ASM News

American Academy of Microbiology (AAM) 2009 Election Results

The American Academy of Microbiology (AAM) Fellows have elected six new Board of Governors (BOG) members and one member to the Committee on Election to Fellowship. The new Governors are listed below.

Peter Gilligan, Director, Clinical Microbiology-Immunology Laboratories, and Director, Phlebotomy Services, University of North Carolina Hospitals, and Professor, Departments of Microbiology-Immunology and Pathology-Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill.

Susan Gottesman, National Institutes of Health (NIH) Distinguished Investigator, Co-Chief, Laboratory of Molecular Biology, and Chief, Biochemical Genetics Section, Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Md.

Diane Griffin, Professor and Chair, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, and Professor of Medicine and Neurology, Johns Hopkins University School of Medicine, Baltimore, Md.

Louis Miller, Chief, Malaria Vaccine Development Branch, NIH, Bethesda, Md.

Peter Vogt, Professor, The Scripps Research Institute, La Jolla, CA.

Christopher Walsh, Hamilton Kuhn Professor of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass.

The Board of Governors sets strategic direction for the AAM, ratifies election to Fellowship, develops new topics for colloquia, and establishes new programs and initiatives consistent with its overall mission. The three-year term begins 1 July 2009. To learn more about the AAM and its Fellows, visit http://academy.asm.org.

In addition to serving on the BOG, Gilligan will serve as the Dean of the American College of Microbiology. The College oversees the AAM’s certification and accreditation programs. Visit www.microbiologycert.org to learn more about these programs.

Joining the Committee on Election to Fellowship (COE) is Magdalene So, Professor and Head, Program in Microbial Pathogenesis, Member, BIO5 Institute, and Department of Immunobiology, School of Medicine, University of Arizona, Tucson. Her five-year term also begins on 1 July. The COE is responsible for examining the credentials of nominees to Fellowship and making election recommendations to the Board of Governors. Information on AAM Fellowship eligibility and the nomination form are available online at http://academy.asm.org.

Scholars on the Path to Publishing: the Inaugural Biology Scholars Program Writing Institute

The soft glow of laptop screens illuminates a large, rectangular conference room at ASM’s Washington, D.C. headquarters, the site of the Biology Scholars Program’s first Writing Institute, held on 8–10 January 2009. Institute participants tap on their keyboards, fine-tuning the manuscripts they’ve brought with them from their posts at colleges and universities across the United States. The Institute, part of the yearlong Writing Residency of Biology Scholars Program, teaches faculty participants the intricacies of publishing papers in science education journals. The Residency is a virtual one, in that Scholars complete most of the assignments online and at their home institutions, but it officially begins with the in-person Writing Institute.

After acceptance into the Writing Residency in November, the Scholars began working on
several pre-Institute assignments that gave them background information about science education publishing and helped them focus on the Institute goals and learn more about each other.

Five Scholars, Michael Boyle (Juniata College, Huntingdon, Pa.), Alix Darden (The Citadel, Charleston, S.C.), Jennifer Rhode (University of North Carolina Asheville, Asheville, N.C.), Rachel Robson (Morningside College, Sioux City, Iowa), and Gail Rowe (La Roche College, Pittsburgh, Pa.), comprised the first cohort of the Writing Residency. Each Scholar has a goal for the program. Doyle wants to transfer his scholarship of teaching and learning (SoTL) research into a publishable manuscript. Darden finds that SoTL research has so many possible audiences she needs help narrowing hers. Rhode seeks to move her work from its current status (data analyzed, results presented at a conference) to journal article format. Robson wants to learn “how submissions to educational journals differ from those to microbiology journals.” Finally, Rowe wants guidance on publishing her microbiology education research in the *Journal of Microbiology and Biology Education*.

A compelling asset of the two-and-a-half-day Institute is the guided mentoring scholars receive from science publishing veterans Kathy Takayama (Brown University, Providence, R.I.) and Gordon Uno (University of Oklahoma, Norman), and Erin Dolan (Virginia Tech, Blacksburg). Takayama and Uno are Institute codirectors; Dolan facilitates. Takayama is an editor of the *Journal of Microbiology and Biology Education* and the *Journal of the International Society for the Scholarship of Teaching and Learning*; Uno is an editor of the *International Journal of Science Education, BioScience*, and *American Biology Teacher*; and Dolan is an editor of the journal *CBE-Life Sciences Education*.

During the Institute, Scholars read each other’s manuscripts and using presentation and group work formats learned more about the publishing process from presubmission to acceptance. Topics discussed included the elements of a good story, identifying evidence and presenting it in context, creating storyboards and outlines, preparing abstracts, submitting manuscripts for review, understanding reasons for manuscript rejection, addressing review comments, and the responsibilities of reviewers.

In a post-Institute survey, all five participants indicated clear satisfaction with the 2009 Institute and agreed that they achieved what they hoped to accomplish by attending. “Great job,” wrote one participant. “I really enjoyed this workshop immensely and have moved forward tremendously in my manuscript . . . I also have access to a community now that I can tap into.”

The Writing Institute is sponsored by ASM and affiliates, including the American Institute of Biological Sciences, the American Physiological Society, the American Society for Biochemistry and Molecular Biology, the American Society for Cell Biology, the Ecological Society of America, and the Genetics Society of America.

The Writing Residency can provide participants who are ready to prepare their SoTL research for publication with time, space, and peer-to-peer and mentor-guided feedback for navigating the writing process. A second Institute will be held in June 2010. For more information, visit www.biologyscholars.org.

Committee on Graduate and Postdoctoral Education Drafts 2009–2012 Strategic Plan

The Education Board’s Committee on Graduate and Postdoctoral Education (CPGE) held a strategic planning retreat on 23–25 January 2009 at ASM headquarters in Washington, D.C. Attending were Committee Chair Shelley Payne; Education Board Chair Neil Baker; and Committee members Steven Blanke, Cynthia Cornelissen, Kenneth Noll, and Michael Vasil. During the three-day retreat, participants reaffirmed the Committee’s mission and strategic goals and updated its strategic plan for 2009–2012.

Payne began the retreat with a discussion of the goals of the Committee. She explained that the mission of the Committee is to “promote excellence in research and teaching in graduate and postdoctoral microbiology education, ensure a broader inclusion of racial and gender diversity in graduate and postdoctoral education, and enhance access to diverse career opportunities for graduate students and postdoctoral scientists.”

The Committee reaffirmed its commitment to sponsor annually the ASM Kadner Institute in Preparation of Careers in Microbiology. This Institute, founded by the late Robert Kadner of the University of Virginia, supports senior grad-
uate students and postdoctoral scientists in the development of their presentation and grant writing skills. Since its inception in 2001, more than 100 graduate students and postdoctoral participants have completed the program. A key component of the program is career planning. A 2008 survey of 2001–2007 participants indicates that 30% are employed, 40% are postdoctoral scientists, and 20% are graduate students. Of those employed, 23% are employed at a graduate institution, 21% at undergraduate institution, 23% at an industry or for-profit organization, 14% at a government or federal agency, 5% at a hospital or medical institution or organization, and 2% at a nonprofit organization. In celebration of the 10th anniversary of the ASM Kadner Institute in 2010, the Committee will plan a 10-year reunion.

