylogenetic tree, 127
polysaccharide pathways, 125
Basic Local Alignment Search Tool (BLAST) algorithm, 567
Bdellovibrio bacteriovorus, 537
Betaproteobacteria
Fe-sparing response by sRNA, 275
phylogenetic overview, 126–127
Big data, visualization, 549
Biochemistry, large noncoding RNAs (ncRNAs), 523
Biofilm formation
base-pairing sRNAs controlling, 294–296
posttranscriptional control of regulators, 295, 297
protein-binding sRNAs regulating, 294
regulation of, 293–296
Biophysics, large noncoding RNAs (ncRNAs), 523
Bordetella pertussis, 65 RNA, 358
Borrelia burgdorferi, 65 RNA, 358
Bradyrhizobium japonicum, 58, 358
Braun's lipoprotein (Lpp), 215

Dual-function RNAs

EBI ArrayExpress, 551 Endoribonuclease. See RNase E Endoribonuclease function of, 49 initiation of mRNA decay by, 19–22 RNase III, 40, 44 RNase Y, 38–40

Enterobacteriaceae carbon metabolism and oxygen availability by sRNA FnrS in, 238–239 CsrB/C decay pathway, 347 Csr system, 237 phosphosugar stress response, 231 regulation of carbohydrate metabolism in, 230 sRNA Spot 42 in carbohydrate metabolism, 233, 234, 236 Enterococcus spp. large noncoding RNAs (ncRNAs), 522 naturally occurring riboswitches, 77

Eukaryotes
capping and decapping in, 411
5’-terminal RNA modifications, 407, 411
Evolutionary process
brief history of RNase E, 5–6
pervasive transcription, 205–206
RNA-based regulation, 509–510
scenario of, 204
Y RNA, 374–376
Experimental validation, large noncoding RNAs (ncRNAs), 522–523
Extracellular polymeric substances (EPS), identity in biofilm, 293

F
Facalibacterium prausnitzii, naturally occurring riboswitches, 78
FASTmiR method, new for imaging mRNA, 433
Fe. See Iron homeostasis regulation
Ferredoxin:NADP oxidoreductases
processive antitermination (PA) system, phylogenetic overview, 126–127
naturally occurring riboswitches, 77
large noncoding RNAs (ncRNAs), 522
Fe-sparing response by sRNA, 275
CsrB/C decay pathway, 347
ActX and TraB proteins, 125
Y RNA, 374–376
scenario of, 204
RNA-based regulation, 509–510
pervasive transcription, 205–206
brief history of RNase E, 5–6
5´-terminal RNA modifications, 411
capping and decapping in, 411

G
Gammaproteobacteria, 37, 104, 236
AcnA and Trab proteins, 125
antibiotic resistance in, 125
Csr/B/C decay pathway, 347
Csr/Rsm sRNAs of, 346
Fe-sparing response by sRNA, 275
large noncoding RNAs (ncRNAs), 522
leaderless mRNAs (mRNAs), 155–156
naturally occurring riboswitches, 77
phylogenetic overview, 126–127
processive antitermination (PA) system, 122
published transcriptome analyses of leaderless mRNAs, 157
RNase E/G, 44
sRNAs involved in nitrogen metabolism, 254–256
visualization of microorganisms in nitrogen metabolism, 253
Gardner, Paul R., 566
Gaudin, Michael, C. pgAM gene for synthesis of, 143
GEBRO (GC-enriched, between replication origins) motif, 521
Gene detectives, 549. See also Transcriptomic data
Gene expression
environmental regulation of, 549, 551
switching from intermediate-early to delayed-early, 118
synthetic riboswitches, 82–83
T-box mechanism, 85
Gene Expression Database, 552
Gene Expression Omnibus (GEO), 551
Gene regulation, operon model, 117
Genes within genes. See also Genes
Gene expression
one gene-one protein, 133, 134
initiation of translation in bacteria, 133–135
internal initiation, 133, 134, 149–150
internal initiation from in-frame start codons, 133–146
internal initiation of translation directing synthesis, 146–147
new tools for identifying alternative start sites, 147, 149
one gene-one protein, 133, 134
promoters regulating utilization of alternative start sites, 144
retapamin-oriented ribosome-profiling approach, 147–149
strategies for encoding, 133, 134
translational recoding, 133, 134
Genomics, transcriptional profiling in, 549
Genotype-Tissue Expression (GTEx) modeling, 126
Geobacter sulfurreducens
Regulatory RNA, 515, 520
Heat shock thermometers, Salmonella, 68
Helicases, RNA, 48
Helicobacter pylori
6S RNA, 357, 358, 361
antisense RNA (%), 195
regulatory RNA elements in human pathogens, 306, 309
Heat shock-induced (Hsp) RNA and open reading frame (ORF) RNA, 515, 520
Homeostasis. See Iron homeostasis regulation
Homeostatic networks, sRNAs RybB and RbbB controlling, 443–444
Homo sapiens, Y RNA, 375

