A Survey Tool for Assessing Student Expectations Early in a Semester†

Karl R. B. Schmitt1, Elise A. Larsen1, Matthew Miller1, Abdel-Hameed A. Badawy2, Mara Dougherty1, Artesha Taylor Sharma1, Katie Hrapczynski1, Andrea Andrew1, Breanne Robertson1, Alexis Williams1, Sabrina Kramer1, and Spencer Benson*1,3

1University of Maryland, Center for Teaching Excellence, College Park, MD 20742, 2Arkansas Tech University, Russellville, AR 72801, 3University of Macau, Centre for Teaching and Learning Enhancement, Macau, SAR China

INTRODUCTION

Quality learning is fostered when faculty members are aware of and address student expectations for course learning activities and assessments. However, faculty often have difficulty identifying and addressing student expectations given variations in students' backgrounds, experiences, and beliefs about education. Prior research has described significant discrepancies between student and faculty expectations that result from cultural backgrounds (1), technological expertise (2), and 'teaching dimensions' as described by Trudeau and Barnes (4). Such studies illustrate the need for tools to identify and index student expectations, which can be used to facilitate a dialogue between instructor and students. Here we present the results of our work to develop, refine, and deploy such a tool.

PROCEDURE

Tool development

In developing the student expectations assessment survey tool, we focused on two objectives: 1) to optimize the assessment tool's length and 2) to make the tool applicable to a variety of course types. In optimizing the length our goal was to provide sufficient information to faculty without being burdensome to students or faculty. Respecting this, we developed a pilot survey that collects basic demographic data, e.g., course, college, student year, etc., plus five questions to aid the teacher in making decisions about classroom time, assignments, and student interactions, and three questions asking students to rank various components. Specifically, we identified five pedagogical and learning components that are addressed by the survey: technology use, learning assessments, learning activities, faculty-student interactions, and timeliness of an instructor's actions (Table 1). These components were assessed by having students select item(s) from a pre-determined set of answers (Table 1). In addition, we asked students to rank the value of the various course components with respect to their learning. The specific elements included in the list were carefully chosen to address our second objective, with the understanding that some aspects of the tool would not be applicable to every class.

Tool refinement

In the spring 2012 semester, we piloted the survey tool and collected 816 responses from undergraduates in 25 STEM courses at the University of Maryland (UMD). We then refined the survey tool based on the pilot results and faculty feedback. Specifically, we clarified the wording of several questions and made minor changes to the available response options. For example, in the survey question related to the timeliness of an instructor’s actions, we added a new category, “longer than a week” to address the gap between “within a week” and “never” in the options originally provided. The refined survey tool consists of three demographic questions and six teaching-related questions (Appendix 1). It has been distributed for implementation across the UMD campus community in a format that can be easily customized for a given class to better suit individual instructor’s needs.

DISCUSSION

This idea of assessing student expectations is very interesting at a conceptual level but can it be successful in shaping or evaluating different practices in a course? Our pilot survey provided instructors of 25 courses with constructive information on student expectations. As an example, we received 167 responses from a sophomore level General Microbiology course that included which technologies, activities, and assessments students expected in the course. In addition, students were asked to identify

†Supplemental materials available at http://jmbe.asm.org

©2013 Author(s). Published by the American Society for Microbiology. This is an Open Access article distributed under the terms of the a Creative Commons Attribution - Noncommercial – Share Alike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/), which permits unrestricted non-commercial use and distribution, provided the original work is properly cited.
the three classroom components they valued most for their learning. The data shown in Figure 1 were collected from microbiology students after students had received the syllabus and the class had met for several weeks. Even after having seen the syllabus and attending class, no survey element was expected or not expected by 100% of the students, indicating that there were a significant number of students who were unclear or unable to recall parts of the course. As a general trend, students placed greater value on learning tools available to them during their independent study time, such as study guides and textbooks, while they discounted the value of in-class activities (like discussion groups and in-class participation) for learning. In particular, the majority of students expected Classroom Response Systems (‘clickers’) to be used in class, but few placed any value on clickers for learning. This is contrary to data showing the effectiveness of clickers for learning (3) and suggests there is an expectation gap between faculty and students. Student learning may benefit from bridging this gap by providing students with information about how learning activities such as the use of clickers can help them reach their learning goals. Instructors may also use this survey to assess the potential impact of any changes they are considering in the course by using the tool in a longitudinal fashion.

CONCLUSION

In our pilot, we found this survey could provide useful information for faculty on what students expect and value in the classroom. The issue of whether and how faculty might use the tool is fodder for future studies, the beginning of which is to make the tool widely available—the purpose of this manuscript. The revised assessment tool is publicly available as a customizable survey for the entire instructional community at UMD through the Qualtrics (http://www.cte.umd.edu/Resource/Surveys/) instance at UMD and downloadable for any instructor (see Appendix I). We believe that faculty who use this tool in the first
Supplemental Materials

Appendix I: Survey tool

Acknowledgments

We thank all the staff at the University of Maryland’s Center for Teaching Excellence for supporting this work; specifically we would like to thank Emily Grossnickle for her input and feedback during the preparation of this manuscript. We would also like to thank the students who participated in the pilot of our tool and the instructors who provided insightful feedback on this tool. This work was funded by the Center for Teaching Excellence and Graduate School at the University of Maryland. This work is in full compliance with the University of Maryland IRB requirements for exempt status, IRB # 318165. The authors declare that there are no conflicts of interest.

References