By using information gathered from a review of current programs and thinking strategically about their role as the Society’s leadership group for graduate and postdoctoral education, the Committee members identified new initiatives for the next three years.

Publishing Institute. The Committee will sponsor the ASM Scientific Writing and Publishing Institute for Graduate Students and Postdoctoral Scientists in summer 2009. The Institute will be modeled after a similar workshop held in 2006–2007 by ASM and the American Physiological Society. The program included topics on manuscript development (e.g., introduction, background, methods, results, interpretation, abstracts, and titles), ethical issues in publishing, the editorial review process, and common reasons for rejection.

Best Practices and Guidelines for Graduate and Postdoctoral Programs. In an effort to disseminate information generated from face-to-face training institutes and serve more students, the Committee will publish guidelines and best practices in graduate and postdoctoral education. The initial list of best practices will include topics and resources on teaching, advising, and mentoring; grant writing, scientific presentations and publishing; ethics; postdoctoral positions in teaching, research, and industry; career planning; and networking. All information will be disseminated via the ASM Graduate and Postdoctoral Program website, www.asmgap.org.

Teaching Postdoctoral Programs. Much discussion focused on the needs of graduate students planning careers at primary undergraduate institutions with extensive teaching requirements. In the future, Committee members hope to provide a list of teaching postdoctoral programs in microbiology as well as guidelines for selecting positions and for sponsoring positions. Although programs have unique goals, a core set of resources should be available. These may include both research and teaching mentors, basic education and pedagogy courses, opportunities to teach both introductory and advanced science modules or courses, resources to develop a teaching philosophy and portfolio, and opportunities to transform graduate research experiences into undergraduate research projects and to mentor students in research.

The outcomes from the retreat have been incorporated into an updated strategic plan available by contacting educationresources@asmusa.org.

Shelley Payne, Chair, ASM Committee on Graduate and Postdoctoral Education.

ASM Ambassador Program–2008 Year in Review

The ASM International Ambassador Program (IAP) has become an invaluable mechanism for developing stronger and more engaging ties with the international microbiology community. Ambassadors serve as ASM representatives to microbiology communities around the world and a local contact for international members that provide them with a voice in the Society. This channel of communication enables ASM to connect even the most distant members with the powerful network of 43,000 ASM members. Today, Ambassadors have been appointed to all 20 ASM regions through a competitive selection process that includes nominations by multiple ASM members. The position has become highly prestigious, and many of our Ambassadors have held leadership positions within their national microbiology society.

Last year, 2008, was a year of significant growth for the Ambassador Network. In order to assist Ambassadors that preside over a region.
with multiple countries, a network of Country Liaisons has been appointed to represent ASM in their particular country of residence. Twenty-four Country Liaisons were appointed in 2008 and have provided the IAP with a more efficient connection to the various microbiology communities within each Ambassador region.

Individually, Ambassadors and Country Liaisons have made significant accomplishments, but as a network they have become a powerful resource for the Society and its members. According to the Ambassador Caucus Chair, Josep Casadesus, “one of the most effective ways for the Ambassador Network to communicate with current and prospective members is by participating in microbiology events in [their] region on behalf of ASM.” As a result of their dedicated efforts, Ambassadors and Country Liaisons coordinated ASM participation in 67 regional conferences, symposia, and workshops where they made presentations, presented awards on behalf of the Society, and hosted booths to promote ASM products and services and other benefits of membership. Ambassador to Southeast Asia Kwai Lin Thong organized the first ASM Tea Hour at the 13th International Congress on Infectious Diseases, held in Kuala Lumpur, Malaysia. The effort endeavored to provide ASM members with an opportunity to network with other members of the Society they may not have known before. At the Latin American Congress for Microbiology, held in Quito, Ecuador, Ambassador to the Andean Region Marcel Gutierrez-Correa organized a major ASM presence which resulted in 81 new members registering on site. Ambassador to the Indian Ocean Sunil Lal coordinated an ASM delegation to the Annual Meeting of the Association of Microbiologists of India that included ASM President Alison O’Brien, where 100 new Indian members joined at the ASM booth. Similar initiatives were realized in all 20 ASM regions.

In addition to promoting ASM, Ambassadors are also addressing the needs of microbiologists in their region through a variety of activities. ASM Ambassador to the Australian Ocean Region Julian Rood overcame significant barriers to bring the benefits of ASM’s Global Outreach Program to colleagues in Papua New Guinea. Through the efforts of the Ambassador Network the Global Outreach membership has reached 900 members for the first time. The ASM Ambassador to North Africa and the Middle East, Atef El-Gendy, realized that although many microbiologists dream of attending ASM meetings, limited financial resources make this all but impossible. In a collaborative effort between the U.S. Department of State, ASM, and the U.S. Naval Medical Research Unit, El-Gendy established a travel grant that enabled 25 microbiologists from Libya, Egypt, Afghanistan, and Yemen to attend the ASM General Meeting or ICAAC and engage in the exchange of scientific knowledge available at these gatherings.

Ambassadors and Country Liaisons also established four new ASM Resource Centers in Peru, Ecuador, Haiti and Cameroon. Through a collection of ASM publications, online access to ASM resources and descriptions of ASM programs, the Resource Centers will serve as an invaluable resource to the countries’ burgeoning microbiology communities.

The activities described above only begin to enumerate the broad range of important initiatives realized by each Ambassador and Country Liaison. However, the IAP also enables ASM to understand the unique issues that affect microbiologists in various regions of the world and provides the Society with a qualified perspective on how ASM can maintain its relevancy to scientists around the world. Eleven Ambassadors and Country Liaisons provided invaluable feedback from their constituents during the IMC Retreat at the 108th General Meeting in Boston, Mass. This enabled the IMC to develop an informed and practical Strategic Plan.

Ambassadors are certainly undergoing the valuable task of enriching the international perspective of ASM, which allows for new and exciting possibilities. With 30% of its members residing outside the United States, ASM has already developed a strong international presence. However, through the continued efforts of the Ambassador Network, ASM will be better able to develop programs that meet the needs of microbiologists from diverse stages of scientific and economic development and fulfill its mission of fostering microbiology worldwide.

Edmundo Calva
Chair, International Membership Committee

Todd Peterson
Program Manager, International Affairs
2009 General Meeting Award Laureates

The Committee on Awards is pleased to present part three of a three-part series on the 2009 General Meeting award laureates.

Abbott-ASM Lifetime Achievement Award

Proudly sponsored by Abbott Laboratories, the Abbott-ASM Lifetime Achievement Award is presented to Carl R. Woese, Ph.D., Stanley O. Ikenberry Professor of Microbiology, Professor of Biology, School of Life Sciences, and Professor, Institute for Genomic Biology, University of Illinois. This premier award honors Woese for changing the way that we perceive microbial diversity. His phylogenetic analyses of ribosomal RNA sequences led to the recognition of a third domain of life—the Archaea—which revolutionized our view of life’s history and brought order to our understanding of microbial diversity and classification.