Gram-negative bacteria
cell envelope structure and function in, 215–216
CRISPR-Cas systems, 28–29
enzymes in RNA processing, 25, 27
enzymes in tRNA processing, 23–25
mRNA decay, 19–23
mRNA degradation and cell survival, 181
processing and decay of sRNAs, 27
processing of mRNA operons in E. coli, 26
RNA helicases, 27–28
role of sRNAs in envelope stress responses, 217
SgrS as dual-function sRNA in, 472–474
specialized RNases, 28–29
type I operon organization in, 181
type I toxin-antitoxin (TA) systems, 174
Gram-positive bacteria
consequences of 3-overlapping antitoxin sRNAs in, 180, 182
cross-regulation and autoregulation of RNase expression, 50
degradosome-like network, 48–50
deribonucleases, 38–45
exoribonucleases, 45–48
helicases in, 48
main ribonucleases in, 37–48
PNPase in, 46–48
RNase E/G, 44–45
RNase III, 40–44
RNase J1 and J2, 45–46
RNases and their functions, 39
RNaseY, 38–40
schematic of pathways in RNA degradation in, 38
Type I toxin-antitoxin (TA) systems, 174
Grissom, Joe, 532

H
Haemophilus influenzae
gene expression, 320
regulatory RNA elements in human pathogens, 306, 309
HEARO (HNH endonuclease-associated RNA and open reading frame [ORF]) RNA, 515, 520
Heat shock thermometers, Salmonella, 68
Helicases, RNA, 48
Helicobacter pylori
6S RNA, 357, 358, 361
antisense RNA (%), 195
regulatory RNA elements in human pathogens, 306, 307, 310, 315
RNase Y in, 44
type I toxin-antitoxin (TA) system, 174, 175, 183–186
Heme biosynthesis, RyB target, 271
Hfq (host factor phage Qβ), 307
base-pairing with GcvB sRNA, 507
key in sRNA regulatory pathway, 422, 430
RNA chaperone, 385, 388, 390, 391, 509
Hidden Markov Model-based homology modeling, 126
Homeostasis. See Iron homeostasis regulation
Homeostatic networks, sRNAs RybB and RbbB controlling, 443–444
Homo sapiens, Y RNA, 375

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Tue, 16 Jul 2019 00:33:09
Human pathogens. See also Regulatory RNAs
virulence-associated regulatory RNA elements, 306, 308–313

I
IMES-1 RNA (identified in marine environmental sequences), 521

L
Lactobacillales
Klebsiella oxytoca, GOLDD RNA, 518–519
Klebsiella pneumoniae
Lactobacillus, genome browser, 558

Lactobacillales
GOLDD RNA, 518
ROOL RNA, 521
Lactobacillus, GOLDD RNA, 518–519

Lactobacillus rhamnosus, toxin-antitoxin (TA) system, 180
Lactococcus spp., naturally occurring riboswitches, 77
Lactococcus lactis
bacteriocin, 140 genes promoting translation initiation, 136 naturally occurring riboswitches, 79

Leptotira interrogans
RNA thermometers, 66 virulence-associated RNAT in, 59, 62
Leuconosticae, phage taxa, 509
Life cycle, sRNA evolution, 488 Lipopolysaccharide (LPS) posttranscriptional regulation of LPS modification, 220 small regulatory RNAs (sRNAs) and modification of, 215–216, 220–221
Liquid chromatography–mass spectrometry (LC–MS), 400, 401

Listeria
phage- and prophage-ended sRNAs, 508 transcriptomic data, 552
Listeria monocytogenes
asRNAs under stress, 203 elimination of stop codon, 143 exclusion, 193, 194 genes promoting translation initiation, 136 helicases in, 48 imperfect base-pairing of sRNAs and TRs in, 457 internal translation initiation site (iTIS), 142–143 network regulation, 533 regulatory RNA elements in human pathogens, 306, 312, 314, 316
riboswitches, 538 RNase III in, 42–43 RNases, 319 RNA thermometers for, 58–59 S-adenoslylmethionine (SAM) riboswitch, 480 synthesis of virulence regulator PrfA in, 63 virulence-associated RNAT in, 59, 60 virulence-metabolism cross talk, 322
Listeriomics, online platform, 549
LoaP, genes encoding, 125–126
Localization. See RNA localization in bacteria

