the Select Agent Program, the founding of the National Science Advisory Board for Biosecurity, and the Formation of the National Strategic Stockpile, which maintains quantities of medicine and medical supplies to protect the American public in the event of a public health emergency (bioterrorism or otherwise), as well as expansive debates on recombinant DNA research and its potential national security implications.

Watching this evolution, I’m faced with the same challenge I was faced with at the beginning, when I set out on this career path in the wake of the landmark events of fall 2001—how do we maintain the right balance between science and security without letting our guard down? Many of the decisions and initiatives central to the Ron Atlas Collection remain under debate today, their futures clouded in growing uncertainty. The “anthrax letters” are 13 years old now—are we the victims of alarmist fears and other so-called low-probability-high-impact threats deserve our dollars and resources? I know my answer...what’s yours?

The Ron Atlas Collection will be processed and made available to researchers in the coming months. When the finding aid is completed and the collection is open, a notice will be included on the CHOMA homepage, http://www.asm.org/index.php/choma3. CHOMA’s collections include records of the Society from its founding in 1899 to the present, including journals and proceedings of meetings; 9,000 volumes on microbiology and related topics; photographs of scientists and microbes; topical files on various aspects of microbiology, including biographical materials; instructional materials, including slides and motion pictures; and several collections of personal papers.

Richard Pilch
Raytheon Intelligence, Information and Services
Dulles, Va.

Jeff Karr
ASM Archives

Obituaries

Edwin E. Geldreich

Edwin E. Geldreich, Jr., a long time member of ASM and a Fellow of the American Academy of Microbiology, died at age 92 on 7 October 2014. A native Cincinnati, he received both his undergraduate and masters’ degrees in biological sciences from the University of Cincinnati. He served in the U.S. Army in the European campaign during the Second World War. Initially hired by the noted bacteriologist C. T. Butterfield, his entire professional career was spent with various federal agencies working on water-related programs. He was a charter employee of the U.S. Environmental Protection Agency (EPA), where he served as both Chief Microbiologist and Senior Advisor for drinking water research activities.

He was the author of numerous peer-reviewed scientific research articles and other publications, including the classic Handbook for Evaluating Water Bacteriological Laboratories. The recipient of EPA Bronze and Silver medals, he also received numerous other awards, including the Kimble Methodology Research Award and the 1989 Abel Wolman Award of Excellence from the American Water Works Association. In 1991 he was the Allen Hazen Lecturer to the New England Water Works Association. International activities included serving as a consultant for the World Health Organization dealing with water-related issues in Caribbean and Latin American countries. He was held in high esteem among his federal colleagues and by others both in academia and in industry for his numerous contributions to the field of drinking microbiology. He was noted for providing encouragement to young scientists to pursue their research interests aimed at improving water quality.

Ed had many avocational interests including photography, travel, playing the organ, and gardening. He was also a licensed ham radio operator who built much of his own equipment. He was preceded in death by his wife Detta, to whom he was married for over 55 years. He is survived by two daughters, Linda Lambers and Pamela Bogosian, their respective spouses, and four grandchildren.

Eugene W. Rice
Terry C. Covert
Martin J. Allen

David Gibson

David T. Gibson, Professor Emeritus of Microbiology at the University of Iowa, passed away on 24 July 2014 at the age of 76. Dave was a beloved husband, father, and grandfather, a gifted scientist, teacher and lecturer, and a dear friend to so many. Gibson was born in Wakefield in 1938, and spent his early years in Redcar, on the northeast coast of Yorkshire. He emigrated with his wife Janet to the United States in 1964 after receiving his B.Sc. and Ph.D. degrees in biochemistry at The University of Leeds. In 1967, after post-doctoral studies with Charles Sih at the University of Wisconsin and Reino Kallio at the University of Illinois, he joined the faculty of the Department of Microbiology at The University of Texas at Austin. The following year he returned to England and was employed as a research scientist at the Pharmaceuticals Division of Imperial Chemical Industries. In 1969 he returned to The University of Texas, eventually rising to the positions of Professor and Director of The Center for Applied Microbiology. In 1988 he moved to The University of Iowa to take the first endowed Edwin B. Green Chair in Biocatalysis and Microbiology, a position he held until his retirement in 2004.