Woese received his A.B. in math and physics from Amherst College and his Ph.D. from Yale University in biophysics. His nominator, Norman R. Pace, Ph.D., University of Colorado at Boulder and an American Academy of Microbiology Fellow, remarked, “Woese had the definitive insight that ribosomal RNA sequence comparisons could be used to construct a phylogeny of all living organisms. The problem of establishing a universal phylogeny had been considered intractable because of the paucity of characteristics that relate microorganisms. Sequences of macromolecules, on the other hand, provide a direct record of evolutionary history. Woese’s choice of ribosomal RNA for sequence comparisons was critical; the highly conserved nature of the molecule made it possible to relate all forms of life.”

This research began in the early 1970s, when sequencing technology was in a primitive state. Woese spent countless hours analyzing patterns of relationships from oligonucleotide fingerprints and deduced evolutionary relationships. One of Woese’s supporters, Edward F. DeLong, Ph.D., Professor, Massachusetts Institute of Technology, and also an American Academy of Microbiology Fellow, noted, “Woese was one of the first to embrace the power of molecular sequence comparisons for inferring deep evolutionary relationships, and he developed the rationale, technical approach, and theory for doing so. Nearly single-handedly, Woese generated and surveyed the fingerprints, and inferred from them that a new domain of life, the Archaea, were encompassed within the prokaryotes. Woese recognized that all life forms could be related by the approach, for the first time putting all cellular life under one evolutionary umbrella.”

Woese’s work opened the field of metagenomics and, according to Pace, “... devised a new way of looking at the history of life on Earth.” Woese, an American Academy of Microbiology Fellow, has received numerous awards, including the National Medal of Science, the Bergey Award, the John D. and Catherine T. MacArthur Award, the Leeuwenhoek Medal, and the Selman A. Waksman Award in Microbiology. He is a member of the National Academy of Sciences, the Max-Planck Society, the Royal Society, the Russian Academy of Natural Sciences, and the Royal Swedish Academy of Sciences.

BD Award for Research in Clinical Microbiology

Mohamed A. Karmali, M.D., Director-General, Laboratory for Foodborne Zoonoses and Office of Biotechnology, Genomics, and Population Health, Public Health Agency of Canada, Ontario, is honored with the BD Award for Research in Clinical Microbiology. This award, which is supported by BD Diagnostic Systems, recognizes a distinguished scientist for research accomplishments that form the foundation for important applications in clinical microbiology. Karmali, a Fellow of the American Academy of Microbiology, is honored for his groundbreaking research that has impacted clinical microbiology as well as gastroenterology, nephrology, infectious diseases, and epidemiology.

After receiving his M.B. Ch.B. medical degree from the University of Glasgow Medical School and completing his residency at the University of Glasgow Teaching Hospitals, Scotland, Karmali emigrated to Canada. He completed a medical
microbiology residency at the University of Toronto Teaching Hospitals and a research fellowship in the bacteriology department at the Hospital for Sick Children, Toronto. In 1979 during his fellowship, he published an influential paper in the Journal of Pediatrics about his work on the newly recognized pathogen Campylobacter jejuni in childhood enteritis. Subsequently, Karmali reported the first demonstration of plasmid-mediated antibiotic resistance in this species and the development of a charcoal-based selective medium, “Karmali’s medium,” for isolating Campylobacter from feces. The New England Journal of Medicine published this landmark paper in 1987; it was the first prospective case-control study of Helicobacter pylori (known at that time as Campylobacter pylori) confirming the etiological relationship of antral gastritis and peptic ulcer in a pediatric population.

“Karmali made a seminal, field-altering, observation in the early 1980s, by identifying Shiga-toxin producing Escherichia coli as important human pathogens. This observation dramatically changed our approach to diagnosing gastrointestinal infections worldwide, and to understanding, preventing, and treating the most severe complications of these infections, namely the hemolytic uremic syndrome (HUS),” remarked Phillip I. Tarr, M.D., Professor, Washington University School of Medicine, St. Louis, Mo., a supporter of Karmali’s nomination. This work was published in The Lancet and followed by the publication of his work, “The Association between the Hemolytic-Uremic Syndrome and Infection by Verotoxin-producing Escherichia coli,” in the Journal of Infectious Diseases. This work was a definitive case-control study that confirmed the link between Vero/Shiga-toxin producing E. coli infections and HUS. It has been cited over 860 times and was republished in 2004 as one of the outstanding papers in the journal over the past 100 years.

“Few clinical microbiologists have made such fundamental contributions of widespread significance as Karmali. His observations in clinical microbiology rank with those of Marshall and Warren, who first described the association of Helicobacter pylori with peptic ulcers, a discovery that won the Nobel Prize,” says Karmali’s nominator, James B. Kaper, Ph.D., Professor and Chair, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, and an American Academy of Microbiology Fellow.

D. C. White Research and Mentoring Award

Edward F. DeLong, Ph.D., Professor, Department of Civil and Environmental Engineering and Division of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, is honored with the 2009 D. C. White Research and Mentoring Award. This award honors D. C. White, who was known for his interdisciplinary scientific approach and for being a dedicated and inspiring mentor.

DeLong, a Fellow of the American Academy of Microbiology, is a highly regarded and creative scientist who, according to Sallie Chisholm, Ph.D., of MIT, who supported DeLong’s nomination, “is the world leader on environmental genomics, and this field is poised to change the way we think about life on Earth.” DeLong received his Ph.D. in marine biology from Scripps Institute of Oceanography, where he conducted laboratory- and field-based research on novel membrane lipids of deep-sea bacteria. DeLong did his postdoctoral training in the laboratory of Norman R. Pace, Ph.D., at Indiana University, Bloomington, where he did some of the first molecular studies of marine picoplankton. DeLong also developed the first of the rRNA-based fluorescent hybridization probes, “phylogenetic stains,” which identify by microscopy single cells phylogenetically. “This research opened a new window for the identification and characterization of bacteria in nature,” stated DeLong’s nominator, David M. Karl, Ph.D., University of Hawaii at Mānoa and also an Academy Fellow.

DeLong then started his work in the laboratory of Norman Pace, Ph.D., of the University of Colorado, on the use of 16s RNA gene cloning and sequencing as a way of analyzing complex microbial communities in nature. He discovered marine archaea, planktonic and symbiotic, and, as Chisholm remarks, “This work completely changed our image of the role of archaea in the biosphere. Archaea were previously thought to be very specialized microbes that thrive only in extreme environments. Using culture-independent molecular techniques, however, DeLong has shown the archaea are very widespread and abundant in the world’s oceans, accounting for
a significant fraction of the total planktonic microbes.”

Another significant contribution of DeLong’s has been his identification of anaerobic methane-oxidizing bacteria. By utilizing molecular tracer and nucleic acid technology, DeLong and his students identified syntrophic associations of organisms that result in methane oxidation through new kinds of metabolism. This work is showing that individual groups of microbes are metabolically versatile but that in teams they can do almost anything that is thermodynamically possible. Microbial genomics and microbial systems biology are now DeLong’s primary focus. A member of the National Academy of Sciences, DeLong is known as being one of the first marine microbiologists to apply novel molecular genetic methods to address fundamental ecological questions. According to Pace, “No scientist has made greater contributions to marine microbiology than Ed DeLong.”