M
McCaskill, John S., 567, 570, 571
Massé, Eric, 267
Mekalanos, John, 549
Mesoplasma florum, naturally occurring riboswitches, 77
Messenger RNA (mRNA). See mRNA Metabolism, RyhB target, 270, 271
Metanoharchaeae, sRNAs involved in nitrogen metabolism, 256–257
Metanococcus jannaschii
L1-interacting mRNA, 106, 107
Metanococcus thermolithotrophicus, L1-interacting mRNA, 106
Metanococcus vannielii, L1-interacting mRNA, 105–106
Metanomosarcinales, visualization of microorganisms in nitrogen metabolism, 253
Metanomosarcina mazei, 258, 260, 520
Metanomosarcina mazei, Gen1, 252, 256–257, 259–260
Metalomycin, translation initiation for production of, 138
Microarrays, functional transcriptomics, 551
<table>
<thead>
<tr>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natrielena sp., leaderless mRNA, 156, 163</td>
<td>Oceanobacillus iheyensis RNA-rRNA complex, 97</td>
</tr>
<tr>
<td>Neisseria, functional redundancy, 324</td>
<td>Stem I architecture, 96</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
<td>OLE (ornate, large, extremophilic) RNA class, 515, 517–518, 524</td>
</tr>
<tr>
<td>Fe-sparring response by sRNA, 275</td>
<td>Oxford Nanopore Technology (ONT), 415</td>
</tr>
<tr>
<td>NrrF homolog for, 276</td>
<td>Oxidative stress</td>
</tr>
<tr>
<td>RNA-DNA hybrid, 201</td>
<td>enterobacterial response to, 122</td>
</tr>
<tr>
<td>antisense RNA (%) 195</td>
<td>RfaH translation factor, 122–124</td>
</tr>
<tr>
<td>Fe-sparring response by sRNA, 275</td>
<td>126–127</td>
</tr>
<tr>
<td>NrrF homolog for, 276</td>
<td>RfaH translation factor, 122–124</td>
</tr>
<tr>
<td>regulatory RNA elements in human pathogens, 306, 308</td>
<td>RNA elements promoting, 121, 122</td>
</tr>
<tr>
<td>RNA thermometer structure, 58</td>
<td>rRNA operon antiternation, 119, 120–122</td>
</tr>
<tr>
<td>RNA transcripts undermining host immune response, 65–66</td>
<td>specialized NusG paralogs, 122–126</td>
</tr>
<tr>
<td>sRNAs regulating TCA cycle activity, 237</td>
<td>contribution of phage biology to RNA-based regulation, 502</td>
</tr>
<tr>
<td>Nitrogen metabolism, 261</td>
<td>Phage HK022 antiternation factors associated, 118</td>
</tr>
<tr>
<td>functional mechanisms for sRNAs in, 258</td>
<td>RNA elements involved in PA, 121</td>
</tr>
<tr>
<td>posttranscriptional regulation by sRNAs, 251</td>
<td>schematic, 119</td>
</tr>
<tr>
<td>regulation of, 245–251</td>
<td>using RNA motif put, 122</td>
</tr>
<tr>
<td>small regulatory RNAs (sRNAs) involved in, 252</td>
<td>Phage lambda antiternation</td>
</tr>
<tr>
<td>sRNA*1 in Methanosaeta mazei, 259–260</td>
<td>cryo-EM revealing mechanism, 120</td>
</tr>
<tr>
<td>sRNAN in Pseudomonas stutzeri, 259</td>
<td>phage using protein AN for</td>
</tr>
<tr>
<td>sRNAN in Synechocystis 6803, 257–259</td>
<td>antiternation, 120, 181</td>
</tr>
<tr>
<td>sRNAs in alphaproteobacteria, 256</td>
<td>process, 119, 120</td>
</tr>
<tr>
<td>sRNAs in cyanobacteria, 251, 253–254</td>
<td>RNA elements involved in PA, 121</td>
</tr>
<tr>
<td>sRNAs in gammaproteobacteria, 254–256</td>
<td>schematic, 119</td>
</tr>
<tr>
<td>sRNAs in methanooarchaeae, 256–257</td>
<td>Phosphorylation assay by capping outcome (PACO), 5´-terminal RNA</td>
</tr>
<tr>
<td>visualization of microorganisms involved in, 253</td>
<td>modifications, 412, 413</td>
</tr>
<tr>
<td>Nocardia farcinica, gene regulation, 90</td>
<td>Physiological stress, translation of leaderless</td>
</tr>
<tr>
<td>Nodulatrix, antisense transcription, 205</td>
<td>mRNAs, 161–164</td>
</tr>
<tr>
<td>Noncoding RNAs (ncRNAs). See Large</td>
<td>Pikromycin, translation initiation for</td>
</tr>
<tr>
<td>Noncoding RNAs (ncRNAs). See Large</td>
<td>production of, 138</td>
</tr>
<tr>
<td>Noncoding RNAs (ncRNAs). See Large</td>
<td>Pneumobrowse, online platform, 549</td>
</tr>
<tr>
<td>Noncoding RNAs (ncRNAs). See Large</td>
<td>PNPase (polynucleotide phosphorylase), 4, 37</td>
</tr>
<tr>
<td>Nontranslated RNAs, tRNAs, rRNAs and</td>
<td>domain structure of, 40</td>
</tr>
<tr>
<td>noncoding RNAs (ncRNAs). See Large</td>
<td>exosome-like, 7–8</td>
</tr>
<tr>
<td>Noncoding RNAs (ncRNAs). See Large</td>
<td>mRNA decay, 22–23, 29</td>
</tr>
<tr>
<td>Noncoding RNAs (ncRNAs). See Large</td>
<td>role in regulation of gene expression with RNA, 48</td>
</tr>
<tr>
<td>Nontranslated RNAs, tRNAs, rRNAs and</td>
<td>Polypeptide. See Alternative protein</td>
</tr>
<tr>
<td>sRNAs, 19</td>
<td>Posttranscriptional regulation.</td>
</tr>
<tr>
<td>Nuclear magnetic resonance (NMR)</td>
<td>*See Cross-regulation between</td>
</tr>
<tr>
<td>spectroscopy, 82</td>
<td>bacteria and phages</td>
</tr>
<tr>
<td>努SG family of proteins, phylogenetic</td>
<td>Posttranscriptional RNA metabolism,</td>
</tr>
<tr>
<td>overview of, 126–127</td>
<td>E. coli, 21</td>
</tr>
<tr>
<td>NussG paralogs</td>
<td>Processive antiternation (PA), 117–118</td>
</tr>
<tr>
<td>AcrX, TaA, UpxY and LoaP, 124–126</td>
<td>cryo-electron microscopy (EM) revealing</td>
</tr>
<tr>
<td>processive antiternation (PA) system, 122–126</td>
<td>mechanism, 120</td>
</tr>
<tr>
<td>RfaH translation factor, 122–124</td>
<td>eps-associated RNA (EAR)-mediated</td>
</tr>
<tr>
<td>Nussinov, Ruth, 564</td>
<td>antiternation, 119</td>
</tr>
<tr>
<td></td>
<td>genomic context of NussG paralogs</td>
</tr>
<tr>
<td></td>
<td>antiternation systems, 124</td>
</tr>
<tr>
<td></td>
<td>genomic context of PA systems, 119</td>
</tr>
<tr>
<td></td>
<td>mechanisms, 117–118</td>
</tr>
</tbody>
</table>