Gibson’s research focused on the pathways used by microorganisms to degrade aromatic hydrocarbons and environmental pollutants. His work at the University of Texas focused on the mechanisms involved in the activation
of molecular oxygen and the hydroxylation reactions leading to preparation for fission of the aromatic nucleus. This pioneering work led to his discovery of unique stereospecific reactions and enzymes used by bacteria to add dioxygen to benzenoid molecules ranging in size from benzene to benzo[a]pyrene. Novel bacterial metabolites that were isolated and identified in his laboratory have since been used to synthesize important biologically active compounds. Gibson’s work at the University of Iowa included the determination of the first structures by X-ray crystallography of the multicomponent dioxygenase enzyme systems used by bacteria to initiate the biodegradation of aromatic hydrocarbons. Gibson’s work, chronicled in more than 200 publications, provided the scientific foundations for the development of the fields of bioremediation and biocatalysis.

Gibson served on the editorial boards of the Journal of Bacteriology and the Journal of Biological Chemistry and was the recipient of numerous awards. In 1976 he was the American Academy of Microbiology Latin America Visiting Professor at the National Polytechnic Institute in Mexico City, and in 1983 he was recipient of the Piper-Stevens Award for Teaching and Research. Gibson was elected as a Fellow in the American Academy of Microbiology in 1983 and as a Fellow in the American Association for the Advancement of Science in 1994. In 1996, ASM honored Gibson by devoting a symposium to his work at the annual meeting in New Orleans. The following year he received the ASM Procter and Gamble Award in Applied and Environmental Microbiology. He was elected to The National Academy of Sciences in 2004.

Gibson was a dedicated professor of microbiology for over 34 years. He was known as a kind but demanding professor with extremely high standards. Dave’s 27 graduate students, 30 postdoctoral fellows, and numerous visiting scientists became an extended and international “scientific family” of microbiologists, chemists, and biochemists, many of whom gathered at a memorial celebrating Dave’s life and accomplishments on 13 September 2014 at the Tower Hill Botanic Garden in Boylston, Mass., where a tree was dedicated in his honor. He is survived by his wife Janet, whom he married in 1963; daughters Karen Gibson and Christine Ruddy; son-in-law Kevin Ruddy; grandchildren Elizabeth, Nathan, and Nicholas; and brothers John and Philip.

Karen Gibson
Sol Resnick
Rebecca Parales

Wilhelmus Nicolaas Konings

On 5 July 2014, Wilhelmus Nicolaas Konings (known as Wil), Emeritus Professor of Molecular Microbiology at the University of Groningen in the Netherlands, passed away unexpectedly at the age of 77. Konings received his Ph.D. from the University of Groningen in 1969. From 1969 to 1971 he worked at the National Institutes of Health (NIH), in Bethesda, Md., as a postdoctoral fellow. In 1971, he was appointed Lecturer at the University of Groningen, and in 1980, he became Professor of Microbiology. In 2002, he retired as Professor Emeritus, leaving a legacy of more than 440 scientific papers and 7 patents, as well as numerous students and postdoctoral scientists who were trained in his laboratory. After retiring from the University of Groningen, he became associated with the University of Stellenbosch in South Africa, where he lectured for more than 10 years.

From the mid-1970s, he played a prominent role in the field of microbiology, especially in membrane biology. He was an outstanding researcher with an international reputation and stature in the rich tradition of Dutch microbiology. Scientifically, he will be remembered best for his extensive work on substrate transport in bacteria and archaebacteria. Konings developed an interest in bacterial transport while doing postdoctoral research in the laboratory of Ernst Freese at the NIH, where he was studying sporulation in Bacillus subtilis. Meeting Ron Kaback influenced him to study transport in B. subtilis vesicles rather than sporulation. Shortly thereafter, he discovered how to energize transport with an artificial electron donor system, which allowed the generalization of the vesicle system to many bacteria in addition to Escherichia coli. As a result of these and many more experiments, the two became lifelong friends and scientific colleagues.

In 1980, Wil proposed a model of energy recycling by product secretion, where a transporter catalyzes efflux of metabolic end products and thus conserves metabolic energy. Other work included the identification of specific antiport systems that play a role in energy conservation as part of simple metabolic pathways. Further hallmarks of his work are discoveries on the regulatory effects of intracellular pH and redox potential on the activity of transport proteins. His research on amino acid and peptide transport and the proteolytic system of lactic acid bacteria initiated intense contacts with the dairy industry and the organization of a European network on lactic acid bacteria. After his retirement, Wil continued to work as cofounder of the Biotechnology company IMENZ Bioengineering.

Central to Konings’ work was the use of well-defined model systems, such as isolated cytoplasmic membrane vesicles, which could be fused with liposomes reconstituted with an energy-generating source such as cytochrome c oxidase. These systems were used to study transport processes with membranes derived from strictly anaerobic bacteria and plasma membranes from yeasts and fungi. Later, he employed liposomes in which purified transport proteins were embedded in a functional state, including the functional reconstitution of membrane