As DeLong’s supporters point out, DeLong is a generous and conscientious teacher and mentor. Karl notes that he knew David C. White well, and White was known for his curiosity and breadth of scientific interests, as well as humanistic personal characteristics. Karl remarks that “Few scientists have been as rigorous but accommodating as DeLong, and this may account for his excellent teaching and mentoring skills. He can work alone or as an equal member of a team, and these qualities are becoming much harder to find in science these days.”

Eli Lilly and Company Research Award

Joseph L. DeRisi, Ph.D., Howard Hughes Medical Investigator and Professor, Department of Biochemistry & Biophysics, School of Medicine, University of California, San Francisco (UCSF), is honored with ASM’s oldest and most prestigious award, the Eli Lilly and Company Research Award. He is honored for his work in advancing the basic technology and informatics for DNA microarrays and using these tools to investigate basic biological regulatory mechanisms.

DeRisi received his Ph.D. in biochemistry from Stanford University, where he conducted research in Patrick Brown’s laboratory. DeRisi and Brown developed custom microarrays to study the molecular biology of the yeast Saccharomyces cerevisiae. DeRisi’s nominator, Don Ganem, Professor, UCSF and an American Academy of Microbiology Fellow, states “His first papers in this area established the paradigm for how arrays can be used to study global changes in gene expression accompanying changes in physiological conditions. His analysis of the changes accompanying the shift from fermentation to respiration was the first paper of its kind and remains one of the most insightful analyses of its type some 12 years later.”

Upon establishment of his own lab, DeRisi began his work on the application of advanced genomic technologies to the study of human infectious diseases. His wide interests include malaria research and new viral pathogen discovery. Ganem opines that DeRisi has already become an internationally recognized leader in both areas.

DeRisi pioneered the design, construction, and use of a chemostat-like bioreactor that allows large-scale growth of synchronized cultures of Plasmodium falciparum merozoites in human blood. With this system, he completed a comprehensive array-based analysis of periodic gene expression by the parasite as it undergoes its remarkably synchronized life cycle. The work shows the temporal progression of classes of parasite gene expression and suggests that a simple network of transcription factors may underlie it. Published by PLOS Biology, it is one of the most significant discoveries in basic malaria research in the past decade.

Simultaneously, DeRisi experimented with new ways to diagnose viral infections and to identify novel viral pathogens. He designed a microarray that represents the most conserved sequences of all known virus families and subfamilies and developed custom software for analysis and interpretation of the resulting complex hybridization patterns. Recently, he has been working on deep nucleic acid sequencing as another tool for new pathogen discovery. In summary, Ganem writes, “DeRisi is a prolific young scientist whose most singular trait is that he is interested in everything and afraid of nothing. Whether it’s nucleic acid chemistry, molecular biology, software code generation, robotic technology, statistical theory—there just seems to be no subject with which he is not fully at home.”

David Botstein, Ph.D., Princeton University, one of DiRisi’s supporters, remarks, “Joe DeRisi personifies everything one might want of an Eli
ASM Founders Distinguished Service Award

J. Michael Miller, Ph.D., D(ABMM), Associate Director for Science, National Center for Zoonotic, Vectorborne, and Enteric Diseases, Centers for Disease Control and Prevention, and Director, Microbiology Technical Services, LLC, Dunwoody, Ga., is honored with the ASM Founders Distinguished Service Award, which recognizes outstanding contributions and commitment to the ASM as a volunteer at the national level. An ASM member since 1976, Miller is honored for his years of dedication and service which are evident in virtually all of ASM’s programmatic areas.

A Fellow of the American Academy of Microbiology, Miller has served two terms as a member of the Academy’s Board of Governors and Dean of the American College of Microbiology. During his tenure as Dean, Miller changed and enhanced the direction of its programs. A conjoint examination agreement with the American Society for Clinical Pathology was signed, and online exam administration was launched for the three ASM certification boards. His diplomatic statesmanship, keen negotiation skills, and intense commitment paved the way for changes that had been discussed for over 20 years.

“Miller gives of himself all the time without fail as a moderator, speaker, organizer, or participant,” writes Gerri Hall, Ph.D., Cleveland Clinic, an American Academy of Microbiology Fellow and a supporter of Miller’s nomination. He served as chair of Division C (ASM’s clinical microbiology group), as Divisional I Group representative, and as a member of the ASM General Meeting Program Planning Committee.

Robert Jerris, Ph.D., Children’s Healthcare of Atlanta, a supporter of Miller’s nomination, remarked, “Miller is a master at communication and strategic planning, and in his capacity with ASM initiated a Web-based forum for microbiology directors (ClinMicroNet) worldwide to engage in open discussion of key issues in the field. Additionally, in tune with bench technologists, he proposed DivCNet, a list serv for all clinical microbiologists.” Currently, there are almost 600 subscribers to ClinMicroNet and over 2,600 subscribers to DivCNet.

In addition to being honored with ASM’s bioMérieux Sonnenwirth Award for Leadership in Clinical Microbiology, Miller has participated in the nomination and selection of laureates for several ASM Awards. Known for always volunteering his time, he works to maintain the stellar reputation of the Awards Program and ensures that deserving scientists are acknowledged for their achievements.

Miller was nominated by Susan Sharp, Ph.D., Kaiser Permanente, Portland, Ore. Sharp concluded, “Through his volunteerism and many many hours of contribution, Dr. Miller has over and over solidified his commitment to furthering the goals of the ASM and truly making a difference for the organization and the profession of microbiology. I am only one example of a member whom Dr. Miller has inspired to also make a commitment as a volunteer to ASM; numerous other members have been similarly affected.”

Maurice Hilleman/Merck Award

Stanley A. Plotkin, M.D., Sanofi Pasteur and the University of Pennsylvania, Philadelphia, has been chosen as the inaugural laureate of the Maurice Hilleman/Merck Award for his lifetime of dedication to vaccinology. This award, established in the memory of Maurice Hilleman and supported by Merck & Company, Inc., honors major contributions to pathogenesis, vaccine discovery, vaccine development, and/or control of vaccine-preventable diseases.

Maurice Hilleman is credited with developing over 40 vaccines, including those that prevent measles, mumps, rubella, Haemophilus influenzae type b, hepatitis A, hepatitis B, and chickenpox. These vaccines save millions of lives each year, and Hilleman is frequently credited with saving more lives than any other scientist of the 20th century. Plotkin’s nominator, Paul A. Offit, M.D., Children’s Hospital of Philadelphia, writes, “Dr. Hilleman would have been proud to see Dr. Plotkin receive the Maurice Hilleman/Merck Award.”
Plotkin received his M.D. from the State University of New York College of Medicine, Brooklyn, and is credited with two major accomplishments. Human viruses had been attenuated by serial passage in nonhuman cells, a technique employed by Hilleman for the measles, mumps, and first rubella vaccines.

In the 1970s, Plotkin took a strain of rubella virus from an infected fetus and attenuated it by low-temperature adaptation in fetal embryo fibroblast cells. This work led to Plotkin being the first to attenuate a human virus by adaptation to low temperature and the first to make a vaccine in human cells.