MicroRNAs (miRNAs)
- competitive endogenous RNA (ceRNA) hypothesis, 441–442
- future outlook, 448–449
- GcvA regulator in glycine cleavage system and SrrC RNA, 444–446
- lessons from eukaryotic, 441–442
- pervasive sponging observations, 446–447
- prophase-encoded GcvB sponges, 46
- regulation of chitosugar uptake in *Salmonella* and *E. coli*, 442–443
- sponging relay model, 447, 448
- sRNA sponging by tRNA spacer sequences, 443–444
- systems biology perspective of sponge concept, 447

Mitochondrial exosome, components of RNA degradosome, 5, 9

Motility, RyhB target, 271

mRNA. See also Leaderless mRNAs (lmRNAs); RNA localization in bacteria activation step for toxin-encoding, 180, 183

CRISPR-Cas system, 431, 432
- degradation, 11–12
- emerging imaging methods, 430–433
- folding, 179–180
- future challenges for studying, 433–434
- *in situ* hybridization chain reaction (HCR), 431
- *in situ* PCR for imaging, 431, 432
- new method FASTmir, 433
- secondary structures sequestering SD sequence, 178
- SunTag system, 431, 432
- toxin-encoding, 176, 179, 180, 183
- TREAT (3´-RNA end accumulation during turnover) construct, 431, 432–433
- TRICK (translating RNA imaging by coat protein knockoff) construct, 431, 432
- mRNA decay initiation byendonucleases, 19–22
- role of 5´–3´ exonucleases in, 22–23

Mycobacterium spp.
- leaderless mRNAs, 161
- phage- and prophase-ended sRNAs, 508

Mycobacterium neoaurum, 535

Mycobacterium smegmatis, 48
- 65 RNA, 358
- tRNA, 95
- YrIA RNA with module resembling tRNA, 374
- Y RNA in, 370, 372, 375

Mycolabolum tuberculosis, 37, 537
- naturally occurring riboswitches, 78
- regulatory RNA elements in human pathogens, 305, 306, 309
- RNases and their functions, 39
- transcriptome analysis of leaderless mRNAs (lmRNAs), 157, 162–163
- Mycoplasma pneumoniae, antisense RNA (%), 195
- Myxococcus xanthus, polyketide antibiotic
- TA, 125
- Myxovirescin, 125

O

Oceanobacillus iheyensis
- RNA-rRNA complex, 97

P

- **PA. See Processive antiternation (PA)**
- **PAGEV (plasmid-associated Gammaproteobacteria, especially Vibrionales) motif, 521**

Pectobacterium carotovorum, Rsm, 344

Pel/SagA mRNA, Streptococcus pyogenes, 478–479, 481

Pervovitch, Dmitri D., 572

Phage(s). See also Cross-regulation between bacteria and phages contribution of phage biology to RNA-based regulation, 502

PAGEV (plasmid-associated Gammaproteobacteria, especially Vibrionales) motif, 521
Pseudomonas aeruginosa