Plotkin developed RA 27/3, a rubella vaccine; it was the first licensed vaccine made in human cells. RA 27/3 is used worldwide and as a result, the U.S., Canada, several Latin American countries, and the English-speaking Caribbean Islands are free of rubella. It is expected that by 2010 the Americas will be rubella free, and by 2016, so will the European and Central Asian regions. Plotkin’s RA 27/3 replaced Hilleman’s rubella vaccine, HPV-77.

Plotkin’s textbook Vaccines, in its fifth edition, continues to be the authoritative resource in the field. He is the Founding Father and Trustee of the Pediatric Infectious Diseases Society and the recipient of numerous awards, including the Sabin Foundation Gold Medal, the French Legion of Honor Medal, the Fondation Mérieux Medal, and the Marshall Award. Plotkin has been elected to the French National Academy of Medicine and the National Academy of Sciences’ Institute of Medicine.

The Maurice Hilleman/Merck Award lecture, “Vaccines: the Fourth Century,” will be presented by Plotkin on Monday, 18 May 2009 at the ASM General Meeting in the Pennsylvania Convention Center. Plotkin will discuss the evolution of strategies for vaccine development and use from the time of Jenner.

Procter & Gamble Award in Applied and Environmental Microbiology

Jim C. Spain, Ph.D., Professor, Civil and Environmental Engineering, Georgia Institute of Technology, is honored with the Procter & Gamble Award in Applied and Environmental Microbiology for his major contributions to environmental biotechnology. He has consistently and successfully applied fundamental discoveries to make changes in environmental practice.

Spain received his Ph.D. in microbiology from the University of Texas, Arlington, and has spent his career working in science and engineering. His primary interest has been on the discovery of microbes and enzymes for the synthesis and degradation of organic chemicals, often by novel biochemical pathways first elucidated in his laboratory. By using all the tools of microbiology, biochemistry, molecular biology, evolution, and ecology to reveal the fundamental principles involved, Spain works closely with engineers to turn the findings into practical applications.

His work on microbial degradation of nitroaromatic compounds includes a combination of chemistry of the various degradation intermediates, biochemistry of the catabolic enzymes, and an intimate knowledge of the microbes responsible. His work on chloroethene metabolism showed that aerobic microbes could degrade cis-dichloroethene, which is a problematic intermediate in the cleanup of chlorinated ethane-contaminated ground waters. Many of the bacteria isolated by Spain have become central figures of study for the unique pathways of aromatic metabolism that they catalyze. Currently, he is researching biochemistry used by microbes for degradation of natural nitro compounds and has begun to work on energy-related issues.

Spain’s supporter, James M. Tiedje, Ph.D., University Distinguished Professor, Michigan State University, wrote, “Spain has been a major leader in the field of aromatic biodegradation and metabolism, and for nitroaromatic metabolism, he is the world’s authority. His recent work on bimnersic immobilization of enzymes to silica by using the biochemistry of diatoms to form the protein-silica linkages is particularly novel and intriguing. While this work is in its infancy, it is based on the a long-optimized biology of silica.” An American Academy of Microbiology Fellow, Spain was nominated by Terry C. Hazen, Ph.D., Head, Ecology Department and Center for Environmental Biotechnol-
Promega Biotechnology Research Award

George M. Church, Ph.D., Professor of Genetics, Harvard Medical School, and Director, Lander Center for Computational Genetics, Boston, is honored with the Promega Biotechnology Research Award, which recognizes outstanding contributions to the application of biotechnology through fundamental microbiological research and development. Described as a “truly unique” and “extraordinarily creative” scientist, Church’s forward thinking and wide-range of interests have resulted in numerous new technologies that have led to major advances in the microbiological sciences.

Church earned his Ph.D. in biochemistry and molecular biology from Harvard University in 1984, and for three decades he has been a leader in biotechnology and its application. The original methods for DNA sequencing were invented in 1977. In 1984, Church proposed “multiplex sequencing” which was a radical alternative. It was a manual, highly parallel sequencing method that was more productive than current methods. This technology, though never industrialized, was used to sequence the first microbial genome, that of Helicobacter pylori, and the genome of the archaeon Methanobacterium thermautotrophicum.

Church’s lab went on to discover novel methods of DNA sequence analysis, including polonies on slides read by fluorescent mononucleotides and polymerase and polonies on beads read by fluorescent oligonucleotides and ligase. The commercialization and adoption of this “polony” concept led to the second generation of sequencing technologies. It has transformed the way genomes are analyzed. Others are noted for their contributions, but Church is assigned the central role for his enabling technology. He has licensed patents on these methods to almost all the current DNA sequencing instrumentation companies.

The second-generation approach was described in a seminal paper by Church which led, in part, to the foundation of the field of synthetic biology. Clifford J. Tabin, Ph.D., Professor, Harvard Medical School and Church’s nominator writes, “Because of the methods he developed, DNA constructs up to 100 kbp long are now being made at a rate of 1 Mbp per month. His lab also developed DNA nanostructures which are used to provide a highly anisotropic medium to help determine NMR structures of membrane proteins which are important pharmaceutical targets.”

One of Church’s supporters, David Botstein, Ph.D., Director, Lewis-Sigler Institute for Integrative Genomics, Princeton University, and an American Academy of Microbiology Fellow, credits Church with a leading role in the development of the field of bioinformatics, specifically, assessments of the patterns of gene expression inferred from DNA microarrays and the connection with simple sequence motifs recognized by DNA-binding proteins.

As Tabin notes, “George Church is a ‘truly unique’ and ‘extraordinarily creative’ scientist. These are adjectives too often overused; however, they literally and accurately apply to George. His ability to identify key problems before they are clear to the rest of the field; his ability to bring novel ideas and original conceptual approaches to practice; and his far-ranging interests have resulted in a series of new technologies that have led to major advances in microbiological sciences.”
American Academy of Microbiology

New Fellows Welcomed to the Academy in 2009

The American Academy of Microbiology is honored to welcome these new Fellows, elected in recognition of their records of scientific achievement and original contributions that have advanced microbiology.

Frances H. Arnold
California Institute of Technology, Pasadena

Carl E. Bauer
Indiana University, Bloomington

Jack R. Bennink
National Institute of Allergy and Infectious Diseases, Bethesda, Md.

Edward A. Berger
National Institute of Allergy and Infectious Diseases, Bethesda, Md.

Christine A. Biron
Brown University, Providence, R.I.

David F. Blair
University of Utah, Salt Lake City

Michael R. Botchan
University of California, Berkeley

Gerhard H. Braus
Georg-August-Universität Göttingen, Germany

Margo A. Brinton
Georgia State University, Atlanta

Frederic D. Bushman
University of Pennsylvania School of Medicine, Philadelphia

Mark J. Buttnar
John Innes Centre, Norwich, United Kingdom

James C. Carrington
Oregon State University, Corvallis

Michael Chandler
Laboratoire de Microbiologie et Génétique Moléculaire, CNRS/UPS, Toulouse, France

Philip Cohen
University of Dundee, Tayside, Scotland

Bryan R. Cullen
Duke University Medical Center, Durham, N.C.

Melanie T. Cushion
University of Cincinnati College of Medicine, Ohio

Victor J. DiRita
University of Michigan Medical School, Ann Arbor

Gordon Dougan
The Wellcome Trust Sanger Institute, Cambridge, United Kingdom

George L. Drusano
Ordway Research Institute, Albany Medical College, N.Y.

Jaquelin P. Dudley
University of Texas at Austin

David M. Engman
Northwestern University Feinberg School of Medicine, Chicago, Ill.

Scott G. Filler
David Geffen School of Medicine at the University of California, Los Angeles

Nigel W. Fraser
University of Pennsylvania School of Medicine, Philadelphia

Patrick L. Green
The Ohio State University, Columbus

John Hayes

Deborah M. Hinton
National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md.

David W. Holden
Imperial College London, United Kingdom

James A. Hoxie
University of Pennsylvania School of Medicine, Philadelphia

Christopher A. Hunter
University of Pennsylvania School of Medicine, Philadelphia

Bo Barker Jørgensen
Max Planck Institute for Marine Microbiology, Bremen, Germany

Amar J. S. Klar
National Cancer Institute, Frederick, Md.

David M. Knipe
Harvard Medical School, Boston, Mass.

Hendrik J. Koornhof
National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa

Douglas E. Koshland
Carnegie Institution of Washington, Washington, D.C.

Barry Marshall
University of Western Australia, Perth

Maria Esperanza Martinez-Romero
Universidad Nacional Autónoma de México, Cuernavaca

Valerie Mizrahi
Medical Research Council, National Health Laboratory Service and University of the Witwatersrand, Johannesburg, South Africa

Thomas M. Moran
Mount Sinai School of Medicine, New York City

Hirotada Mori
Nara Institute of Science and Technology, Ikoma, Keio University, Yamagata, Japan

Anne Moscona
Weill Medical College of Cornell University, New York City

Gopinath Balakrish Nair
National Institute of Cholera and Enteric Diseases, Kolkata, India

Ann C. Palmenberg
University of Wisconsin, Madison

Yvonne Paterson
University of Pennsylvania School of Medicine, Philadelphia

Carlos Pedrós-Alió
Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain

Thomas D. Petes
Duke University Medical Center, Durham, N.C.

James M. Pipas
University of Pittsburgh, Pittsburgh, Pa.

Kit Pogliano
University of California, San Diego
Louise Prakash
University of Texas, Medical Branch, Galveston

Satya Prakash
University of Texas, Medical Branch, Galveston

Anthony P. Pugsley
Institut Pasteur, Paris, France

Nancy Raab-Traub
University of North Carolina, Chapel Hill

Anjana Rao
Harvard Medical School, Boston, Mass.

Lutgarde Raskin
University of Michigan, Ann Arbor

M. Thomas Record, Jr.
University of Wisconsin, Madison

William S. Reznikoff
Marine Biological Laboratory, Woods Hole, Mass.

Yasuko Rikihisa
The Ohio State University, Columbus

Erle S. Robertson
University of Pennsylvania School of Medicine, Philadelphia

Leslie A. Schiff
University of Minnesota, Minneapolis

Konstantin V. Severinov
Rutgers State University, Piscataway, N.J.

Phillip D. Smith
University of Alabama at Birmingham

Stanley M. Spinola
Indiana University Medical Center, Indianapolis

Karl O. Stetter
University of Regensburg, Germany

Jeffrey N. Strathern
National Cancer Institute, Frederick, Md.

Jeffery K. Taubenberger
National Institute of Allergy and Infectious Diseases, Bethesda, Md.

Giorgio Trinchieri
National Cancer Institute, Frederick, and National Institutes of Health, Bethesda, Md.

Peter H. von Hippel
University of Oregon, Eugene

Lawrence P. Wackett
University of Minnesota, St. Paul

E. Gerhart H. Wagner
Uppsala University, Sweden

Bruce D. Walker
Harvard Medical School, Boston, Mass., and Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa

Theodore C. White
Seattle Biomedical Research Institute and University of Washington, Seattle

Malcolm E. Winkler
Indiana University, Bloomington

Jonathan W. Yewdell
National Institute of Allergy and Infectious Diseases, Bethesda, Md.

Jonathan P. Zehr
University of California, Santa Cruz

For information about election to the Fellowship in the American Academy of Microbiology, please visit: http://academy.asm.org/

Focus on Microbiology Education, Fall Issue 2008

Table of Contents

FEATURES

Concept Inventories as Resources for Improving Teaching and Learning
Sam Donovan

From Misconceptions to Concept Inventories
Gili Marbach-Ad

An Excellent Means of Assessment: Short Write-to-Learn Activities for the Microbiology Course
Heidi R. Smith

Use of Rubrics as an Assessment Tool
Michaela A. Gazdik

Success or Failure of a Prodigal Research Program—How Good Assessment Matters
Beverly Smith-Keiling

ASMCUE 2009: Setting Our Sights to the West
Jennifer A. Herzog

JOURNAL WATCH
Jennifer A. Herzog

WEB WATCH
Gary Kaiser

New Visual Resources
Images

Developing and Mature Biofilms Produced by Mycobacterium smegmatis
Benedict Khoo, Poonam Gulati

Degradation of Biological Macromolecules by Bacillus species
Javier Gutierrez-Jimenez, Juan de Dios Flores-Hernandez, Carlos Alberto Balcazar-Reyes

Indirect Immunofluorescence for Detection of Measles Antibody
Kristina M. Obom, Patrick J. Cummings, Maria A. DeBernardi, Gary Brooker

Haloarchaea Associated with Salt Crystals Obtained from Solar Salterns of Goa, India
Judith Braganca, Irene Furtado

Education Board

New Resources Available in the MicrobeLibrary

The MicrobeLibrary (www.microbelibrary.org) is pleased to announce the publication of new resources in the Curriculum, *Focus on Microbiology Education (FOME)*, and Visual Collections. Viewing the curriculum activities and *Journal of Microbiology & Biology Education* articles requires a subscription of $25 for ASM members and $50 for nonmembers. Visit the ASM eStore (www.estore.asm.org) to subscribe.