Proteobacteria, 106, 107

Prochlorococcus sp., Y RNAs

Propionibacterium propionicum

Pseudomonas stutzeri

Pseudomonas fulva, Y RNA in, 372

Pseudomonas syringae

Pseudomonas fluorescens

antisense RNA (asRNA), 194

CsrA system, 342

CsrB/C decay pathway, 347–348

regulating biofilm formation, 294

two-component signal transduction system large (TCS), 346

Pseudomonas fulva, Y RNA in, 372

Pseudomonas stutzeri

sRNA NfiS in, 259

sRNAs involved in nitrogen fixation, 258

sRNAs involved in nitrogen metabolism, 252, 253

Pseudomonas syringae

methylation of N6 of adenosine in, 406

naturally occurring riboswitches, 78

Psm-mec sRNA, Staphylococcus aureus, 476, 477

PubMed search, 551

Q

Quorum sensing (QS)

autoinducers (Al), 283

bacterial, 283–284

pathways with sRNAs directing, 291

phenomenon, 283

Pseudomonas aeruginosa, 67

regulatory feedback loops, 289–290

role in biofilm regulation, 293–294

sRNA-based control of AI synthases, 291–293

sRNAs in, 296–297

Staphylococcus aureus, 284–285, 286, 287

Vibrio harveyi, 288

R

rAIa motif RNA, 521

Regulatory networks. See also Small regulatory RNAs (sRNAs)

imperfect pairing of sRNAs and TRs in E. coli and Salmonella, 455

imperfect pairing of sRNAs and TRs in various species, 456–457

posttranscriptional control of TR synthesis by sRNAs, 458–460

properties of sRNAs in mixed networks, 460–464

regulating gene expression with sRNAs, 460–462

regulating synthesis of response regulators with sRNAs, 459–460

sRNAs in mixed regulatory circuits, 462–464

transcriptional regulators (TRs), 453

TRs for control of sRNA synthesis, 453–455, 458

Regulatory RNA-binding proteins (RBPs), 11. See also Csr (carbon storage regulator); RNA chaperones

CspC/E, 317, 318, 319

CsrA (RsmA), 316–317, 318

RSnA (RsmA), 316–317, 318

exploiting bacterial RNAs and RBPs for therapeutics, 325–326

FinQ/ProQ (fertility inhibition protein), 317, 318

global RBPs contributing to Salmonella virulence, 318

RNA chaperone Hfq, 317, 318

RNases, 319

Regulatory RNAs, 305

cell-to-cell heterogeneity in RNA expression, 324–325

cis-encoded sRNAs, 307, 314

CRISP (clustered regularly interspaced short palindromic repeats)-associated RNAs, 314

elements within 5′UTRs (untranslated regions), 305–307

emerging topics, 324–326

exploiting bacterial RNAs and RBPs for therapeutics, 325–326

extracellular RNAs, 325

functional redundancy, 323, 324

new approaches to study RNA-mediated regulation in infection biology, 319–322

posttranscriptional hubs, 323, 324

principles of virulence-related, 322–324

protein partners of, 316–319

regulation of lifestyle transitions, 322, 323, 324

trans-encoded sRNAs titrating proteins, 314

trans-encoded sRNAs with base-pairing action, 314–316

virulence-associated, in human pathogens, 306, 308–313

virulence-metabolism crosstalk, 322, 323

Retapamulin, ribosome-profiling approach, 148, 149

Rhizobiales, new sRNAs, 488

Rhizobium etli, Y RNA in, 372

Rhizobium radiobacter

S15-interacting mRNA structures, 110

S15-interacting regulatory structure, 109

Rhodobacter sphaeroides

6S RNA, 357, 358, 361

imperfect base-pairing of sRNAs and TRs in, 456

leaderless mRNA, 156, 163

sRNA Rsso19, 479

Rhodopseudomonas palustris, 6S RNA, 358

Ribosomal proteins (r-proteins), 101

Ribosomal RNA-protein interactions, 101

diagrams of operons from E. coli and B. subtilis, 103

discovery of autogenous regulatory mRNA structures, 102

engineered r-protein-responsive regulatory RNA system, 111

L10(L12)-interacting regulatory structure, 104–105

L1-interacting mRNA structure, 105–106

prototype cis-regulatory RNA, 102, 104

S8-interacting mRNA structure, 102, 104, 105

summary of regulated genes, 104

Ribosome binding sites (RBs), translation in toxin/antitoxin (TA) system, 183

Riboswitches. See also Small RNAs and riboswitches; T-box riboswitch application to chemically inducable expression systems, 536–537