New Curriculum Activities

Using Microbial Ecology to Teach Experimental Design and Sampling Methods
Mary E. Allen, Ruth A. Gyure

Food Microbiology Projects: Student Ownership from Topic Selection and Experimentation to Presentation in 10 Weeks
Joy G. Waite, Ahmed E. Yousef

Focus on Microbiology Education, Fall Issue 2008

Table of Contents

FEATURES

Concept Inventories as Resources for Improving Teaching and Learning
Sam Donovan

From Misconceptions to Concept Inventories
Gili Marbach-Ad

An Excellent Means of Assessment: Short Write-to-Learn Activities for the Microbiology Course
Heidi R. Smith

Use of Rubrics as an Assessment Tool
Michaela A. Gazdik

Success or Failure of a Prodigal Research Program—How Good Assessment Matters
Beverly Smith-Keiling

ASMCUE 2009: Setting Our Sights to the West
Jennifer A. Herzog

JOURNAL WATCH
Jennifer A. Herzog

WEB WATCH
Gary Kaiser

New Visual Resources
Images

Developing and Mature Biofilms Produced by Mycobacterium smegmatis
Benedict Khoo, Poonam Gulati

Degradation of Biological Macromolecules by Bacillus species
Javier Gutierrez-Jimenez, Juan de Dios Flores-Hernandez, Carlos Alberto Balcazar-Reyes

Indirect Immunofluorescence for Detection of Measles Antibody
Kristina M. Obom, Patrick J. Cummings, Maria A. DeBernardi, Gary Brooker

Haloarchaea Associated with Salt Crystals Obtained from Solar Salterns of Goa, India
Judith Braganca, Irene Furtado

Education Board

New Resources Available in the MicrobeLibrary

The MicrobeLibrary (www.microbelibrary.org) is pleased to announce the publication of new resources in the Curriculum, *Focus on Microbiology Education (FOME)*, and Visual Collections. Viewing the curriculum activities and *Journal of Microbiology & Biology Education* articles requires a subscription of $25 for ASM members and $50 for nonmembers. Visit the ASM eStore (www.estore.asm.org) to subscribe.

New Curriculum Activities

Using Microbial Ecology to Teach Experimental Design and Sampling Methods
Mary E. Allen, Ruth A. Gyure

Food Microbiology Projects: Student Ownership from Topic Selection and Experimentation to Presentation in 10 Weeks
Joy G. Waite, Ahmed E. Yousef
International Affairs

ASM Participates in the PEPFAR Laboratory Technical Working Group Consultation

ASM International Laboratory Capacity Building Program (Lab Cap) Committee Chair Steven Specter, ASM International Affairs Director Lily Schuermann, and International Affairs Program Manager Mah-Sere Keita Sow participated in the President’s Emergency Plan for AIDS Relief (PEPFAR) Laboratory Technical Working Group Consultation organized by the Centers for Disease Control and Prevention (CDC) and the US Agency for International Development (USAID) from 26–27 January 2009 in New York, N.Y.

About 80 representatives from organizations supporting PEPFAR laboratory-strengthening activities in resource-limited countries were brought together with key stakeholders from the CDC, USAID, and PEPFAR-funded countries to review laboratory challenges, opportunities, and best practices learned in supporting the objectives of PEPFAR in order to determine the best way forward.

On 30 July 2008, President George Bush signed into law H.R. 5501, the Lantos-Hyde US Global Leadership Against HIV/AIDS, Tuberculosis (TB), and Malaria Re-authorization Act of 2008. This legislation expands the original U.S. Government commitment known as PEPFAR from 2003 to 2008, for five additional years (2009 through 2013) in PEPFAR II. It will increase the U.S. financial commitment to the fight against global HIV/AIDS, TB, and malaria, authorizing up to $39 billion for PEPFAR II and U.S. contributions to the Global Fund; $5 billion to the President’s Malaria Initiative; and $4 billion to fight TB.

In light of new funding levels and opportunities presented by the reauthorization of PEPFAR, CDC and USAID convened their multiple laboratory partners to present on lessons learned during the first 5 years of PEPFAR in order to guide recommendations for improvements and continued successes during PEPFAR II. The main discussion items during the meeting included: consensus on critical laboratory indicators; standardized and sustainable public health approaches to implementing laboratory Quality Management Systems; and laboratory and health systems strengthening.

The two-day meeting was held at the Columbia University Medical Campus, and the meeting host agency was the International Center for AIDS Care and Treatment Programs (ICAP), a Columbia University Mailman School of Public Health organization that supports HIV-related activities around the world. ICAP, like ASM and other organizations represented at the meeting, receives PEPFAR funds to support laboratory capacity-building efforts in resource-constrained host nations.

Specter was invited to make a presentation on TB and opportunistic infection (OI) diagnostic strengthening opportunities under PEPFAR, particularly highlighting the ASM Lab Cap Program’s major successes and challenges and discussing opportunities for activities under PEPFAR II. ASM was introduced as the lead CDC-supported organization for the laboratory strengthening of TB and OIs and was thus asked to provide feedback on potential future best practices for optimizing these activities, as well as communicate major obstacles that have impeded the successful progression of these efforts.

The meeting ended with partners agreeing to continue to share activities and lessons learned in order to minimize duplication of activities and to better leverage each other’s expertise to achieve optimal results and maximize use of available resources.

Development of this publication was supported by Cooperative Agreement Number U62/CCU325119–02 from the Department of Health and Human Services/Centers for Disease Control and Prevention (CDC), National Center for HIV, STD, and TB Prevention (NCHSTP), Global AIDS Program (GAP). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC.

2009 Millis-Colwell Postgraduate Student Travel Grant Recipient

Due to the success of the 2008 pilot program, the Millis-Colwell Postgraduate Student Travel Grant was made a permanent program of the Internation Education Committee. Funded jointly by ASM and the Australian Society for Microbiology, the Grant enables one student member from each society to present an abstract at the annual General Meeting of the other society and to spend a week at nearby research laboratory. The Grant is named after prominent Australian Society for Microbiology and ASM (U.S.) members, Nancy Millis and Rita Colwell. This is an exciting initiative which promotes a more dynamic and recognizable relationship with our Australian colleagues.

Kelly Wrighton, a graduate student in the Department of Plant and Microbiology at the University of California Berkeley, was named the American Grant recipient by ASM. Wrighton will present her abstract, “Thermincola sp. strain JR, a Gram-Positive Bacteria Isolated from an Active Microbial Fuel Community, Is Capable of Direct Electron Transfer to External Electron Acceptors,” during the Australian Society for Microbiology’s Annual Scientific Meeting & Exhibition in Perth, Australia, in July 2009. She will also spend a week with Korneel Rabae in his lab at the University of Queensland in Brisbane, Australia, where she will be involved in an integrated experiment using microbial community and metaproteomic techniques to elucidate bicathode consortia.

ASM Activities at the Local Level

Programming: “Where They Know What You Want”

In my article that appeared in the January 2009 issue of Microbe, I introduced you to the vision that the Branch Organization Committee (BOC) developed for its strategic plan, namely, “Branches: Where Everybody Knows Your Name!” This vision emerged out of a strategic planning retreat that BOC had in early October where the Committee developed a strategy to help current and future Branch members answer a simple question: What is the value of being a member of an ASM Branch? The challenge for the committee, as we developed a strategy to help you answer the question, was the realization that everybody has a different answer. So, why should you join an ASM Branch? Simply put, Branches provide to their members four core opportunities to enhance their careers and professional life. Over the last...

ASM NEWS...
three months in this column the first opportunity, networking, and to some extent the second, programming, was highlighted. This month I would like to focus on how you might help us, the BOC, help Branches provide interesting and inclusive programming to you, the current, and, hopefully, future ASM Branch member. Simply put: “Programming: Where they know what you want.”

Traditionally ASM Branches have programmed their gatherings to satisfy the major interests of their members. Consequently, every Branch often has an underserved constituency within their boundaries that limits their attendance. So the question is, how can a Branch foster the delivery of interesting, but inclusive, programming? The answer is you! Regardless of whether you are a member of the underserved constituency, programming can be tailored to the interests of the many subdisciplines represented within any given local scientific community.

At the ASM General Meeting in May, the BOC, at its annual Branch Officers’ Forum, will facilitate a discussion about how Branch programming can recognize and reflect programming both for the major Branch interests as well as those of underserved scientists within their boundaries. Granted, it is not guaranteed that “if you build it they will come.” However, if advance discussions with scientists outside established Branch channels underscore the need for scientific diversity in Branch programming, Branches may attract new volunteers to organize sessions. Further, a broader scientific community will learn that Branches are interested in being expansive and that future programming can be shaped by anyone willing to volunteer. Programming diversity will be more interesting, and it is likely to attract more participation, thereby increasing networking opportunities and knowledge exchange.

How can you help the BOC? Feel free to e-mail me, or any of the Regional Planning Coordinators with your programming ideas. The BOC will insure that your suggestions reach a Branch within your area. Alternatively, feel free to communicate directly with your Branch leadership. Their contact information may be found on the ASM website and they too welcome hearing from both their members and potential members.

The overarching goal of any Branch event is simple: provide the best programming and networking opportunities in a convenient venue. With your help we hope that Branches will be able to provide programming that offers something to you, local students, and your community! To learn of your next opportunity to participate in the programming and networking opportunities provided by an ASM Branch go to http://www.asm.org/Membership/index.asp?bid=23253.

Remember, the vision is simple: “Where everybody knows your name.” The next line from Gary Portnoy and Judy Hart Angelo’s song is our goal for this month: “...and they’re always glad you came.” Make certain your Branch has what you want so you and your Branch can be glad you came. So again, help us improve Branch programming—we need your input. From all of us involved in Branches, we hope to see you at a Branch meeting soon. Cheers!

Michael G. Schmidt
Chair, Branch Organization Committee

Membership

Deceased Members

Charles (Chuck) Evans died on 4 December 2008 in Seattle at the age of 96. He was appointed Founding Chair of the Department of Microbiology and Immunology in the School of Medicine of the University of Washington at age 34, a position he held for the next 24 years. He graduated with M.D. and Ph.D. degrees from the University of Minnesota. His early research focused on the growth of poliomyelitis virus in cell and tissue culture. These underappreciated studies were reported in a series of papers that were singled out by John Enders in his Nobel acceptance speech for their important contributions to the development of the field. Chuck then turned his attention to papillomavirus infections in rabbits, their oncogenic potential, and immune responses of the host. Finally, in his later years, he returned to an earlier interest, the ecology of skin microflora and its role in disease. In all he published over 150 papers in refereed journals.

Chuck was an active member of ASM and its predecessor, the Society of American Bacteriologists. He served as President of the Society in 1959–60 and was also a founding member of the American Academy of Microbiology, a member of its Board of Governors for six years, and Chairman of the Board from 1960–61. His founding of the Academy reflected his strong interest and concern for the standards of clinical and public health microbiology in the United States at that time. He served on many advisory panels and study sections and served as Chair of the Research Advisory Committee of the American Cancer Society from 1967–70.

At the University of Washington he was repeatedly called on to undertake controversial and difficult institutional projects, which reflected the esteem in which he was held by his colleagues. His calm, logical, and thoughtful approaches to often controversial issues proved invaluable to solving serious problems faced at the highest levels of the university administration. He was a committed teacher at both the undergraduate and graduate levels and was admired and respected by all those he mentored, especially those who worked with him in his research.

Chuck not only was a very productive laboratory scientist, but also was a serious naturalist, amateur ornithologist, bird watcher, and skilled photographer. Everything he undertook was pursued with passionate intensity and reflected his fascination and respect for the natural world. He leaves his wife of 70 years, Allie, two daughters, a son, and the respect and affection of numerous colleagues and past students.

John C. Sherris
Eugene W. Nester
University of Washington, Seattle

Arthur M. Kaplan, an eminent microbiologist, died at the age of 90 on 19 December 2008. He served with the U.S. Army Natick Laboratories for over 40 years, re-
tiring as head of an interdisciplinary research group in 1988. He published extensively in the scientific and technical literature. He was the author or coauthor of over 90 articles, and was awarded 10 patents in areas concerned with microbial deterioration or contamination. He was an Adjunct Professor in the Department of Pathology and Entomology at the University of Rhode Island, and a member of the Board of Governors of the American Institute of Biological Sciences. He served as a member of the editorial board of *Developments in Industrial Microbiology*.

He was active in international efforts concerned with microbiology. He was designated by the U.S. State Department as a member of the United States Delegation to the Organization for Economic Cooperation and Development (Office of Expert Group on Biodeterioration of Materials) with headquarters in Paris, France; was a founding member of the International Biodegradation Research Group in Delft, the Netherlands; served as a member of the editorial board of the *International Biodeterioration Bulletin* of Birmingham, United Kingdom; and served as a keynote speaker at various international conferences.

Kaplan organized and served as chairman, starting in 1954, of a series of annual working conferences on the prevention of microbiological deterioration of military material held at the U.S. Army Natick Laboratories, attended by representatives from the U.S. Department of Defense and by representatives from the United Kingdom, Canada, and Australia. The proceedings were published and used throughout the departments of the Army and Defense as source and reference materials for the solution of field problems. He also was a member of several scientific, honorary, and professional societies, including the Society for Industrial Microbiology, ASM, the American Chemical Society, the Institute of Food Technologists, and the Research Society of America. He served as Treasurer (1959–1960), President (1960–1961), and Director (1965–1968) of the Society of Industrial Microbiology (SIM). In recognition of his contributions to SIM, he was awarded the SIM Award of Merit in 1967 and the Charles Thorn Award—bestowed to persons making contributions in the field of industrial microbiology—in 1970, and was made a Fellow of SIM, an honor reserved for a few members of the Society, in recognition of distinguished career contributions to the profession of applied microbiology.

Kaplan received a B.S. from the University of Massachusetts, Amherst, in 1939; a Master’s degree from the State College of Washington, Pullman, in 1941; and, following World War II, a Ph.D. from the University of Massachusetts, in 1948. He served as a Lieutenant Commander in the Navy during that war, but was requisitioned by the Army to conduct research during the war at Camp Detrick, now Fort Detrick.

Kaplan was a long-time resident of Waban, Mass. He greatly enjoyed gardening, fishing, skiing, and music. He loved and inspired young people and was a mentor to many professionally. A long-time colleague of his at the U.S. Army Natick Laboratories, Morris Rogers, described him as “a special person who touched many lives.” A neighbor described him as “loving and kind,” and Janna Schmidt, one of his health care attendants, would refer to him as her “gentle giant;” his quick wit, sense of humor, and sparkle will always be remembered by family and friends.

Kaplan is survived by his wife of over 64 years, Ruth Westerman Kaplan of Waban, Mass.; his son, James Kaplan of Somerville, Mass.; his daughter, Jane D. Kaplan, and her husband, Ronald H. Rappaport, of Chilmark, Mass.; and his granddaughter, Julia D. Rappaport, of Brighton, Mass.