biocomputational application, 538

distribution of, 75–76, 80

general function of, 529

general structure, 81–82

how to find new, 81

as in vivo reporters and biosensors, 537–538

location, 75

mechanism, 75, 76

metabolic engineering applications, 536

naturally occurring, 77–79

structure of TPP riboswitch, 80

synthetic, 82–83

thiamine pyrophosphate (TPP)-binding, 80–81

versatility of, 81

Rickettsia, 6S RNA, 358
RNase Y (Continued)
Gram-positive bacteria, 38–40
role in regulation of gene expression with
RNA, 40, 41
RNA Structural Sensing System (iRS3), 537
RNA thermometers/thermosensors (RNATs)
control of immune evasion, 65–66
control of master regulators of virulence,
58–59, 63–65
future for, 68–69
heat shock thermometers, 68
Leptospira interrogans, 66
Listeria monocytogenes, 59–59
Neisseria meningitidis, 65–66
Pseudomonas aeruginosa, 66–67
quorum sensing and iron acquisition,
66–68
Salmonella, 68
Shigella species, 67–68
structures of, 58
Vibrio cholerae, 63
virulence-associated RNATs in bacterial
pathogens, 60–62
Yersinia species, 64–65
Ro 60-kDa autoantigen (Ro60)
binding site of Y RNAs, 372–373
structure of, 371
Y RNA complexed with, 369
ROOL (rumen-originating, ornate, large)
RNAs, 521
Roseobacter sp., naturally occurring
riboswitches, 78
rRNA mimicry, 101
autogenous regulators, 101–109
beyond autogenous regulation, 109, 111
rRNA as source of RNA structural
motifs, 101
S15-interacting regulatory structures, 109,
110
rRNA operon antitermination
dissociation of transcription elongation
complex (TEC), 120–122
RNA polymerase (RNAP), 118
schematic, 119
rRNA processing. See also Csr (carbon
storage regulator)
enzymes involved in, 25, 27
operators in E. coli, 26
Rsm (repressor of stationary-phase
metabolites) system, 341
Rsr proteins
phylogenetic tree based on sequences of,
375
structure of, 371
Y RNA and, modulating RNA
metabolism, 376
Y RNAs regulating access to, 378
Y RNA tethering PNPase to, forming
RPYER, 376, 378–379
RyhB. See Iron homeostasis regulation
RyhB (sRNA). See Iron homeostasis
regulation
S
Saccharomyces, sRNA origins, 488
Saccharomyces cerevisiae
components of RNA degradosome, 5, 8
crystal structure of, 8–9
methylolation of cytosine (m5C) in, 403
SalComMac, online source, 552, 553, 558,
559
SalComRegulon, online source, 553, 555,
558, 559
Salmonella, 10
bacteria-phage/prophage system, 509–510
biotinyl DNA formation, 324
degraded prophage genes, 505
functional sRNAs, 491
gene expression, 320–321
genomic cross-linking experiments, 346
global RNA-binding proteins (RBPs)
contributing to virulence, 318
imperfect base-pairing of sRNAs and TRs
in, 453, 455
mapping transcript of, 320
multifunctional sRNA Gifsy-1, 480, 504
new sRNAs, 488, 490
posttranscriptional control, 324
regulation of chitosugar update in,
442–443
regulatory interactions between sRNAs
and TRs in, 454
RNA-binding proteins (RBPs), 317, 319
RNases, 319
Sgr5 as only sRNA in, 472–474
small regulatory RNAs (sRNAs), 213–214, 493, 494
sRNAs and envelope stress response,
218, 219
sRNAs and lipopolysaccharide (LPS)
modification, 220–221
sRNAs and oxidative stress, 221
tRNA-cleaving ribonucleases, 28
Salmonella enterica
DapZ sRNA of, 480
Fe-sparring response by sRNA, 275
homoeostatic networks of, and E. coli,
443–444
phages carrying virulence factors, 502–503
regulatory RNA elements in human
RNA thermometer structure, 58
small regulatory RNAs (sRNAs), 27
sRNA ChlX regulating of chitosugar
uptake, 442–443
transcriptomic data, 552
virulence-associated RNAT in, 59, 62
Salmonella enterica serovar Enteritidis, 68
Salmonella enterica serovar Typhimurium,
44, 68
6S RNA, 358
antisense RNA (%), 195
characterization of Y RNAs in, 372
environmental and genetic regulation of
sRNAs, 354, 356, 357
naturally occurring riboswitches, 77
online resources for determining sRNA
function, 553, 555, 558
RNA modifications, 415
sRNAs involved in nitrogen
metabolism, 252
Sgr5 as only sRNA in, 472–474
type III secretion systems, 141
virulence phenotypes, 318
Y RNA complexed with, 369
Y RNA, 370
SalmNet network, 552
SAXS (small-angle X-ray scattering), 390
Serratia marcescens, regulation of chitin
and chitosugar, 232
Sgr5, dual-function sRNA in Gram-negative
bacteria, 472–474, 481
SHAPE (selective 2-hydroxyl acylation
analyzed by primer extension), 390
Shewanellaceae
CsrB/C decay pathway, 347
Csr system, 237
Shigella spp.
orthologs of Sgr5, 472
small regulatory RNAs (sRNAs), 214
temperature and iron acquisition, 67–68
trRNA-cleaving ribonucleases, 28
type III secretion systems, 141
Shigella dysenteriae
Fe-sparring response by sRNA, 275, 278
naturally occurring riboswitches, 77–78
regulatory RNA elements in human
pathogens, 306, 313
virulence-associated RNAT in, 59, 62
Shigella flexneri
asRNAs in transcription, 199
Fe-sparring response by sRNA, 275
names and characteristics of asRNAs, 197
regulatory RNA elements in human
pathogens, 306, 313, 314
RNases, 319
Shigella sonnei, regulatory RNA elements in
human pathogens, 306, 313
Shine-Dalgarno (SD) sequences, 155
Shine-Dalgarno (SD) sequestration
equivalent examples of secondary structures, 178
R-loops, 179
stem-loop sequence strategy, 178, 179, 186
uncoupling transcription and translation,
176, 177, 179–180
Sinorhizobium melloti
antisense RNA (%), 195
antisense transcription, 194
localized mRNA translation and
degradation, 428
sRNA-based regulation of AI synthase
production, 292, 293
sRNAs involved in nitrogen metabolism,
252, 256
Sjogren’s syndrome, 369
Small angle X-ray scattering (SAXS), 82, 97
Small regulatory RNAs (sRNAs), 5, 191.
See also 6S RNA; Dual-function
RNAs; Envelope stress response;
Iron homeostasis regulation;
Regulatory networks; Small RNAs
and riboswitches
acquisition of new, by HGT (horizontal
gene transfer), 490
activity in general stress response, 214
antisense interactions for in vivo
molecular studies, 537
bacterial, 9–10
base-pairing, for biofilm formation,
294–296
base-pairing interactions, 471–472
biofilm formation regulation, 294
carbon catabolite repression (CCR) in
Enterobacteriaceae, 233–236
carbon metabolism and oxygen
availability by sRNA FnrS in
Enterobacteriaceae, 238–239
Stress. See also Envelope stress response (Continued)
small regulatory RNAs as guide to response, 215
translation of leaderless mRNAs, 161–164
Structural biology, large noncoding RNAs (ncRNAs), 523
Structure. See RNA (ribonucleic acid) structure
Substrate channeling
ATP helicase to PNPase, 8
RNA helicase partners of RNase E, 8–9
Sulfolobus acidocaldarius
asRNA in, 203
encoding L7Ac in, 109
Sulfolobus solfataricus
L1-interacting mRNA, 106, 107
methylation of cytosine (m5C) in, 403, 405, 415
Super-resolution microscopy, live-cell imaging, 425
Synechococcus sp.
\(\beta\)-carboxysomes, 141
ferredoxin:NADP oxidoreductases (FNRs), 144
genes promoting translation initiation, 136
metabolic engineering, 536
Synechocystis sp. PCC 6803
antisense RNA (%), 195
transcriptomic data, 552
sRNAs involved in nitrogen metabolism, 257–259
names and characteristics of asRNAs, 197
S. Typhimurium
Fe-sparing response by sRNA, 237
RyHB target, 270, 273
Trichodesmium erythraeum, naturally occurring riboswitches, 78
Synechocystis sp.
Fe-sparing response by sRNA, 275
IsaR1 as sRNA of, 276–277
sRNA involved in nitrogen fixation, 258
transcriptomic data, 552
Synechocystis sp. PCC 6803
antisense RNA (%), 195
antisense RNAs, 191
asRNAs under stress, 202–203
exclusions, 193, 194
methylation of N6 of adenosine in, 406
names and characteristics of asRNAs, 197
sRNA NsiR4 in nitrogen metabolism, 257–259
sRNAs involved in nitrogen metabolism, 252, 253
target RNAs in, 198
Synthetic riboswitches, 82–83
Systemic lupus erythematosus, 369
 T
T-box riboswitch, 89. See also Riboswitches as antibiotic target, 97–98
antiterminator domain, 95–96
antiterminator-tRNA acceptor arm interaction, 93–94
conserved elements, 90, 92
discovery, 89–90
leader RNA-tRNA complexes, 97
mechanism, 89–90
phylogenetic distribution, 92
regulatory RNA, 89
Specifier Loop and K-turn motif, 96
Specifier Sequence-tRNA anticodon interaction, 92–93
Stem I and pseudoknot interactions with tRNA, 95
Stem I platform and hinge, 96–97
Stem I platform-tRNA elbow interaction, 94–95
structural analyses of T-box leader RNAs, 95–97
structural organization, 90, 92
T-box leader RNA-tRNA interactions, 92–95
Temperature, 57, 69. See also RNA thermometers/thermosensors (RNATs)
Tenericutes
Thermus thermophilus
S15-interacting mRNA structures, 110
S15-interacting regulatory structure, 109
translation of leaderless mRNAs during stress, 162
Thin-layer chromatography (TLC), 399, 401
T-large ribozymes, 520
Toxin/antitoxin (TA) systems
classification into types, 173
definition, 173
direct sequestration, 175
extensive regulation of type I, 175–185
identification of type I, 175–185
microRNAs binding and repressing activated mRNAs, 183–184, 186
network regulation, 533
posttranscriptional control of TR synthesis
by sRNAs, 237
RyHB target, 270, 273
Trichomes (rRNA), 195
tRNA processing, enzymes involved in, 23–25
U
UPEC, regulatory RNA elements in human pathogens, 306, 313
V
Vibrio anguillarum, names and characteristics of asRNAs, 197
Vibrio cholerae
antisense RNA (%), 195
antisense RNA modulating translation, 198–199
autoinducers (AIs), 284
CsrB/C decay pathway, 347
Fe-sparing response by sRNA, 275
imperfect base-pairing of sRNAs and TR in
microRNAs binding and repressing activated mRNAs, 183–184
network regulation, 533
phages carrying virulence factors, 502–503
quorum regulation RNAs (Qrr’s) of, 290–291
regulation of chitin and chitosugar utilization, 231–232
regulation of mannitol uptake by cis-encoded sRNAs, 232
regulatory RNA elements in human pathogens, 306, 312–313, 315
RNAs, 319
future directions, 559
global understanding of Salmonella regulation, 552
online resources for S. Typhimurium sRNA function, 553, 555, 558
online source SalComMac, 553, 558
online source SalComRegulon, 553, 555, 558
sharing and visualization of bacterial, 552
technological developments, 551
Transfer-messenger RNA (tmRNA), 429
Translation initiation
canonical mRNAs, 156–157, 159
CsrA-mediated repression, 342–344
Csr in attenuation, 344
leaderless mRNAs, 159–161
main pathways of, 156–161
signals intrinsic to lmiRNA affecting, 161
Translation initiation complex (IC), 158
Translation initiation site (TIS)
in bacteria, 133–135, 136
internal (iTIS), 133, 135, 142–143, 146, 149–150
primary (pTIS), 133, 135
Strategies, 134
tools for identifying start sites, 147–149
Tricarboxylic acid (TCA) cycle, 229, 235
downregulation by sRNAs in response to iron limitation, 237–238
Fe-S cluster cofactors, 267
regulation of activity by sRNAs, 237
RsHB target, 270, 273
Trichodesmium erythraeum, antisense RNA (%), 195
tRNA processing, enzymes involved in, 23–25
small regulatory RNAs (sRNAs), 217
sRNAs, 491
transcription regulators in, 63
virulence-associated RNAT in, 59, 60
virulence-metabolism cross talk, 322
Vibrio fischeri
quorum sensing (QS), 284
sRNA-based regulation of AL synthase production, 292
two-component signal transduction system (TCS), 346
Vibrio harveyi
imperfect base-pairing of sRNAs and TRs in, 456
quorum regulation RNAs (Qrr’s) of, 287, 289, 297
quorum sensing (QS) pathway of, 288
secondary structure of Qrr4, 288
sRNA-based regulation of AL synthase production, 292
Vibrio parahaemolyticus
Vibrio vulnificus, riboswitches, 81
Volvox carteri, naturally occurring riboswitches, 77
W
Wolbachia, 65 RNA, 358
X
Xanthomonadales, leaderless mRNAs (lmRNAs), 155
Xanthomonas campestris, antisense RNA (%), 195
Xenopus laevis, crystal structure of, 373
Y
Yersinia spp.
environmental regulation of lcrF gene expression, 64
functional redundancy, 324
localization of mRNAs, 427
temperature sensing, 64–65
type III secretion systems, 141
Yersinia enterocolitica, 64
csrA system, 342
regulatory RNA elements in human pathogens, 306, 313
RNA editing in, 184
RNases, 319
Yersinia pestis, 64, 65
Fe-sparing response by sRNA, 275
orthologs of SgrS, 472
regulatory RNA elements in human pathogens, 305, 306, 309
RyhB homologs of, 276
Yersinia pseudotuberculosis
csrA regulatory protein, 325
CarC of, 346
Car system, 237
gene expression, 320
mapping transcript of, 320
regulatory RNA elements in human pathogens, 306, 313, 314
RNAs, 319
sRNAs, 491
temperature sensing, 64–65
virulence-associated RNAT in, 59, 60–61
Y RNAs
characterization in human cells, 369, 370
complexed with Ro 60-kDa autoantigen (Ro60), 369
conserved features of, 372–373
in Deinococcus radiodurans, 369, 370
discovery in D. radiodurans, 371–372
domain mimicking tRNAs, 373–374
evolutionary considerations, 374–376
functions of bacterial, 376–379
interaction with other components, 373
investigations of, 379
predicted secondary structures of human, 370
regulating access to Rss, 378
Ro60 binding site, 372–373
Rsr and, modulating RNA metabolism during environmental stress, 376
RYPER (Rsr/Y RNA/PNPase exoribonuclease RNP), 376, 378
Z
Zuker, Michael, 565, 570–571
Zymomonas mobilis, metabolic engineering, 535